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Supplementary Material

The supplementary material is organized as follows. Some estimation procedures are provided in Section @
The choice of hyper-parameters is presented in Section @ SLSE algorithm for functional linear operator QR model
() is given in Section @ Section @ provides the proof of Theorem @7 while Some technical conditions and
proofs of the main results for specific functional QR are presented in Section @ Some additional experimental results

are listed in Sections @ and @

S1 Estimation procedure

All estimation for mean and covariance functions we used in the paper have been studied

well by [Yag (2007); Yao et al, (2005a,h); Sentiirk and Miiller (2010); ILi and Hsing (2010),
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via the standard local linear smoothing procedure. For the readers to read smoothly, we
summarize some estimations as follows. See Yao (2007); [Yao et al| (2005a,b); Sentiirk and

Miiller (2010); Li and Hsing (2010) for further details.

S1.1 For functional varying coefficient QR model

In the functional varying coefficient QR model for sparse longitudinal data, we aggregate
data {(U;;, Vi;, Ti;),i=1,--- ,n,j=1,--- ,N;}.

Step 1: The mean estimates fixy and fiy are obtained by smoothing the aggregated
data (1}, U;;) and (1;;,V;5), i =1,--- ,n, j =1,--- | N;. Define the local linear scatterplot

smoothers for y1x, based on the data (U;;,T;;), through minimizing

n

Zim <TJ _t> [Uij — a0 — aa(t = Tij)), (S1.1)

b
i=1 j=1 X

with respect to ag and aq, leading to fix(t) = Go(t). Analogously for the mean function py
of Y, based on the data (V;,T};).

Step 2: Compute the “raw” covariances of X and Y, based on
Ryi(Tij, Tie) = (Ui — fux(Ty5)) (Ui — fix (Tir))

and RY,@(EJaEk) = (‘/;j - /]/Y(T’m)) (V;k - ﬂY(ﬂk)): 1= 17 e, N, ja k = 17 e >Ni> respec-
tively. The smooth estimate 7y x (resp. 7xy) of the covariance function rxx (resp. ryy) are
got by scatterplot smoothing. Then, a nonparametric FPCA step yields the eigenfunction

estimates ng and @/;k, and the corresponding eigenvalues p; and A, for the predictor and

response trajectories.
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Compute the “raw” covariances and the “raw” cross-covariances between X and Y, based

on all observations from the same subject by

Rxi(Tij, Tir) = (Ui — iix (T5)) (Ui, — fix (Tix))
and

Rxv,i(Tij, Tie) = (Usj — fix(Tij)) (Vir — iy (Ti))

i =1,---.n, jk = 1,---,N;, by the local linear surface smoothers for rxy and rxy,

respectively through minimizing

—-s T;
E E K, ) [Rxi(Tig, i) — bo — bua (s — Toy) — bua(t — Tip)J?, (S1.2)
hX hX
i=1 1<j#k<N;

~

with respect to by, by; and byo, and setting 7xx(s,t) = bo(s,t); and

u Ty — s Ti
ZZZ&( * T )[nym,m—bo—bn<s—TU>—bu(t—mﬁ (SL.3)
i=1 j=1 k=1 2

~

with respect to by, b1 and byo, and setting 7xy (s, t) = bo(s, t).

Step 3: Give the initial estimators

B0 = PREILY] = 220 a0(0) = i () - A0 O

by least squares representation (He et al), 2000).

Step 4: Thus, we estimate

_1 n
Vij = a(Tyy) + BONT3) Uy — (/ ft(O)dt> / n! Z@i(t)dt
T T =

where f,(0) = 230" =37 K, (V;j — a0 - A7(-0)<t)Uz‘j>)

Gi(t) = |V @) = a® 1) = BV 0TM (1) < 0] = 7, and TM (1) = fux(t) + L0y Gindm(D),
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For estimates é’lm and éik, we only consider é’im, analogously for flk By functional prin-
ciple analysis and numerical integration, the functional principle scores (;, = fT(XZ-(t) —

px (t))Pm(t)dt can be estimated as

N;

b= (U — fix(T)) b (Ta) (T — i),

=1

which will works well when the grid of measurements is dense. However, for sparse functional
data, AZ% will not provide reasonable approximations to (;,,. Using the procedure of PACE

in Yao et al| (2005a), we get

AT A—1  ~

Cim = E[Cin|Ui]) = pmtbin U, (Ui — fuy), (S1.4)

. . . T
where ¢;,,, = (lem(Tll)v c 7¢2m(TZNz)> Ui = (Uila T 7UiNi)T7 Py = (/LX(Til)v T nU/X(TiNi))T7
and the (7, 1)th component of EUi is

~

(X )i =rxx(Tij, Ty) + 656

3

with 6;; = 1if j =1 and 0 if j # [. For 6%, we can use the procedure of ()
Step 5: Calculate the mean estimate py via local linear fitting, based on data (735, ‘72-]'),

t=1,---,n,j=1,---,N;. Analogously, we can obtain the mean estimator fi; by fitting

data {(Tj;, Vi;),i =1, ,nsj = 1,--, Ni} to (BL.I).

Step 6: Compute the “raw” cross-covariances between X and Y based on
R, xy = (U — ux(T3)) (Vik - M}?(Tik)) :

t=1,---,n, j,k=1,--- N;, which serve as input for the two-dimensional smoothing step

to obtain 7y and 74, respectively.
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Analogously, we can obtain the cross-covariances estimator 7, between X and Y by
Step 7: From (@), we have the first step estimate of the iterative algorithm for the

functional varying coefficient QR model (@) as

A0 = BIEL a0 = i) - A9 0 1) (51.5)

We sketch the functional estimation approach for functional varying coefficient QR model
() in Algorithm E] by combining the above steps. Thus, the final estimators &™) and BﬁK)

are obtained via Algorithm m
Algorithm 1: SLSE algorithm for functional linear operator QR model (B.3).
Input: Kernel function K(-), bandwidth h, quantile level 7 and the number of

iterations K.
Calculate mean function iy and fiy, covariance surface 7y x, cross-covariance
surface 7xy, eigenfunctions gzgk and@/;k, and eigenvalues py and Ak by Steps 1-2.
Initialize estimators &\ and B&O) by Step 3.

for k=1,2,--- ,Kdo
Estimate ft(k)(O), @i, U; and V; for obtaining 17”- by Step 4.

Compute mean function fiy via Step 5, cross-covariance surface 7 by Step 6.

Obtain &' and Bﬁk) by Step 7.

end

Output: The final estimators &% and BﬁK)

For 6% in () First, we estimate Vx (t) := Cx(t)+ 6%, where Cx(s,t) = E(X(s)E(t))
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and Cx(t) := Cx(t,t), by the local linear smooth through minimizing

Sy (T

i=1 j=1

) (U2 — ag — ax(t — Ty))? (S1.6)

with respective to ag and ay, and setting Vy () = do; Second, we estimate Cx () by the local

linear smooth via minimizing

Z Z Ky ( I t’ T”;LX ) [UijUir. — bo — by (t — Tjy)) (S1.7)

i=1 1<j#k<N;

with respective to by and by, and setting C'x (t) = by. Finally, the estimator 0% is

= /{VX (1))t (S1.8)

S1.2 For functional linear QR model
S1.2.1  Functional Approach

From the estimation strategy in Section @, the functional linear QR model () can be

translated into the following functional linear operator regression model
E[Y (1) X (8)] = a-(t) + (LxB) (D), (S51.9)
where (LxB)(t) = [ B-(s, 1) X (s)ds
-1
> 0 0
70 =@f(n — ([ o) [ - efien <o -
Q§9|)X(t 7) = a9 (1) /B(O) s, )X

The model () can be rewritten as

BV (1) (¢) /ﬁfstxc
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where E[Y (£)] = ps(t) = o (t) + [ Br (s, t)px (s)ds. By our result (), one gets

B (s,t) =T E (5}5/6) ZZ C’”gl )ou(t), (S1.10)

m=1 [=1

where ¢ and ¢; are defined in (@), and (,, and ¢,, are given in Section @ ryy and 7y
are defined in (@) and (@), respectively. Next, we sketch estimation steps of ﬁg)(s, t) and
049)(3, t) as in Subsection @, which is provided Appendix . The algorithm is similar to

Algorithm m, which is present in Appendix @ We obtain the final estimators &\ and BﬁK)

S1.2.2 Steps of Estimation

In the model, we have data {(Suv,), (T3, Vij),i=1,--- ,n,l=1,---  L;,;j=1,---  N;}. We
give some necessary estimates in our algorithm.

Step 1: Smooth the aggregated data (Tj,Uy) and (S;;,V;5), i =1,--- ,n,l=1,--- L,
j=1,---,N; to obtain the estimated mean functions ux and py, respectively.

