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S1 Notations and Orthonormal Contrasts

Recall that X denotes the set of all possible level combinations of predictors,
that is, X = {& = (x1,...,2,) 12, =1,...,¢,,5 = 1,...,p}. Let N =
#X = [[]_, ¢;- Let Z be the matrix of dummy variables for & and C' be
the coded matrix for X' via orthonormal contrasts (Chen and Tang, 2022;
Wang and Xu, 2022) with CTC = NI, where I is a conformable identity
matrix. Then there exists a transformation matrix P such that Z = C'P.
Because both Z and C' have full column ranks, so P is nonsingular. Clearly,
rows of Z, come from rows of Z, so Z, = C,P and M, = PTCTC,P, where
rows of s are from the corresponding rows of C'.

Common orthonormal contrasts include (normalized) Helmert contrasts



(Chambers and Hastie, 2017)), orthogonal polynomial contrasts (Wang and
Xu, 2022), and complex contrasts | Xu and Wu| (2001)). For example, the
Helmert contrasts are used to contrast the second level with the first, the
third with the average of the first two, and so on. For the jth predictor

with ¢; levels, the th contrast (I =1,...,¢; — 1) at level u is

(

-1, foru<|

en(w) =\ 725 an(w), where ap() =y fory—1  (SLD)

0, otherwise
\

Below is an example of the aj(u) for a predictor with ¢; = 5 levels, where

the [th column lists the {th contrast at u=1,...,5 levels:

-1 -1 -1 -1
1 -1 -1 -1
o 2 -1 -1

o 0 3 -1

0 0 0 4

S2 Proof of Theorem 1

Since M, = PTCTC,P, then

Amin(Ms) - )\min(PTCngP) Z )\min(PTP)/\min(OgOs) = VAmin(CSTCS)v

(S2.1)



where v = A\pin(PTP) > 0. Let C = I — CTC,/n = CTC/N — CTC,/n.
Because each level u for the jth predictor appears N /g; times in X and

nj(u) times in X, then

o ct ¢ - Cf
C, Cu Cf, - Cf,
C=| C C Cop - Csz
Cp Cp Oy -+ Cpp
where C; is a (¢; — 1)-vector with the Ith entry Y7 [q; ' —nj(u) /n]cj(u) =

weilay —ny(u) /nleq(u)ejo(u) with cjo(u) =1, Cjjis a (g5 — 1) x (¢; — 1)
matrix with the (I, m)th entry ZZLI[qj_l — nj(u)/n)cj(w)cjm(uw), Ci is a
(¢j — 1) x (g — 1) matrix with the (I,m)th entry 7074 370" [(q;q) ™" —
njk(u, v)/nlcji(uw)cgm(v), and cj(u) is the coded value for the Ith contrast of

the jth predictor at level u. For example, for the Helmert contrast, cj;(u)

is given in (S1.1)). We have

/\max(é) < ||OHF = f1+ f2,

where || - || denotes the Frobenius norm and
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Because 075! S8 A (u)ed, () < ¢ and YT Y07 ¢ (u)ed, (v)

q;q, for any j, k and w,v, then
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Since CTCy = n(I — C), Auin(CTCL) = n(1 — Anax(C)) > n(1 — f(X5)).

Then by (S2.1), Amin(M;) > nv(1 — f(X,)).

S3 Proof of Theorem 2

Since M, = PTCTC,P, where P is a Q x @ transformation matrix with

Q=1+3"_1(g —1), then

det(M,) = det(PTCTC,P) = det(P)*det(CTC).
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Because P is independent from the selection of Z, we only need to consider

det(CTC,):

Q
det(CTC,) = HAJ (crcy)

IA

5
{tr (CTC) } ($31)
{

”Q} (93.2)

where \;(CTCy)'sforj =0,1,...,Q are eigenvalues of CTCy, and tr(CICy) =
tr(CsCT) = nQ because rows of Cy are orthonormal. If f(X,) = 0, X, forms
an orthogonal array and CTC, = nl, then det(CTC,) = n?. This completes

the proof.

