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Supplementary Material

The supplementary material is organized as follows. Some estimation procedures are provided in Section S1.

The choice of hyper-parameters is presented in Section S2. SLSE algorithm for functional linear operator QR model

(3.14) is given in Section S3. Section S4 provides the proof of Theorem 2.1, while Some technical conditions and

proofs of the main results for specific functional QR are presented in Section S5. Some additional experimental results

are listed in Sections S6 and S7.

S1 Estimation procedure

All estimation for mean and covariance functions we used in the paper have been studied

well by Yao (2007); Yao et al. (2005a,b); Şentürk and Müller (2010); Li and Hsing (2010),
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via the standard local linear smoothing procedure. For the readers to read smoothly, we

summarize some estimations as follows. See Yao (2007); Yao et al. (2005a,b); Şentürk and

Müller (2010); Li and Hsing (2010) for further details.

S1.1 For functional varying coefficient QR model

In the functional varying coefficient QR model for sparse longitudinal data, we aggregate

data {(Uij, Vij, Tij), i = 1, · · · , n, j = 1, · · · , Ni}.

Step 1: The mean estimates µ̂X and µ̂Y are obtained by smoothing the aggregated

data (Tij, Uij) and (Tij, Vij), i = 1, · · · , n, j = 1, · · · , Ni. Define the local linear scatterplot

smoothers for µX , based on the data (Uij, Tij), through minimizing

n∑
i=1

Ni∑
j=1

K1

(
Tij − t

bX

)
[Uij − a0 − a1(t− Tij)]

2, (S1.1)

with respect to a0 and a1, leading to µ̂X(t) = â0(t). Analogously for the mean function µY

of Y , based on the data (Vij, Tij).

Step 2: Compute the “raw” covariances of X and Y , based on

RX,i(Tij, Tik) = (Uij − µ̂X(Tij)) (Uik − µ̂X(Tik))

and RY,i(Tij, Tik) = (Vij − µ̂Y (Tij)) (Vik − µ̂Y (Tik)), i = 1, · · · , n, j, k = 1, · · · , Ni, respec-

tively. The smooth estimate r̂XX (resp. r̂XY ) of the covariance function rXX (resp. rXY ) are

got by scatterplot smoothing. Then, a nonparametric FPCA step yields the eigenfunction

estimates ϕ̂k and ψ̂k, and the corresponding eigenvalues ρ̂k and λ̂k for the predictor and

response trajectories.



S1.1 For functional varying coefficient QR model

Compute the “raw” covariances and the “raw” cross-covariances between X and Y , based

on all observations from the same subject by

RX,i(Tij, Tik) = (Uij − µ̂X(Tij)) (Uik − µ̂X(Tik))

and

RXY,i(Tij, Tik) = (Uij − µ̂X(Tij)) (Vik − µ̂Y (Tik)) ,

i = 1, · · · , n, j, k = 1, · · · , Ni, by the local linear surface smoothers for rXX and rXY ,

respectively through minimizing
n∑

i=1

∑
1≤j ̸=k≤Ni

K2

(
Tij − s

hX
,
Tik − t

hX

)
[RX,i(Tij, Tik)− b0 − b11(s− Tij)− b12(t− Tik)]

2, (S1.2)

with respect to b0, b11 and b12, and setting r̂XX(s, t) = b̂0(s, t); and
n∑

i=1

Ni∑
j=1

Ni∑
k=1

K2

(
Tij − s

h1
,
Tik − t

h2

)
[RXY,i(Tij, Tik)− b0 − b11(s− Tij)− b12(t− Tik)]

2, (S1.3)

with respect to b0, b11 and b12, and setting r̂XY (s, t) = b̂0(s, t).

Step 3: Give the initial estimators

β̂(0)
τ (t) = Γ̂−1

XXÊ[L
∗
XY ] =

r̂XY (t, t)

r̂XX(t, t)
, α̂(0)

τ (t) = µ̂Y (t)− β̂(0)
τ (t)µ̂X(t)

by least squares representation (He et al., 2000).

Step 4: Thus, we estimate

Ṽij = α̂(0)
τ (Tij) + β̂(0)

τ (Tij)Uij −
(∫

T
f̂t(0)dt

)−1 ∫
T
n−1

n∑
i=1

ω̂i(t)dt,

where f̂t(0) = 1
n

∑n
i=1

1
Ni

∑Ni

j=1Kh

(
Vij − α̂

(0)
τ (t)− β̂

(0)
τ (t)Uij

)
,

ω̂i(t) = I
[
V̂ K
i (t)− α̂

(0)
τ (t)− β̂

(0)
τ (t)ÛM

i (t) ≤ 0
]
− τ , and ÛM

i (t) = µ̂X(t) +
∑M

m=1 ζ̂imϕ̂m(t),

V̂ K
i (t) = µ̂Y (t) +

∑K
k=1 ξ̂ikψ̂k(t).
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For estimates ζ̂im and ξ̂ik, we only consider ζ̂im, analogously for ξ̂ik. By functional prin-

ciple analysis and numerical integration, the functional principle scores ζim =
∫
T (Xi(t) −

µX(t))ϕm(t)dt can be estimated as

ζ̂Dim =

Ni∑
l=1

(Uil − µ̂X(Til))ϕ̂m(Til)(Til − Ti,l−1),

which will works well when the grid of measurements is dense. However, for sparse functional

data, ζ̂Dim will not provide reasonable approximations to ζim. Using the procedure of PACE

in Yao et al. (2005a), we get

ζ̂im = Ê[ζim|Ũi] = ρ̂mϕ̂
T

imΣ̂
−1

U i
(Ũ i − µ̂X), (S1.4)

where ϕ̂im =
(
ϕ̂im(Ti1), · · · , ϕ̂im(TiNi

)
)T

, Ũ i = (Ui1, · · · , UiNi
)T , µ̂X = (µX(Ti1), · · · , µX(TiNi

))T ,

and the (j, l)th component of Σ̂U i
is

(Σ̂U i
)j,l = r̂XX(Tij, Til) + σ̂2

Xδjl

with δjl = 1 if j = l and 0 if j ̸= l. For σ̂2
X , we can use the procedure of (S1.8).

Step 5: Calculate the mean estimate µỸ via local linear fitting, based on data (Tij, Ṽij),

i = 1, · · · , n, j = 1, · · · , Ni. Analogously, we can obtain the mean estimator µ̂Ỹ by fitting

data {(Tij, Ṽij), i = 1, · · · , ni, j = 1, · · · , Ni} to (S1.1).

Step 6: Compute the “raw” cross-covariances between X and Ỹ based on

Ri,XỸ = (Uij − µX(Tij))
(
Ṽik − µỸ (Tik)

)
,

i = 1, · · · , n, j, k = 1, · · · , Ni, which serve as input for the two-dimensional smoothing step

to obtain r̂Ỹ Ỹ and r̂XỸ , respectively.
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Analogously, we can obtain the cross-covariances estimator r̂XỸ between X and Ỹ by

fitting Ri,XỸ = (Uij − µ̂X(Tij))
(
Ṽik − µ̂Ỹ (Tik)

)
, i = 1, · · · , n, j, k = 1, · · · , Ni, to (S1.3).

Step 7: From (3.7), we have the first step estimate of the iterative algorithm for the

functional varying coefficient QR model (3.3) as

β̂(1)
τ (t) =

r̂XỸ (t, t)

r̂XX(t, t)
, α̂(1)

τ (t) = µ̂Ỹ (t)− β̂(1)
τ (t)µ̂X(t). (S1.5)

We sketch the functional estimation approach for functional varying coefficient QR model

(3.3) in Algorithm 1 by combining the above steps. Thus, the final estimators α̂(K)
τ and β̂(K)

τ

are obtained via Algorithm 1.
Algorithm 1: SLSE algorithm for functional linear operator QR model (3.3).

Input: Kernel function K(·), bandwidth h, quantile level τ and the number of

iterations K.

Calculate mean function µ̂X and µ̂Y , covariance surface r̂XX , cross-covariance

surface r̂XY , eigenfunctions ϕ̂k andψ̂k, and eigenvalues ρ̂k and λ̂k by Steps 1-2.

Initialize estimators α̂(0)
τ and β̂

(0)
τ by Step 3.

for k = 1, 2, · · · ,K do
Estimate f̂ (k)

t (0), ω̂i, Ûi and V̂i for obtaining Ṽij by Step 4.

Compute mean function µ̂Ỹ via Step 5, cross-covariance surface r̂XỸ by Step 6.

Obtain α̂
(k)
τ and β̂

(k)
τ by Step 7.

end

Output: The final estimators α̂(K)
τ and β̂

(K)
τ .

For σ̂2
X in (3.12): First, we estimate VX(t) := CX(t)+ σ̂

2
X , where CX(s, t) = E(X(s)E(t))
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and CX(t) := CX(t, t), by the local linear smooth through minimizing

n∑
i=1

Ni∑
j=1

K1

(
Tij − t

hX

)
[U2

ij − a0 − a1(t− Tij)]
2 (S1.6)

with respective to a0 and a1, and setting V̂X(t) = â0; Second, we estimate ĈX(t) by the local

linear smooth via minimizing

n∑
i=1

∑
1≤j ̸=k≤Ni

K2

(
Tij − t

hX
,
Tik − t

hX

)
[UijUik − b0 − b1(t− Tij)]

2 (S1.7)

with respective to b0 and b1, and setting ĈX(t) = b̂0. Finally, the estimator σ̂2
X is

σ̂2
X =

1

|T |

∫
T
{V̂X(t)− ĈX(t)}dt. (S1.8)

S1.2 For functional linear QR model

S1.2.1 Functional Approach

From the estimation strategy in Section 2.2, the functional linear QR model (3.14) can be

translated into the following functional linear operator regression model

E[Ỹ (t)|X(t)] = ατ (t) + (LXβ)(t), (S1.9)

where (LXβ)(t) =
∫
S βτ (s, t)X(s)ds

Ỹ (t) = Q
(0)
Y |X(t; τ)−

(∫
T
ft(0)dt

)−1 ∫
T
{I[Y (t)−Q

(0)
Y |X(t; τ) ≤ 0]− τ}dt,

Q
(0)
Y |X(t; τ) = α(0)

τ (t) +

∫
S
β(0)
τ (s, t)X(s)ds.

The model (S1.9) can be rewritten as

E[Ỹ (t)|X(t)] = µỸ (t) +

∫
S
βτ (s, t)X

c(s)ds,



S1.2 For functional linear QR model

where E[Ỹ (t)] = µỸ (t) = ατ (t) +
∫
S βτ (s, t)µX(s)ds. By our result (2.12), one gets

β(1)
τ (s, t) = Γ−1

XcXcE
(
L∗

XcỸ c
)
=

∞∑
m=1

∞∑
l=1

E[ζmςl]

E[ζ2m]
ϕm(s)φl(t), (S1.10)

where ςl and φl are defined in (3.5), and ζm and ϕm are given in Section 2.1. rỸ Ỹ and rXỸ

are defined in (3.5) and (3.8), respectively. Next, we sketch estimation steps of β(1)
τ (s, t) and

α
(1)
τ (s, t) as in Subsection 3.1, which is provided Appendix S1.2. The algorithm is similar to

Algorithm 1, which is present in Appendix S3. We obtain the final estimators α̂(K)
τ and β̂(K)

τ .

