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S1 Notations and Orthonormal Contrasts

Recall that X denotes the set of all possible level combinations of predictors,

that is, X = {x = (x1, . . . , xp) : xj = 1, . . . , qj, j = 1, . . . , p}. Let N =

#X =
∏p

j=1 qj. Let Z be the matrix of dummy variables for X and C be

the coded matrix for X via orthonormal contrasts (Chen and Tang, 2022;

Wang and Xu, 2022) with CTC = N I, where I is a conformable identity

matrix. Then there exists a transformation matrix P such that Z = CP .

Because both Z and C have full column ranks, so P is nonsingular. Clearly,

rows of Zs come from rows of Z, so Zs = CsP and Ms = P TCT
s CsP , where

rows of Cs are from the corresponding rows of C.

Common orthonormal contrasts include (normalized) Helmert contrasts



(Chambers and Hastie, 2017), orthogonal polynomial contrasts (Wang and

Xu, 2022), and complex contrasts Xu and Wu (2001). For example, the

Helmert contrasts are used to contrast the second level with the first, the

third with the average of the first two, and so on. For the jth predictor

with qj levels, the lth contrast (l = 1, . . . , qj − 1) at level u is

cjl(u) =

√
qj

l + l2
· ajl(u), where ajl(u) =



−1, for u < l

l, for u = l

0, otherwise

(S1.1)

Below is an example of the ajl(u) for a predictor with qj = 5 levels, where

the lth column lists the lth contrast at u = 1, . . . , 5 levels:

−1 −1 −1 −1

1 −1 −1 −1

0 2 −1 −1

0 0 3 −1

0 0 0 4


.

S2 Proof of Theorem 1

Since Ms = P TCT
s CsP , then

λmin(Ms) = λmin(P
TCT

s CsP ) ≥ λmin(P
TP )λmin(C

T
s Cs) = νλmin(C

T
s Cs),

(S2.1)



where ν = λmin(P
TP ) > 0. Let C̃ = I − CT

s Cs/n = CTC/N − CT
s Cs/n.

Because each level u for the jth predictor appears N /qj times in X and

nj(u) times in Xs, then

C̃ =



0 CT
1 CT

2 · · · CT
p

C1 C11 CT
12 · · · CT

1p

C2 C12 C22 · · · CT
2p

...
...

...
. . .

...

Cp C1p C2p · · · Cpp


where Cj is a (qj−1)-vector with the lth entry

∑qj
u=1[q

−1
j −nj(u)/n]cjl(u) =∑qj

u=1[q
−1
j −nj(u)/n]cjl(u)cj0(u) with cj0(u) = 1, Cjj is a (qj − 1)× (qj − 1)

matrix with the (l,m)th entry
∑qj

u=1[q
−1
j − nj(u)/n]cjl(u)cjm(u), Cjk is a

(qj − 1) × (qk − 1) matrix with the (l,m)th entry
∑qj

u=1

∑qk
v=1[(qjqk)

−1 −

njk(u, v)/n]cjl(u)ckm(v), and cjl(u) is the coded value for the lth contrast of

the jth predictor at level u. For example, for the Helmert contrast, cjl(u)

is given in (S1.1). We have

λmax(C̃) ≤ ∥C̃∥F =
√

f1 + f2,

where ∥ · ∥F denotes the Frobenius norm and

f1 =

p∑
j=1

qj−1∑
l=0

qj−1∑
m=0

qj∑
u=1

[
1

qj
− nj(u)

n

]2
c2jl(u)c

2
jm(u)

f2 =

p∑
j=1

p∑
k=1,k ̸=j

qj−1∑
l=1

qk−1∑
m=1

qj∑
u=1

qk∑
v=1

[
1

qjqk
− njk(u, v)

n

]2
c2jl(u)c

2
km(v).



Because
∑qj−1

l=0

∑qj−1
m=0 c

2
jl(u)c

2
jm(u) ≤ q2j and

∑qj−1
l=1

∑qk−1
m=1 c

2
jl(u)c

2
km(v) ≤

qjqk for any j, k and u, v, then

λmax(C̃) ≤

√√√√ p∑
j=1

qj∑
u=1

q2j

[
1

qj
− nj(u)

n

]2
+

p∑
j=1

p∑
k=1,k ̸=j

qj∑
u=1

qk∑
v=1

qjqk

[
1

qjqk
− njk(u, v)

n

]2
= f(Xs).

Since CT
s Cs = n(I − C̃), λmin(C

T
s Cs) = n(1 − λmax(C̃)) ≥ n(1 − f(Xs)).

Then by (S2.1), λmin(Ms) ≥ nν(1− f(Xs)).

S3 Proof of Theorem 2

Since Ms = P TCT
s CsP , where P is a Q × Q transformation matrix with

Q = 1 +
∑p

j=1(qj − 1), then

det(Ms) = det(P TCT
s CsP ) = det(P )2 det(CT

s Cs).



Because P is independent from the selection of Zs, we only need to consider

det(CT
s Cs):

det(CT
s Cs) =

Q∏
j=1

λj(C
T
s Cs)

≤

{∑Q
j=1 λj(C

T
s Cs)

Q

}Q

=

{
tr(CT

s Cs)

Q

}Q

(S3.1)

=

{
nQ

Q

}Q

(S3.2)

= nQ,

where λj(C
T
s Cs)’s for j = 0, 1, . . . , Q are eigenvalues of CT

s Cs, and tr(CT
s Cs) =

tr(CsC
T
s ) = nQ because rows of Cs are orthonormal. If f(Xs) = 0, Xs forms

an orthogonal array and CT
s Cs = nI, then det(CT

s Cs) = nQ. This completes

the proof.