Step 2: Compute the raw covariances based on all observations
Ry i(Siy, Siy) = Uiy — fux (Say)) (Ui, — fix (Siaz))

and Ry(Tyj,, Tij,) = (Vijy — v (Tijy)) Vig, — iy (Tigy)), @ = 1+ my Il = 1+ Ly,
J1,J2 = 1,-++ , N;, smooth them to get the estimated covariance functions 7xx and 7xy,
then yield estimates (P, ngm) for predictor and (S\k, T/A)k) for response, respectively.

Similar to () for 7xx, we obtain 7xx = 30 by the local linear surface smoother via

minimizing

. El_s Eg_t
>y KQ( l l >[RX,Z»(TZ-ZNTM)—bo—bu(s—Tﬂl)—bm(t—Tﬂz)F,

h " h
i=1 1<l1£12<L; X X



S1.2  For functional linear QR model

where
Rx.i(Tuy, Ti,) = (Ui, — fix(Tiay ) (Ui, — fix (Ti,)) 5
Analogously for the covariance function ryy based on {Ry,;(Sij,,Sij,), 0 = 1,-++ ,n, j1,j2 =

L,---, N;}, where
Ry i(Siji, Sij,) = (Vig, — iy (Tig,)) (Vigy — fiv (Th5,)) -

The estimates (pn, ggm) for predictor and (S\k,zﬁk) for response are the solutions of the

following eigenequations

/fXX(Sl, $2)Om (51)ds1 = P (s2) (S1.11)
S

and
/Tfyy(thm)lﬁm(tl)dsl = A (t2) (S1.12)

with orthonormal constraints on {@m tms1 and {tm, tms1, respectively. From () and
(), we know their eigenfunctions and eigenvalues are calculated as solutions of the
above eigenequations. In practice, they are numerically obtained by discretization.

Step 3: Give the estimators of the mean regression model E[Y|X] = a(t)+ [ 6(s, ) X (s)ds

as initial estimators of o, and f;,

M K .
BO(s,t) = IAEILR Y] = 30N Z26,(s)dn(t),

40 (t) = iy (1) — / BO(s, 1) (s)ds.

We obtain estimates for o,,x = E[(.&k] by

Gt = / /qu(s)ny(s,tm(t)dsdt,m =1, Mk=1-- K.
TJS
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where 7xy is an estimate of the cross-covariance surface rxy, which can be obtained by
smoothing the raw cross-covariances Rxy;(Su, Tix) = (Ua — fix(Sa)) (Vik — iy (Ti)), @ =
1,---,n,l=1,---,L;;j=1,---  N;.

We adopt two-dimensional scatterplot smoothing to estimate ryy via minimizing

n L; N;
1 k2 S 7—;
K, < ) kh ) [Rxv,i(Tij, Tir) — bo — bi1(s — Tj5) — bra(t — T,
i=1 j=1 k=1 2

~

with respect to by, by; and bya, and setting 7xy (s,t) = by(s,t), where
Rxv,i(Tu, Six.) = (U — fix(Tit))(Vir — fiy (Si)),

fori=1,---,nl=1---,Li,j=1--- N

Step 4: Estimate the surrogate response trajectory Y in (),

- (o) [ S s

where Qgﬁ)ﬁx(t; T) = &l )+ Js Bﬁo)(s, UM (s)ds,
Iy K 50) (.
- E Z;Kh (V; (t) - QY|X(taT)> )
Gi(t) =1 VE(1) = QP (t:7) < o} -,
M A ~
UM(t) = fix(t) + > Gm®m(t), V(1) ) + Z@m
m=1
The numbers M and K can be chosen by one-curve-leave-out cross-validation or by an
AIC criterion (see Appendix @) Also, see Yao et al) (2005h).

For estimates ém and fik, we only consider @m, analogously for flk By functional prin-

ciple analysis and numerical integration, the functional principle scores (;, = fT(X t) —
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px (t))Pm(t)dt can be estimated as

L;

CAi%:Z(U fix (T)) b (Ta) (T — Th1),

=1

which will works well when the grid of measurements is dense. However, for sparse functional
data, Af,)n will not provide reasonable approximations to (;,,. Using the procedure of PACE
in Yao et al| (2005a), we get

AT A—1  ~

< = E[sz|U] = pm¢szU (U; — fry),

. . . T
where ¢im = <¢im(Ti1)v T ,Qbim(ﬂLi)) U = (Uﬂ, T anLi)T7 ﬂx = (l/JX(Til)a T ,MX(Tz‘LZ-))T7
and the (j,1)th component of ﬁ]Ui is

A

Sy )i = txx(Ty, Ta) + 0505

with 6;; = 1if j =l and 0 if j # [. For 6%, we can use the procedure of ()

Step 5: Calculate the mean function of }7,

fig (1) = a0t /ﬁ (s,1) [ ZU ds—(/ft dt) l/Téiwi(t)dt

Step 6: Compute the “raw” covariance of Y and cross-covariances between X and Y

based on B, p5 (T, To) = (Vi — g (Ty) ) (Ve = i (Tix) ) and

R, xv (S, Tix) = (Ua — fix(Su)) (Wk - ﬂ?(Tik)> :
i=1,---.n,5,k=1,---  Njyandl =1,--- , L;., which serve as input for the two-dimensional
smoothing step to obtain 7yy and 7y, respectively. Similar to Step 3, estimate 7., =
E[Gnr] by

Gk = /T /S O (8)F 5 (5, 1) 0p (t)dsdt.
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Similar to () and (), we obtain 7yy and 7y based on

Vi — i (5y)) (Vi = fig(Su))

vy = (
= (Uiz—ﬂX(Til)) <‘7%k—ﬂf/(5ik)>> i =1,---,n, jk = 1,--- N, and [

1,---, L
Step 7: From () we have the first step estimate of the iterative algorithm for the

k )7
(S1.13)

Qv

functional linear QR model () as

m=1 k=

d@@zﬂﬂﬂ—é@%&maww-

1

The 7th quantile target trajectory in Theorem @

S1.2.3
For sparse and irregular measurements of the new predictor trajectory X*, the prediction of

the 7th quantile response trajectory would be gained via
Qy+x-(t:7) )+ DY Gt (S1.14)
————
where (&, = [¢(X — 11x(8))Pm(s)ds is the mth FPC score of the X*, (G, pr(t)) is
obtained based on the X and Y™ with
Y*(t) = Qvix(t;7) (/ f:(0 dt) /{]I — Q¥ x(t;7) < 0] — 7}dt,

Qvix(t;7) = a,(t /BT s, )X

Next, we give the best linear prediction for (', available to the sparsity of the data
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Let X*(S7) be the value of the predictor function X* at location Sy, U = X(S}) + €%,
l=1,--+,L; with L* a random number. Denote the observations U* = (U;,--- ,U;.)T, the
locations §* = (S%,---,55.)7, and let X* = (X*(S7),---, X*(S5.)",
wi = (ux(SD), -, pux(S:)" and @F, = (6m(S7), -+, dm(S3.))". Assume that the FPC
scores (;, and the errors €Y ; are jointly Gaussian. Following Yao et al, (2005b,a), the best
linear prediction for (7, is

&= pniT SN U — ), (S1.15)

where Xy« = Cov(U*[S*,L*) = Cov(X"[S",L*) + 0% 1p-, its (j,)th entry (Xp+),, =
rxx(S;,S1) + 0_%(5jl. The a,, ¥, omr and pr can be estimated from the data based on

Algorithm S in Appendix @ Together with (), we have the estimate

G = Py, Ve (U™ — i), (S1.16)

M K zgk
Qv (1) = akt +ZZU oK (S1.17)

where (6X,, K(t)) is obtained based on X and Y with

QY|X(t T / 5K (s,6)X
In addition, for asymptotic pointwise confidence bands for quantile response trajectories,

we have the following some narration.
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Let Ciy = (Go+ 5 Ginds Cor = (Gioee+ 2 Cir) where , s as in (BL13). Define H =
Cov(¢i U |L*, 8%) = (pdt, - -+, pudsy)", which a M x L* matrix. Further, the covariance

matrix of ¢y, is Cov(Cy,|L*, %) = HE_Ul*HT. Since ¢, = BE[¢3,|U*, L*, §*] is the project

of ¢}, on the space spanned by the linear functions of U™ given L* and S™,

Cov (&’;4 — el s*) =D - HSLH" =y,

where D = diag(p1,- -+, pu). Again, we have
Chr = Cir ~ N(0, Q).

under Gaussian assumptions and conditional on L* and S*.