S1.2.2 Steps of Estimation

In the model, we have data {(Sil,Uil
), (Tij, Vij), i = 1, · · · , n, l = 1, · · · , Li, j = 1, · · · , Ni}. We

give some necessary estimates in our algorithm.

Step 1: Smooth the aggregated data (Til, Uil) and (Sij, Vij), i = 1, · · · , n, l = 1, · · · , Li,

j = 1, · · · , Ni to obtain the estimated mean functions µX and µY , respectively.

Step 2: Compute the raw covariances based on all observations

RX,i(Sil1 , Sil2) = (Uil1 − µ̂X(Sil1)) (Uil2 − µ̂X(Sil2))

and RY,i(Tij1 , Tij2) = (Vij1 − µ̂Y (Tij1)) (Vij2 − µ̂Y (Tij2)), i = 1, · · · , n, l1, l2 = 1, · · · , Li,

j1, j2 = 1, · · · , Ni, smooth them to get the estimated covariance functions r̂XX and r̂XY ,

then yield estimates (ρ̂m, ϕ̂m) for predictor and (λ̂k, ψ̂k) for response, respectively.

Similar to (S1.2) for r̂XX , we obtain r̂XX = b̂0 by the local linear surface smoother via

minimizing

n∑
i=1

∑
1≤l1 ̸=l2≤Li

K2

(
Til1 − s

hX
,
Til2 − t

hX

)
[RX,i(Til1 , Til2)− b0 − b11(s− Til1)− b12(t− Til2)]

2,
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where

RX,i(Til1 , Til2) = (Uil1 − µ̂X(Til1)) (Uil2 − µ̂X(Til2)) ;

Analogously for the covariance function rXY based on {RY,i(Sij1 , Sij2), i = 1, · · · , n, j1, j2 =

1, · · · , Ni}, where

RY,i(Sij1 , Sij2) = (Vij1 − µ̂Y (Tij1)) (Vij2 − µ̂Y (Tij2)) .

The estimates (ρ̂m, ϕ̂m) for predictor and (λ̂k, ψ̂k) for response are the solutions of the

following eigenequations ∫
S
r̂XX(s1, s2)ϕ̂m(s1)ds1 = ρ̂mϕ̂(s2) (S1.11)

and ∫
T
r̂Y Y (t1, t2)ψ̂m(t1)ds1 = λ̂mψ̂(t2) (S1.12)

with orthonormal constraints on {ϕ̂m}m≥1 and {ψ̂m}m≥1, respectively. From (S1.11) and

(S1.12), we know their eigenfunctions and eigenvalues are calculated as solutions of the

above eigenequations. In practice, they are numerically obtained by discretization.

Step 3: Give the estimators of the mean regression model E[Y |X] = α(t)+
∫
S β(s, t)X(s)ds

as initial estimators of ατ and βτ ,

β̂(0)
τ (s, t) = Γ̂−1

XXÊ[L
∗
XY ] =

M∑
m=1

K∑
k=1

σ̂mk

ρ̂m
ϕ̂m(s)ψ̂k(t),

α̂(0)
τ (t) = µ̂Y (t)−

∫
S
β̂(0)
τ (s, t)µ̂X(s)ds.

We obtain estimates for σmk = E[ζmξk] by

σ̂mk =

∫
T

∫
S
ϕ̂m(s)r̂XY (s, t)ψk(t)dsdt,m = 1, · · · ,M, k = 1, · · · , K.
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where r̂XY is an estimate of the cross-covariance surface rXY , which can be obtained by

smoothing the raw cross-covariances RXY,i(Sil, Tik) = (Uil − µ̂X(Sil))(Vik − µ̂Y (Tik)), i =

1, · · · , n, l = 1, · · · , Li, j = 1, · · · , Ni.

We adopt two-dimensional scatterplot smoothing to estimate rXY via minimizing

n∑
i=1

Li∑
j=1

Ni∑
k=1

K2

(
Tij − s

h1
,
Tik − t

h2

)
[RXY,i(Tij, Tik)− b0 − b11(s− Tij)− b12(t− Tik)]

2,

with respect to b0, b11 and b12, and setting r̂XY (s, t) = b̂0(s, t), where

RXY,i(Til, Sik) = (Uil − µ̂X(Til))(Vik − µ̂Y (Sik)),

for i = 1, · · · , n, l = 1, · · · , Li, j = 1, · · · , Ni.

Step 4: Estimate the surrogate response trajectory Ỹ in (S1.9),

Ṽij = Q̂
(0)
Y |X(Tij; τ)−

(∫
T
f̂t(0)dt

)−1 ∫
T

1

n

n∑
i=1

ω̂i(t)dt,

where Q̂(0)
Y |X(t; τ) = α̂

(0)
τ (t) +

∫
S β̂

(0)
τ (s, t)ÛM

i (s)ds,

f̂t(0) =
1

n

n∑
i=1

Kh

(
V̂ K
i (t)− Q̂

(0)
Y |X(t; τ)

)
,

ω̂i(t) = I
[
V̂ K
i (t)− Q̂

(0)
Y |X(t; τ) ≤ 0

]
− τ,

ÛM
i (t) = µ̂X(t) +

M∑
m=1

ζ̂imϕ̂m(t), V̂ K
i (t) = µ̂Y (t) +

K∑
k=1

ξ̂ikψ̂k(t).

The numbers M and K can be chosen by one-curve-leave-out cross-validation or by an

AIC criterion (see Appendix S2). Also, see Yao et al. (2005b).

For estimates ζ̂im and ξ̂ik, we only consider ζ̂im, analogously for ξ̂ik. By functional prin-

ciple analysis and numerical integration, the functional principle scores ζim =
∫
T (Xi(t) −
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µX(t))ϕm(t)dt can be estimated as

ζ̂Dim =

Li∑
l=1

(Uil − µ̂X(Til))ϕ̂m(Til)(Til − Ti,l−1),

which will works well when the grid of measurements is dense. However, for sparse functional

data, ζ̂Dim will not provide reasonable approximations to ζim. Using the procedure of PACE

in Yao et al. (2005a), we get

ζ̂im = Ê[ζim|Ũi] = ρ̂mϕ̂
T

imΣ̂
−1

U i
(Ũ i − µ̂X),

where ϕ̂im =
(
ϕ̂im(Ti1), · · · , ϕ̂im(TiLi

)
)T

, Ũ i = (Ui1, · · · , UiLi
)T , µ̂X = (µX(Ti1), · · · , µX(TiLi

))T ,

and the (j, l)th component of Σ̂U i
is

(Σ̂U i
)j,l = r̂XX(Tij, Til) + σ̂2

Xδjl

with δjl = 1 if j = l and 0 if j ̸= l. For σ̂2
X , we can use the procedure of (S1.8).

Step 5: Calculate the mean function of Ỹ ,

µ̂Ỹ (t) = α̂(0)
τ (t) +

∫
S
β̂(0)
τ (s, t)

[
1

n

n∑
i=1

Ûi(s)

]
ds−

(∫
T
f̂t(0)dt

)−1 ∫
T

1

n

n∑
i=1

ω̂i(t)dt.

Step 6: Compute the “raw” covariance of Ỹ and cross-covariances between X and Ỹ

based on Ri,Ỹ Ỹ (Tij, Tik) =
(
Ṽij − µ̂Ỹ (Tij)

)(
Ṽik − µ̂Ỹ (Tik)

)
and

Ri,XỸ (Sil, Tik) = (Uil − µ̂X(Sil))
(
Ṽik − µ̂Ỹ (Tik)

)
,

i = 1, · · · , n, j, k = 1, · · · , Ni, and l = 1, · · · , Li., which serve as input for the two-dimensional

smoothing step to obtain r̂Ỹ Ỹ and r̂XỸ , respectively. Similar to Step 3, estimate σ̃mk =

E[ζmφk] by

ˆ̃σmk =

∫
T

∫
S
ϕ̂m(s)r̂XỸ (s, t)φk(t)dsdt.
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Similar to (S1.2) and (S1.3), we obtain r̂Ỹ Ỹ and r̂XỸ based on

Ri,Ỹ Ỹ =
(
Ṽij − µ̂Ỹ (Sij)

)(
Ṽik − µ̂Ỹ (Sik)

)
and Ri,XỸ = (Uil − µ̂X(Til))

(
Ṽik − µ̂Ỹ (Sik)

)
, i = 1, · · · , n, j, k = 1, · · · , Ni, and l =

1, · · · , Li.

Step 7: From (S1.10), we have the first step estimate of the iterative algorithm for the

functional linear QR model (3.14) as

β̂(1)
τ (s, t) =

M̃∑
m=1

K̃∑
k=1

ˆ̃σmk

ρ̂m
ϕ̂m(s)φ̂k(t),

α̂(1)
τ (t) = µ̂Ỹ (t)−

∫
S
β̂(1)
τ (s, t)µ̂X(s)ds.

(S1.13)

S1.2.3 The τth quantile target trajectory in Theorem 3.6

For sparse and irregular measurements of the new predictor trajectory X∗, the prediction of

the τth quantile response trajectory would be gained via

QY ∗|X∗(t; τ) = ατ (t) +
∞∑

m=1

∞∑
k=1

σ̃mk

ρk
ζ∗mφk(t), (S1.14)

where ζ∗m =
∫
S(X

∗(s) − µX(s))ϕm(s)ds is the mth FPC score of the X∗, (σ̃mk, φk(t)) is

obtained based on the X and Ỹ ∗ with

Ỹ ∗(t) = QY |X(t; τ)−
(∫

T
ft(0)dt

)−1 ∫
T
{I[Y (t)−Q∗

Y |X(t; τ) ≤ 0]− τ}dt,

QY |X(t; τ) = ατ (t) +

∫
S
βτ (s, t)X(s)ds.

