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In the supplementary material, we present the proofs of four auxiliary lemmas in Section @,
the proof of Proposition 1 in Section @, an additional simulation study based on real value

cases in Section@ and then show some additional figures for the application in Section @

S1 Auxiliary Lemmas

To obtain the limit result in Proposition 1, we need Lemmas m and E below,
which are important auxiliary results on the tail empirical processes and

the tail empirical copula processes . They are analogous to Lemmas 1 and
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2 in Cai and Musta (2020). The difference lies in the range of y. Here we

take y € [0,1] instead of y € [1/2,2] in Cai and Musta (2020).

Lemma 1. (i) The function y — fooo T(x,y)dx=" is Lipschitz, that is, there

exists Cy; > 0 such that, for each yy,ys € [0, 1],

/T(:L',yl)da:”“—/ T(x,y) dx™
0 0

.. —+3 . .
i) Let M, = VEk (%) 2172, Assumptions 1, 2, 4 and 5 imply that
%

jguDT(x,y)dx—Wl__jgajr (s%(x)’y> dr—"

(7ii) Assumptions 8 and 4 imply that for p=1,2,2+ 4,

[ = [ o
0 " 0

(iv) Assumptions 3, 4 and 5 imply that

]CQDTE <3§($),y> dx_wl“j€037'<si(qg7y> -

Proof of Lemma E ) By the homogeneity of 7(z,y), we have that, for

< Ch |y — el

sup M, — 0.

0<y<1

sup — 0.

0<y<1

sup M,
0<y<1

— 0.

Y1, Y2 € [07 1}7

(x,yp)dx™ " / T(x,yy) dx™
0

_/ 1/ ( )dx—%—/ooyé/" (3,1) dz™
0 Y2

= yi/" 71/ 7(x,1)dz™™" —y;/n_%/ 7(x,1)dz™™"
0 0

<Ci |ly1 — yol
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where C; > 0 is finite and the last inequality follows by 0 < 1/np — vy < 1.

(ii) For sufficiently small € > 0, let [,, = (%)1_6. We write

sup M, / 7(z,y)dx™ " —/ T <sﬁ(x),y) dz™ "
0<y<1 0 0 "
In
< sup M, / [T(w,y) -7 (8&(%)&)} dz™™
0<y<1 0 "
+ sup Mn{ / T(x,y)dz | + / T(Sﬁ(x),y> dx™" } (A1)
0<y<1 In ln "

For the first term on the right-hand side of (A1), by the homogeneity

and monotonicity of 7(z,y), we have that, for z1,zo > 0,y € [0, 1],

) 1/77_1
T

sup M, /Oln [T(x,y) -7 (S%(x),yﬂ de—"

0<y<1

In sﬁ(x) L/n
< sup M, / s — 1| 7(z,y)dx™"|.
0

0<y<1 T

|7 (21,y) = 7 (22,9)] < 7T (z1,9),

and hence

Note that, for any €y > 0, for sufficiently large n and = < [,, (see Cai,

2012, p.85),

sek(z)/z—1 4=, _1q
Ai(n/k) - V1P1
This implies that for g < —p;1(1 — A\)/A and = < [,

sk ()

n T 1
X

< 7P max (xeo, x_eo) .

< 14u(/b)1 {

x P —1‘

+ 2”7 max (z°, x } =o(1).
T1pP1 ( ) o
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By a Taylor expansion, we obtain

Skl\T L
( : >> 1] = (/0 {

x P —1'

+ 27" max (1’60, 1’_60) }
Y1P1

s —
+o0 (Al(n/k) { x—‘ + 2" max (z°, 1) }) :
711
Consequently,
In Sk (:L’) 1/
sup M, / s — 1| 7(z,y)dx™"
0<y<1 0 Z

< Cy sup M, |Ai(n/k)|

0<y<1

ln
/ 2 P! max (3760, xieo) T(z,y)de |, (A2)
0

where C3 > 0 is finite.
Furthermore, using the triangular inequality and Cauchy-Schwarz in-

equality, we have

ln
/ z7" max (2, 27°) 7(z, y)dz ™™
0

1/2 1/2

1 ln
< / Pt 7607_(1.’ y)dlﬁ’n + / x72p1+260dx*’71
0 1

=0 ("),

where the last equality follows from Assumption 2. Going back to (A2), we

/ 7(x, y)zdgl:"”1
1

obtain

sup M,
0<y<1

ln 85($) L/n - n _§%+%_V1g*@
1) mi-ofa )

because of Assumption 5.