A . P T
First, we have estimates €2y, = D — HZE}*H , where

D = diag(ﬁl) e 7pAM)
and H = (p1¢%, -, purd’,)T. Then, obtain the estimates

~ K 2 R .
of & = (o1(t), -+ ,0x(t)T, and Pyyx = (K. ) Pm)1<m<rri<k<r of the matrix M x K
P = (Gmk/Pm)1<m<mi<k<ri based on the data. Last, we write the prediction () as

~ ~ % T .
I;’*]gé{f(t; T) = Gar(t) + (CM) PE\E[,K‘P%{’K-
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S1.3 For functional varying coefficient QR model with history
index

In the subsection, we consider the scenario (Lx()(t) = B,(t) fOA Yr(8)X(t —s)ds for t € T =
[A,T], where A > 0 is the length of a sliding window and 7" > A. Our functional varying

coefficient QR model with history index is

A

Qvix(t;7) = a.(t) + BT(t)/O 1 (8) X (t — s)ds. (S1.18)

The model provides a parsimonious and intuitive balance by introducing a history index
function ., which serves to convey the effects of the recent past of the predictor on current
response Sentiirk and Miiller (2010) at the 7th quantile level. The varying coefficient function
B, represents the magnitude of this influence as a function of time. Suppose that ., 3, and
~ are smooth. For identifiability, we assume that ~, is normalized via fOA Y2(u)du = 1 and
~-(0) > 0 at each Tth quantile level. In the model (), we assume that the history index
function v does not change over time. Thus, the time effects encoded in 3; and history effects
encoded in 7 are separate, which are two easily interpretable one-dimensional component
functions for the functional regression model. Once v has been estimated, () reduce to
a functional varying coefficient QR model. Here, we also present some main results of the

model. Its function approach is similar to subsection .

S1.3.1 Functional approach

Note that even if v is known, the predictors of the reduced varying coefficient model, that

is, fOA Y- (u) X (t — u)du, may be infeasible by numerical integration, due to the sparsity of
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the observations for the predictor trajectory in the history window [t — A, ¢]. We propose an
estimation algorithm for the functional varying coefficient QR model to meet the challenges of
data sparsity and non-smooth QR loss, which builds on our surrogate least square estimation

for QR and functional principal component analysis.

By the estimation strategy in Section @, given initial estimators a&o), ( ) and Yz ), we

can translate the model () into the following functional linear operator regression
E {ff(t)p((s), selt— A,t]} = o, (t) + (LxB)(2), (S1.19)
where (Lx3)(t fo - (s) X (t — s)ds, and
_ —1
7o) = @) - ( / ) [ (1 [y - Qin <o) -7 a
T
A (0) . .
with QYlX(t T) = ol ( )—i—ﬁT (t) [y 7= (s)X(t —s)ds. We again write the model () as

B(V(0IX(s) s € - Ad)) = B / 7 (8) XE(t — 5)ds
= /0 0-(s;0) X(t — s)ds

(S1.20)

with o, (t) = pus(t) — fOA 0-(s;t)ux(t — s)ds and o,(s;t) = B-(t)7-(s). The functions o, (s;t)

include the factor 7(s) for each ¢. Due to fo y2(s)ds = 1, for each fixed time point ¢,

o

Once the estimator of o,(s;t) is obtained at a single time point ¢, it is sufficient to get

v-(s) by () But, for improving the finite sample behavior and stability of the resulting



S1.3  For functional varying coefficient QR model with history index

estimators, we average the representation () over an equidistant grid of time tq,--- ,tg

in 7, that is,

S or(sty) (S1.22)

{fo (S8 or(sst )>2d8] -

Here the number of time points, R, typically would be small. From (), we know that

'YT(S)

once the history index function +, is estimated, the model () reduces to a functional
varying coefficient mean regression model. The first task below is to get an estimate of
or(+,1).

Let Zi(s) = X°(t — s) for s € [0,A] and its auto-covariance function 7(sy,s2) =
Cov(Zi(s1), Zi(s2)) = rxx(t — s1,t — s9) for s1,s0 € [0,A]. We have the covariance ex-
pansion r4(s1,52) = Y o_; Prm®Pem(51)Pem(s2) with eigenfunctions ¢y, and eigenvalues pyp,.
Expanding o-(s;t) = Y | 0rm(t)dm(s), s € [0,A], with suitable expansion coefficients
0-m(t) for each ¢t € T, and having the Karhunen-Loéve expansion Z(s) = > °_| Gm®Pem(s),
with random coefficients (;,,, = fo i(8)bum(s)ds.  Letting a functional linear operator
(Lxe0.)(t) = fOA 0-(s;t) X¢(t — s)ds, we have the expected SLSE as follows

~ 2
QQ) = argmin, E HYC — Lxc0r
2

That is, find the corresponding values ¢, ,,, m = 1,2, - - -, satisfying

2
d ~. - B B
dQT,m(t) E (Y (t) - mzl QT,m(t)Ctm> - 07 m = 17 27 e

By a straightforward calculation, we have

=3 om0 = o [ = som(eas (5123)

m=1
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Let X fo 7-(5)X¢(t — s)ds. Once v, (s) is known, the model (Blld) or (Ble) reduces

to functional linear operator model

E (?c<t)|X(s), selt— A,t]) = (LB (1), (S1.24)

where (Lg8;) (t) = B-()X(t), as the model (@) of 1st scenario in Section @ Intuitively,
we can obtain (3, by applying the procedure developed in Subsection via replacing
X¢ with X. However, in sparse longitudinal settings, the numerical integration involved
in estimating X often does not yield good approximations. For the sparse case, we give a
simpler approach that avoids the estimation of X separately for each subject as Senttirk and
Miiller] (2010) has done. By population least squares for functional linear operator regression,

one gets

59)(15) = argming B HEN/C(t) — 5T(t))N((t)HZ — ﬁ;{l)?E (ﬁ}f/) _ Cov (X (¢), fi(t))

Cov(X (1), X (1))
From (), we have

Cov(X (1), X(t)) = /0 7o (5)Cov (X (£), X (¢ — s)ds — /O o (s)rxx(t — 5, 8)ds.

Therefore

P = I
f() 77' TXX S7t)d5

(S1.25)
A
o0) = g (t) = AO0) [ (st = s)ds.

Thus, we sketch a one-step iteration of the SLSE algorithm for the functional varying

coefficient QR model with history index (S1.1§). By combining the above steps, the final

K

estimators & K and 4X via the following Algorithm E
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Algorithm 2: SLSE algorithm for functional VCQR model with history index

Input: Kernel function K(-), bandwidth h, quantile level 7 and the number of

iterations K.
Calculate mean function iy and fiy, covariance surface 7xx, cross-covariance

surface 7xy, eigenfunctions ék andlﬁk, and eigenvalues pp and j\k by Steps 1-2.

Initialize estimators %0) a!” and Bﬁo) by Step 2.

for k=1,2,--- ,Kdo
Estimate Qgc‘)X (T35 7) ft(k)(O), U; and Vj for obtaining ‘71-]- by Step 3.
Compute mean function fiy and cross-covariance surface 7, by Step 4.
Obtain 4%, 4% and % by Step 5.

end

Output: The final estimators %K), ™ and BﬁK)

S1.3.2 Steps of Estimation

In the model, dataset is {(T;, U;;, Vi), i = 1,--- ,n,j =1,--- , N;}. We give some estimations
used in Algorithm E Now, we present the estimation procedure of 0451), 51) and 751) as
follows. Our data is (T;;,U;j, Vi;), i =1,--- ,n, j =1,--- | N;. Some details are presented in
Appendix .

Step 1: Obtain estimates Fxx, xy, jix and jiy as Steps 1-2 in the 1st scenario. Obtain
estimates 7xy, Fxy, fix and fiy as Steps 1-2 in the 1st scenario. Also see (S1. )—()

Step 2: (1) Given a fixed time ¢, reversing the time order of the data for all subjects

that are observed in the window [t — A, ], estimate 7; of covariance surface r; and obtain
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estimates ¢Etm, Pim Of the eigenfunctions and eigenvalues ¢y, pm of processes Z;. As (),

and applying numerical integration, we have

. 1 [ .
o0 () = — / Py (t — 8,t)Pum(s)ds
ptm 0
My
00 (s;t) = > 0% (t)dum ().
m=1

(2) Applying (), and identifiability conditions fo Y2(u)du = 1 and ~,(0) > 0, one

gets the estimated history index function

R A0
Zr:]_ QS' )(87 tr) (_1)1'(0)

B A L 9 1/2
[fo < f 1@ ( )(5 t )) ds
where Z(©) is the indicator function for 327, o(0;t,) < 0.

(3) As (), one gets

BO(t) =

Fxy (t,t)
fo A (8)Pxx(t — s t)ds

N A
a0 (1) = py(8) — BO(1) / 50 (s)fux (¢ — 5)ds.
0

Recall that Z;(s) = X¢(t — s) for s € [0, A] and its auto-covariance function r;(sy, s9) =
Cov(Zi(s1), Zi(s2)) = rxx(t — s1,t — sq9) for si,s9 € [0,A]. Now, we estimate r;. Let
Siy=t—"T, Su=t—Ty, t€[AT], Ty, Ty €[t —A,t] and S;;, S € [0,A]. Give the local

linear surface smoother for r; via minimizing

-8 Sip— s
Z Z Ko < 17 i 2) [Rt,i(sija Sik:) — by — b11(81 - Sij) - 512(32 - Sik)]Qa

h
i—1 1<j#£k<L; X

with respect to by, bi; and by2, where Ry ;(Sij, Si) = Rx,i(TLij, Tix); then get 74(s1,s2) =

A~

bQ(Sl, 82).
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Based on 7, by the eigenequations

/TAt(sla 52)9um(51)ds1 = Prnum(52)

with orthonormal constraints on {Cgtm}mz, to obtain (P, gzgtm) for each t € [A,T].
Step 3: Calculate surrogate response individual trajectories ‘71']‘ = ‘Z(TZ]) During ?ij

involving numerical integration, they often don’t yield good approximations in sparse longi-

tudinal settings. We use functional approach as follows:

7= Qi) — ([do) [ (170 - @ m) <] )

where QY| (t:7) = &l (t) + B(1) [ 42 (s)UM (¢ — 5)ds,

n N;
Fi0) =2 37 S K (V- a0 - 4000 )
i=1 v 7j=1
M
UM(t) +Z Cim®m(t), V(1) +Z§k¢k

=1

The estimates Qm and &k can obtained with similar arguments of ()

Step 4: Based on data (Tij,Uij,ffij), i=1,---,nand j =1,---, N, estimate py and
vy, as Step 1.