Next, we give the best linear prediction for ζ∗m available to the sparsity of the data.
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Let X∗(S∗
l ) be the value of the predictor function X∗ at location S∗

l , U∗
l = X(S∗

l ) + ϵ∗X,l,

l = 1, · · · , Li, with L∗ a random number. Denote the observations U ∗ = (U∗
1 , · · · , U∗

L∗)T , the

locations S∗ = (S∗
1 , · · · , S∗

L∗)T , and let X∗ = (X∗(S∗
1), · · · , X∗(S∗

L∗))
T ,

µ∗
X = (µX(S

∗
1), · · · , µX(S

∗
L∗))

T and ϕ∗
m = (ϕm(S

∗
1), · · · , ϕm(S

∗
L∗))

T . Assume that the FPC

scores ζ∗m and the errors ϵ∗X,l are jointly Gaussian. Following Yao et al. (2005b,a), the best

linear prediction for ζ∗m is

ζ̃∗m = ρmϕ
∗T
m Σ−1

U∗(U ∗ − µ∗
X), (S1.15)

where ΣU∗ = Cov(U ∗|S∗, L∗) = Cov(X∗|S∗, L∗) + σ2
XIL∗ , its (j, l)th entry (ΣU∗)j,l =

rXX(Sj, Sl) + σ2
Xδjl. The ατ , ψk, σmk and ρk can be estimated from the data based on

Algorithm S in Appendix S3. Together with (S1.15), we have the estimate

ζ̂∗m = ρ̂mϕ̂
∗T
m Σ̂

−1

U∗(U ∗ − µ̂∗
X), (S1.16)

where (Σ̂U∗)jl = r̂XX(Sj, Sl)+ σ̂2
Xδjl. Thus, the τth quantile predicted trajectory is obtained

by

Q̂K,M,K
Y ∗|X∗ (t; τ) = α̂K

τ (t) +
M∑

m=1

K∑
k=1

ˆ̃σK
mk

ρ̂k
ζ̂∗mφ̂

K
k (t), (S1.17)

where (ˆ̃σK
mk, φ̂

K
k (t)) is obtained based on X and Ỹ K with

Ỹ K(t) = QK
Y |X(t; τ)−

(∫
T
ft(0)dt

)−1 ∫
T
{I[Y (t)−QK

Y |X(t; τ) ≤ 0]− τ}dt,

QK
Y |X(t; τ) = α̂K

τ (t) +

∫
S
β̂K
τ (s, t)X(s)ds.

In addition, for asymptotic pointwise confidence bands for quantile response trajectories,

we have the following some narration.



S1.2 For functional linear QR model

Let ζ∗
M = (ζ∗1 , · · · , ζ∗M), ζ̃

∗
M =

(
ζ̃∗1 , · · · , ζ̃∗M

)
, where ζ̃∗m is as in (S1.15). Define H =

Cov(ζ∗
M ,U

∗|L∗,S∗) = (ρ1ϕ
∗
1, · · · , ρMϕ∗

M)T , which a M × L∗ matrix. Further, the covariance

matrix of ζ̃∗
M is Cov(ζ̃

∗
M |L∗,S∗) = HΣ−1

U ∗HT . Since ζ̃
∗
m = E [ζ∗

M |U ∗, L∗,S∗] is the project

of ζ∗
M on the space spanned by the linear functions of U ∗ given L∗ and S∗,

Cov
(
ζ̃
∗
M − ζ∗

M |L∗,S∗
)
= D −HΣ−1

U ∗HT ≡ ΩM ,

where D = diag(ρ1, · · · , ρM). Again, we have

ζ̃
∗
M − ζ∗

M ∼ N(0,ΩM),

under Gaussian assumptions and conditional on L∗ and S∗.

First, we have estimates Ω̂M = D̂ − ĤΣ̂−1

U ∗Ĥ
T , where

D̂ = diag(ρ̂1, · · · , ρ̂M)

and Ĥ = (ρ̂1ϕ̂
∗
1, · · · , ρ̂M ϕ̂∗

M)T . Then, obtain the estimates

φ̂K,K
t = (φK

1 (t), · · · , φK
K(t))

T

of φK
t = (φ1(t), · · · , φK(t))

T , and P̂
K

M,K = (ˆ̃σK
mk/ρ̂m)1≤m≤M,1≤k≤K of the matrix M × K

PM,K = (σ̃mk/ρm)1≤m≤M,1≤k≤K based on the data. Last, we write the prediction (S1.17) as

Q̂K,M,K
Y ∗|X∗ (t; τ) = α̂K

τ (t) +
(
ζ̂
∗
M

)T
PK

M,Kφ̂
K,K
t .
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S1.3 For functional varying coefficient QR model with history

index

In the subsection, we consider the scenario (LXβ)(t) = βτ (t)
∫ ∆

0
γτ (s)X(t− s)ds for t ∈ T =

[∆, T ], where ∆ > 0 is the length of a sliding window and T > ∆. Our functional varying

coefficient QR model with history index is

QY |X(t; τ) = ατ (t) + βτ (t)

∫ ∆

0

γτ (s)X(t− s)ds. (S1.18)

The model provides a parsimonious and intuitive balance by introducing a history index

function γτ , which serves to convey the effects of the recent past of the predictor on current

response Şentürk and Müller (2010) at the τth quantile level. The varying coefficient function

βτ represents the magnitude of this influence as a function of time. Suppose that ατ , βτ and

γ are smooth. For identifiability, we assume that γτ is normalized via
∫ ∆

0
γ2τ (u)du = 1 and

γτ (0) > 0 at each τth quantile level. In the model (S1.18), we assume that the history index

function γ does not change over time. Thus, the time effects encoded in β1 and history effects

encoded in γ are separate, which are two easily interpretable one-dimensional component

functions for the functional regression model. Once γ has been estimated, (S1.18) reduce to

a functional varying coefficient QR model. Here, we also present some main results of the

model. Its function approach is similar to subsection 3.1.1.

S1.3.1 Functional approach

Note that even if γ is known, the predictors of the reduced varying coefficient model, that

is,
∫ ∆

0
γτ (u)X(t − u)du, may be infeasible by numerical integration, due to the sparsity of
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the observations for the predictor trajectory in the history window [t−∆, t]. We propose an

estimation algorithm for the functional varying coefficient QR model to meet the challenges of

data sparsity and non-smooth QR loss, which builds on our surrogate least square estimation

for QR and functional principal component analysis.

By the estimation strategy in Section 2.2, given initial estimators α(0)
τ , β(0)

τ and γ
(0)
τ , we

can translate the model (S1.18) into the following functional linear operator regression

E
{
Ỹ (t)|X(s), s ∈ [t−∆, t]

}
= ατ (t) + (LXβ)(t), (S1.19)

where (LXβ)(t) = βτ (t)
∫ ∆

0
γτ (s)X(t− s)ds, and

Ỹ (t) = Q
(0)
Y |X(t; τ)−

(∫
T
ft(0)dt

)−1 ∫
T

(
I
[
Y (t)−Q

(0)
Y |X(t; τ) ≤ 0

]
− τ
)
dt

with Q(0)
Y |X(t; τ) = α

(0)
τ (t)+β

(0)
τ (t)

∫ ∆

0
γ
(0)
τ (s)X(t− s)ds. We again write the model (S1.19) as

E
(
Ỹ c(t)|Xc(s), s ∈ [t−∆, t]

)
= βτ (t)

∫ ∆

0

γτ (s)X
c(t− s)ds

=

∫ ∆

0

ϱτ (s; t)X
c(t− s)ds

(S1.20)

with ατ (t) = µỸ (t)−
∫ ∆

0
ϱτ (s; t)µX(t− s)ds and ϱτ (s; t) = βτ (t)γτ (s). The functions ϱτ (s; t)

include the factor γ(s) for each t. Due to
∫ ∆

0
γ2τ (s)ds = 1, for each fixed time point t,

γτ (s) =
ϱτ (s; t)[∫ ∆

0
ϱ2τ (s; t)ds

]1/2 . (S1.21)

Once the estimator of ϱτ (s; t) is obtained at a single time point t, it is sufficient to get

γτ (s) by (S1.21). But, for improving the finite sample behavior and stability of the resulting
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estimators, we average the representation (S1.21) over an equidistant grid of time t1, · · · , tR

in T , that is,

γτ (s) =

∑R
r=1 ϱτ (s; tr)[∫ ∆

0

(∑R
r=1 ϱτ (s; tr)

)2
ds

]1/2 . (S1.22)

Here the number of time points, R, typically would be small. From (S1.20), we know that

once the history index function γτ is estimated, the model (S1.20) reduces to a functional

varying coefficient mean regression model. The first task below is to get an estimate of

ϱτ (·, t).

Let Zt(s) = Xc(t − s) for s ∈ [0,∆] and its auto-covariance function rt(s1, s2) =

Cov(Zt(s1), Zt(s2)) = rXX(t − s1, t − s2) for s1, s2 ∈ [0,∆]. We have the covariance ex-

pansion rt(s1, s2) =
∑∞

m=1 ρtmϕtm(s1)ϕtm(s2) with eigenfunctions ϕtm and eigenvalues ρtm.

Expanding ϱτ (s; t) =
∑∞

m=1 ϱτ,m(t)ϕtm(s), s ∈ [0,∆], with suitable expansion coefficients

ϱτ,m(t) for each t ∈ T , and having the Karhunen-Loève expansion Zt(s) =
∑∞

m=1 ζtmϕtm(s),

with random coefficients ζtm =
∫ ∆

0
Zi(s)ϕtm(s)ds. Letting a functional linear operator

(LXcϱτ )(t) =
∫ ∆

0
ϱτ (s; t)X

c(t− s)ds, we have the expected SLSE as follows

ϱ(1)τ = argminϱτE
∥∥∥Ỹ c − LXcϱτ

∥∥∥2
2
.

That is, find the corresponding values ϱτ,m, m = 1, 2, · · · , satisfying

d

dϱτ,m(t)

E(Ỹ c(t)−
∞∑

m=1

ϱτ,m(t)ζtm

)2
 = 0, m = 1, 2, · · · .

By a straightforward calculation, we have

ϱ(1)τ (s; t) =
∞∑

m=1

ϱ(1)τ,m(t)ϕtm(s), ϱ(1)τ,m(t) =
1

ρtm

∫ ∆

0

rXỸ (t− s, t)ϕtm(s)ds. (S1.23)
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Let X̃(t) =
∫ ∆

0
γτ (s)X

c(t− s)ds. Once γτ (s) is known, the model (S1.19) or (S1.20) reduces

to functional linear operator model

E
(
Ỹ c(t)|X(s), s ∈ [t−∆, t]

)
=
(
LX̃βτ

)
(t), (S1.24)

where
(
LX̃βτ

)
(t) = βτ (t)X̃(t), as the model (3.6) of 1st scenario in Section 3.1. Intuitively,

we can obtain βτ by applying the procedure developed in Subsection 3.1.1 via replacing

Xc with X̃. However, in sparse longitudinal settings, the numerical integration involved

in estimating X̃ often does not yield good approximations. For the sparse case, we give a

simpler approach that avoids the estimation of X̃ separately for each subject as Şentürk and

Müller (2010) has done. By population least squares for functional linear operator regression,

one gets

β(1)
τ (t) = argminβτ

E
∥∥∥Ỹ c(t)− βτ (t)X̃(t)

∥∥∥2
2
= L−1

XX̃
E
(
L∗

X Ỹ
)
=

Cov(X(t), Ỹ (t))

Cov(X(t), X̃(t))
.

From (S1.24), we have

Cov(X(t), X̃(t)) =

∫ ∆

0

γτ (s)Cov(X(t), X(t− s)ds =

∫ ∆

0

γτ (s)rXX(t− s, t)ds.

Therefore

β(1)
τ (t) =

rXỸ (t, t)∫ ∆

0
γτ (s)rXX(t− s, t)ds

,

α(1)
τ (t) = µỸ (t)− β(1)

τ (t)

∫ ∆

0

γτ (s)µX(t− s)ds.

(S1.25)

Thus, we sketch a one-step iteration of the SLSE algorithm for the functional varying

coefficient QR model with history index (S1.18). By combining the above steps, the final

estimators α̂K
τ , β̂K

τ and γ̂Kτ via the following Algorithm 2.
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Algorithm 2: SLSE algorithm for functional VCQR model with history index

(S1.18).
Input: Kernel function K(·), bandwidth h, quantile level τ and the number of

iterations K.

