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Theory for the PFLM

We first consider the theory for the PFLM yi = z⊺iα +
∫
xi(s)b(s)ds + ϵi.

The results established in this section will be used as lemmas for proving

the theorems in the main paper.

We first recall the assumptions made in the main paper.

(A1) ∥b∗∥+E(∥x∥4) < ∞ and λmin (E(z⊗2)) > 0, where λmin(M) denotes the

smallest eigenvalue of any symmetric matrix M .

(A2) ∥C∥< 1 and p = O(n1/2) as n → ∞.

The following result establishes the asymptotic properties of b̂p(·) under the

PFLM.
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Theorem S 1. Suppose Assumptions (A1) and (A2) hold. As n → ∞, if

n−1/2λ−2
p = o(1), then the RAPLS estimate b̂p(·) satisfies

∥b̂p − b∗∥= Op(n
−1/2λ−2

p ). (1)

To prove Theorem S1, we first introduce the following lemma that char-

acterizes the convergence rate of the empirical kernel Ĉ(s, t).

Lemma 1. Suppose Assumption (A2) holds. Then, we have

Ĉ(s, t) = C(s, t) + n−1/2A(s, t),

where ∥A∥F= Op(1) as n → ∞.

Proof. First, we write

Ĉ(s, t)− C(s, t) = n−1X(s)⊺X(t)− E{x(s)x(t)}

+
[
n−1X(s)⊺Z− E{z⊺x(s)}

]
(n−1Z⊺Z)−1n−1Z⊺X(t)+

+ n−1X(s)⊺Z
[
(n−1Z⊺Z)−1 − {E(z⊗2)}−1

]
n−1Z⊺X(t)+

+ n−1X(s)⊺Z(n−1Z⊺Z)−1[n−1Z⊺X(t)− E{zx(t)}]

= I1(s, t) + I2(s, t) + I3(s, t) + I4(s, t).

By Assumption (A2) and the central limit theorem (CLT), we get I1(s, t) =

Op(n
−1/2) for any fixed s and t. Since q (the dimension of z) is fixed, the

CLT yields that ∥n−1X(s)⊺Z− E{z⊺x(s)}∥ = Op(n
−1/2) for any fixed s ∈ S.
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This also indicates that ∥n−1X(s)⊺Z∥≤ ∥E[z⊺x(s)]∥+Op(n
−1/2) = Op(1) for

any fixed s. Similarly, the CLT yields that

∥n−1Z⊺Z− E(z⊗2)∥2= Op(n
−1/2),

where z⊗2 = zz⊺. Then, using the matrix variant of Taylor series, we write

(n−1Z⊺Z)−1 =
{
E(z⊗2) + n−1Z⊺Z− E(z⊗2)

}−1

=
[
Iq + {E(z⊗2)}−1{n−1Z⊺Z− E(z⊗2)}

]−1 {E(z⊗2)}−1

Since ∥n−1Z⊺Z−E(z⊗2)∥2= Op(n
−1/2) and λmin(E(z⊗2)) > 0, one can write

(n−1Z⊺Z)−1 =
∞∑
k=0

(−1)k
[
{E(z⊗2)}−1{n−1Z⊺Z− E(z⊗2)}

]k {E(z⊗2)}−1.

Thus, as n → ∞

∥(n−1Z⊺Z)−1 − {E(z⊗2)}−1∥2≤
∞∑
k=1

∥{E(z⊗2)}−1{n−1Z⊺Z− E(z⊗2)}∥k2

≤ ∥{E(z⊗2)}−1{n−1Z⊺Z− E(z⊗2)}∥2
1− ∥{E(z⊗2)}−1{n−1Z⊺Z− E(z⊗2)}∥2

= Op(n
−1/2),

indicating ∥{n−1Z⊺Z}−1∥2= Op(1).

Combining all the assertions above, one can easily see that for any fixed

s and t, we have Ij(s, t) = Op(n
−1/2) for j = 1, . . . , 4. Finally, since S is a

bounded set, we have ∥Ij∥F= Op(n
−1/2) for j = 1, . . . , 4. as n → ∞. This

completes the proof.

For any square integrable function f on S, we define A(f) : f →∫
S A(s, t)f(t)dt, where A(s, t) is defined in Lemma 1. Also, denote ζ(t) =
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n−1/2X⊺(t)MZϵ, where MZ = In −Z(Z⊺Z)−1Z⊺. The following result char-

acterizes the distance between the population and empirical RAPLS basis

functions.

Lemma 2. Suppose Assumptions (A1) and (A2) hold. For j ≥ 1,

Ĉj(b)(t)− Cj(b∗)(t) = n−1/2ξj(t) + n−1ηj(t), (2)

where

ξj+1(t) =

j∑
k=0

Ck
(
A
(
Cj−k(b∗)

))
(t) + Cj(ζ)(t) for j ≥ 0, (3)

η1(t) = 0, and

ηj+2(t) =

j∑
k=0

(C + n−1/2A)k (A(ξj+1−k)) (t) for j ≥ 0. (4)

Proof. Using Lemma 1, it is easy to see that Ĉ(b)(t)−C(b∗)(t) = n−1/2ξ1(t)+

n−1η1(t) with ξ1(t) = A(b∗)(t) + ζ(t) and η1(t) = 0. To show (3) and (4)

for arbitrary j ≥ 0, we first write

Ĉj+2(b)(t) =

∫
S
{C(s, t) + n−1/2A(s, t)}{Cj+1(b∗)(s) + n−1/2ξj+1(s) + n−1ηj+1(s)}ds

= Cj+2(b∗)(t) + n−1/2{A(Cj+1(b∗))(t) + C(ξj+1)(t)}+ n−1{A(ξj+1)(t) + (C + n−1/2A)(ηj+1)(t)}.

This indicates that

ξj+2(t) = A(Cj+1(b∗))(t)+C(ξj+1)(t), ηj+2(t) = A(ξj+1)(t)+(C+n−1/2A)(ηj+1)(t).
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Now we suppose (3) holds for j + 1. We verify it for j + 2. Using the

equation above, we have

ξj+2(t) = A(Cj+1(b∗))(t) +

j∑
k=0

Ck+1
(
A
(
Cj−k(b∗)

))
(t) + Cj+1(ζ)(t)

=

j+1∑
k=0

Ck
(
A
(
Cj+1−k(b∗)

))
(t) + Cj+1(ζ)(t);

this proves (3). To show (4), we first notice that η2(t) = A(ξ1)(t) satisfies

(4). Now suppose (4) holds for j + 1. Thus,

ηj+2(t) = A(ξj+1)(t) + (C + n−1/2A) (ηj+1) (t)

=

j∑
k=0

(C + n−1/2A)k (A(ξj+1−k)) (t);

this proves (4), which completes the proof.