Based on data (Tij,Uij,Vij), i=1,---,nand j=1,---,N;, estimate puy and 7,y with

similar arguments to Step 1.

Step 5: As in Step 2, we obtain successively, for a fixed t € T,

o0 (1) = /0 g (= 5,8)Bum(s)ds
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the estimated history index function
ZR 1 @7('1)(8; tr) (
5 11/2
[fo ( f1 A(l)(s t )) ds}

where Z(W is the indicator function for Zf 1 QQ)(O; t,) < 0; and

(s) =

Y

B0 (1) = f”“”” |
fO 7' TXX(t_87t>d$

A
A0 =y (1) = 00 [ AN (e~ s)ds.
0
The local error variance o2 and the local eigenfunction and eigenvalue estimators are
obtained analogously to the global estimates, and estimates 62 and 7 yields estimates of the

noise contaminated local covariance surface 3, ;. The estimate o7y is similar to the procedure

of (51.8).

S1.3.3 The 7th quantile target trajectory in Theorem

Based on our functional VCQR with history index model (), we give the prediction
of the 7th quantile response trajectory Y* for a new subject with the predictor process

{X*(s),s € [t — A,t]} via the following form
A
Qv x-(t;7) = a,(t) + ﬁf(t)/ () X" (t — s)ds, (S1.26)
0
with

Dy Dt Ora ()t (5)

%.(S) - 12

{fo ( r 1978t)>2d8}

Xt —s) = px(t =)+ ) Grutm(s)
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Let Z}; = Z; (T};) be the jth measurement for the predictor trajectory Z;(s) = X*(t—s),

€ [0,A], at time T3, j = 1,---, N, N/ is the random number of measurements, and
2* (Z;kl, e ZtN*) with the noise contaminated Z* of Z3;. Under the local FPCs (j,, and
the measurement errors are jointly Gaussian, we have the best prediction estimates of the

~ %
scores (j,,, conditional on Z,, N and T = (173, -+, Tjy.),

o1~

Chn = Py S Z Lt (S1.27)

- ~ T
where ¢,,, and th* are the estimates of ¢;,, = <gz5tm(Tt*1) s O ( tN*) and ¥ 7=

Cov(%ﬂ]\f;‘,T;k ), respectively; define (= pum@il > Z*Z analogously. Based on ()

and (), we obtain the 7th predicted quantile trajectories

A
Q) = a0 + / @(K)(S;T)ﬂx(t—b“)ds
0
() oM Gy S ST U () [ bt (5) e, (5)ds
+ 1/2
{fo < r=10 )(3 t )> ds]

(S1.28)
where M = Zle M,.. Define the Tth quantile target trajectory
~ A
Qv+x+(t;7) = OzT(t)—l—/ o(s; T)ux(t — s)ds
0
B S G S Sy 0re () Jy” G ()t ()
5 1172
[fo < r= 1975t)> ds]

(S1.29)

In addition, for asymptotic pointwise confidence bands for quantile response trajectories,

we have the following some narration.
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We here construct asymptotic pointwise confidence bands for the quantile response
. 2 Mt o o T My M
trajectory, let ¢,, = (¢, -+ ,(hy,)", and define ¢, and (.} analogously. Call that

~x N el o e *T * *
Ctl = ptmq’)tmEtz:Zt? Ctm ptm¢t by Z*Z and Ctm f(] Zz thm( >d87 m = ]-7 e 7Mt'

. >7* * * * * ~ My
One gets a M; x N; matrix H; = COV(C*J& . Z,|T;, N}) = (pudsy, - 7ptMt¢tMt)T’ Ct =

)

th%jf, and Cov(Coy T, Nf) = Cov(Cry, CM|T:, Ny) = H,¥ . H{. With similar
t

t t

arguments as Subsections B13| and B.Z.ﬂ, given T} and N}, we have

~ M,
Cow — Cof ~ N(0,Qur,),

where 4y, = D, — tht_%*HtT and D, = diag(pu,- -, pems, )-

t

~ (K) A (K) =~ (¢,K) ~ (¢,K)
Further, define ¢, v, = 37 (t) (Xﬂ v X ) , where

%(C:K) Zr 1 Z r—1 éS—Km fo gbtm ¢tm ( )
tm 172
{fo ( r=10 A (5 t )) ds}
denote 4y, = D—H, 3 Z*H with D, = diag(pr, -+, pr,) and Hy = (puéy, -+ pus,dias,)”-
The 7th quantile predicted trajectories are estimated by

oMy ~ (K)

A
YK () = a9 + /0 N e R (GO

S1.3.4 Asymptotic properties

We first provide uniform consistency for history index X, varying coefficients o* and g% in

the functional varying coefficient QR model ()

Theorem S1.3.1. Let sup,c ) [ (s) — 1 (5)| = Op(an) supyer [ (8) — o, ()] = Oplan)

and supteT\Bgo) (t) — B-(t)| = Op(a,). Under Conditions 1-3, and Assumptions (A1)-(A6)
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and (C1)-(C2) in the Appendix @, we have for k iterations of Algorithm @,

1 [1 1 1 1 ]
o k+1
sup [y, (s = T it +_+_+_ 0w }’
0 =01 =00\ G g+ )
1 [1 1 1 1 ]
O — () — O 1 1 1 5 k+1 51.30
327P|047 ( ) aT( )| p{\/ﬁ bX + — + hg( + h,%/ + h1h2_ + 3n+an ) ( )
. 1 [1 11 1]
ESTPWT (t) — B-(t)| OP{\/ﬁ_bX+b +h§(+h§/+h1h2_+ 3n + Q,, }

The 7th quantile target trajectory @y*|X*(t; 7) is defined in Subsection of SM.

Theorem S1.3.2. Let supyg a) |’3/‘£-0)<S) —7:(8)] = Op(an) sup,er |ol£0) (t) — a.(t)|

Op(an>

and supteT|B£O)(t) — B:(t)] = Oyla,) with 0 < a, < 1. Under Conditions 1-3, and As-

sumptions (A1)-(A7) and (C1)-(C2) in the Appendiz @, given N* and T, for allt € T,
the predicted Tth quantile response trajectories in the functional varying coefficient QR with

history index model ) satisfy

(K, M, M) 2
Jim QUM (17) = Quepe (7).

in proabaility,

with My(n), My(n),--- , Mg(n) — 00 as n — oo, and the iteration number K enough large.

The 7th quantile predicted trajectories are estimated by

(K)
¢t Mo

AM, M K
Y| X*

A
LM,
(t;7) = dSK)(t) + / o™ (s; T)ix(t — s)ds + <C*tt>
0
The following result provides its asymptotic distribution.

b(an) sup,er |68 (1) — az(t)| = Oy(an)

Theorem S1.3.3. Let supygg a) Wﬁo)(s)
d (0) * t —
and supyer [Br (1) — 57 (1)

tions (A1)-(A7), (A8)(iii) and (C1)-(C2) in the Appendiz @, given N* and T™, for a given

— () =0

O,(ay) with 0 < a, < 1. Under Conditions 1-3, and Assump-



€(0,1), {X*(s),set—At]}, allt € T =[A,T], z € R,

AK;M’Mt(t' T) — Qyx+(t;7)
lim P | X | <z|=®(x),
n—00 (I)‘,I-{’M’Mt (t)

~ENT 4 ~ (K
where QEMMe(t) = (gbij\)/l) QtMt¢;/\)/l is a estimator of wMMt(t) = (q,’)t’M)TQtMtq’)t’M as

My(n), Mi(n),--- , Mg(n) — oo when n — oo, and the iteration number K enough large.

As a consequence, the (1—«)100% asymptotic pointwise confidence bands for Qy«|x«(t;7),

given X*(s), s € [t — A, ], is constructed by

KM, My /. Q ~ K M, M;
Yol (t,7):|:<1><1—§> Wr (1).

S2  Choice of hyper-parameter

The choice of hyper-parameter M (the number of eigenfunctions), which is used in Sections
@ and , has been considered in [Yao et al| (2005h). We excerpt from [Yao et al| (2005h)
as follows, for the readers to read smoothly.