S4 Proof of Theorem 3
We have

(Y —2"B.2IX,] = E[(Y =27 B+ El(z"B— =" B,)2IX,] = 0* (1427 M '2)



and

S My = w(ZMIZT) = 0{2T ZM'} = u{ PTCTCP(PTCIC,P) T}
peX

= t{CTC(C]C) ™"} = Ntr{(C] Co) 71} > NQ* /1 (CT C) = NQ/n,
where the last equation holds because tr(CTCy) = nQ following and
(S3.2). Therefore, max,ex 2" M; 'z > Q/n and max,ex E[(Y—275,)2|X,] >
0%(14+Q/n). On the other hand, when f(X,) = 0, X, is balanced, and then
for any z, 2T M1z = 2T PTPz/n = | Pz||3/n. Note that Pz is a row vector
of C. The sum of squares of the ith row of C'is (1+°F_ Y77, c”l)/ =
(1+>F (¢ —1))/n = Q/n. Therefore, 2" M7'2 = Q/n and E[(Y —

2T3,)2|X,] = 0%(1 + Q/n). This completes the proof.

S5 Proof of Theorem 4

For a subsample X, = (z;), it can be verified that Y7, n;(u) = n,

D et oy yk(u,v) =n,and YO0 >0 51(@3’7 x7j>51<xfkv Th) = D s oy gk (u,v)?



for any j,k=1,...,p. Then

fQ(Xs)

q]‘Qk”jk(“» U)

p 2 2 p p 45 gk
Z 2 (U 1 2.
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= 27 > [0(af, 2]+ C.

1<i<i<n

S6 Computing complexity and time

The computational complexity of Algorithm 1 is O(Npn). The computa-
tional complexity of IBOSS is O(N( f 149;)) = O(Npq), where g repre-
sents the average number of levels of predictors. For LEV, we use a fast
Singular Value Decomposition method implemented in the R package “corp-
cor” to accelerate LEV, so the complexity is also O(N(3_)_, ¢;)) = O(Npq).

Tables and show the computing time for the subsampling pro-

cess in the setting of the simulation studies. All computations are carried

)



out on a laptop running Windows 11 Pro with an Intel Core i7-12700H
processor and 32GB memory. When n = 500, the running time of balanced
subsampling is comparable to that of fast LEV, with both being relatively
faster than IBOSS. When n = 2000, the running time of balanced sub-
sampling increases to four times that of n = 500, making its running time
around four times that of fast LEV and 2.5 times that of IBOSS.

Given the constraints of limited resources for labeling data (observing
the response), the subsample size n is typically not large. In such scenar-
ios, balanced subsampling exhibits comparable computational time to other
subsampling methods, making it viable for handling large datasets.

Table presents the computing times for the real data application.
With the real data featuring more levels and a larger ¢, the advantage of
balanced subsampling in terms of computing time is evident.

However, the primary objective of this paper is to identify an optimal
subsampling approach for measurement-constrained regression, with the
goal of achieving superior estimation and predictive performance. While
computational efficiency is undoubtedly important, it takes a secondary

role to the primary concern of achieving optimal performance.



Table S6.1: Running time (in seconds) of subsampling methods when p =

20,g=2,...,(p+ 1), and the subsample size is n = 500.

N UNI IBOSS

LEV  Balanced

10* 0 1.63
10° 0 20.51
10 0 207.63

1.09 1.19
11.95 13.88
124.20  131.40

Table S6.2: Running time (in seconds) of subsampling methods when p =

20,¢g=2,...,(p+ 1), and the subsample size is n = 2000.

N UNI IBOSS LEV Balanced
108 4x107*  1.56 1.05 4.21
10° 8x107* 2096 12.68 56.31
10 0.002 228.88 131.90  563.68

Table S6.3: Running time (in seconds) of the subsampling process for the

real data.

n UNI IBOSS LEV Balanced
500 4 x107* 26.39 26.34 4.24
2000 0.0012 40.53 3141 21.34
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