Calculate mean function µ̂X and µ̂Y , covariance surface r̂XX , cross-covariance

surface r̂XY , eigenfunctions ϕ̂k andψ̂k, and eigenvalues ρ̂k and λ̂k by Steps 1-2.

Initialize estimators γ̂(0)τ α̂
(0)
τ and β̂

(0)
τ by Step 2.

for k = 1, 2, · · · ,K do
Estimate Q̂(k)

Yi|Xi
(Tij; τ) f̂

(k)
t (0), Ûi and V̂i for obtaining Ṽij by Step 3.

Compute mean function µ̂Ỹ and cross-covariance surface r̂XỸ by Step 4.

Obtain γ̂
(k)
τ , α̂(k)

τ and β̂
(k)
τ by Step 5.

end

Output: The final estimators γ̂(K)
τ , α̂(K)

τ and β̂
(K)
τ .

S1.3.2 Steps of Estimation

In the model, dataset is {(Tij, Uij, Vij), i = 1, · · · , n, j = 1, · · · , Ni}. We give some estimations

used in Algorithm 2. Now, we present the estimation procedure of α(1)
τ , β(1)

τ and γ
(1)
τ as

follows. Our data is (Tij, Uij, Vij), i = 1, · · · , n, j = 1, · · · , Ni. Some details are presented in

Appendix S1.3.

Step 1: Obtain estimates r̂XX , r̂XY , µ̂X and µ̂Y as Steps 1-2 in the 1st scenario. Obtain

estimates r̂XX , r̂XY , µ̂X and µ̂Y as Steps 1-2 in the 1st scenario. Also see (S1.1)-(S1.3).

Step 2: (1) Given a fixed time t, reversing the time order of the data for all subjects

that are observed in the window [t − ∆, t], estimate r̂t of covariance surface rt and obtain
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estimates ϕ̂tm, ρ̂tm of the eigenfunctions and eigenvalues ϕtm, ρtm of processes Zt. As (S1.23),

and applying numerical integration, we have

ϱ̂(0)τ,m(t) =
1

ρ̂tm

∫ ∆

0

r̂XY (t− s, t)ϕ̂tm(s)ds

ϱ̂(0)τ (s; t) =
Mt∑
m=1

ϱ̂(0)τ,m(t)ϕ̂tm(s).

(2) Applying (S1.22), and identifiability conditions
∫ ∆

0
γ2τ (u)du = 1 and γτ (0) > 0, one

gets the estimated history index function

γ̂(0)τ (s) =

∑R
r=1 ϱ̂

(0)
τ (s; tr)[∫ ∆

0

(∑R
r=1 ϱ̂

(0)
τ (s; tr)

)2
ds

]1/2 (−1)I
(0)

,

where I(0) is the indicator function for
∑R

r=1 ϱ̂
(1)
τ (0; tr) < 0.

(3) As (S1.25), one gets

β̂(0)
τ (t) =

r̂XY (t, t)∫ ∆

0
γ̂τ (s)r̂XX(t− s, t)ds

,

α̂(0)
τ (t) = µY (t)− β̂(0)

τ (t)

∫ ∆

0

γ̂(0)τ (s)µ̂X(t− s)ds.

Recall that Zt(s) = Xc(t− s) for s ∈ [0,∆] and its auto-covariance function rt(s1, s2) =

Cov(Zt(s1), Zt(s2)) = rXX(t − s1, t − s2) for s1, s2 ∈ [0,∆]. Now, we estimate rt. Let

Sij = t− Tij, Sil = t− Til, t ∈ [∆, T ], Tij, Til ∈ [t−∆, t] and Sij, Sil ∈ [0,∆]. Give the local

linear surface smoother for rt via minimizing

n∑
i=1

∑
1≤j ̸=k≤Li

K2

(
Sij − s1
hX

,
Sik − s2
hX

)
[Rt,i(Sij, Sik)− b0 − b11(s1 − Sij)− b12(s2 − Sik)]

2,

with respect to b0, b11 and b12, where Rt,i(Sij, Sik) = RX,i(Tij, Tik); then get r̂t(s1, s2) =

b̂0(s1, s2).
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Based on r̂t, by the eigenequations∫
r̂t(s1, s2)ϕ̂tm(s1)ds1 = ρ̂tmϕ̂tm(s2)

with orthonormal constraints on {ϕ̂tm}m≥, to obtain (ρ̂tm, ϕ̂tm) for each t ∈ [∆, T ].

Step 3: Calculate surrogate response individual trajectories Ṽij = Ṽi(Tij). During Ỹij

involving numerical integration, they often don’t yield good approximations in sparse longi-

tudinal settings. We use functional approach as follows:

Ṽij = Q̂
(0)
Yi|Xi

(Tij; τ)−
(∫

T
f̂t(0)dt

)−1 ∫
T

(
I
[
V̂ K
i (t)− Q̂

(0)
Yi|Xi

(t; τ) ≤ 0
]
− τ
)
dt,

where Q̂(0)
Yi|Xi

(t; τ) = α̂
(0)
τ (t) + β̂

(0)
τ (t)

∫ ∆

0
γ̂
(0)
τ (s)ÛM

i (t− s)ds,

f̂t(0) =
1

n

n∑
i=1

1

Ni

Ni∑
j=1

Kh

(
Vij − α̂(0)

τ (t)− β̂(0)
τ (t)Uij

)

ÛM
i (t) = µ̂X(t) +

M∑
m=1

ζ̂imϕ̂m(t), V̂ K
i (t) = µ̂Y (t) +

K∑
k=1

ξ̂ikψ̂k(t).

The estimates ζ̂im and ξ̂ik can obtained with similar arguments of (S1.4).

Step 4: Based on data (Tij, Uij, Ṽij), i = 1, · · · , n and j = 1, · · · , Ni, estimate µỸ and

r̂XỸ , as Step 1.

Based on data (Tij, Uij, Ṽij), i = 1, · · · , n and j = 1, · · · , Ni, estimate µỸ and r̂XỸ with

similar arguments to Step 1.

Step 5: As in Step 2, we obtain successively, for a fixed t ∈ T ,

ϱ̂(1)τ,m(t) =
1

ρ̂tm

∫ ∆

0

r̂XỸ (t− s, t)ϕ̂tm(s)ds

ϱ̂(1)τ (s; t) =
Mt∑
m=1

ϱ̂(1)τ,m(t)ϕ̂tm(s);
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the estimated history index function

γ̂(1)τ (s) =

∑R
r=1 ϱ̂

(1)
τ (s; tr)[∫ ∆

0

(∑R
r=1 ϱ̂

(1)
τ (s; tr)

)2
ds

]1/2 (−1)I
(1)

,

where I(1) is the indicator function for
∑R

r=1 ϱ̂
(1)
τ (0; tr) < 0; and

β̂(1)
τ (t) =

r̂XỸ (t, t)∫ ∆

0
γ̂
(1)
τ (s)r̂XX(t− s, t)ds

,

α̂(1)
τ (t) = µỸ (t)− β̂(1)

τ (t)

∫ ∆

0

γ̂(1)τ (s)µ̂X(t− s)ds.

The local error variance σ2
tX and the local eigenfunction and eigenvalue estimators are

obtained analogously to the global estimates, and estimates σ̂2
tX and r̂t yields estimates of the

noise contaminated local covariance surface Σ̂tZ̃ . The estimate σ2
tX is similar to the procedure

of (S1.8).

S1.3.3 The τth quantile target trajectory in Theorem S1.3.2

Based on our functional VCQR with history index model (S1.18), we give the prediction

of the τth quantile response trajectory Y ∗ for a new subject with the predictor process

{X∗(s), s ∈ [t−∆, t]} via the following form

QY ∗|X∗(t; τ) = ατ (t) + βτ (t)

∫ ∆

0

γτ (s)X
∗(t− s)ds, (S1.26)

with

γτ (s) ==

∑R
r=1

∑∞
m′=1 ϱτ,m′(tr)ϕtrm′(s)[∫ ∆

0

(∑R
r=1 ϱτ (s; tr)

)2
ds

]1/2
X∗(t− s) = µX(t− s) +

∞∑
m=1

ζ∗tmϕtm(s).
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Let Z∗
tj = Z∗

t (Ttj) be the jth measurement for the predictor trajectory Z∗
t (s) = X∗c(t−s),

s ∈ [0,∆], at time Ttj, j = 1, · · · , N∗
t , N∗

t is the random number of measurements, and

Z̃
∗
t = (Z̃∗

t1, · · · , Z̃∗
tN∗

t
) with the noise contaminated Z̃∗

tj of Z∗
tj. Under the local FPCs ζ∗tm and

the measurement errors are jointly Gaussian, we have the best prediction estimates of the

scores ζ∗tm, conditional on Z̃
∗
t , N∗

t and T ∗
t = (T ∗

t1, · · · , T ∗
tN∗

t
),

ζ̂∗tm = ρ̂tmϕ̂
∗T
tmΣ̂

−1

tZ̃
∗

t
Z̃

∗
t , (S1.27)

where ϕ̂
∗
tm and Σ̂

tZ̃
∗

t

are the estimates of ϕ∗
tm =

(
ϕtm(T

∗
t1), · · · , ϕtm(T

∗
tN∗

t

)T
and Σ

tZ̃
∗

t

=

Cov(Z̃
∗
t |N∗

t ,T
∗
t ), respectively; define ζ̃∗tm = ρtmϕ

∗T
tmΣ

−1

tZ̃
∗

t

Z̃
∗
t analogously. Based on (S1.22)

and (S1.26), we obtain the τth predicted quantile trajectories

Q̂
(K,M,Mt)
Y ∗|X∗ (t; τ) = α̂(K)

τ (t) +

∫ ∆

0

ϱ̂(K)(s; τ)µ̂X(t− s)ds

+
β̂
(K)
τ (t)

∑Mt

m=1 ζ̂
∗
tm

∑R
r=1

∑Mr

m′=1 ϱ̂
(K)
τ,m′(tr)

∫ ∆

0
ϕ̂tm(s)ϕ̂trm′(s)ds[∫ ∆

0

(∑R
r=1 ϱ̂

(K)
τ (s; tr)

)2
ds

]1/2 ,

(S1.28)

where M =
∑R

r=1Mr. Define the τth quantile target trajectory

Q̃Y ∗|X∗(t; τ) = ατ (t) +

∫ ∆

0

ϱ(s; τ)µX(t− s)ds

+
βτ (t)

∑∞
m=1 ζ̃

∗
tm

∑R
r=1

∑∞
m′=1 ϱτ,m′(tr)

∫ ∆

0
ϕtm(s)ϕtrm′(s)ds[∫ ∆

0

(∑R
r=1 ϱτ (s; tr)

)2
ds

]1/2 .