One-curve-leave-out cross-validation aims to minimize
n N; A
CVx (M) =" [0, — X7(Ty)?
i=1 j=1
with respect to M, where )A(i(fi) (t) = /jg;i) (t) + Zf\il él.(rj)&;i) (t), and fi(rj) is calculated by

(), 957({ g (t) and éfn‘ " are the estimated mean and eigenfunctions after removing the data

for Xl



The ACI criterion as a function of M is as follows:

n

M T M
ACOn = 3 %(ﬁi—axi—z@mag (ﬁi—nxi—z@ma@
m=1 m=1

i=1

L, L; .
t5 log(2m) + 5 logag(} + M,

~ ~ ~

where 01 = (Uib T, UiNi)Tv ,axi = (ﬂX(El)a T aﬂX(TiNi))Ta Dir, = (¢m(Til), T 7¢m(TiN1~))T7
and @m is calculated by () For the response process Y, we proceed analogously for the

corresponding estimates for the components of model (@)

The number of eigenfunctions included in the local expansions of Section , M; or M,

when t = ¢, are chosen analogously by AIC(M,), where in the above definition Ny, fix,, U;,

~

Dins Cim and 63 are replaced by their local counterparts at t.



S3 Algorithm S

We present Algorithm S for functional linear QR model.

Algorithm S: SLSE algorithm for functional linear operator QR model ()

Input: Kernel functions K(-), K;(-) and Ks(-), bandwidths h, hy, hx, hy, h; and
hs, quantile level 7, and the numbers of eigenfunctions M and K, and of
iterations K.

Calculate mean function jix and iy, covariance surface 7xx, cross-covariance

surface 7xy, eigenfunctions ngSk and@/;k, and eigenvalues p and Ak by Steps 1-2.

Initialize estimators &” and Bﬁo) by Step 3.

for k=1,2,--- , K do
Estimate ft(k)(O), w5, U, and V; for obtaining ‘N/ij by Step 4.

Compute mean function figy via Step 5, cross-covariance surfaces 7'y¢ and 7, ¢

by Step 6.

Obtain & and 55’0 by Step 7.

end

Output: The final estimators &% and BﬁK)




S4 Proof of Theorem 2.1

Proof: For the surrogate least squares estimation (), we can rewrite it as a linear operator

regression model

Y(t) = LxBO () + e(t)

with € € Ly(7) is a random error process, with the assumption that X and e are uncorrelated,
and that Ele(t)] = 0 for all t. Applying L% to both sides of the above linear operator

regression model, and taking expectations, we have
E[LyY] = B[LXLx)BY + E[Lye],
where E[L5Lx] = 'xx and E[L%e€] = 0. Hence, one obtains the functional normal equation
FXXB7(-1) = E[/:;(?]

The proof for (a) follows from Conway (1985) and He et al| (2000).

For the proof of (b), we first have
EL5Y] - Txxf:
-1
— BILLxBY) ( / ft<o>dt) Bl [ V() — (£xB)(0) < 0] = 7] — T,
T T

~ (0 = ) - ([ sy T p [ R0 - 50 - FoNar]



By second order Taylor expansion, under Condition 3 we have for the second term,

(/Tft(o)dt> {g* /{Ft (Lx (B9 — B,)(1)) — F,(0)}dt

_ ( / ft<o>dt) E[g; / {FOLx (B = B)(1) + C(Lx (B — B,)(1))*} dt
= Txx(B© — +C(/ft dt) E[L5%(Lx(BY = 8-)(1)?]
C Dx(8O — +c( / 70 dt) E L3 (£x (89 — B,)(0), Lx (B9 — 8,)(1)]

= Txx(BO - +O( / (0 dt) EL Bo)(1), L3 Lx (B = B)(1))] -

Therefore, we have

BILLY] — TxxB — C < / 7.0 dt) £ (B9 — 8.)(1), L5Lx (B9 — B,)(1))]
(L5 (B = B)(8), L5 Lx (B = 8,)(1))])
(B! E[LxLyLx] (B = B,)(1)))

:0(
= O

= O (|[B"(exLsLx)] (B - 8)]).

Thus, it completes the proof of (b). By the k rounds of iteration, we get (c). So, we complete

the proof of Theorem @



S5  Proofs of the main resluts for specific functional

QR for sparse longitudinal data

In the section, we respectively give the proofs the three FLQR models. Subsection :
functional varying coefficient QR model; Subsection : functional linear QR model; Sub-
section : functional varying coefficient QR model with history index. First, we present
a common set of assumptions needed for all FLQR models, which are listed under (A).

The data (Sy,Uy) and (T35, Vi), i=1,--- ,n, l=1,---  L;, j=1,--- , N, as described
in (@) and (@), are assumed to have the same distributed as (S,U) and (7, V), with joint
densities g1(s,x) and go(t,y). Assume also that the observation times/locations S;; are i.i.d.
with marginal densities fs(s); T;; are i.i.d. with marginal densities fr(t). Let S; and S
be i.i.d. as S, and U; and U, be repeated observations of X made on the same subject at
times/locations S; and S, separately. The predictor and response measurements made on the
same at different times/locations are allowed to be dependent. Assume (S, , Su,, Uiy, Ui, ),
1 < Iy # Iy < L;, is identically distributed as (57, Ss, Uy, Us) with joint density function
gx(s1, S2,u1,uz), and analogously for (735, T}j,, Vij,, Vij,) with identical joint density func-
tion gy (t1,t2,v1,v2). About the above (joint) density functions, we give some regularity
assumptions.

(A1) Let p; and ps be integers with 0 < p1,p2 < p = p; + p2 = 2. The derivative
(dP/dsP) fs(s) and (dP/dtP) fr(t) exist and are continuous on s € S and t € T with fg(s) > 0

and fr(t) > 0on s € S and t € T, respectively; (d?/ds?)g;(s,u) and (dP/dt?)gs(t,v) exist



and are continuous on § X R and T x R, respectively; (dP/ds{*dsh*)gx(s1, s2,u1,uz) and
(dP /dt} dt5?) gy (L1, ta, v1, v9) exist and are continuous on 8% x R? and 72 x R?, respectively.

(A2) The number of measurements L; and N; made on the ith subject are random
variables such that L; RS- L, N; N , where L and N are positive discrete random variables,
with P(L > 1) > 0 and P(N > 1) > 0. The observation times/locations are assumed to
be independent of the number of measurements, i.e., for any subsets .Z; C {1,---, L;} and
N C AL+ Ny}, and for all i = 1,--- n, ({Sy,Uy : | € £}) is independent of L;, and
({T, Viy : L € A;}) is independent of N;.

Let K(-) be the nonnegative univariate kernel function that is used in the kernel density
estimator of f;(0) for £(t) at zero, and Kj(-) and Kj(-,-) be the nonnegative univariate
and bivariate kernel functions that are applied to the smoothing for the mean function ux
and py, covariance surface rxx, ryy, ryy, cross-covariance surface rxy and r4, and local
covariance surfaces r; (see Section EI) In addition, assume that /; and K, are compactly
supported densities with zero means and finite variances. Let h be the bandwidth used for
density estimator of f;(0), bx = bx(n) and by = by (n) be the bandwidths used for the mean
functions such as uy, py, and so on; hx = hx(n) and hy = hy(n) be the bandwidths used
for covariance surfaces such as rxx, rxy, and so on; and hy = hy(n) and hy = hy(n) be the
bandwidths for obtaining cross-covariance surfaces such as rxy, ryy, and so on. Further,
we define the Fourier transformations of K;(u) and Kj(u,v) as k1(t) = [ e ™ K;(u)du and
Ko(t,s) = [ [ e+ [0 (u, v)dudv, respectively. We give some assumptions about kernel

functions and bandwidths as follows.



(A3) The kernel function K(-) is integrable with [~ K(u)du = 1, and K(u) = 0 if
|lu| > 1. Further, assume K(-) is differentiable and its derivative K'(-) is bounded; The
Fourier transformation r1(t) is absolutely integrable, i.e., [ |r1(f)|dt < oo, and ka(t, s) also is
absolutely integrable, i.e., [ [|ka(t,s)|dtds < co. As the number of subjects n — oo, h — 0
and nh — oo; bx — 0, by — 0, nb% — oo, nby. — oo, nb% < oo, nb% < oco; hx — 0, hy — 0,
nh% — oo, nh$ — oo, nhi < oo, nh{ < cc.

(A4) Assume that U and V have finite fourth moments, that is, E[(U — ux(S))*] < oo
and E[(V — ux(T))*] < .

(A5) Assume that the FPC scores (; and measurement errors ex ; in (@) are jointly
Gaussian. In addition, §; and measurement errors ey;; in (@) are also jointly Gaussian.
Special, for the functional varying coefficient QR model with history index, assume that the
FPC scores (i (1 <1< Ny, t € T) and the measurement errors ey ;; are jointly Gaussian.

(A6) Assume that the numbers M = M(n) and K = K(n) of included eigenfunctions
depend on the sample size, such that M(n) — oo and K(n) — oo as n — oo. And they
satisfy the rate conditions given in assumption (B5) of Yao et al. (2005h).