Next, we deal with the second term in the right-hand side of (A1). By
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Cauchy-Schwarz inequality and Assumption 2, we obtain

oo 0o 1/2 00 1/2
/ T(z,y)de | <7 (/ x_“_ldm> (/ T(x,y)sz_”_ldx)
In In 1

< Gyl

for some constant C's > 0. Moreover, by Assumption 5 and the fact that

1,1 7@

M = V()
nn kj bl
it follows that

sup M, — 0.

0<y<1

/ 7(z,y)dx™ "
In

Again, the triangular inequality yields

+

AN
—
3

s

Ez:m P‘(sg(aﬁ,y) — T (s%(x)7y>} -

o0 Tﬁ(w,y)—-T(x,y)’ o0 B2
< / Tk ( sk (), y) dr™ | + sup — / (sﬂx)) dx~ .
I n n 1<z <00 IﬁQ L, n
0<y<1

Note that, by Assumption 4,

G ()| . ( (@)_5> |

l1<z<oo xP2
0<y<1
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Then, by Jensen inequality and a change of variable, we obtain

oo
/ Sk (x)ﬂzdx—”n —
1 n

{%P (X > Q:i(1—k/n)z™ ) }52 dx™"

B2

/ (P (X > Q1 — k/n)x)} " da

BZ{ P (X > Qi(1— k/n)z)d }52

5 Q1(1—k/n) P2
{—Q1(1 y /0 P(X > x)dac}

B2(1-1)

IN
/N /N /N VRS
SIS IS s WS H\g
N—— —— ~ ——

IA

(BLX])™. (A3)

Hence, fl se()P2dz < [ sk(x)P2da = O ((2)%20-1)). By As-

n n

sumption 5, we have

/l:o [7’ <5%(aj),y) — Tk <5%(l~)’y>] dr—"

On the other hand, using the definition of s, we get

sup M,

0<y<1

— i —E4+B2(1-m)
:0<\/E(%) wtamErhlo >—>0.

As a result, by Assumption 5 we obtain

/00 Tk (35(5{;), y) dx™ M
L om \Un

) 2 —3—(1=em

gcﬁ(

sup M,
0<y<1

k



S1. AUXILIARY LEMMAS7

(iii) We write

oo o0
sup / T (2,y) de™ " —/ T(z,y)dx™ "
0<y<t|Jo " 0
T§($,y)—7($,y>‘ o0
< sup - / 2P A PP
0<z<oco PN P 0
0<y<1

n\ —€ /1 5 B /oo B )
_ i 2Prdp—rn x’Ble‘ Y
() ( 1

by Assumptions 3 and 4.

(iv) By Assumptions 3 and 4, we have

/000 Tx (sg(x) Z/) -7 (sk(x) )dx_»yl
<M, sup

Ti(z,y) —7(z,y ‘
0<x<oco x’Bl A x’BQ /

—0 (My<%>§> /O N (55(33)61 A s%@)lﬁ) dz .

Next, we obtain an upper bound for the integral in the last equality.

sup M,

0<y<1

(ZL‘)B2> dx="

Spr
:\?&“

Because s () is monotone and sx (1) = 1, we get the following bound for

n n

the integral from zero to one:

1
/ s (x)da " </<3
o " R

which is shown to be O(1) in Cai, Einmahl, de Haan and Zhou (2015).

()% A 1) dx™ M,

Sl=
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Recall that in (A3) we show

o B2(1=71)
B2 =71 — E
/1 Sk (x)?dx @) <k> .