(S1.29)

In addition, for asymptotic pointwise confidence bands for quantile response trajectories,

we have the following some narration.
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We here construct asymptotic pointwise confidence bands for the quantile response

trajectory, let ζ̂
Mt

∗,t = (ζ̂∗t1, · · · , ζ̂∗tMt
)T , and define ζ̃

Mt

∗,t and ζMt
∗,t analogously. Call that

ζ̂∗t1 = ρ̂tmϕ̂
∗T
tmΣ̂

−1

tZ̃
∗

t
Z̃

∗
t , ζ̃∗tm = ρtmϕ

∗T
tmΣ

−1

tZ̃
∗

t

Z̃
∗
t and ζ∗tm =

∫ ∆

0
Z∗

i (s)ϕ
∗
tm(s)ds, m = 1, · · · ,Mt.

One gets a Mt × N∗
t matrix H t = Cov(ζMt

∗,t , Z̃
∗
t |T ∗

t , N
∗
t ) = (ρt1ϕ

∗
t1, · · · , ρtMtϕ

∗
tMt

)T , ζ̃Mt

∗,t =

H tΣ
−1

tZ̃
∗

t

Z̃
∗
t , and Cov(ζ̃

Mt

∗,t |T ∗
t , N

∗
t ) = Cov(ζ̃

Mt

∗,t , ζ
Mt
∗,t |T ∗

t , N
∗
t ) = H tΣ

−1

tZ̃
∗

t

HT
t . With similar

arguments as Subsections 3.1.3 and 3.2.3, given T ∗
t and N∗

t , we have

ζ̃
Mt

∗,t − ζMt
∗,t ∼ N(0,ΩtMt),

where ΩtMt = Dt −H tΣ
−1

tZ̃
∗

t

HT
t and Dt = diag(ρt1, · · · , ρtMt).

Further, define ϕ̂
(K)

t,M = β̂
(K)
τ (t)

( ̂̃
X

(c,K)

t1 , · · · , ̂̃X(c,K)

tMt

)T

, where

̂̃
X

(c,K)

tm =

∑R
r=1

∑Mr

m′=1 ϱ̂
(K)
τ,m′(t)

∫ ∆

0
ϕ̂tm(s)ϕ̂tm′(s)ds[∫ ∆

0

(∑R
r=1 ϱ̂

(K)
τ (s; tr)

)2
ds

]1/2 , m = 1, · · · ,Mt;

denote Ω̂tMt = D̂t−Ĥ tΣ̂
−1

tZ̃
∗

t
Ĥ

T

t with D̂t = diag(ρ̂t1, · · · , ρ̂tMt) and Ĥ t = (ρ̂t1ϕ̂
∗
t1, · · · , ρ̂tMtϕ̂

∗
tMt

)T .

The τth quantile predicted trajectories are estimated by

Q̂M,Mt,K
Y ∗|X∗ (t; τ) = α̂(K)

τ (t) +

∫ ∆

0

ϱ̂(K)(s; τ)µ̂X(t− s)ds+
(
ζ̂
Mt

∗,t

)T
ϕ̂

(K)

t,M,

S1.3.4 Asymptotic properties

We first provide uniform consistency for history index γKτ , varying coefficients αK
τ and βK

τ in

the functional varying coefficient QR model (S1.18).

Theorem S1.3.1. Let sups∈[0,∆] |γ̂
(0)
τ (s)− γτ (s)| = Op(an) supt∈T |α̂(0)

τ (t)− ατ (t)| = Op(an)

and supt∈T |β̂(0)
τ (t) − βτ (t)| = Op(an). Under Conditions 1-3, and Assumptions (A1)-(A6)



S1.3 For functional varying coefficient QR model with history index

and (C1)-(C2) in the Appendix S5, we have for k iterations of Algorithm 2,

sup
s∈[0,∆]

|γ̂(k)τ (s)− γτ (s)| = Op

{
1√
n

[
1

bX
+

1

bY
+

1

h2X
+

1

h2Y
+

1

h1h2

]
+ δ3n + ak+1

n

}
,

sup
t∈T

|α̂(k)
τ (t)− ατ (t)| = Op

{
1√
n

[
1

bX
+

1

bY
+

1

h2X
+

1

h2Y
+

1

h1h2

]
+ δ3n + ak+1

n

}
,

sup
t∈T

|β̂(0)
τ (t)− βτ (t)| = Op

{
1√
n

[
1

bX
+

1

bY
+

1

h2X
+

1

h2Y
+

1

h1h2

]
+ δ3n + ak+1

n

}
.

(S1.30)

The τth quantile target trajectory Q̃Y ∗|X∗(t; τ) is defined in Subsection S1.3.3 of SM.

Theorem S1.3.2. Let sups∈[0,∆] |γ̂
(0)
τ (s)− γτ (s)| = Op(an) supt∈T |α̂(0)

τ (t)− ατ (t)| = Op(an)

and supt∈T |β̂(0)
τ (t) − βτ (t)| = Op(an) with 0 ≤ an < 1. Under Conditions 1-3, and As-

sumptions (A1)-(A7) and (C1)-(C2) in the Appendix S5, given N∗ and T ∗, for all t ∈ T ,

the predicted τ th quantile response trajectories in the functional varying coefficient QR with

history index model (S1.18) satisfy

lim
n→∞

Q̂
(K,M,Mt)
Y ∗|X∗ (t; τ) = Q̃Y ∗|X∗(t; τ), in proabaility,

with Mt(n),M1(n), · · · ,MR(n) → ∞ as n→ ∞, and the iteration number K enough large.

The τth quantile predicted trajectories are estimated by

Q̂M,Mt,K
Y ∗|X∗ (t; τ) = α̂(K)

τ (t) +

∫ ∆

0

ϱ̂(K)(s; τ)µ̂X(t− s)ds+
(
ζ̂
Mt

∗,t

)T
ϕ̂

(K)

t,M,

The following result provides its asymptotic distribution.

Theorem S1.3.3. Let sups∈[0,∆] |γ̂
(0)
τ (s)− γ∗τ (s)| = Op(an) supt∈T |α̂(0)

τ (t)− α∗
τ (t)| = Op(an)

and supt∈T |β̂(0)
τ (t)− β∗

τ (t)| = Op(an) with 0 ≤ an < 1. Under Conditions 1-3, and Assump-

tions (A1)-(A7), (A8)(iii) and (C1)-(C2) in the Appendix S5, given N∗ and T ∗, for a given



τ ∈ (0, 1), {X∗(s), s ∈ [t−∆, t]}, all t ∈ T = [∆, T ], x ∈ R,

lim
n→∞

P

Q̂K,M,Mt

Y ∗|X∗ (t; τ)−QY ∗|X∗(t; τ)√
ω̂K,M,Mt
τ (t)

≤ x

 = Φ(x),

where ω̂K,M,Mt
τ (t) =

(
ϕ̂

(K)

t,M

)T
Ω̂tMtϕ̂

(K)

t,M is a estimator of ωM,Mt
τ (t) =

(
ϕt,M

)T
ΩtMtϕt,M as

Mt(n),M1(n), · · · ,MR(n) → ∞ when n→ ∞, and the iteration number K enough large.

As a consequence, the (1−α)100% asymptotic pointwise confidence bands forQY ∗|X∗(t; τ),

given X∗(s), s ∈ [t−∆, t], is constructed by

Q̂K,M,Mt

Y ∗|X∗ (t; τ)± Φ
(
1− α

2

)√
ω̂K,M,Mt
τ (t).

S2 Choice of hyper-parameter

The choice of hyper-parameter M (the number of eigenfunctions), which is used in Sections

3.1 and S1.3, has been considered in Yao et al. (2005b). We excerpt from Yao et al. (2005b)

as follows, for the readers to read smoothly.

One-curve-leave-out cross-validation aims to minimize

CVX(M) =
n∑

i=1

Ni∑
j=1

[Uij − X̂
(−i)
i (Tij)]

2

with respect to M , where X̂(−i)
i (t) = µ̂

(−i)
X (t) +

∑M
i=1 ζ̂

(−i)
im ϕ̂

(−i)
m (t), and ζ̂

(−i)
im is calculated by

(S1.4), ϕ̂(−i)
m (t) and ϕ̂(−i)

m are the estimated mean and eigenfunctions after removing the data

for Xi.



The ACI criterion as a function of M is as follows:

AIC(M) =
n∑

i=1

 1

2σ̂2
X

(
Ũ i − µ̂Xi

−
M∑

m=1

ζ̂imϕ̂im

)T (
Ũ i − µ̂Xi

−
M∑

m=1

ζ̂imϕ̂im

)

+
Li

2
log(2π) +

Li

2
log σ̂2

X

}
+M,

where Ũ i = (Ui1, · · · , UiNi
)T , µ̂Xi

= (µ̂X(Ti1), · · · , µ̂X(TiNi
))T , ϕ̂im = (ϕ̂m(Ti1), · · · , ϕ̂m(TiNi

))T ,

and ζ̂im is calculated by (S1.4). For the response process Y , we proceed analogously for the

corresponding estimates for the components of model (3.2).

The number of eigenfunctions included in the local expansions of Section S1.3, Mt or Mr

when t = tr are chosen analogously by AIC(Mt), where in the above definition Ni, µ̂Xi
, Ũ i,

ϕ̂im, ζ̂im and σ̂2
X are replaced by their local counterparts at t.



S3 Algorithm S

We present Algorithm S for functional linear QR model.

Algorithm S: SLSE algorithm for functional linear operator QR model (3.14).

Input: Kernel functions K(·), K1(·) and K2(·), bandwidths h, hb, hX , hY , h1 and

h2, quantile level τ , and the numbers of eigenfunctions M and K, and of

iterations K.

Calculate mean function µ̂X and µ̂Y , covariance surface r̂XX , cross-covariance

surface r̂XY , eigenfunctions ϕ̂k andψ̂k, and eigenvalues ρ̂k and λ̂k by Steps 1-2.

Initialize estimators α̂(0)
τ and β̂

(0)
τ by Step 3.

for k = 1, 2, · · · ,K do
Estimate f̂ (k)

t (0), ω̂i, Ûi and V̂i for obtaining Ṽij by Step 4.

Compute mean function µ̂Ỹ via Step 5, cross-covariance surfaces r̂Ỹ Ỹ and r̂XỸ

by Step 6.

Obtain α̂
(k)
τ and β̂

(k)
τ by Step 7.

end

Output: The final estimators α̂(K)
τ and β̂

(K)
τ .



S4 Proof of Theorem 2.1

Proof: For the surrogate least squares estimation (2.13), we can rewrite it as a linear operator

regression model

Ỹ (t) = LXβ
(1)
τ (t) + ϵ(t)

with ϵ ∈ L2(T ) is a random error process, with the assumption that X and ϵ are uncorrelated,

and that E[ϵ(t)] = 0 for all t. Applying L∗
X to both sides of the above linear operator

regression model, and taking expectations, we have

E[L∗
X Ỹ ] = E[L∗

XLX ]β
(1)
τ + E[L∗

Xϵ],

where E[L∗
XLX ] = ΓXX and E[L∗

Xϵ] = 0. Hence, one obtains the functional normal equation

ΓXXβ
(1)
τ = E[L∗

X Ỹ ].

The proof for (a) follows from Conway (1985) and He et al. (2000).