(A7) The number and locations of measurements for a subject or cluster remain unaltered
as the sample size n — oo.

(A8) (i) There exists a continuous positive definite function w?(¢) such that w () —
w,(t), as M — oo. (ii) There exists a continuous positive definite function WM — w_(t) as
M, K — oo. (iii) For all t € T, there exists a continuous positive define function wMMt(t) —

T

wr(t) as My, My, -+, Mr — oc.



S5.1  For functional varying coefficient QR model

Next, we list some special assumptions. Assumptions (B) is needed for the functional
linear QR models; and Assumptions (C) for the functional varying coefficient QR models
with history index.

(B1) Assume that M = M(n) and K = K(n) of included eigenfunctions depend on the
sample size in (), such that as n — oo, M(n) — oo and K (n) — co, and

(5—Mf( 1+1+1+1+1 —0
T m \bx by B hE T hihy ‘

(B2) Assume the remainder as M (n) — oo, K(n) — oo as

dop = SUP Z Z Mqﬁm oi(t)| — 0.

Hes
(SOESXT | i1 ke 41

(C1) The number of included eigenfunctions from local eigen-decompositions M, or
M, := M, are integer valued sequences that depend on n with infic(a 77as,(n) — 00, and
both infie(a 11,(n) and SUD;e(a 1iar,(n) Satisty the rate conditions given in assumption (B5)
of Yao et al) (2005b). Further, the linear operator regression coefficient o, (s;t) in the model
() satisfies [, [.cjo.a) 07 (55 t)dsdt < .

(C2) Assume that the remainder as M;(n) — oo as

(e 9]

d3p, =  SuUp
s€[0,A],teT

07 ()P (s)| —= 0

szt+1

S5.1 For functional varying coefficient QR model

In the subsection, we present the proofs of Theorems El!—.

Proof of Theorem El! Recall that S (t) = Ty and ¢ (t) = g (t) — AWM ®)ix(t). By

Txx(t t)
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Theorem @, we have

B = Br(1)] <

B - 8O0 +80@) - B0

Ixy Txy B 2) . (95.1)

: +0 (B|xX|P 30
rxx rxx

that is,

—_

3

Uniform consistency of 7xy, pux and py follow from Theorem 1 of Yao et al, (2005a),
sup jix (1) — px(t)] = O, (

teT hx)
- >
teT

SUP|MY()

)

We consider 7. In the local linear estimator for covariance ry g, we use the raw

sup |Fxx(s,t) —rxx(s,t)| =0, (
s,teT

observations R, vy = (Ui — fix(T}5)) (V — (5(T; )) Call that

—1 n
Vi; = a\(T,) + BT, U, — (/ ft(O)dt) / %Zwi(t)dt
T T =

and w;(t) =1 [VZK(t) — &l (t) — BY (OUM(t) < O] — 7. Under Condition (A6), by Theorems

2-3 of Yao et al| (2005a), we have lim lim UM () = X;(t) + O, {1/(v/nbx) + 1/(v/nh%)}

M —00 n—00

and

lim lim VK( t) =Y(t) + O, {1/(\/551/) + 1/(\/5}@/)}

K—o00 n—o0

for all t € T. Thus,

i Tim S S ) =) £ 0, (g L] (85.2)
im lim — (1) = .
MK oo nooo 1 2 TN T P\ Vnbx | by | ahk | ahd

i=1
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for all t € T, where w(t) = 1|V (t) — a2 (t) — B8O 1)X (1) < 0] — 7. Similar to the proof of

Lemma 9 of Chen et al| (2020), we have

P B logn
Sup | £:(0) = £:(0)] = O, (\/ — o T ant h>

forallt € T.

We know that

Roxy = AUy = mx(T)]+ lnx(Ty) = (T} (Vi = iy (Tie))

= {[U; — ux(Tij)] + [ux(Tij) — fix (Tiy)]}

Because max; j

o | | | |
=V (Ty)| = by (85.9) and
Vi = V(T Op(\/ﬁbx+\/ﬁby+\/ﬁh§(+\/ﬁh2y) v (2. an

sup |15 (1) — iy (1)] = O, (ﬁ)

by Theorem 1 of [Yao et al) (2005a), the local linear estimator, 7y (s,t), of ry(s,t) obtained
from RLX;/(TZ’J-,TM) is asymptotically equivalent to that obtained from Ri7xg(ﬂj,7}k) =
Uij — px(Ti;)] Y (Ti) — p5-(Tix)], denoted by 745 (s,t). So, by Lemma 2 and Theorem 1 of

Yao et al| (20054), we have

sup |7y (s, t) — g (s, t)| = O I S S (S5.3)
sy | XV I D=\ Uy T by T bk akE  alhihy )
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From () and (), we obtain

B0 — 5:(0)
Ty (t,t) 1Ty (t, BN
Pt - Do (B 300 - 200

[TXY<t ) —ryy(t } rxx(t,t) +ryg(tt) [rxx(t, ) — Pxx(t,t)]
T’XX(t,t)Txx(t,t)

+ O(a?)

n

1 1 1 1 1
P (\/ﬁbx T ey s e ik, “")
Further, we get \dg)(t) — o (t)] has the same order with \@g)(t) — B%(t)|. Thus, we complete

the proof of Theorem @

1 [1 1 1 1 1
Proof of Theorem Let b, = O, { {b

— |—+t—+5++—] F th f
7 X+by+h§(+h%/+h1h2:|} rom the proo

of Theorem @, we have
1BD(t) — BE(t)] = ba + Can|BO(t) — B1(2)].
By the iteration algorithm, one gets

B9() = B (O] = ball + Can + -+ (Can) ] + (Can) |37 (1) - 8;(0)]

bn<1 - (Can)k) k_k+1
1-_Ca, +Cha,

= O, (by+ait).

n

It completes the proof.

Proof of Theorem @ For fixed M,

Ve (57) = () + B, (1) (ux(t) + ~:1¢m(t)> :
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Call that Qy«x-(t;7) = a,(t) + B,(t) (MX 1)+, 5;;%(75)) and
A~ M ~ A
KM (1 7) = 65(1) + BK() ( # 3 G )
with ¢ and (¥, defined in () and (), respectively. Note that

’QY*‘X T) - @Y*|X*(t T ‘ }Qy*\x T) - é%m*(tﬁ)‘

Q- (67) = Qe (7)) (5.4)

From Theorem @, supyer [65(t) — a-(t)| = 0,(1) and sup,er

BE(t) = Br(1)] = 0y(1) for

enough large K. By Theorem 1 of [Yao et al| (2005a), Lemma A.1 and (B5), one gets

& — G

sup,er |fix (t) — px(t)] = op(1) and = 0,(1) as n — oo. Then by Slutsky’s Theo-

rem, we have

‘Qy*lx* (t;7) — @J\Y{‘X*(t;T)‘ = 0,(1)
as n — oo and sufficiently large K. On the other hand, it follows from Lemma 3 of [Yao
et al] (2005h) that vaj‘//lﬂx*(t? )5 @yqx*(t; 7). Therefore, Combining them with (), we
complete the proof of Theorem @
Proof of Theorem @ For a fixed M > 1, under the Gaussian assumption and conditional

on N* and T™, it is shown in Subsection that ¢y — ¢, ~ N(0,€). It then follows

that

Q¥ - (t7) — QM yo (t7) D ZM ~ N(0,02 (1)), (5.5)
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where QM. . (t:7) = a,(t) + 5. (1) (MX@) +M g;;qum(t)). Note that
O (67) = Qe (67) = (@ (67) — Qi (7))
+ (@}]\//[ﬂX* (t;7) — Q%\X*(t; T))
+ (¥ - (8 7) = Qyoix= (7)) . (S5.6)
From the proof of the 1st term in (), we have the 1st term in () for sufficiently large
K and a fixed M,
lim sup ’@gﬁ((t, T) — Qv{\/{m*(t; 7‘)‘ = 0,(1).

n—=ro0 4T

From Theorem @ and Theorems 1 and 2 in [Yao et all (2005a), one gets WM (1) & wM(t) as

T

n — oo and sufficient large K; and then by Assumption (A8)(i), we have lim ;o lim,, oo @XM (t) =
w,(t) in probability for K enough large. Thus, letting M — oo lead (), i.e. the 2nd term
of (85.9), to

Q¥ - (6:7) — QM. o (t57) 2 ZM 25 Z, ~ N (0,0 (t)).
For the 3rd term of (), by the Karhunen-Loéve theorem,
@%m*(tﬁ) — Qy-ix-(t;7) 2 0

as M — oo. Therefore, together with (), Theorem @ follows by Slutsky’s Theorem.

S5.2  For functional linear QR model

In the subsection, we give the proofs of Theorems @—@

Proof of Theorem @ First, we consider the estimation of the 1st iterative algorithm.