Finally by Assumption 5, we get

0 (Mn (g) —5-0-52(1—“/1)) _ \/E (%>—21n+§—5+52(1—’71) 50

Lemma 2. Suppose Assumptions 2, 3 and 4 hold. For y € [0,1] and

p€{1,2,2+4 6}, define

p

ny - -7
An(yvp) = (E) - o 1{17F1(X1)<%x,17F2(Y1)<%}dx :

Then,
E [An(y, p)] = — / r(a, y)da.
0

Proof of Lemma . Let Uy =1—-F1 (X)), Vi=1—-F(Y;),i=1,--- n,

then we can write the integral as

it

[e.9] . n
[ ety ™ = 1 (07)
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By a change of variable, we obtain
n\ /n n -
Bl = (1) B [1eny (F01) 7
1/n [o° k1 k
:(E) "/ P(U1<—x ml,Vl<—y)dx
k 0 n n
U k k
- (%) "/ P (U1 <Za V< —y) da=""
k 0 n n

= —/ T (2,y) de™ P,
0 n

The statement follows from (iii) in Lemma EI O

Recall sk (z) = nFy(Q1(1 —k/n)z=) /k,x € (0,00). In Lemma B
below we study the processes

1 o0

Zyi(y) = M, }dx“,z' =1,---,n.

{Ui<§%<x>,vi<gy
n

Lemma 3. Suppose that Assumptions 1 to 5 hold. Then as n — oo,

=1

{Z (ZZl(y) —E [Z;z(y)})} . {W<y)}ye[071} )
y€[0,1]

where W (+) is a mean zero Gaussian process on [0, 1] with covariance struc-

ture

MW@OW@MI—AMM%mAmﬂx%,ymnemﬂ

Proof of Lemma E Given that we have lim,,_,, s (z) = z by the regular

variation of 1 — F}. We shall study a simpler process obtained by replacing
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sk (x) with x :

S, [ B
Zn’l<y> - _?/0 1{Ui<%x,\/i<%y}dx I

To prove Lemma B , it suffices to show that

sup nlE HZ:LJ(?J) - an(y)u — 0,

y€[0,1]

and

i=1
(A4) implies that

n
P

sup Y (Z3,(y) = Zni(y)) = 0

and

sup Y (E[Z5,(y)] — ElZuiy)]) > 0.
y€[0,1] i—1
Step 1: Proof of (A4)

Using the triangular inequality, we write

nk H Zz,l (y) — Zn (y) H

- _ <%>21"21’%/000P (% (:p/\s%x)) < Uy <§<x\/si(x)>,V1 < %y) dr—

{Z (Zni(y) — E [Zn,z(y)])} SV e -
y€(0,1]

(A5)
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All three terms on the right-hand side converge to zero by (ii) and (iii) in

Lemma m

Step 2: Proof of (A5)

We aim to apply Theorem 2.11.9 in van der Vaart and Wellner (1996).
In order to do this, we need to check the four conditions in that theo-
rem are satisfied. Let (F,p) = {[0,1],p (y1,¥2) = |y1 — v=2|}, and || Z]|7 =
sup,cx |Z(y)|.

(a) Fix € > 0. By the fact that [|Z, ]| < Z,1(1), we have that, with

the notation ¢ in Assumption 2,

BE | Znallr gy oe) | < B [Zat (D 11z,00050)]

n

0
< anklZr )]
1 _5 n\ 1/n > o 244
= B (1) (- syt )
— 0. (A6)

The last convergence follows from M, — oo and Lemma E :
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(b) Take a positive sequence 6, — 0. Then we have

n

sup Z]E [(Zni (1) — Zny (y2))2]

[y1—y2|<on
9] 2
-7
(/0 1{U¢<%x,§y2<Vi<%y1}dx )