For the proof of (b), we first have

E[L∗
X Ỹ ]− ΓXXβτ

= E[L∗
XLXβ

(0)
τ ]−

(∫
T
ft(0)dt

)−1

E[L∗
X

∫
T
{I[Y (t)− (LXβ

(0)
τ )(t) ≤ 0]− τ}dt]− ΓXXβτ

= ΓXX(β
(0)
τ − βτ )−

(∫
T
ft(0)dt

)−1

E

[
L∗

X

∫
T
{Ft(LX(β

(0)
τ − βτ )(t))− Ft(0)}dt

]
.



By second order Taylor expansion, under Condition 3 we have for the second term,

(∫
T
ft(0)dt

)−1

E

[
L∗

X

∫
T
{Ft(LX(β

(0)
τ − βτ )(t))− Ft(0)}dt

]
=

(∫
T
ft(0)dt

)−1

E

[
L∗

X

∫
T

{
ft(0)(LX(β

(0)
τ − βτ )(t)) + C(LX(β

(0)
τ − βτ )(t))

2
}
dt

]
= ΓXX(β

(0)
τ − βτ ) + C

(∫
T
ft(0)dt

)−1

E
[
L∗

X(LX(β
(0)
τ − βτ )(t))

2
]

= ΓXX(β
(0)
τ − βτ ) + C

(∫
T
ft(0)dt

)−1

E
[
L∗

X

〈
LX(β

(0)
τ − βτ )(t),LX(β

(0)
τ − βτ )(t)

〉]
= ΓXX(β

(0)
τ − βτ ) + C

(∫
T
ft(0)dt

)−1

E
[
L∗

X

〈
(β(0)

τ − βτ )(t),L∗
XLX(β

(0)
τ − βτ )(t)

〉]
.

Therefore, we have

E[L∗
X Ỹ ]− ΓXXβτ = C

(∫
T
ft(0)dt

)−1

E
[
L∗

X

〈
(β(0)

τ − βτ )(t),L∗
XLX(β

(0)
τ − βτ )(t)

〉]
= O

(
E
[
L∗

X

〈
(β(0)

τ − βτ )(t),L∗
XLX(β

(0)
τ − βτ )(t)

〉])
= O

(〈
(β(0)

τ − βτ )(t), E [LXL∗
XLX ] (β

(0)
τ − βτ )(t)

〉)
= O

(∥∥[E1/2(LXL∗
XLX)

]
(β(0)

τ − βτ )
∥∥2) .

Thus, it completes the proof of (b). By the k rounds of iteration, we get (c). So, we complete

the proof of Theorem 2.1.



S5 Proofs of the main resluts for specific functional

QR for sparse longitudinal data

In the section, we respectively give the proofs the three FLQR models. Subsection S5.1:

functional varying coefficient QR model; Subsection S5.2: functional linear QR model; Sub-

section S5.3: functional varying coefficient QR model with history index. First, we present

a common set of assumptions needed for all FLQR models, which are listed under (A).

The data (Sil, Uil) and (Tij, Vij), i = 1, · · · , n, l = 1, · · · , Li, j = 1, · · · , Ni, as described

in (3.1) and (3.2), are assumed to have the same distributed as (S, U) and (T, V ), with joint

densities g1(s, x) and g2(t, y). Assume also that the observation times/locations Sil are i.i.d.

with marginal densities fS(s); Tij are i.i.d. with marginal densities fT (t). Let S1 and S2

be i.i.d. as S, and U1 and U2 be repeated observations of X made on the same subject at

times/locations S1 and S2 separately. The predictor and response measurements made on the

same at different times/locations are allowed to be dependent. Assume (Sil1 , Sil2 , Uil1 , Uil2),

1 ≤ l1 ̸= l2 ≤ Li, is identically distributed as (S1, S2, U1, U2) with joint density function

gX(s1, s2, u1, u2), and analogously for (Tij1 , Tij2 , Vij1 , Vij2) with identical joint density func-

tion gY (t1, t2, v1, v2). About the above (joint) density functions, we give some regularity

assumptions.

(A1) Let p1 and p2 be integers with 0 ≤ p1, p2 ≤ p = p1 + p2 = 2. The derivative

(dp/dsp)fS(s) and (dp/dtp)fT (t) exist and are continuous on s ∈ S and t ∈ T with fS(s) > 0

and fT (t) > 0 on s ∈ S and t ∈ T , respectively; (dp/dsp)g1(s, u) and (dp/dtp)g2(t, v) exist



and are continuous on S × R and T × R, respectively; (dp/dsp11 ds
p2
2 )gX(s1, s2, u1, u2) and

(dp/dtp11 dt
p2
2 )gY (t1, t2, v1, v2) exist and are continuous on S2 × R2 and T 2 × R2, respectively.

(A2) The number of measurements Li and Ni made on the ith subject are random

variables such that Li
i.i.d.∼ L, Ni

i.i.d.∼ N , where L and N are positive discrete random variables,

with P (L > 1) > 0 and P (N > 1) > 0. The observation times/locations are assumed to

be independent of the number of measurements, i.e., for any subsets Li ⊆ {1, · · · , Li} and

Ni ⊆ {1, · · · , Ni}, and for all i = 1, · · · , n, ({Sil, Uil : l ∈ Li}) is independent of Li, and

({Til, Vil : l ∈ Ni}) is independent of Ni.

Let K(·) be the nonnegative univariate kernel function that is used in the kernel density

estimator of ft(0) for ε(t) at zero, and K1(·) and K2(·, ·) be the nonnegative univariate

and bivariate kernel functions that are applied to the smoothing for the mean function µX

and µY , covariance surface rXX , rY Y , rỸ Ỹ , cross-covariance surface rXY and rXỸ , and local

covariance surfaces rt (see Section S1). In addition, assume that K1 and K2 are compactly

supported densities with zero means and finite variances. Let h be the bandwidth used for

density estimator of ft(0), bX = bX(n) and bY = bY (n) be the bandwidths used for the mean

functions such as µX , µY , and so on; hX = hX(n) and hY = hY (n) be the bandwidths used

for covariance surfaces such as rXX , rXY , and so on; and h1 = h1(n) and h2 = h2(n) be the

bandwidths for obtaining cross-covariance surfaces such as rXY , rXỸ , and so on. Further,

we define the Fourier transformations of K1(u) and K2(u, v) as κ1(t) =
∫
e−iutK1(u)du and

κ2(t, s) =
∫ ∫

e−(iut+ivt)K2(u, v)dudv, respectively. We give some assumptions about kernel

functions and bandwidths as follows.



(A3) The kernel function K(·) is integrable with
∫∞
−∞K(u)du = 1, and K(u) = 0 if

|u| ≥ 1. Further, assume K(·) is differentiable and its derivative K ′(·) is bounded; The

Fourier transformation κ1(t) is absolutely integrable, i.e.,
∫
|κ1(t)|dt <∞, and κ2(t, s) also is

absolutely integrable, i.e.,
∫ ∫

|κ2(t, s)|dtds < ∞. As the number of subjects n→ ∞, h→ 0

and nh→ ∞; bX → 0, bY → 0, nb4X → ∞, nb4Y → ∞, nb6X <∞, nb6Y <∞; hX → 0, hY → 0,

nh6X → ∞, nh6Y → ∞, nh8X <∞, nh8Y <∞.

(A4) Assume that U and V have finite fourth moments, that is, E[(U − µX(S))
4] < ∞

and E[(V − µX(T ))
4] <∞.

(A5) Assume that the FPC scores ζil and measurement errors εX,il in (3.1) are jointly

Gaussian. In addition, ξij and measurement errors εY,ij in (3.2) are also jointly Gaussian.

Special, for the functional varying coefficient QR model with history index, assume that the

FPC scores ζitl (1 ≤ l ≤ Nit, t ∈ T ) and the measurement errors εX,itl are jointly Gaussian.

(A6) Assume that the numbers M = M(n) and K = K(n) of included eigenfunctions

depend on the sample size, such that M(n) → ∞ and K(n) → ∞ as n → ∞. And they

satisfy the rate conditions given in assumption (B5) of Yao et al. (2005b).

(A7) The number and locations of measurements for a subject or cluster remain unaltered

as the sample size n→ ∞.

(A8) (i) There exists a continuous positive definite function ωM
τ (t) such that ωM

τ (t) →

ωτ (t), as M → ∞. (ii) There exists a continuous positive definite function ωM,K
τ → ωτ (t) as

M,K → ∞. (iii) For all t ∈ T , there exists a continuous positive define function ωM,Mt
τ (t) →

ωτ (t) as Mt,M1, · · · ,MR → ∞.



S5.1 For functional varying coefficient QR model

Next, we list some special assumptions. Assumptions (B) is needed for the functional

linear QR models; and Assumptions (C) for the functional varying coefficient QR models

with history index.

(B1) Assume that M̃ = M̃(n) and K̃ = K̃(n) of included eigenfunctions depend on the

sample size in (S1.13), such that as n→ ∞, M̃(n) → ∞ and K̃(n) → ∞, and

δ1n =
M̃K̃√
n

(
1

bX
+

1

bY
+

1

h2X
+

1

h2Y
+

1

h1h2

)
→ 0.

(B2) Assume the remainder as M̃(n) → ∞, K̃(n) → ∞ as

δ2n = sup
(s,t)∈S×T

∣∣∣∣∣∣
∞∑

m=M̃+1

∞∑
k=K̃+1

σ̃mk

ρm
ϕm(s)φk(t)

∣∣∣∣∣∣→ 0.

(C1) The number of included eigenfunctions from local eigen-decompositions Mt or

Mr := Mtr are integer valued sequences that depend on n with inft∈[∆,T ]Mt(n) → ∞, and

both inft∈[∆,T ]Mt(n) and supt∈[∆,T ]Mt(n) satisfy the rate conditions given in assumption (B5)

of Yao et al. (2005b). Further, the linear operator regression coefficient ϱτ (s; t) in the model

(S1.20) satisfies
∫
t∈T

∫
s∈[0,∆]

ϱ2τ (s; t)dsdt <∞.

(C2) Assume that the remainder as Mt(n) → ∞ as

δ3n = sup
s∈[0,∆],t∈T

∣∣∣∣∣
∞∑

m=Mt+1

ϱ∗τ,m(t)ϕtm(s)

∣∣∣∣∣→ 0.

S5.1 For functional varying coefficient QR model

In the subsection, we present the proofs of Theorems 3.1-3.3.

Proof of Theorem 3.1 Recall that β̂(1)
τ (t) =

r̂
XỸ

(t,t)

r̂XX(t,t)
and α̂(1)

τ (t) = µ̂Ỹ (t)− β̂
(1)
τ (t)µ̂X(t). By



S5.1 For functional varying coefficient QR model

Theorem 2.1, we have

|β̂(1)
τ (t)− β∗

τ (t)| ≤
∣∣∣β̂(1)

τ (t)− β(1)
τ (t)

∣∣∣+ ∣∣β(1)
τ (t)− β∗

τ (t)
∣∣

=

∣∣∣∣ r̂XỸ

r̂XX

−
rXỸ

rXX

∣∣∣∣+O
(
E∥X∥3

∣∣β(0)
τ − β∗

τ

∣∣2) . (S5.1)

Uniform consistency of r̂XX , µX and µY follow from Theorem 1 of Yao et al. (2005a),

that is,

sup
t∈T

|µ̂X(t)− µX(t)| = Op

(
1√
nbX

)
,

sup
t∈T

|µ̂Y (t)− µY (t)| = Op

(
1√
nbY

)
,

sup
s,t∈T

|r̂XX(s, t)− rXX(s, t)| = Op

(
1√
nh2X

)
.