Call that 51 (s, £) = S0y Sy 222 dn(s)@e(t), a4 (1) = fig(t) — [5 B (s, )jix(s)ds and
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BW (s, 1) = DD P iimkqﬁm(s)gok(t). By Theorem @, we have

< B0, t) = B (s,1)| 4 B0 (s,8) = B (s, 1)
MK 3 A o o

< ZZ[A’"’wm(s)@k(w—ﬂwm( Z Z l%m Pi(t)
m=1 k=1 m m m=M+1 k=K+1
44>(waw 39>—5:2)

= Qi1(n) + Q2(n) + Oy(al). (S5.7)

Since B (s,t) = arg MiNg ¢, (5% E||Y® — LxeB,]|%, we can write it as functional linear

regression model

= [ Bls.0X (s + et
where e is mean zero random error, and independent of X. Under Condition 2, we have
(), and Y S ‘;Lm’wm(s)gok(t) absolutely converges for all s € S and ¢t € 7. There-
fore,
SMoSsE iim’“gbm(s)gpk(t) absolutely convergences to 6&1)(5,75) forall s € Sandt € T as
M, K — oco. One has Q2(n) — 0 as M, K — oo. Next, we consider Q1(n).

Under Condition (A6), by Theorems 2-3 of [Yao et al| (2005a), we have lim lim UM (s) =

M — 00 n—o0

Xi(s)+0, {1/(vnbx) +1/(vnhk)} and lim lim VX (t) = Yi(t)+0, {1/(v/nby) + 1/(v/nhi)}

K—o00 n—00

for all s € S and t € T. Thus,

llmllmewOl—|—1+1+1
M,K—o00n—c0 1y Z N P \/ﬁbx \/ﬁby \/ﬁhg( \/ﬁh%
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for all ¢ € T, where w(t) =1 [Y(t) — o?ﬁo)(t) — Js 57(-0)(8, t) X (s)ds < 0] — 7, and

N 1 1
. : 0) 1.\ _ HO) /.
A}linoo nlgl;lo QY\X(taT) = QY|X(taT) + Op (\/ﬁbx + \/ﬁhgg) ’

where Qg)fx(t; ) =a"(t) + s B9 (s,t)X,(s)ds. Further,

lim lim — ZUM X(s) + 0, {1/(Vnbx) + 1/(v/nh%)} .

M—ocon—oo N,

Similar to the proofs of Theorem @, 1£:(0) — f(0)] = O, <\/10g n/(nh) + a, + h). So, for

all t € T, we have

i lim g () = g () + Oy (e b g 2 (S5.8)
1111 11m v . .
A i iy (1) = py P\ by | by | k% | Jnhi

In the local linear estimator for the covariance ry, we use the raw observations, R, 35 (T35, Tix) =

(Vi = 5 (T)) (Vie = i (T) ) imstead of R g (Tyy, Ta) = (V(Ty) = p(T) (V(T) = 13 (7).

Note that

RzYY(T%J?T )
= { P(1) + (Vi = Y (T)) + (g (L) — 5 (1) |
P(T0)) + (Vi = V(7)) + (p(Tor) = 15 () }

= (Y(Ty) — ps: (T )) (37(71%) —M?(Tik))

X
—
A

s

??‘
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Because max; j,

~ ~ 1 1 1 1
e — Y (Ti)| = d 65.9), the lo-
Vi = ¥ (Ti) Op(\/ﬁbx+\/ﬁby+\/ﬁh§<+\/ﬁh§) and (5.9, the lo

cal linear estimator, 7y (s,t), of ryy(s,t) obtained from R, g4 (T35, Tix) is asymptotically

equivalent to that obtained from ]-:iiyg(Tij, Tik), denoted by 745 (s,t). So, by Lemma 2 and

Theorem 1 of |Ya0 et a,l.| (bOOSaI), we have

sup | oy (s, t) — ryp(s,t)| = O ! + ! + ! + ! (55.9)
wp v 8) = revle. D) = O\ T+ oy + mR TR ) '

By Theorem 2 of |Yao et a1.| (}2005a|), one gets

. B 1 1 1 1
2161712 |ok(t) — r(t)] = O, <\/ﬁbx + ity + NG + ﬁh%) . (S5.10)

Similar to the proof of (), we have

1 1 1 1 1
Foo(s.t) —roe(s.t)] =0 . (S5.11
ig? [P (5,t) = Txy(s,1)] P (\/ﬁbx T /by + NG + Vnhi * \/ﬁhlhg) ( )

In addition, by Theorem 2 of |Yao et al] (}2005a|), we have

. 1
— = — . 12
Sup Om(t) ¢m<t>‘ Op ( NG ) (85.12)
As a consequence of (E5.1d), (5513) and (E5.1i), one obtains
A 1 1 1 1 1
Ok — O = . 1
Ot = Fmi| = Oy (\/ﬁbx ey T s e \/ﬁhth) (85.13)

By Assumptions (B1)-(B2), results (55.1“), (5512) and (), and expression (), we

have

sup
(s,t)eSXT

B (s.1) = B2(5,8)| = Op (d1n+ 82+ a2)

We can show sup s pyesxr dg)(s,t) — aj(s,t)) = 0, (61, + 02, + a?) with similar proofs of

Bg)(s, t). By the k iterations, we obtain the results of theorem @
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Proof of Theorem @ Recall that

M K 2K
~ g D% A
Qi r) =ak() + ) ) =2k (r ok (8),
m—1 k=1 Pk
~ ~mk ~*
Quepx-(t:7) = az(t) + > Y —"=(on(t),

where 7, and C*, are defined in ( ) and (), respectively. For given S* and L*, define
N M K
Vi (BT) = ar(t) + 3 D (D).

Now, let’s continue to prove after ()—(5.1 ). First,

Y(t) — Y*(t)

(@ (t:7) = Qyx (7))

([ soar) [ o - Qe <o -1 - Q5ixir) < o

T T
= Oy(an)
uniformly for ¢ € 7T, since sup,c+ ’Qg)fx(t; T) — Qv x (6 T)’ = O,(a,) and ]I[Y(t)—Qgg‘)X(t; 7) <
0 = I[Y'(t) — @y x (t;7) < 0] = Op(a,) which is obtained by
B (1Y (1) = QP (t:7) < 0] = IV (1) = Q3 (t:7) < 0]) = O(a),
B (1Y (1) ~ @ (1:7) < 0] ~ IV (1) = Qixe(t:7) < 0]) = Olan(1 — a,)) = Ofay).

= O(ay). Therefore, one gets

Thus, we also have sup,cr [y — fi5.

sup ‘r?? s, t) — r?*?*(s,t”
s,tT

= swp|E Y (5) = up ()Y (1) = g (8)] = BIY () = g (8)][Y () = pig- (8)]

= 0O(a?).

n

(S5.14)
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By () and (), we have

1 1 1 1
t S (s,)] =0 2 S5.15
iltl$ |TYY S, ) TY Y (S )’ p (\/ﬁb}( + \/ﬁby + \/ﬁh%( + \/ﬁh% +an) ( )

Similarly, by (), one gets

sup |7y (s, 1) — 7y (s, 1)
stT

1 1 1 1 1
_ 0 2) $5.16
» <\/ﬁbx Ty T T T ks “”) (85.16)

From (), applying Theorem 2 of |Yao et al.| (b005al), we obtain

Gt — o) = O (e Ly L
rep (PR TR Uy T by | mhk | Jnks )

As a consequence of (55.1%), (5512) and (55.1a),

2 - 1 1 1 1 1 9
X O = Tmi| = Op (\/ﬁbx Ty Tz T e T s +“") '

[\

By the K iterations, we have

sup ‘Sok k(t)l = Op (61n + 52n + GEJFI) 5 (8517)
teT
max o8 = G| = Op (015 + Gon + aXT1) . (S5.18)

Note that

Q7)o (t7)| < QS rm) — Q7|

b |O ) = Qree (i) (85.19)
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From Theorem @,

sup | () — o ()| = 0,(1)
teT

and Sup(, yesxT BK(s,t) — BT(s,t)‘ = 0,(1) for enough large K. By Theorem 1 of [Yao et al.