= sup i<ﬁ>}]—1lE
=, (%);E {1{:yl<w<sw} (%Ul)_%] |

‘yl_y2|<6n i=1 k k
ly1—y2|<dn

Moreover, by triangular inequality and by (i) and (iii) in Lemma m, we get
n 7% n —2m
(£)" B [tvenctornny (G11)

n

R kK k k
S (—) / P <U1 < —z,—y<Vi<—(y+ 5n)) dx M
k 0 n 'n n

/ s (z,y + 0,) dz ™" —/ T (x,y) do ™"
0 " 0 "

— 0. (AT)

(c) Let Npj (e, F, Ly) be the minimal number of sets N, in a partition

0,1] = Uj-vzellfw such that

n

E

=1

sup | Zni (Y1) — Zn (y2)|2] <€, Vj=1,...,N..

ylnyEI;’j
Consider the partition given by I ; = [(j — 1)A,, jA,]. Then, N, = 1/A,,.

We aim to find A,, such that, for every sequence 9,, — 0, it follows that

On
/ \/log Ny (e, F, Ly)de — 0.
0

Notice that

3=

n —27m
nE E|syanerpy (301) | = Ba

n
sup |Zn,1(y1)—Zn,1(y2)|2]= sup <E>

y1y2€l], ; yLy2€l], ;
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Let 5, = (j — 1A, and g2 = jA,. Next, we will derive two different
upper bounds for B,,. Let ¢ = (2+0)/2 and p such that 1/p+1/¢ = 1. By
Holder inequality, we obtain

Bn = (%) * [1{,’2@71<V1<Zﬂ2} () 271}

1

< (g)% B [1{2g1<vl<2g2}]1/plﬁl {1{v1<:y2} <U1%> MI} :

N\n"p nq _ _ 1 _
<(3)" 7 I = el E A (52,20)

for some constant K; > 0, where the last equality is obtained by applying
Lemma 2.
On the other hand, by (i) and (iii) in Lemma EI and the triangular

inequality, we get a second bound for B, :

n

B, <— 2/ (7'5 (x,92) — Tk (x,g1)> A
0 n

_ 9 /OOO (r (2.52) — 7 (2, 51)) da—2

_ 2/0°° (7' (z,91) — Tk (x,g1)> de=2"

B\
<K A, + K3 (—)
n

for some positive constants Ky and Kj.

If € < (%)é for some £* € (0,€), we use the first bound for B,. By
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choosing

1
we get B, < K, ( )7'_5_”7 A? < €2. Hence

Otherwise, if €2 > (%)5*, for sufficiently large n,

NS 1 /k\Y 1,
K3 (E) < 5 (ﬁ) < 56 ,
and we use the second bound for B, with A, = ¢?/(2K;), which means

k 3
B, < KoA, + Ks <—) <é
n

Hence, in this case,

N, <282
<

Now, we distinguish between two cases. If §,,/log(n/k) — 0, using the
inequality v/a + b < \/a+ /b, for a,b > 0 and the inequality log(z) <  for

large x, we get

61’1, (Sn
/ \/log Ny (e, F, L3)de < / \/(1—9 —1- 3) log(n/k) + 2plog e~ + log (K )de
0 0 nq

Ui

< ([ Vgt [ V),

for some positive constants K4, and the left-hand side converges to zero as

0, — 0.
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On the other hand, if d,y/log(n/k) —+ 0, we take &} = (k/n)%". Note

that ¢} +/log(n/k) — 0. Hence, we write

on o on
/ \/logNH (e, F, Lg)de:/ \/logNH (¢, F, Lg)de+/ \/logNH (e, F, Ly)de
0 0 5
6n
<o(1) —|—/ V1og (2K5/€?)de
5
577.
<o(l)+ \/5/ Ve tde — 0.
0

(d) We will show marginal convergence, that is, for each positive integer

M and for each yy,...,yn € [0, 1], the random vector

(Z (Zmi (yl) —E [Zn,i (yl)]) DR Z (Zn,i (yM> -k [Zn,i (yM)]))