We consider r̂XỸ . In the local linear estimator for covariance rXỸ , we use the raw

observations Ri,XỸ = (Uij − µ̂X(Tij))
(
Ṽik − µ̂Ỹ (Tik)

)
. Call that

Ṽij = α̂(0)
τ (Tij) + β̂(0)

τ (Tij)Uij −
(∫

T
f̂t(0)dt

)−1 ∫
T

1

n

n∑
i=1

ω̂i(t)dt,

and ω̂i(t) = I
[
V̂ K
i (t)− α̂

(0)
τ (t)− β̂

(0)
τ (t)ÛM

i (t) ≤ 0
]
− τ . Under Condition (A6), by Theorems

2-3 of Yao et al. (2005a), we have lim
M→∞

lim
n→∞

ÛM
i (t) = Xi(t) + Op {1/(

√
nbX) + 1/(

√
nh2X)}

and

lim
K→∞

lim
n→∞

V̂ K
i (t) = Yi(t) +Op

{
1/(

√
nbY ) + 1/(

√
nh2Y )

}
for all t ∈ T . Thus,

lim
M,K→∞

lim
n→∞

1

n

n∑
i=1

ω̂i(t) = ω(t) +Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

)
(S5.2)



S5.1 For functional varying coefficient QR model

for all t ∈ T , where ω(t) = I
[
Y (t)− α̂

(0)
τ (t)− β̂

(0)
τ (t)X(t) ≤ 0

]
− τ . Similar to the proof of

Lemma 9 of Chen et al. (2020), we have

sup
t∈T

|f̂t(0)− ft(0)| = Op

(√
log n

nh
+ an + h

)

for all t ∈ T .

We know that

Ri,XỸ = {[Uij − µX(Tij)] + [µX(Tij)− µ̂X(Tij)]}
(
Ṽik − µ̂Ỹ (Tik)

)
= {[Uij − µX(Tij)] + [µX(Tij)− µ̂X(Tij)]}

×
(
[Ỹ (Tik)− µỸ (Tik)] + [Ṽik − Ỹ (Tik)] + [µỸ (Tik)− µ̂Ỹ (Tik)]

)
.

Because maxi,k

∣∣∣Ṽik − Ỹ (Tik)
∣∣∣ = Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

)
by (S5.2) and

sup
t∈T

∣∣µỸ (t)− µ̂Ỹ (t)
∣∣ = Op

(
1√
nbY

)

by Theorem 1 of Yao et al. (2005a), the local linear estimator, r̂XỸ (s, t), of rXỸ (s, t) obtained

from Ri,XỸ (Tij, Tik) is asymptotically equivalent to that obtained from R̃i,XỸ (Tij, Tik) =

[Uij − µX(Tij)] [Ỹ (Tik)− µỸ (Tik)], denoted by r̃XỸ (s, t). So, by Lemma 2 and Theorem 1 of

Yao et al. (2005a), we have

sup
s,tT

∣∣r̂XỸ (s, t)− rXỸ (s, t)
∣∣ = Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

+
1√
nh1h2

)
. (S5.3)
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From (S5.1) and (S5.3), we obtain

|β̂(1)
τ (t)− β∗

τ (t)|

≤
∣∣∣∣ r̂XỸ (t, t)

r̂XX(t, t)
−
rXỸ (t, t)

rXX(t, t)

∣∣∣∣+O
(
E∥X∥3

∣∣β(0)
τ (t)− β∗

τ (t)
∣∣2)

=

∣∣∣∣∣
[
r̂XỸ (t, t)− rXỸ (t, t)

]
rXX(t, t) + rXỸ (t, t) [rXX(t, t)− r̂XX(t, t)]

rXX(t, t)r̂XX(t, t)

∣∣∣∣∣+O(a2n)

= Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

+
1√
nh1h2

+ a2n

)
.

Further, we get |α̂(1)
τ (t)−α∗

τ (t)| has the same order with |β̂(1)
τ (t)− β∗

τ (t)|. Thus, we complete

the proof of Theorem 3.1.

Proof of Theorem 3.2 Let bn = Op

{
1√
n

[
1

bX
+

1

bY
+

1

h2X
+

1

h2Y
+

1

h1h2

]}
. From the proof

of Theorem 3.1, we have

|β̂(1)
τ (t)− β∗

τ (t)| = bn + Can|β̂(0)
τ (t)− β∗

τ (t)|.

By the iteration algorithm, one gets

|β̂(k)
τ (t)− β∗

τ (t)| = bn[1 + Can + · · ·+ (Can)
k−1] + (Can)

k|β̂(0)
τ (t)− β∗

τ (t)|

=
bn(1− (Can)

k)

1− Can
+ Ckak+1

n

= Op

(
bn + ak+1

n

)
.

It completes the proof.

Proof of Theorem 3.3 For fixed M ,

Q̃M
Y ∗|X∗(t; τ) = ατ (t) + βτ (t)

(
µX(t) +

M∑
m=1

ζ̃∗mϕm(t)

)
.
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Call that Q̃Y ∗|X∗(t; τ) = ατ (t) + βτ (t)
(
µX(t) +

∑∞
m=1 ζ̃

∗
mϕm(t)

)
and

Q̂K,M
Y ∗|X∗(t; τ) = α̂K

τ (t) + β̂K
τ (t)

(
µ̂X(t) +

M∑
m=1

ζ̂∗mϕ̂m(t)

)

with ζ̃∗m and ζ̂∗m defined in (3.11) and (3.12), respectively. Note that

∣∣∣Q̂K,M
Y ∗|X∗(t; τ)− Q̃Y ∗|X∗(t; τ)

∣∣∣ ≤
∣∣∣Q̂K,M

Y ∗|X∗(t; τ)− Q̃M
Y ∗|X∗(t; τ)

∣∣∣
+

∣∣∣Q̃M
Y ∗|X∗(t; τ)− Q̃Y ∗|X∗(t; τ)

∣∣∣ . (S5.4)

From Theorem 3.2, supt∈T
∣∣α̂K

τ (t)− ατ (t)
∣∣ = op(1) and supt∈T

∣∣∣β̂K
τ (t)− βτ (t)

∣∣∣ = op(1) for

enough large K. By Theorem 1 of Yao et al. (2005a), Lemma A.1 and (B5), one gets

supt∈T |µ̂X(t)− µX(t)| = op(1) and
∣∣∣ζ̂∗m − ζ̃∗m

∣∣∣ = op(1) as n → ∞. Then by Slutsky’s Theo-

rem, we have ∣∣∣Q̂K,M
Y ∗|X∗(t; τ)− Q̃M

Y ∗|X∗(t; τ)
∣∣∣ = op(1)

as n → ∞ and sufficiently large K. On the other hand, it follows from Lemma 3 of Yao

et al. (2005b) that Q̃M
Y ∗|X∗(t; τ)

p−→ Q̃Y ∗|X∗(t; τ). Therefore, Combining them with (S5.4), we

complete the proof of Theorem 3.3.

Proof of Theorem 3.4 For a fixed M ≥ 1, under the Gaussian assumption and conditional

on N∗ and T ∗, it is shown in Subsection 3.1.3 that ζ̃
∗
M − ζ∗

M ∼ N(0,ΩM). It then follows

that

Q̃M
Y ∗|X∗(t; τ)−QM

Y ∗|X∗(t; τ)
D−→ ZM

τ ∼ N (0, ωM
τ (t)), (S5.5)
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where QM
Y ∗|X∗(t; τ) = ατ (t) + βτ (t)

(
µX(t) +

∑M
m=1 ζ

∗
mϕm(t)

)
. Note that

Q̂K,M
Y ∗|X∗(t; τ)−QY ∗|X∗(t; τ) =

(
Q̂K,M

Y ∗|X∗(t; τ)− Q̃M
Y ∗|X∗(t; τ)

)
+
(
Q̃M

Y ∗|X∗(t; τ)−QM
Y ∗|X∗(t; τ)

)
+
(
QM

Y ∗|X∗(t; τ)−QY ∗|X∗(t; τ)
)
. (S5.6)

From the proof of the 1st term in (S5.4), we have the 1st term in (S5.6) for sufficiently large

K and a fixed M ,

lim
n→∞

sup
t∈T

∣∣∣Q̂K,M
Y ∗|X∗(t; τ)− Q̃M

Y ∗|X∗(t; τ)
∣∣∣ = op(1).

From Theorem 3.1 and Theorems 1 and 2 in Yao et al. (2005a), one gets ω̂K,M
τ (t)

p−→ ωM
τ (t) as

n→ ∞ and sufficient large K; and then by Assumption (A8)(i), we have limM→∞ limn→∞ ω̂K,M
τ (t) =

ωτ (t) in probability for K enough large. Thus, letting M → ∞ lead (S5.5), i.e. the 2nd term

of (S5.6), to

Q̃M
Y ∗|X∗(t; τ)−QM

Y ∗|X∗(t; τ)
D−→ ZM

τ
D−→ Zτ ∼ N (0, ωτ (t)).

For the 3rd term of (S5.6), by the Karhunen-Loéve theorem,

Q̃M
Y ∗|X∗(t; τ)−QY ∗|X∗(t; τ)

p−→ 0

as M → ∞. Therefore, together with (S5.6), Theorem 3.4 follows by Slutsky’s Theorem.

S5.2 For functional linear QR model

In the subsection, we give the proofs of Theorems 3.5-3.7.

Proof of Theorem 3.5 First, we consider the estimation of the 1st iterative algorithm.

Call that β̂(1)
τ (s, t) =

∑M
m=1

∑K
k=1

ˆ̃σmk

ρ̂m
ϕ̂m(s)φ̂k(t), α̂(1)

τ (t) = µ̂Ỹ (t) −
∫
S β̂

(1)
τ (s, t)µ̂X(s)ds and
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β
(1)
τ (s, t) =

∑∞
m=1

∑∞
k=1

σ̃mk

ρm
ϕm(s)φk(t). By Theorem 2.1, we have

∣∣∣β̂(1)
τ (s, t)− β∗

τ (s, t)
∣∣∣

≤
∣∣∣β̂(1)

τ (s, t)− β(1)
τ (s, t)

∣∣∣+ ∣∣β(1)
τ (s, t)− β∗

τ (s, t)
∣∣

≤

∣∣∣∣∣∣
M̃∑

m=1

K̃∑
k=1

[
ˆ̃σmk

ρ̂m
ϕ̂m(s)φ̂k(t)−

σ̃mk

ρm
ϕm(s)φk(t)

]∣∣∣∣∣∣+
∣∣∣∣∣∣

∞∑
m=M̃+1

∞∑
k=K̃+1

σ̃mk

ρm
ϕm(s)φk(t)

∣∣∣∣∣∣
+O

(
E∥X∥3

∥∥∥β̂(0)
τ − β∗

τ

∥∥∥2)
= Q1(n) +Q2(n) +Op(a

2
n). (S5.7)

Since β
(1)
τ (s, t) = argminβτ∈L2(S×T )E∥Ỹ c − LXcβτ∥2, we can write it as functional linear

regression model

Ỹ c(t) =

∫
S
βτ (s, t)X

c(s)ds+ e(t),

where e is mean zero random error, and independent of X. Under Condition 2, we have

(S1.10), and
∑∞

m=1

∑∞
k=1

σ̃mk

ρm
ϕm(s)φk(t) absolutely converges for all s ∈ S and t ∈ T . There-

fore,∑M
m=1

∑K
k=1

σ̃mk

ρm
ϕm(s)φk(t) absolutely convergences to β

(1)
τ (s, t) for all s ∈ S and t ∈ T as

M,K → ∞. One has Q2(n) → 0 as M,K → ∞. Next, we consider Q1(n).