(20054), Lemma A.1 and (B5), one gets
sup,er |fix (t) — px (t)] = 0,(1) and |C*, — C| = 0,(1) as n — oo. Then under Assumptions

(B1)-(B2), by ()—() and Slutsky’s Theorem, we have Ag%gf(t; T) — ~}]\,4‘I§( (t; 7-)‘ =

0p(1) as n — oo and sufficiently large K. On the other hand, it follows from Lemma 3 of [Yao

et al) (2005h) that @yf;*(t, )5 éyﬂx*(t; 7). Therefore, Combining them with (), we
complete the proof of Theorem @

Proof of Theorem @ For a fixed M, K > 1, under the Gaussian assumption and condi-
tional on N* and T, it is shown in Subsection that ¢y, — €% ~ N(0,Qy). It then
follows that

OM.K (t; 7') M.K (t; 7') 2) ZM’K ~ N(O wM’K(t», (8520)

Y*|X* TRy X

where
M K .
M,K . mk .x
QY- (17) = az(t) + > Y —"2Chn(t),
m=1k=1 "™

. Note that

AK,MK /. ] AK,MK [, MK o,

Qy*|X* (t;7) — QY*\X* (t7) = < Y| X (t;7) — Qy*|x* (t; T))

+ (@{’f}*(t; 7) — Qyix- (t; T))

(QUEL ()~ Q- (57)) . (S5.21)

From the proof of the 1st term in (), we have the 1st term in () for sufficiently
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large K and a fixed M, K,

lim sup ’QE ]g({f T) — ]\Y{g{* (t;7)| = 0,(1).

n—o0 4T

From Theorem @, ()—(), and Theorems 1 in Yao et al| (2005a), one gets MK (1) 2

wME(t) as n — oo and sufficient large K; and then by Assumption (A8)(ii), we have

T

i s 1y o0 1imy, 00 XM K (1) = w,(t) in probability for K enough large. Thus, letting M, K —

oo lead (), i.e. the 2nd term of (), to

T

@é\//[{; (t;7) — Qé‘/{’g{*(t; T) D, gMK D, Zr ~ N(0,w,(t)).
For the 3rd term of (), by the Karhunen-Loéve theorem,

Qy |X*( ) - QY*|X* (t;T) £> 0

as M, K — oo. Therefore, together with (), Theorem @ follows by Slutsky’s Theorem.

S5.3 For functional varying coefficient QR model with history
index

In the subsection, we give the proofs of Theorems

1 1 1

1 1
Proof of Th 1.3.1 Let b, — .
roof of Theorem B1.3. Le s by i ks

To prove
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uniform consistency of 'Ayﬁl)(s), we first prove one of @(71)(5; t). Note that by Theorem @,

sup |01V (s; 1) — o (s;t))|

p<ai>

s€[0,A]
< sup [0 (s;t) — oM (sit)| + sup [0l (s5t) =l (s5t))]
s€[0,A] 56[0 Al
My
< sup Z @52,1 Z Q(l) (t)Pem(s
s€[0,A] |-
+ sup Z o0 () btm(s) = > 0D ()b (s
s€[0,A] |, m—1

— OQu(n) + Q2(n) + Op(ar)

for ¢ € 7. Similar to the proof of () , we have

sup }fxf,(t —5,t) —ryy(t — s, t)| =0, (b,).

s€[0,AlteT

By Theorem 2 of Yao et al) (20054, one gets

étm(s) - ¢tm(s> -

sup
s€[0,AlteT

1
T,m Tmt :O :
s0p (1) = om0 = 0y ()
From (85.22)-(85.24), we have

@S—m - Q’(rlr)n | =

sup
teT

Together with (), we have ()1(n) = O, (b,) uniformly.

Further, similar to the proof of (), we have

sup ‘rxf,(t —5,t) = "y (t — s,t)‘ =0, (ai
s€[0,AlteT

(S5.22)

(85.23)

(S5.24)

)
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thus, by Theorem 2 of Yao et al| (2005a), sup,c7 Q(TI,)n(t) — 05, (t)| = Op (a2). By Assumption

(C1), one gets Q2(n) = 03, + O, (a2). Thus, we obtain

sup |Q( )(S t) - Qi(s; t)l = OP(537L + bn + (li)
s€[0,AlteT

So, the rate of uniform consistency of @gl)(s;t) leads to the one of nAyﬁl)(s). The uniform

consistency of &Sl)(t) and Bﬁl)(t) follows analogously. By the k iteration, we complete the

proof of Theorem .
Proof of Theorem For a fixed M, M, let
AM) °
vexe (GT) = Gr(t) +/0 o(s;T)fix (t — s)ds

Br() Yomies G Sors Yot G (1) Jo” Gt (8) ot (5) s
5 112
{fo < rlgfst)) ds}

Similar to the proof of Theorem @, note that

+

(KM, M ~ KM M, M Mt
BN ) = Qrpe (7)< QI (0 7) — QPR (67|
+ ‘ngj\/ﬁ)](‘{t) $T) — @Y*pc*(t; T)‘ . (S5.25)

x () B

By similar to arguments as in the proof of Lemma 3 in [Yao et al] (2005h), Qy- P

@y*p{*(t; T)as My, My,--- , Mr — 0o and n — oco. On the other hand, from Theorem ,
NOYRE 0 94y 0 and 390 — B2 ()] 01
supycio,a) |97 (8) =77 (s)] = 0, sup,er |67 (¢) — 2 (t)| — 0 and sup,er |87 (¢) — 57 (¢)] — 0 in

probability for enough large K. By Theorem 1 of [Yao et al) (20054), Lemma A.1 and (B5),

one gets sup,e | fix (t) — px ()| = 0,(1) and — (| = 0p(1) as n — oo. Then by Slutsky’s
Theorem, we have sup,cs Agi]/;;Mt)(t; T) — ~%}§{t)(t; 7‘)‘ — 0 in probability for sufficiently

large K and n — oo. Thus, it follows Theorem .
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Proof of Theorem The proof is similar to the proofs of Theorems @ and @ Note

that the decomposition

e (4 7) = Queixe (t57) = (Aif;j‘\fg% (t;7) — Q¥ (t;T))
+ () - i)
+ (@ tm) = Qv (1)
+ (QM (657) = Q- (8:7)) (85.26)
where
OVt 7) = ar(t) + /0A o(s;T)px (t — s)ds + (Z‘ﬁt>T¢t7M,

A
%’%ﬁ(t;ﬂ = a,(t) +/0 o(s;T)ux (t — s)ds + (C ) Dy -
For a fixed (M, M), under the Gaussian assumption and conditional on N* and T, it

is shown in Subsection §1.3 - that C - CMt ~ N (0,82, ). It then follows that

QMM (1 1) — QMM (4,7) By ZMMe L AF(0, wMMe (1)), (S5.27)

Y*| X+ Y*| X * T

From the proof of the 1st term in (), we have the 1st term in () for sufficiently

large K and a fixed (M, M,),

. K, M, M AMM (), —
Tim sup | QY (1) — QY. (1) | = 0,(1).
When M;(n), -, Mg(n) — oo as n — 00, one gets

lim sup )QY* (t;7) — QY x-(GT ‘ = 0,(1).

n—=ro0 4T



From Theorem and Theorems 1 and 2 in Yao et al| (2005a), one gets wSMMe(¢) 2y

wMMt (1) as n — oo and sufficient large K; and then by Assumption (A8)(iii), we have

B, Ay Moo My 00 @XMMe (1) = w_(t) in probability for K enough large. Thus, letting

M — oo lead (), i.e. the 2nd term of (), to
QUL () — QUNL () 2 ZMM 25 Z o N(0, w. (1)),
For the 4th term of (), by the Karhunen-Loéve theorem,

Qy |X*( ) - QY*|X* (t;T) — 0

as M; — oo. Therefore, together with (), Theorem follows by Slutsky’s Theorem.

S6  Boxplots of MSEs

Boxplots of MSEs for example 2 are presented in Figures @ and @

S7 Estimated pointwise coefficient of determination

For evaluating performance of our FL-QR and FLR, we also give the curve of estimated

pointwise functional coefficients of determination Rp(t) based on FL-QR with the definition

Var[Qyx (Y (t;7) | X)]

fig(t) = Var[Y ()] ’

and compare with that of determination R2,(¢) based on FLR with the similar definition

Var(E[Y (t) | X])
Var(Y (1))

Ry () =
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Figure S1: Boxplots of MSE when 7 = 0.25 for Example 2. blue: FLR method, : FL-QR
method, green: RFL-QR method. The first row corresponds to the normal errors, the second

row to the Cauchy errors, and the third row to the Chi-square errors.
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method, green: RFL-QR method. The first row corresponds to the normal errors, the second
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Figure S3: Estimated pointwise coefficient of determination R2(t) for FLR and FL-QR.

They are displayed in Figure @, indicating that the dynamics of albumin in FL-QR are more
capable of explaining the total variation of prothrombin time trajectories over a more time
range (from 0 to 1975 days), than the one in FL.Q. In addition, it indicates generally stronger
linear association at intermediate days (1000 to 2000 days) compare to the earlier days (0 to
500 days) and later days (2250 to 2500 days).

Last, we reconstruct mean trajectories of prothrombin times by using FLR and quantile
trajectories of prothrombin times by applying FL-QR with the levels of quantile 7 = 0.1,0.5
and 0.9, which is presented in Figure @ We see that these trajectories have the same growth
mode; mean and quantile with 7 = 0.5 trajectories of prothrombin times are almost identical,
which implies that the conditional distributions of prothrombin time given albumin at each
day don’t skew; our FL-QR can capture lower (e.g. 7 = 0.1) and upper (e.g. 7 = 0.9)

conditional quantiles of the trajectories of prothrombin time, which cannot be characterized
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Figure S4: Mean regression function of Y in FLR and quantile regression functions of Y in

FL-QR with 7 = 0.1,0.5 and 0.9.

by analyzing the conditional mean of FLR model alone.
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