=1 =1

converges to a multivariate normal distribution. It suffices to show that,

for each aq,...,ay) € R,
M n n
> i 1D (Zni () —E[Zui ()| =D (Nuy — E[Noil)
j=1 i=1 i=1

converges to a normal distribution, where N,, ; = Z]J\il a;jZy; (y;). This will

follow from the Lindeberg-Feller central limit theorem (see, e.g., Proposition

2.27 in van der Vaart (1998)), once we show that, for each € > 0,
S E[INuil* 1n, 0] = 0 (A8)
i=1

and

Zn:\/ar (Npi) — o (A9)

=1
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We first proceed with (A8). Note that

D E[[Nail* Lynii=a] = 1B [INnal® 1w, 1]
=1

nlk [|Nn,1|2+5} M o
< " < K5nz |aj]

J=1

E || Zna (D]

€d

Y

for some positive constants K5, and converges to zero by (A6). For (A9),

we write

n M 2 M 2
Z\/ar (Npi) =nqE (Z a;Zn 1 (yj)> — (E Z a;Zn1 (y;) >
i=1 Jj=1 J=1

Zzajakzn,l (Y;) Zn (\/_Zaj Zna (Y5) )

n ()] +o(1),

I
S
M=
NE
Q@
2
=
A
Q
~

because it is easy to check that /nE[Z,; (y;)] — 0, for j = 1,..., M.

00 2
(/O' 1{U1< IV1<7L yJ/\yk} x 71) ]

= E[An (5 A yr, 1]

Observe that

1

nE (Zy1 (4)) Zna ()] = (g) "R

Thus, by Lemma E, it follows that (A9) holds with
M M .
on = ZZ%%/ 7 (2,95 A yp) dz™,
j=1 k=1 0
We have verified the four conditions required by Theorem 2.11.9 in van

der Vaart and Wellner (1996), which means we have the conclusion that
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Yow i (Zni —E[Z,;]) converges weakly to a mean-zero Gaussian process
wW.
Now, we compute the covariance structure of the limit process. For

each yy,ys € [0, 1], by independence, we have

n—00 -
=1

E[W (y1) W (y2)] = lim Cov <Z Zni(y1), ZZM' (yz)>

= lim nCov (Z,1 (Y1), Zn1 (y2))

n—oo

= lim (RE[Z,1 (1) Zna (y2)] — nE [Zp1 (y1)] E [ Zn1 (y2)])

n—oo

== /007' (51 A ya) dz™ 7"
0
= /OOT <:L‘7ﬁ,y1 /\y2> dz.
0
O
In order to prove Proposition 2, we also need the Gaussian approxima-

tion to the tail empirical process for the marginal distribution of Y. Lemma

@ below is derived from Proposition 3.1 in Einmahl de Haan and Li (2006).

Lemma 4. There exists a sequence of mean zero Gaussian processes { Wy () }yeio,1]

with covariance structure

E |:Wn (y1) W (?ﬁ)} =y1 Ay, Y142 €10,1],
such that for any q € [0,1/2), we have
o

sup g~
yE(O,l]

1 & —~
Vo (% 2_1: ]-{Vi<ay} - y) - Wn(y)
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S2 Proof of Proposition 1

Let V, = 1 — Fy (Y:), where Foo(y) = #1 > i1 1ivi<yy is the empirical

distribution function of F. Recall that o = k/n. Denote

wp, = 2E ((Xl - X2) (‘/2 - ‘/1) ]-{V1<cx,V2<a}) )
h (531, V1, 932>Uz) =2 (ZU1 - $2) (112 - U1) 1{V1<a,V2<a} — Wn,

hy ($1,U1) =2E ((xl - Xz) (V2 - U1) 1{V1<a,V2<a}) — Wn-

Therefore, w, = a® TG« (X;Y) and

2(n—1 2 ~ ~
n-(n—1) k2(kn—1) Z h(Xi,Vi,XpV}).

1<i<j<n

By Hoeffding’s Decomposition, we have that

+ Op(l).