S4 Proof of Theorem 3

We have

E[(Y −zT β̂s)
2|Xs] = E[(Y −zTβ)2]+E[(zTβ−zT β̂s)

2|Xs] = σ2(1+zTM−1
s z)



and

∑
x∈X

zTM−1
s z = tr(ZM−1

s ZT ) = tr{ZT ZM−1
s } = tr{P TCTCP (P TCT

s CsP )−1}

= tr{CTC(CT
s Cs)

−1} = N tr{(CT
s Cs)

−1} ≥ NQ2/tr(CT
s Cs) = NQ/n,

where the last equation holds because tr(CT
s Cs) = nQ following (S3.1) and

(S3.2). Therefore, maxx∈X zTM−1
s z ≥ Q/n and maxx∈X E[(Y−zT β̂s)

2|Xs] ≥

σ2(1+Q/n). On the other hand, when f(Xs) = 0, Xs is balanced, and then

for any z, zTM−1
s z = zTP TPz/n = ∥Pz∥22/n. Note that Pz is a row vector

of C. The sum of squares of the ith row of C is (1 +
∑p

j=1

∑qj−1
l=1 c2i,jl)/n =

(1 +
∑p

j=1(qj − 1))/n = Q/n. Therefore, zTM−1
s z = Q/n and E[(Y −

zT β̂s)
2|Xs] = σ2(1 +Q/n). This completes the proof.

S5 Proof of Theorem 4

For a subsample Xs = (x∗
ij), it can be verified that

∑qj
u=1 nj(u) = n,∑qj

u=1

∑qk
v=1 njk(u, v) = n, and

∑n
i=1

∑n
l=1 δ1(x

∗
ij, x

∗
lj)δ1(x

∗
ik, x

∗
lk) =

∑qj
u=1

∑qk
v=1 njk(u, v)

2



for any j, k = 1, . . . , p. Then

f 2(Xs)

=

p∑
j=1

qj∑
u=1

(
1− 2qjnj(u)

n
+

q2jnj(u)
2

n2

)
+

p∑
j=1

p∑
k=1,k ̸=j

qj∑
u=1

qk∑
v=1

(
1

qjqk
− 2njk(u, v)

n
+

qjqknjk(u, v)
2

n2

)

= −
p∑

j=1

qj + n−2

p∑
j=1

q2j

[
qj∑

u=1

nj(u)
2

]
− p(p− 1) + n−2

p∑
j=1

p∑
k=1,k ̸=j

qjqk

[
qj∑

u=1

qk∑
v=1

njk(u, v)
2

]

= n−2

p∑
j=1

p∑
k=1

qjqk

[
qj∑

u=1

qk∑
v=1

njk(u, v)
2

]
−

p∑
j=1

qj − p(p− 1)

= n−2

n∑
i=1

n∑
l=1

p∑
j=1

p∑
k=1

qjqkδ1(x
∗
ij, x

∗
lj)δ1(x

∗
ik, x

∗
lk)−

p∑
j=1

qj − p(p− 1)

= n−2

n∑
i=1

n∑
l=1

[δ(x∗
i , x

∗
l )]

2 −
p∑

j=1

qj − p(p− 1)

= 2n−2
∑

1≤i<l≤n

[δ(x∗
i , x

∗
l )]

2 + C.

S6 Computing complexity and time

The computational complexity of Algorithm 1 is O(Npn). The computa-

tional complexity of IBOSS is O(N(
∑p

j=1 qj)) = O(Npq̄), where q̄ repre-

sents the average number of levels of predictors. For LEV, we use a fast

Singular Value Decomposition method implemented in the R package “corp-

cor” to accelerate LEV, so the complexity is also O(N(
∑p

j=1 qj)) = O(Npq̄).

Tables S6.1 and S6.2 show the computing time for the subsampling pro-

cess in the setting of the simulation studies. All computations are carried



out on a laptop running Windows 11 Pro with an Intel Core i7-12700H

processor and 32GB memory. When n = 500, the running time of balanced

subsampling is comparable to that of fast LEV, with both being relatively

faster than IBOSS. When n = 2000, the running time of balanced sub-

sampling increases to four times that of n = 500, making its running time

around four times that of fast LEV and 2.5 times that of IBOSS.

Given the constraints of limited resources for labeling data (observing

the response), the subsample size n is typically not large. In such scenar-

ios, balanced subsampling exhibits comparable computational time to other

subsampling methods, making it viable for handling large datasets.

Table S6.3 presents the computing times for the real data application.

With the real data featuring more levels and a larger q̄, the advantage of

balanced subsampling in terms of computing time is evident.

However, the primary objective of this paper is to identify an optimal

subsampling approach for measurement-constrained regression, with the

goal of achieving superior estimation and predictive performance. While

computational efficiency is undoubtedly important, it takes a secondary

role to the primary concern of achieving optimal performance.



Table S6.1: Running time (in seconds) of subsampling methods when p =

20, q = 2, . . . , (p+ 1), and the subsample size is n = 500.

N UNI IBOSS LEV Balanced

104 0 1.63 1.09 1.19

105 0 20.51 11.95 13.88

106 0 207.63 124.20 131.40

Table S6.2: Running time (in seconds) of subsampling methods when p =

20, q = 2, . . . , (p+ 1), and the subsample size is n = 2000.

N UNI IBOSS LEV Balanced

104 4× 10−4 1.56 1.05 4.21

105 8× 10−4 20.96 12.68 56.31

106 0.002 228.88 131.90 563.68

Table S6.3: Running time (in seconds) of the subsampling process for the

real data.

n UNI IBOSS LEV Balanced

500 4× 10−4 26.39 26.34 4.24

2000 0.0012 40.53 31.41 21.34
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