Recall that ĥjk =
∫
S Ĉ

j+1(b)(s)Ĉk(b)(s)ds and β̂j =
∫
S Ĉ(b)(s)Ĉ

j+1(b)(s)ds.

The next result characterizes the convergence rate of ĥjk and β̂j.

Lemma 3. Suppose Assumptions (A2) and (A3) hold. We have

ĥjk = h∗
jk + n−1/2

∫
S
{Ck(b∗)(s)ξj+1(s) + Cj+1(b∗)(s)ξk(s)}ds

+Op

(
n−1j2k2∥C∥j+k−1

)
(5)
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and

β̂j = β∗
j + n−1/2

∫
S
{ξ1(s)Ck(b∗)(s) + ξj(s)C(b∗)(s)}ds+Op

(
n−1j2∥C∥j

)
,

(6)

where ξj(·) is defined in Lemma 2.

Proof. We first write

ĥjk = h∗
jk + n−1/2

∫
S

{
ξj+1(s)Ck(b∗)(s) + ξk(s)Cj(b∗)(s)

}
ds

+ n−1

∫
S

{
ξj+1(s)ξk(s) + Ck(b∗)(s)ηj+1(s) + Cj+1(b∗)(s)ηk(s)

}
ds

+ n−3/2

∫
S
{ξj+1(s)ηk(s) + ξk(s)ηj+1(s)} ds+ n−2

∫
S
ηj+1(s)ηk(s)ds

= h∗
jk + n−1/2

∫
S

{
ξj+1(s)Ck(b∗)(s) + ξk(s)Cj(b∗)(s)

}
ds+ n−1R1,jk + n−3/2R2,jk + n−2R3,jk.

It follows from (3) in Lemma 2 that for all j ≥ 0, with probability ap-

proaching 1, as n → ∞,

∥ξj+1∥≤ Cξ∥C∥j(j + 1 + ∥ζ∥) (7)

for some uniform constant Cξ for all j, where ζ(·) = n−1/2X⊺(·)MZϵ is

defined in previous discussions. Here, we also use ∥A∥F= Op(1) and ∥b∗∥<
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∞. For j ≥ 1, it follows from (4) that

∥ηj+1∥≤ ∥A∥
j−1∑
k=0

∥C + n−1/2A∥k∥ξj−k∥

≤ Cξ∥A∥
j−1∑
k=0

∥C + n−1/2A∥k∥C∥j−k(j − k + ∥ζ∥)

≤ Cξ∥C∥j
j∑

k=0

(1 + n−1/2∥A∥∥C∥−1)k(j − k + ∥ζ∥). (8)

Since ∥C∥< 1, ∥A∥= Op(1), and k ≤ p = O(n1/2), then as n → ∞, we have

(1 + n−1/2∥A∥∥C∥)k = Op(1). This indicates that

∥ηj+1∥≤ Cξ∥C∥jj(j + ∥ζ∥)

uniformly for all j.

Next, we bound ĥjk − h∗
jk. Note that as n → ∞, with probability

approaching 1, we have

|R1,jk|≤ ∥ξj+1∥∥ξk∥+∥C∥k∥ηj+1∥∥b∗∥+∥C∥j+1∥ηk∥∥b∗∥

≤ Cξ∥C∥j+k−1{(j + ∥ζ∥)(k + ∥ζ∥) + j(j + ∥ζ∥) + k(k + ∥ζ∥)} ;

here, we use ∥C∥< 1. Similarly, as n → ∞, with probability approaching 1,

|R2,jk|≤ ∥ξj+1∥∥ηk∥+∥ξk∥∥ηj+1∥

≤ Cξ∥C∥j+k−1(j + k)(j + ∥ζ∥)(k + ∥ζ∥)

and |R3,jk|≤ ∥ηj+1∥∥ηk∥≤ Cξ∥C∥j+k−1jk(j + ∥ζ∥)(k + ∥ζ∥) uniformly for
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j, k ≤ p. Therefore, we have

∣∣∣∣ĥjk − h∗
jk + n−1/2

∫
S
{ξj+1(s)Ck(b∗)(s) + ξk(s)Cj(b∗)(s)}ds

∣∣∣∣
= Op

(
n−1jk(j + ∥ζ∥)(k + ∥ζ∥)∥C∥j+k−1

)
; (9)

Similarly, for β∗
j =

∫
S C(b

∗)(s)Cj(b∗)(s)ds = h∗
0,j, we get

∣∣∣∣β̂j − β∗
j − n−1/2

∫
S
{ξ1(s)Cj(b∗)(s) + ξj(s)C(b∗)(s)}ds

∣∣∣∣ = Op

{
n−1j(j + ∥ζ∥)(1 + ∥ζ∥)∥C∥j

}
.

(10)

For the PFLM, using the CLT, we get ∥ζ∥= Op(1) where ζ(t) = n−1/2X⊺(t)MZϵ,

which completes the proof.

The next result provides asymptotic results for γ̂, where γ̂ = Ĥ−1β̂. For

short-hand notations, denote ∆1jk = n−1/2
∫
S

{
ξj+1(s)Ck(b∗)(s) + ξk(s)Cj(b∗)(s)

}
ds,

∆2,jk = ĥjk − h∗
jk − ∆1jk, and recall λp = λmin(H

∗). Also, denote ∆1 =

(∆1,jk)jk,∆2 = (∆2,jk)jk, and δ = (∆1,01, · · · ,∆1,0p)
⊺.