VEk Z h(Xia‘A/i,Xj,‘A/j> :\/gzn: hy (XZ,‘A/Z)

2n(n — 1) a3@Q(1 — ) — 20°Q1 (1 — )

1<i<j<n
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Note that
hy (x1,v1) = = 2z101] (11 < a) P (Vo < @) + 2211 (v < ) EVal (Vo < @)
+ 2011 (v < ) EXol (Vo < @) =21 (01 < @) EXoVLl (Vy < @) — wy,
=2a(—z101] (1, < ) + EXiVI T (V] < @)
+o?(x1] (vy < @) —EX1T (V] < a))
+2(0n] (0 < @) —EViI (Vi < @) EXiT (Vi < @)

— (I (v < @) — EX, Vi (Vi < a).

n 21_;\/5 n hl <X17‘>;>
(E) ! ﬁzzl 20301 (1 — )

(n)ll\ﬁ v (=XVil (Vi <o) +EXVI (Vi < a)
—(—)2n 2 J—
k n =1

a?@Q(1 — )
no11 fas [ Xid (Vz < a) —EXiI (Vi <o)
+ (E)2n 2 E 2 2aQ1(1 — a)
ng; V<04>—EV1](V1<Q))EX1](V1<Q)
(b 2[2 oo
k [t a3Qi(1 — )

=: 1+ Jo+ I3+ J4.

Let e, = Fy (Y,_x.n) /. By Skorohod’s representation and Lemma a, there

exists a sequence of mean zero Gaussian processes {W,(y)}yep1] with co-
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variance structure

E[Wn (yl) Wn (y?)] = _/ T(‘Tayl Ay?) dx_2717 Y1, Y2 € [07 1]
0

such that

(Z:(y) —E[Z; ;()]) — Waly)| = op(1).

=1

sup
y€[0,1]

For J;, by Fubini’s Theorem and a change of variables, we have that
1 n
S = / Y (E[Z::W)] — e Z; (eny)) dy
0 =1
1

= 6721/0 (Z (Z;,i(eny) —E [Z;,i(eny)}) - Wn(eny)> dy

i=1

=:Ju+Jig+ Jizs + Jua
First, we show that Ji; = op(1). Define Q,(y) = >, (Z;,(y) —E [Z5:(y)]) —

W, (y). By Lemma @, we have vk (e, — 1) = —Wn(l) + op(1), and thus

lim P(le, — 1| > k~Y4) = 0.

n—oo

Corollary 1.11 in Adler (1990) implies that as n — oo,

sup ‘Qn (eny) - Qn(y>’ = 0(1) a.s.,
ye(oal]v‘en*1|<k71/4
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which leads to

1
Jll = _ei/o Qn(eny>dy = OP(1>'

Second, for Ji9, using triangular inequality, we write

—e? (%) 23 %/01 /DOO {P (U1 < %s:(m),Vl < geny) - P <U1 < gs:(:p),vl < %y)] dz " dy
= /0 Vi [ [ (sx@nean) =72 (s1).0) ey
7 (5@ ) =7 (ss(@)s o) ey
/0 A /0: i (s2@)y) =7 (ss(@).) Jas ™y
+e2 /O an /0 7 (s6(@)eny) = 7 (@, en)| dzdy
J

M, /OOO :7' <3%(x),y> — T(x,y)} dx= " dy

1 0o
+ep / M, / [7 (2, eny) — 7 (2,y)] dz" " dy
0 0

=:Ji91 — Ji22 + Ji23 — J124 + J125.
We have J121 = Op(l), J122 = OP<1), J123 = OP<1), J124 = OP(l) by (111) and

(iv) in Lemma m For Ji25, by the homogeneity of function 7, we have
17’71 1 00
Jios = My(enn — — l)ei/ / 7 (x,y) de " dy.
o Jo
Note that

My(eng ™ —1) = (%)—#%\/E(eﬁ’“ 150



22ZHAOWEN WANG, LIUJUN CHEN, and DEYUAN LI

because VE(el | —1) = Op(1). Consequently, Jios = op(1) and hence
J12 == Op(l).