Lemma 4. Suppose Assumptions (A1) and (A2) hold. If n−1/2λ−2
p = o(1)

as n → ∞, then we have

∥γ̂ − γ∗∥= Op

(
n−1/2λ−2

p (1 + n−1/2λ−1
p )
)
. (11)

Proof. Since ∆ = ∆1 + ∆2, we know that ∥∆∥≤ ∥∆1∥+∥∆2∥. Following
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the proof of Lemma 3, we get

|∆1jk|= Op

(
n−1/2∥C∥j+k(j + k + ∥ζ∥)

)
, |∆2,jk|= Op

(
n−1jk(j + ∥ζ∥)(k + ∥ζ∥)∥C∥j+k

)
(12)

uniformly for j, k ≤ p = O(n1/2). Since ∥C∥< 1 and p = O(n1/2), using

Theorem 3.3 in Rudin et al. (1976), we have ∥∆1∥F= Op{n−1/2(1 + ∥ζ∥)}

and ∥∆2∥F= Op{n−1(1 + ∥ζ∥2)}. This indicates that ||∆||= Op{n−1/2(1 +

∥ζ∥) + n−1∥ζ∥2}. Under the PFLM, since ∥ζ∥= Op(1), we have ∥∆∥=

Op(n
−1/2). Since n−1/2λ−2

p = o(1), we have ||∆||/λp < 1 with probability

approaching 1 as n → ∞. Then, using the matrix variant of the Taylor

series, we get

Ĥ−1 = (Ip +H∗−1∆)−1H∗−1 =
{
Ip −H∗−1∆+Op(||∆||2/λ2

p)
}
H∗−1, (13)

where with potential misuse of notations, Op(||∆||2/λ2
p) denotes a matrix

with its Frobenious norm bounded by Op(||∆||2/λ2
p). This further indicates

Ĥ−1 −H∗−1 = −H∗−1∆H∗−1 +RH,

where RH = Op(λ
−3
p ∥∆∥2) = Op

{
λ−3
p n−1

(
1 + ∥ζ∥+n−1/2∥ζ∥2

)2}
.

Similar arguments yield that ∥δ∥= Op{n−1/2(1+∥ζ∥)} and ∥θ∥= Op{n−1(1+

∥ζ∥2)}, where θ = β̂ − β∗ − δ. Also, note that

∥β∗∥≤
p∑

j=1

∥C∥j+1∥b∗∥2= O(1).
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and ∥γ∗∥≤ λ−1
p ∥β∗∥≤ λ−1

p

∑p
j=1∥C∥j+1∥b∗∥2= O(λ−1

p ). Therefore, combin-

ing all the assertions above, we get

∥γ̂ − γ∗∥ ≤ |H∗−1(δ + θ)∥+∥H∗−1∆H∗−1(δ + θ)∥+∥H∗−1∆γ∗∥
+∥RH(δ + θ)∥+∥RHβ

∗∥= Op

{
n−1/2λ−1

p

(
1 + ∥ζ∥+n−1/2∥ζ∥2

)}
+Op

{
n−1λ−2

p

(
1 + ∥ζ∥+n−1/2∥ζ∥2

)2}
+Op

{
n−1/2λ−2

p

(
1 + ∥ζ∥+n−1/2∥ζ∥2

)}
+Op

{
n−3/2λ−3

p

(
1 + ∥ζ∥+n−1/2∥ζ∥2

)3}
+Op

{
n−1λ−3

p

(
1 + ∥ζ∥+n−1/2∥ζ∥2

)}
.

(14)

For the PFLM, taking ∥ζ∥= Op(1) completes the proof.

We now prove Theorem S1 based on previous lemmas.

Proof. First, we write

b̂p(s) =

p∑
j=1

{
Cj(b∗)(s) + n−1/2ξj(s) + n−1ηj(s)

}
(γj + γ̂j − γ∗

j )

= b∗p(s) + n−1/2

p∑
j=1

ξj(s)γ̂j + n−1

p∑
j=1

ηj(s)γ̂j +

p∑
j=1

Cj(b∗)(s)(γ̂j − γ∗
j )

Using Lemmas 2-4 and ∥C∥< 1, we have

∥n−1/2

p∑
j=1

ξj(s)γ̂j∥≤ O(n−1/2)× (∥γ∗∥+∥γ̂ − γ∗∥)
p∑

j=1

j∥C∥j−1

= Op

(
n−1/2λ−1

p

)
+Op

(
n−1λ−2

p (1 + n−1/2λ−1
p )
)
. (15)

Since λ−2
p n−1/2 = o(1), the RHS of (15) can be simplified as Op(n

−1/2λ−1
p ).
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Similarly, we get

∥n−1

p∑
j=1

ηj(s)γ̂j∥= Op

(
n−1λ−1

p

)
,

∥
p∑

j=1

Cj(b∗)(s)(γ̂j − γ∗
j )∥= Op(n

−1/2λ−2
p ).

Therefore, we have

∥b̂p − b∗p∥= Op(n
−1/2λ−2

p ). (16)

Proof for Theorem 1 in the main paper

In this section, we prove Theorem 1 in the main paper based on Lemmas

1-4.

We first rewrite the pseudo response ỹ
(m)
i as

ỹ
(m)
i = η∗i + η

(m)
i − η∗i + {w(m)

i }−1r
(m)
i .

Denoting δ
(m)
i = η

(m)
i − η∗i + {w(m)

i }−1r
(m)
i , we get

ỹ
(m)
i = η∗i + δ

(m)
i .

Thus, this model has the same form as the PFLM studied in Section 1

except that E[δ(m)
i | zi, xi(·)] is not necessarily 0.

Let δ(m) = (δ
(m)
1 , . . . , δ

(m)
n )⊺ and ε(m)(t) = n−1/2X⊺(t)MZδ

(m). It can be

seen from Lemmas 1-4 that the bound of ∥b(m+1) − b∗p∥ depends on ∥ε(m)∥.
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In particular, if ∥ε(m)∥= Op(1), which is the case under the PFLM, then

∥b(m+1) − b∗p∥= Op(n
−1/2λ−2

p ).

We first consider deterministic initial values α
(0)
0 ,α(0), and b(0)(·) for the

iterative RAPLS algorithms. The next lemma links ∥ε(0)∥ with {E
(
η(0) − η∗

)4}1/2.
Lemma 5. Suppose Assumptions (A1) and (A2) hold. Let η(0) distribute

like every η
(0)
i . Then, we have ∥ε(0)∥≤ Op(

√
n)
{
E
(
η(0) − η∗

)4}1/2

.

Proof. Let δ(0) distribute like every δ
(0)
i . Since ε(0)(t) = n−1/2X⊺(t)Z(Z⊺Z)−1Z⊺δ(0),

the CLT yields that, as n → ∞,

∥ε(0)∥≤ Op(
√
n)× λ−1

min(E[z
⊗2])(E∥x∥2)1/2(E∥z∥2)1/2∥E{δ(0)z}∥. (17)

Thus, under Assumptions (A1) and (A2), we get

∥ε(0)∥= Op(
√
n)× ∥E{δ(0)z}∥.

Recall that δ(0) = η(0) − η∗ + {w(0)}−1r(0). Letting r∗ = r(y, η∗) =

T (y)− Ȧ(η∗), we have E[r∗|z, x(·)] = 0. Thus, using the Taylor expansion,

we have

(18)
E{δ(0)z} = E

{
(η(0) − η∗)z

}
+ E

{
(w(0))−1(r(0) − r∗)z

}
= E

[{
1− (w(0))−1w̃(0)

}
(η(0) − η∗i )z

]
= E

{
(w(0))−1ẇ(η̌(0))(η̃(0) − η(0))(η(0) − η∗)z

}
;

here, w̃(0) = w(η̃(0)) with η̃(0) located on the line segment between η(0)

and η∗; η̌(0) locates on the line segment between η̃(0) and η(0); ẇ(·) is the
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derivative of w(·). Note that w(·) = Ä(·) is a smooth positive function, and

is bounded away from 0 on any bounded set; also, ẇ(·) is bounded on any

bounded set.

Therefore, using the Cauchy-Schwarz inequality, we get

∥E[δ(0)z]∥≤ O(1)×
{
E[(η(0) − η∗)4]

}1/2
which completes the proof.

Since η(0) = α
(0)
0 + z⊺α(0) +

∫
S x(s)b

(0)(s)ds, we also get

(19)|η(0) − η∗|≤ |α(0)
0 − α∗

0|+∥z∥∥α(0) −α∗∥+∥x∥∥b(0) − b∗∥.

We next prove Proposition 1 in the main text.

Proof. Since ∥b(0)− b∗∥= O(1), ∥α(0)−α∗∥= O(1), and ∥α(0)
0 −α∗

0∥= O(1),

we have E(η(0)− η∗)4 = O(1) as n → ∞. Thus, ∥ε(0)∥= Op(
√
n), indicating

that 1 + ∥ε(0)∥+n−1/2∥ε(0)∥2≍ ∥ε(0)∥. Thus, one can derive from (14) that

∥γ(1)−γ∗∥= Op(1)×

[
λ−2
p

{
E(η(0) − η∗)4

}1/2
+

3∑
k=1

(
λ−1
p

{
E(η(0) − η∗)4

}1/2)k]

Following the same derivations as those in (15) and (16), we can get

(20)

∥b(1) − b∗p∥= Op(1)

×

[
λ−2
p

{
E(η(0) − η∗)4

}
1/2 +

3∑
k=1

(
λ−1
p

{
E(η(0) − η∗)4

}
1/2
)k]

.

Therefore, since E(η(0) − η∗)4 = O(1), we get ∥b(1) − b∗p∥= Op(λ
−3
p ).
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Next, we consider data-driven initial values α
(0)
0,n,α

(0)
n , and b

(0)
n . The

next result shows the consistency of the first RAPLS iterate b(1)(·).

Proof. Recall from Assumption (A3) that the data driven initial values

satisfy |α(0)
0,n − α∗|+∥α(0)

n − α∗∥+∥b(0)n − b∗∥= O(τn). Then, using (19), we

get
{
E(η(0) − η∗)4

}1/2
= O(τ 2n) as n → ∞. Then, since λ−2

p τn = O(1), we

know λ−1
p τ 2n = o(1). Therefore, we get from (20) that

(21)∥b(1) − b∗∥= Op

(
λ−2
p τ 2n

)
.

We next extend the results to any arbitrary iterate b(m)(·).

Proof. To show this, we first study the asymptotic property of the simple

plug-in estimates α(1) and α
(1)
0 . For ease of notation, let z̃i = (1, z⊺i )

⊺,

α̃∗ = (α∗
0,α

∗⊺)⊺ and α̃(1) = (α
(1)
0 ,α(1)⊺)⊺. Note that n−1

∑n
i=1 r(yi, z̃

⊺
i α̃

(1)+∫
S xi(s)b

(1)(s)ds)z̃i = 0 and E[r(yi, z̃⊺i α̃
∗ +

∫
S xi(s)b

∗(s)ds)z̃i] = 0.

Since λ−2
p τn = O(1) and τn = o(1) as n → ∞, we get λ−2

p τ 2n = o(1),

leading to ∥b(1) − b∗∥= op(1). Hence, using the law of large numbers, we

have n−1
∑n

i=1 r(yi, α0+ z⊺iα+
∫
S xi(s)b

(1)(s)ds)zi converges to E[r(yi, α0+

z⊺iα +
∫
S xi(s)b

∗(s)ds)zi] uniformly for all α0 and α as n → ∞. Thus, by

the theory of maximum likelihood estimation (MLE), we know that α
(1)
0

and α(1) are consistent estimators of α∗
0 and α∗, respectively. We use the



RAPLS

Taylor expansion to get the convergence rate of α̃
(1)
0 . Specifically,

0 = n−1

n∑
i=1

r(yi, z̃
⊺
i α̃

(1) +

∫
S
xi(s)b

(1)(s)ds)z̃i

= n−1

n∑
i=1

r(yi, z̃
⊺
i α̃

∗ +

∫
S
xi(s)b

∗(s)ds)z̃i

+ n−1

n∑
i=1

Ä(η†i )

[
z̃⊺i

(
α̃∗ − α̃(1)

)
+

∫
S
xi(s)

{
b∗(s)− b(1)(s)

}
ds

]
z̃i,

where η†i is on the line segment between z̃⊺i α̃
(1)+

∫
S xi(s)b

(1)(s)ds and z̃⊺i α̃
∗+∫

S xi(s)b
∗(s)ds. This leads to

α̃(1) − α̃∗ =

{
n−1

n∑
i=1

Ä(η†i )z̃iz̃
⊺
i

}
−1

×

[
n−1

n∑
i=1

r(yi, z̃
⊺
i α̃

∗ +

∫
S
xi(s)b

∗(s)ds)z̃i

+ n−1

n∑
i=1

Ä(η†i )

∫
S
xi(s)

{
b∗(s)− b(1)(s)

}
dsz̃i

]

Since α̃(1) and b(1) are consistent, we know
∣∣∣η†i − η∗i

∣∣∣ = op(1). Hence, by the

law of large numbers and some matrix algebra, we get∥∥∥∥∥∥
{
n−1

n∑
i=1

Ä(η†i )z̃iz̃
⊺
i

}−1

−
[
E
{
Ä(ηi)z̃iz̃

⊺
i

}]−1

∥∥∥∥∥∥ = op(1).