Third, VEk(e2 — 1) = Op(1) and

1 e’} 1 [e'e)
/ / Tk <3E(x)v Z/) dx™"dy = / / 7 (z,y) dz” " dy + op (M, ")
0o Jo " " 0o Jo

lead to

J13:<%>_21n e—l// Tk % )d:c71dy—>0

Fourth, again by Corollary 1.11 in Adler (1990), the continuity of W,

implies that as n — oo,

sup W (eny) — Wio(y)| = o(1) a.s.,

y€(0,1],|en—1]<k—1/4

which leads to that Jiu = fo w(y)dy + op(1). Thus, we have J; =

— Jo Waly)dy + op(1).
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Similarly, for J, we have that

=—= > (Ziglen) ~B[Zi(en)]) = Walen)
o (2] (en) - Z;,(1)])
_ el éE (Z:,(1)]
_ %"Wn(en)

=Jo1 + Jag + Joz + Jou.

By e, = op(1) and Lemma , it follows that Jo; = op(1), Jag = op(1), Jog =

op(1), Jos = —3W,(1) + op(1), and thus Jo, = —1W, (1) + op(1).
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Next, we deal with J3. Write

(L (EI(Vi<y) — (Vi < eny) EX\I (Vi < @)
_Sn/o ﬁ;< a? )dyx a@(l —a)

M, [t 0o
:7"/ Z (I(V; <epav) —EI (V] < av))dy x / Tk <SE(J/‘)7 1> dr—
0 =1 0

n n

- (0%
=1

:<E)—g+5 /1 Vna <% i [(Vi < Maoy) eny> — W, (eny) dy X /OOO Th (si(:v), 1) dx™ "

_ (%)—%ﬂré 1 Jna (%iM — y> — W(y)dy x /Ooo Te (s%x),l) de

- (0%
=1

+(%)*ﬁ+$ m(lZI(Vi<ay)—EI(V1<Oéy)> _,Wn(y)dyx/oooT

n < (6%
=1

+<g>-2n+2[/l(m<en—1>y+’m<eny>—ﬁ<>)dy+ S < [
+M/ Tg 1)—T(x,1)) dw‘“x%(—— /W dy)
+(%)—ﬁ+% (—§Wn<1)+/01 Wn(y)dy) x /0007@,1)(&1:%

= Js1 — J3o + Jag + Jgq + J35 + Js6.

Lemma @ and [J° 7k (Sﬁ(l'), 1) dx~" < oo imply that

n

Js1 =op(l), Jso=o0p(l), J33=o0p(l).

Recall that y/na (e, — 1) = Op(1) and that (%)_ﬁ% — 0, so0 J3y = op(1).
By (ii) and (iv) in Lemma EI, J35 = op(1) holds. Js5 = op(1) also holds be-

cause — )+ fo 2 (y)dy = Op(1) and fo ,1)dx=" < oo. There-

fore, J3 = op(1).

3=

(s

3

(s

E
n

3|

(x), 1> dx™ "

(x), 1) dz™
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Similarly, for J; we have

1 & EX VI (V] < )
Ji==8, [ —=> I(Vi<ena)-1
! <na — Vi < ena) >X

a?@Q(1 — )

:_(ﬁ)—#%(%if (V; < enar) —1) // )d:r Ty

3+ [ ( Z[V<en —n>— ] // s (54(0)y) o dy
At (m<en_1>+’vm> x / / 7 (@) ey
|

o

n

Wn(en // Tk Sk )dx My

By taking Jp, Js, J3 and J; together, we have

oo (13t [ O noy fags (% 7)
i (3) (m 1) =) \/%Zm

=— /01 W, (y)dy — %Wn(l) +op(1),

=— (!
- ()"
-3

1
=+

N

3 3

:Op(l).

and the proof is complete. 0

S3 Simulation

In this section, we present an additional simulation study for the real value
case in the following Model 3: Model 3. Let 7, Z5, and Z3 be independent