Since E
[
r(yi, z̃

⊺
i α̃

∗ +
∫
S xi(s)b

∗(s)ds)z̃i
]
= 0, the CLT yields

n−1

n∑
i=1

r(yi, z̃
⊺
i α̃

∗ +

∫
S
xi(s)b

∗(s)ds)z̃i = Op(n
−1/2).

Since
∥∥b(1) − b∗

∥∥ = Op(λ
−2
p τ 2n), by Assumptions (A1)–(A3), we get∥∥∥∥∥n−1

n∑
i=1

Ä(η†i )

∫
S
xi(s)

{
b∗(s)− b(1)(s)

}
dsz̃i

∥∥∥∥∥ = Op(τ
2
nλ

−2
p ).
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This leads to ∥α̃(1) − α∗∥= Op(τ
2
nλ

−2
p ). Furthermore, since τnλ

−2
p = O(1),

we know

∥α̃(1) −α∗∥+∥b(1) − b∗∥= Op(τn),

which satisfies Assumption (A3). Therefore, the same arguments can be

used for proving ∥b(m) − b∗∥= Op(τ
2
nλ

−2
p ) and ∥α̃(m) −α∗∥= Op(τ

2
nλ

−2
p ) for

m ≥ 2.

Proof of Theorem 2 in the main paper

We first prove a supporting lemma regarding the estimation of θ∗k(·).

Recall that zi =
∫
S xi(s)θ

∗(s)ds + ζi for i = 1, . . . , n, where θ∗(·) =(
θ∗1(·), . . . , θ∗q(·)

)⊺
with θ∗k(·) = K−1

w (E[w∗
i ζikxi(·)]), E[Ä(η∗i )ζixi(·)] = 0 and

E[Ä(η∗i )ζiζ
⊺
i ] = Σ̃ζ . Also, define θ

∗
k,sn

(s) =
∑sn

j=1 θ
∗
kjπj(s) as the approxima-

tion of θ∗k(·) with the first sn basis functions, where θ∗kj =
∫
θ∗k(s)πj(s)ds.

The following lemma shows that θ̂k(s), constructed from the three-step

procedure from the main paper, are consistent estimators with a conver-

gence rate no slower than n−1/4.

Lemma 6. Suppose Assumptions (A1)-(A3) hold. If ∥θ∗k(s) − θ∗k,sn(s)∥
2=

O(s1−2b
n ), sn ≈ na, and 1/{2(2b − 1)} < a ≤ 1/4, and τ 2nλ

−2
p = o(n−1/4),

then ∥θ̂k(s)− θ∗k(s)∥= op(n
−1/4).
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Proof. We write∥∥∥θ̂k(s)− θ∗k(s)
∥∥∥ =

∥∥∥∥∥
sn∑
j=1

(θ̂kj − θ∗kj)πj(s)

∥∥∥∥∥+
∥∥∥∥∥

∞∑
j=sn+1

θ∗kjπj(s)

∥∥∥∥∥
≤
∥∥∥θ̂k − θ∗

k

∥∥∥+( ∞∑
j=sn+1

θ∗kj
2

)1/2

, (22)

where θ∗
k = (θ∗k1, . . . , θ

∗
k,sn

)⊺ and θ̂k = (θ̂k1, . . . , θ̂k,sn)
⊺. Note that

θ̂k − θ∗
k = (U⊺

snÂUsn)
−1U⊺

snÂ

(
∞∑

j=sn+1

U(·,j)θ
∗
kj +Wk

)
,

where U(·,j) = (U1j, . . . , Unj)
⊺ and Wk = (ζ1k, . . . , ζnk)

⊺. Thus, we know

∥∥∥θ̂k − θ∗
k

∥∥∥ ≤

∥∥∥∥∥∥
(
U⊺
snÂUsn

n

)−1
∥∥∥∥∥∥
√√√√ sn∑

l=1

{
∞∑

j=sn+1

U⊺
(·,l)ÂU(·,j)/n

}2
√√√√ ∞∑

j=sn+1

θ∗kj
2

+

∥∥∥∥∥∥
(
U⊺
snÂUsn

n

)−1
∥∥∥∥∥∥
√√√√ sn∑

l=1

{
U⊺
(·,l)ÂWk/n

}2

Note that∥∥∥∥(U⊺
snÂUsn/n

)−1

−
(
E
[
Ä(η∗1)U(1,·)U

⊺
(1,·)

])−1
∥∥∥∥

≤
∥∥∥∥(U⊺

snÂUsn/n
)−1

−
(
U⊺
snAUsn/n

)−1

∥∥∥∥+ ∥∥∥∥(U⊺
snAUsn/n

)−1 −
(
E
[
Ä(η∗1)U(1,·)U

⊺
(1,·)

])−1
∥∥∥∥

= J1 + J2

To bound J1 and J2, we will rely on the matrix Taylor expansion: for any

matrixM and some small addition term ∆M and get ∥(M+∆M)−1−M−1∥≤

O(1)× ∥∆M∥. This leads to

∥J1∥= Op

(
τ 2nλ

−2
p

√
sn
)
.
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For J2, we combine the matrix Taylor expansion with the central limit

theorem and get ∥J2∥= Op(
√

sn/n). Noting that for l, k = 1, . . . , sn, we

get

U⊺
(·,l)(Â− A)U(·,k)

n
= Op(λ

−2
p τ 2n)

Then, the same matrix expansion leads to

∥J1∥= Op

(
τ 2nλ

−2
p

√
sn
)

Since sn ≍ na with a ≤ 1/4, τ 2nλ
−2
p = o(n−1/4), we get∥∥∥∥(U⊺

snÂUsn/n
)−1

−
(
E
[
Ä(η∗1)U(1,·)U

⊺
(1,·)

])−1
∥∥∥∥ = op(1).

Similarly, we get∥∥∥∥∥U⊺
(·,l)Â

∞∑
j=sn+1

U(·,j)/n− E

[
Ä(η∗1)U1l

∞∑
j=sn+1

U1j

]∥∥∥∥∥ = Op

(
τ 2nλ

−2
p

)
= op(n

−1/4).

Also, since ∥x1(s)∥2=
∑∞

j=1 U
2
j and E∥x∥4< ∞, we get

sn∑
l=1

{
∞∑

j=sn+1

U⊺
(·,l)ÂU(·,j)/n

}2

=
sn∑
l=1

(
E

[
Ä(η∗1)U1l

∞∑
j=sn+1

U1j

]
+ op(n

−1/4)

)2

≤ op(snn
−1/4) + E

Ä2(η∗1)
sn∑
l=1

U2
1l

(
∞∑

j=sn+1

U1j

)2


≤ op(snn
−1/4) +Op

E

(
∞∑

j=sn+1

U1j

)4
 = Op(1).

Similarly, since τ 2nλ
−2
p = o(n−1/4), we get∣∣∣U⊺

(·,l)ÂW/n
∣∣∣ ≤ ∣∣∣U⊺

(·,l)AW/n
∣∣∣+ ∣∣∣U⊺

(·,l)(Â− A)W/n
∣∣∣

= Op(n
−1/2) +Op(τ

2
nλ

−2
p ) = op(n

−1/4).
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Hence, we can get

sn∑
l=1

{
U⊺
(·,l)ÂWk/n

}2

= op
(
snn

−1/2
)
.

Since
∞∑

j=sn+1

θ∗kj
2 = O(s1−2b

n ).

and sn = na, we get

∥∥∥θ̂k − θ∗
k

∥∥∥ = Op

(
na(1−2b)/2

)
+ op

(
na−1/2

)
,

which is op(n
−1/4) because sn ≍ na with 1/{2(2b − 1)} < a ≤ 1/4. Com-

bining all the assertions above concludes the proof.

For short-hand notation, let ϖ∗(s) = b∗(s) + α⊺
pθ

∗(s) and ϖ̂p(s) =

b̂p(s) + α̂⊺
pθ̂(s). Define

Sn(α0,α,ϖ(s)) = n−1

n∑
i=1

{
T (yi)− Ȧ

(∫
S
xi(s)ϖ(s)ds+ α0 + ζ⊺

iα

)}
ζi

and

S(α0,α,ϖ(s)) = E
[{

T (yi)− Ȧ

(∫
S
xi(s)ϖ(s)ds+ α0 + ζ⊺

iα

)}
ζi

]
We conclude this section by proving Theorem 3 in the main paper.

Proof. We first show that α̂cal
p is a consistent estimator of α∗. Note that

α̂cal
p is the solution to Sn(α̂0,p,α, ϖ̂p(s)) = 0, and α∗ is the solution to

S(α∗
0,α,ϖ∗(s)) = 0. Using the maximum likelihood theory, to establish
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the consistency of α̂cal
p , we only need to show that Sn(α̂0,p,α, ϖ̂p(s)) →

S(α∗
0,α,ϖ∗(s)) in probability uniformly for all α. More specifically, we

write

Sn(α̂0,p,α, ϖ̂p(s))− S(α∗
0,α,ϖ∗(s))

= n−1

n∑
i=1

{
Ȧ

(∫
S
xi(s)ϖ

∗(s)ds+ α∗
0 + ζ⊺

iα

)
− Ȧ

(∫
S
xi(s)ϖ̂p(s)ds+ α̂0,p + ζ̂

⊺

iα

)}
ζ̂i

+ n−1

n∑
i=1

{
T (yi)− Ȧ

(∫
S
xi(s)ϖ

∗(s)ds+ α∗
0 + ζ⊺

iα

)}{
ζ̂i − ζi

}
+ n−1

n∑
i=1

{
T (yi)− Ȧ

(∫
S
xi(s)ϖ

∗(s)ds+ α∗
0 + ζ⊺

iα

)}
ζi − S(α∗

0,α,ϖ∗(s))

= I1 + I2 + I3 (23)

For some η̃i,1 between
∫
S xi(s)ϖ

∗(s)ds + α∗
0 + ζ⊺

iα and
∫
S xi(s)ϖ̂p(s)ds +

α̂0,p + ζ̂
⊺

iα, we get

I1 = n−1

n∑
i=1

Ä(η̃i,1)

{∫
S
xi(s)

(
ϖ∗(s)− ϖ̂p(s)

)
ds+ (α∗

0 − α̂0,p) + (ζi − ζ̂i)
⊺α

}
ζ̂i

Based on Lemma 6, we get

∥∥∥ϖ∗(s)− ϖ̂p(s)
∥∥∥ = Op

(
τ 2nλ

−2
p

)
+ op(n

−1/4).

Letting ∆ζi
= ζ̂i − ζi, we get

∥∆ζi
∥=
∥∥∥∥∫

S
xi(s)

(
θ̂(s)− θ∗(s)

)
ds

∥∥∥∥ = op
(
n−1/4

)
.

Also, as n, p → ∞, since α∗
0−α̂0,p = op(1), we know η̃i,1−

(∫
S xi(s)ϖ

∗(s)ds+ α∗
0 + ζ⊺

iα
)
=
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op(1), leading to Ä(η̃i,1) = Op(1). Therefore, we get

∥I1∥≤ n−1

n∑
i=1

Ä(η̃i,1)
{
∥xi∥∥ϖ∗(s)− ϖ̂p(s)∥+|α∗

0 − α̂0,p|+∥ζi − ζ̂i∥∥α∥
}

×
(
∥ζi∥+∥ζi − ζ̂i∥

)
= op(1).

Similarly, one can show that ∥I2∥= op(1). The law of large numbers guaran-

tees that ∥I3∥= op(1). Therefore, ∥Sn(α̂0,p,α, ϖ̂p(s)) − S(α∗
0,α,ϖ∗(s))∥=

op(1), which guarantees the consistency of α̂cal
p .