Pareto random variables with parameters aq, as, and ay, respectively. Define

(X,Y) = (B =2)(%,2Z5) = (B+1) (22, %),
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Table S1: Parameters of Model 3 and the approximated true values of the tail Gini

functional.
(a1,a2) “oon ~1/n+1+y p=001 p=0.001
Model 3(a) (0.35,0.3) 0.35 6/7  0.183 2.3294  4.1145
Model 3(b) (0.4, 0.35) 0.4  0.875 0.251 3.7148  7.2546
Model 3(¢)  (0.6,0.5) 0.6 5/6 0.1 11.5657  31.6759
Model 3(d) (0.5,0.4) 05 08 0.3 4.3407  8.2514

where B is a Bernoulli(1/2) random variable independent of Z;’s. Here,
both X and Y can take negative values. For this model, we have 7, = a4,
pr=1—a1/as,n = ay/ar, and 7(x,y) = 29/9271(z A yy)®/%2 Here we can
take &€ = 2a1/as — 1,0 = (2—a3)/as—1/a1 — 2,81 = a1(2—a3)/as — 1, B2 =
(2a; — a3)/(az(1 — a1)) — 1/(1 — a1), and we note that Model 3 satisfies
Assumptions 1 to 8. We consider four settings of (ai,as), see Table @
Similar to Models 1 and 2, we calculate the true value TG,(X;Y") at extreme
level p = 0.01 and 0.001 in Table @

Table @ shows means and standard errors of the ratio ép /TG,(X;Y)
with sample sizes n = 1500 and 5000 and number of replication m = 2000,
comparing our proposed method (denoted by AIE) and the method in Hou
and Wang (2021) (denoted by HW). We set a = 0.09,7 = a3 = 0.05,

following the main text. The boxplots of log (ép /TG, (X; Y)) are presented
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Table S2: Means of the ratios of the proposed estimators for the tail Gini functional and

the true values for n = 1500, 5000 and p = 0.01,0.001 are reported with corresponding

standard deviation given in the brackets.

AlIE

HW

n = 1500

n = 5000

n = 1500

n = 5000

Model 3(a) p=0.01

p=0.001

1.0520(1.5527)

1.4935(3.9785)

1.1248(0.8205)

1.4903(1.8521)

1.6293(1.6278)

2.9316(4.4592)

1.6090(0.8035)

2.7631(1.7631)

Model 3(b) p=0.01

p=0.001

1.0358(1.4254)

1.8027(5.3756)

1.1281(0.8222)

1.5776(1.7469)

1.5805(1.7725)

3.0919(7.0181)

1.5327(0.7631)

2.6237(1.6641)

Model 3(c) p=0.01

p=0.001

1.1102(1.7850)

1.6663(3.9812)

1.1025(0.8593)

1.3056(1.4575)

1.6622(2.2281)

3.3475(5.4001)

1.6511(0.9825)

2.8473(2.2396)

Model 3(d) p=0.01

p =0.001

1.0846(1.5885)

1.8434(5.7193)

1.1086(0.4914)

1.4566(1.9148)

1.7924(1.7869)

4.4383(8.5167)

1.8311(0.9753)

3.7037(2.7988)
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Figure S1: Boxplots of log ratios with (n, p).

in Figure @ We can see that the proposed method has with sample size
n = 5000 performs the best among all scenarios. The QQ plots in Figure
indicate no big difference from a normal distribution when comparing
the sample quantiles of log-ratios with the quantiles of the theoretical limit

distribution.

S4 Application

In this section, we assess the signs of 4; and 7 for the 14 stocks that fail to
reject asymptotic independence. We plot 4 and 7 against different values
of a; and ay in Figures @ and @, respectively. From Figures @ and @,
we can see that 43 > 0 and 7 € (0.5,1) for each pair of losses across the

ranges of oy and as.
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Figure S2: QQ plots of log ratios for AIE estimators for (n,p)



30ZHAOWEN WANG, LIUJUN CHEN, and DEYUAN LI

UL
WD

LAVALN

ARV NI

Figure S3: The Hill estimates of ;.
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