To establish the asymptotic normality, we use a similar idea. Note that

0 = Sn(α̂0,p, α̂
cal
p , ϖ̂p(s))

= n−1

n∑
i=1

{
Ȧ

(∫
S
xi(s)ϖ̂p(s)ds+ α̂0,p + ζ̂

⊺

i α̂
cal
p

)
− Ȧ

(∫
S
xi(s)ϖ̂p(s)ds+ α̂0,p + ζ̂

⊺

iα
∗
)}

ζ̂i

+ n−1

n∑
i=1

{
Ȧ

(∫
S
xi(s)ϖ̂p(s)ds+ α̂0,p + ζ̂

⊺

iα
∗
)
− Ȧ

(∫
S
xi(s)ϖ

∗(s)ds+ α∗
0 + ζ⊺

iα
∗
)}

ζ̂i

+ n−1

n∑
i=1

{
T (yi)− Ȧ

(∫
S
xi(s)ϖ

∗(s)ds+ α∗
0 + ζ⊺

iα
∗
)}{

ζ̂i − ζi

}
+ n−1

n∑
i=1

{
T (yi)− Ȧ

(∫
S
xi(s)ϖ

∗(s)ds+ α∗
0 + ζ⊺

iα
∗
)}

ζi

= I4 + I5 + I6 + I7 (24)

For some η̃i,2 between
∫
S xi(s)ϖ̂p(s)ds+ α̂0,p+ ζ̂

⊺

i α̂
cal
p and

∫
S xi(s)ϖ̂p(s)ds+

α̂0,p + ζ̂
⊺

iα
∗, we get

I4 = n−1

n∑
i=1

Ä(η̃i,2)ζ̂iζ̂
⊺

i

(
α̂cal

p −α∗
)
. (25)

Similar to I1, we can show that η̃i,2−η∗i = op(1), where η
∗
i =

∫
S xi(s)ϖ

∗(s)ds+
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α∗
0 + ζ⊺

iα
∗. This leads to Ä(η̃i,2)− Ä(η∗i ) = op(1) due to the smoothness of

A(·). Then, we write

n−1

n∑
i=1

Ä(η̃i,2)ζ̂iζ̂
⊺

i = n−1

n∑
i=1

(
Ä(η∗i ) + op(1)

)
(ζi +∆ζi

)(ζi +∆ζi
)⊺

this leads to

∥∥∥∥∥n−1

n∑
i=1

Ä(η̃i,2)ζ̂iζ̂
⊺

i − n−1

n∑
i=1

Ä(η∗i )ζiζ
⊺
i

∥∥∥∥∥ = op(1)

Then, we know with probability approaching 1, n−1
∑n

i=1 Ä(η̃i,2)ζ̂iζ̂
⊺

i is in-

vertible due to the low-dimensionality of ζi. Again, using the same matrix

expansion technique, we can show that

∥∆∥=

∥∥∥∥∥∥
(
n−1

n∑
i=1

Ä(η̃i,2)ζ̂iζ̂
⊺

i

)−1

−

(
n−1

n∑
i=1

Ä(η∗i )ζiζ
⊺
i

)−1
∥∥∥∥∥∥ = op(1).

(26)
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Similarly, for some η̃i,3 = ηi +∆η̃i,3 and ∆Ai,3
= Ä(η̃i,3)− Ä(η∗i ), we get

I5 = n−1

n∑
i=1

Ä(η̃i,3)

(∫
S
xi(s)

(
ϖ̂p(s)−ϖ∗(s)

)
ds+ α̂0,p − α∗

0

)(
ζi +∆ζi

)
= n−1

n∑
i=1

(
Ä(η∗i ) + ∆Ai,3

)(∫
S
xi(s)

(
ϖ̂p(s)−ϖ∗(s)

)
ds+ α̂0,p − α∗

0

)(
ζi +∆ζi

)
= n−1

n∑
i=1

Ä(η∗i )

(∫
S
xi(s)

(
ϖ̂p(s)−ϖ∗(s)

)
ds+ α̂0,p − α∗

0

)
ζi

+ n−1

n∑
i=1

Ä(η∗i )

(∫
S
xi(s)

(
ϖ̂p(s)−ϖ∗(s)

)
ds+ α̂0,p − α∗

0

)
∆ζi

+ n−1

n∑
i=1

∆Ai,3

(∫
S
xi(s)

(
ϖ̂p(s)−ϖ∗(s)

)
ds+ α̂0,p − α∗

0

)
ζi

+ n−1

n∑
i=1

∆Ai,3

(∫
S
xi(s)

(
ϖ̂p(s)−ϖ∗(s)

)
ds+ α̂0,p − α∗

0

)
∆ζi

= I51 + I52 + I53 + I54

Here, due to the smoothness of A(·), we get

∆Ai,3
= Op(1)×

(∫
S
xi(s)

{
ϖ̂p(s)−ϖ∗(s)

}
ds+ (α̂0,p − α∗

0)

)
= Op

(
τ 2nλ

−2
p

)
+ op(n

−1/4).

Here, we use the fact that α̂0,p − α∗
0 = Op(τ

2
nλ

−2
p ). Hence, we get ∥I53∥=

{Op

(
τ 2nλ

−2
p

)
+op(n

−1/4)}2 and ∥I54∥= {Op

(
τ 2nλ

−2
p

)
+op(n

−1/4)}2×op(n
−1/4).

Since τ 2nλ
−2
p = o(n−1/4), we get ∥I53∥= op(n

−1/2) and ∥I54∥= op(n
−1/2).

Similarly, we show ∥I52∥= op(n
−1/2). For I51, we write

I51 =

∫
S
n−1

n∑
i=1

xi(s)Ä(η
∗
i )ζi(ϖ̂p(s)−ϖ∗(s))ds

+

(
n−1

n∑
i=1

Ä(η∗i )ζi

)
(α̂0,p − α0)

= I511 + I512.
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Then, the CLT yields

∥I511∥≤

 q∑
k=1

∥∥∥∥∥n−1

n∑
i=1

xi(s)Ä(η
∗
i )ζik

∥∥∥∥∥
2
1/2

∥ϖ̂p(s)− ξp(s)∥

= Op

(
n−1/2τ 2nλ

−2
p

)
+ op(n

−1/2) = op(n
−1/2);

here, we use the fact that E[xi(s)Ä(η
∗
i )ζik] = 0.

Similarly,

∥I512∥≤

 q∑
k=1

∥∥∥∥∥n−1

n∑
i=1

Ä(η∗i )ζik

∥∥∥∥∥
2
1/2

∥α̂0,p − α∗
0∥= Op

(
n−1/2λ−2

p τ 2n
)
= op(n

−1/2).

Thus, we get ∥I5∥= op(n
−1/2). For I6, note that ζ̂i−ζi =

∫
S xi(s)

(
θ∗(s)− θ̂(s)

)
ds.

Thus,

I6 =

∫
S

(
n−1

n∑
i=1

{
T (yi)− Ȧ

(∫
S
xi(s)ϖ

∗(s)ds+ α∗
0 + ζ⊺

iα
∗
)}

xi(s)

)(
θ∗(s)− θ̂(s)

)
ds

Since E[T (yi) | xi(·), ζi] = Ȧ
(∫

S xi(s)ϖ
∗(s)ds+ α∗

0 + ζ⊺
iα

∗), thus, we know
E
[{

T (yi)− Ȧ

(∫
S
xi(s)ϖ

∗(s)ds+ α∗
0 + ζ⊺

iα
∗
)}

xi(s)

]
= 0

for all s. Thus, similar to I511 and I512, by the CLT, we get

∥I6∥≤

∥∥∥∥∥n−1

n∑
i=1

{
T (yi)− Ȧ

(∫
S
xi(s)ϖ

∗(s)ds+ α∗
0 + ζ⊺

iα
∗
)}

xi(s)

∥∥∥∥∥×
q∑

k=1

∥θ∗k(s)− θ̂k(s)∥

= Op

(
n−1/2

)
× op(n

−1/4) = op(n
−1/2).

For I7, by the CLT, we get

√
nI7

d−→ N

(
0,E

[{
T (yi)− Ȧ (η∗i )

}2

ζiζ
⊺
i

])
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Some algebra yields that

E
[{

T (yi)− Ȧ (η∗i )
}2

ζiζ
⊺
i

]
= E

[
E
[{

T (yi)− Ȧ (η∗i )
}2

| xi(·), ζi

]
ζiζ

⊺
i

]
= E

[
Ä(η∗i )ζiζ

⊺
i

]
= Σ̃ζ .

Combining all the assertions above, we get

√
n
(
α̂cal

p −α∗
)
= −


(
n−1

n∑
i=1

Ä(η∗i )ζiζ
⊺
i

}−1

+∆

 I7 + op(1),

where ∆ is defined in (26) with ∥∆∥= op(1). Finally, since
(
n−1

∑n
i=1 Ä(η

∗
i )ζiζ

⊺
i

)−1

→

Σ̃−1
ζ in probability, we know

√
n
(
α̂cal

p −α
)

d−→ N
(
0, Σ̃−1

ζ

)
;

this completes the proof.

Supporting Information of the Real Data Analysis

Data used in the preparation of this article were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The

ADNI was launched in 2003 by the National Institute on Aging (NIA),

the National Institute of Biomedical Imaging and Bioengineering (NIBIB),
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the Food and Drug Administration (FDA), private pharmaceutical com-

panies and non-profit organizations, as a $60 million, 5-year publicprivate

partnership. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), positron emission tomography (PET),

other biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cognitive impairment

(MCI) and early Alzheimer’s disease (AD). Determination of sensitive and

specific markers of very early AD progression is intended to aid researchers

and clinicians to develop new treatments and monitor their effectiveness,

as well as lessen the time and cost of clinical trials. The Principal Inves-

tigator of this initiative is Michael W. Weiner, MD, VA Medical Center

and University of California, San Francisco. ADNI is the result of efforts

of many coinvestigators from a broad range of academic institutions and

private corporations, and subjects have been recruited from over 50 sites

across the U.S. and Canada. The initial goal of ADNI was to recruit 800

subjects but ADNI has been followed by ADNI-GO and ADNI-2. To date

these three protocols have recruited over 1500 adults, ages 55 to 90, to par-

ticipate in the research, consisting of cognitively normal older individuals,

people with early or late MCI, and people with early AD. The follow up

duration of each group is specified in the protocols for ADNI-1, ADNI-2
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and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO

had the option to be followed in ADNI-2. For up-to-date information, see

www.adni-info.org.”

PET image preprocessing. The PET images used in the analysis un-

derwent four main preprocessing steps, which made more uniform PET

data available and provide consistent starting points and simplify sequence

ADNI analyses. In the first step, separate frames were extracted from the

original raw image file for registration purposes. Six five-minute frames

(ADNI1) were acquired 30 to 60 minutes post-injection. Each extracted

frame was co-registered to the first extracted frame of the raw image file.

All co-registered frames were recombined into a co-registered dynamic im-

age set. These image sets have the same image size (for example, 128 ×

128 × 63) and voxel dimensions (for example, 2.0 × 2.0 × 2.0 mm) and

remain in the same spatial orientation as the original PET image data. In

the second step, a single 30 min PET image was created by averaging the

6 five-minute frames of the co-registered dynamic image set from step 1. In

the third step, each subject’s co-registered averaged image from their base-

line PET scan was then reoriented into a standard 160 × 160 × 96 voxel

image grid, having 1.5 mm cubic voxels. The individual frames from each

following PET scan (6-month scan, 12-month scan, etc.) were co-registered
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to this baseline reference image. In the fourth step, the final PET image

was the result of smoothing of the image from step 3. Each image set was

filtered with a scanner-specific filter function (can be a non-isotropic filter)

to produce images of a uniform isotropic resolution of 8 mm FWHM, the ap-

proximate resolution of the lowest resolution scanners used in ADNI. Image

sets from higher resolution scanners have been smoothed more than image

sets from lower resolution scanners. The specific filter functions were de-

termined from the Hoffman phantom PET scans that were acquired during

the certification process.

Demographic information. Among the 302 individuals, 195 partici-

pants were male, and 107 were female; 283 were right-handed, and 19 were

left-handed; For the marital status, 239 were married, 35 were windowed,

22 were divorced, and 6 were never married. The individuals had an aver-

age of 15.41 years of education with a standard deviation 3.01 years. The

minimum education length was 4 years and the maximum education length

was 20 years. The average age was 75.2 years with a standard deviation of

7.3 years. The youngest person was 55 years old, and the oldest person was

89 years old.
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