Under Condition (A6), by Theorems 2-3 of Yao et al. (2005a), we have lim
M→∞

lim
n→∞

ÛM
i (s) =

Xi(s)+Op {1/(
√
nbX) + 1/(

√
nh2X)} and lim

K→∞
lim
n→∞

V̂ K
i (t) = Yi(t)+Op {1/(

√
nbY ) + 1/(

√
nh2Y )}

for all s ∈ S and t ∈ T . Thus,

lim
M,K→∞

lim
n→∞

1

n

n∑
i=1

ω̂i(t) = ω(t) +Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

)
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for all t ∈ T , where ω(t) = I
[
Y (t)− α̂

(0)
τ (t)−

∫
S β̂

(0)
τ (s, t)X(s)ds ≤ 0

]
− τ , and

lim
M→∞

lim
n→∞

Q̂
(0)
Y |X(t; τ) = Q

(0)
Y |X(t; τ) +Op

(
1√
nbX

+
1√
nh2X

)
,

where Q(0)
Y |X(t; τ) = α̂

(0)
τ (t) +

∫
S β̂

(0)
τ (s, t)Xi(s)ds. Further,

lim
M→∞

lim
n→∞

1

n

n∑
i=1

ÛM
i (s) = X(s) +Op

{
1/(

√
nbX) + 1/(

√
nh2X)

}
.

Similar to the proofs of Theorem 3.1, |f̂t(0) − ft(0)| = Op

(√
log n/(nh) + an + h

)
. So, for

all t ∈ T , we have

lim
M,K→∞

lim
n→∞

µ̂Ỹ (t) = µỸ (t) +Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

)
. (S5.8)

In the local linear estimator for the covariance rỸ Ỹ , we use the raw observations, Ri,Ỹ Ỹ (Tij, Tik) =(
Ṽij − µ̂Ỹ (Tij)

)(
Ṽik − µ̂Ỹ (Tik)

)
, instead of R̃i,Ỹ Ỹ (Tij, Tik) =

(
Ỹ (Tij)− µỸ (Tij)

)(
Ỹ (Tik)− µỸ (Tik)

)
.

Note that

Ri,Ỹ Ỹ (Tij, Tik)

=
{(
Ỹ (Tij)− µỸ (Tij)

)
+
(
Ṽij − Ỹ (Tij)

)
+
(
µ̂Ỹ (Tij)− µỸ (Tij)

)}
×
{(
Ỹ (Tik)− µỸ (Tik)

)
+
(
Ṽik − Ỹ (Tik)

)
+
(
µ̂Ỹ (Tik)− µỸ (Tik)

)}
=

(
Ỹ (Tij)− µỸ (Tij)

)(
Ỹ (Tik)− µỸ (Tik)

)
+
(
Ỹ (Tij)− µỸ (Tij)

) [(
Ṽik − Ỹ (Tik)

)
+
(
µ̂Ỹ (Tik)− µỸ (Tik)

)]
+
(
Ỹ (Tik)− µỸ (Tik)

) [(
Ṽij − Ỹ (Tij)

)
+
(
µ̂Ỹ (Tij)− µỸ (Tij)

)]
+
[(
Ṽij − Ỹ (Tij)

)
+
(
µ̂Ỹ (Tij)− µỸ (Tij)

)]
×
[(
Ṽik − Ỹ (Tik)

)
+
(
µ̂Ỹ (Tik)− µỸ (Tik)

)]
.
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Because maxi,k

∣∣∣Ṽik − Ỹ (Tik)
∣∣∣ = Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

)
and (S5.8), the lo-

cal linear estimator, r̂Ỹ Ỹ (s, t), of rỸ Ỹ (s, t) obtained from Ri,Ỹ Ỹ (Tij, Tik) is asymptotically

equivalent to that obtained from R̃i,Ỹ Ỹ (Tij, Tik), denoted by r̃Ỹ Ỹ (s, t). So, by Lemma 2 and

Theorem 1 of Yao et al. (2005a), we have

sup
s,tT

∣∣r̂Ỹ Ỹ (s, t)− rỸ Ỹ (s, t)
∣∣ = Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

)
. (S5.9)

By Theorem 2 of Yao et al. (2005a), one gets

sup
t∈T

|φ̂k(t)− φk(t)| = Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

)
. (S5.10)

Similar to the proof of (S5.9), we have

sup
s,tT

∣∣r̂XỸ (s, t)− rXỸ (s, t)
∣∣ = Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

+
1√
nh1h2

)
. (S5.11)

In addition, by Theorem 2 of Yao et al. (2005a), we have

sup
s∈S

∣∣∣ϕ̂m(t)− ϕm(t)
∣∣∣ = Op

(
1√
nh2X

)
. (S5.12)

As a consequence of (S5.10), (S5.12) and (S5.11), one obtains

|ˆ̃σmk − σ̃mk| = Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

+
1√
nh1h2

)
. (S5.13)

By Assumptions (B1)-(B2), results (S5.10), (S5.12) and (S5.11), and expression (S5.7), we

have

sup
(s,t)∈S×T

∣∣∣β̂(1)
τ (s, t)− β∗

τ (s, t)
∣∣∣ = Op

(
δ1n + δ2n + a2n

)
.

We can show sup(s,t)∈S×T

∣∣∣α̂(1)
τ (s, t)− α∗

τ (s, t)
∣∣∣ = Op (δ1n + δ2n + a2n) with similar proofs of

β̂
(1)
τ (s, t). By the k iterations, we obtain the results of theorem 3.5.
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Proof of Theorem 3.6 Recall that

Q̂K,M,K
Y ∗|X∗ (t; τ) = α̂K

τ (t) +
M∑

m=1

K∑
k=1

ˆ̃σK
mk

ρ̂k
ζ̂∗mφ̂

K
k (t),

Q̃Y ∗|X∗(t; τ) = ατ (t) +
∞∑

m=1

∞∑
k=1

σ̃mk

ρm
ζ̃∗mφk(t),

where ζ̃∗m and ζ̂∗m are defined in ( S1.15) and (S1.16), respectively. For given S∗ and L∗, define

Q̃M,K
Y ∗|X∗(t; τ) = ατ (t) +

M∑
m=1

K∑
k=1

σ̃mk

ρm
ζ̃∗mφk(t).

Now, let’s continue to prove after (S5.9)-(S5.13). First,

Ỹ (t)− Ỹ ∗(t)

=
(
Q

(0)
Y |X(t; τ)−Q∗

Y |X(t; τ)
)

−
(∫

T
ft(0)dt

)−1 ∫
T
{I[Y (t)−Q

(0)
Y |X(t; τ) ≤ 0]− I[Y (t)−Q∗

Y |X(t; τ) ≤ 0]}dt

= Op(an)

uniformly for t ∈ T , since supt∈T

∣∣∣Q(0)
Y |X(t; τ)−Q∗

Y |X(t; τ)
∣∣∣ = Op(an) and I[Y (t)−Q(0)

Y |X(t; τ) ≤

0]− I[Y (t)−Q∗
Y |X(t; τ) ≤ 0] = Op(an) which is obtained by

E
(
I[Y (t)−Q

(0)
Y |X(t; τ) ≤ 0]− I[Y (t)−Q∗

Y |X(t; τ) ≤ 0]
)
= O(an),

E
(
I[Y (t)−Q

(0)
Y |X(t; τ) ≤ 0]− I[Y (t)−Q∗

Y |X(t; τ) ≤ 0]
)2

= O(an(1− an)) = O(an).

Thus, we also have supt∈T |µỸ − µỸ ∗ | = O(an). Therefore, one gets

sup
s,tT

∣∣rỸ Ỹ (s, t)− rỸ ∗Ỹ ∗(s, t)
∣∣

= sup
s,tT

∣∣∣E[Ỹ (s)− µỸ (s)][Ỹ (t)− µỸ (t)]− E[Ỹ ∗(s)− µỸ ∗(s)][Ỹ
∗(t)− µỸ ∗(t)]

∣∣∣
= O(a2n). (S5.14)



S5.2 For functional linear QR model

By (S5.14) and (S5.9), we have

sup
s,tT

∣∣r̂Ỹ Ỹ (s, t)− rỸ ∗Ỹ ∗(s, t)
∣∣ = Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

+ a2n

)
. (S5.15)

Similarly, by (S5.11), one gets

sup
s,tT

∣∣r̂XỸ (s, t)− rXỸ ∗(s, t)
∣∣

= Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

+
1√
nh1h2

+ a2n

)
. (S5.16)

From (S5.15), applying Theorem 2 of Yao et al. (2005a), we obtain

sup
t∈T

|φ̂k(t)− φk(t)| = Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

+ a2n

)
.

As a consequence of (S5.17), (S5.12) and (S5.16),

max
mk

|ˆ̃σmk − σ̃mk| = Op

(
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

+
1√
nh1h2

+ a2n

)
.

By the K iterations, we have

sup
t∈T

∣∣φ̂K
k (t)− φk(t)

∣∣ = Op

(
δ1n + δ2n + aK+1

n

)
, (S5.17)

max
mk

|ˆ̃σK
mk − σ̃mk| = Op

(
δ1n + δ2n + aK+1

n

)
. (S5.18)

Note that

∣∣∣Q̂K,M,K
Y ∗|X∗ (t; τ)− Q̃Y ∗|X∗(t; τ)

∣∣∣ ≤
∣∣∣Q̂K,M,K

Y ∗|X∗ (t; τ)− Q̃M,K
Y ∗|X∗(t; τ)

∣∣∣
+

∣∣∣Q̃M,K
Y ∗|X∗(t; τ)− Q̃Y ∗|X∗(t; τ)

∣∣∣ . (S5.19)
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From Theorem 3.5,

sup
t∈T

∣∣α̂K
τ (t)− ατ (t)

∣∣ = op(1)

and sup(s,t)∈S×T

∣∣∣β̂K
τ (s, t)− βτ (s, t)

∣∣∣ = op(1) for enough large K. By Theorem 1 of Yao et al.

(2005a), Lemma A.1 and (B5), one gets

supt∈T |µ̂X(t)− µX(t)| = op(1) and
∣∣∣ζ̂∗m − ζ̃∗m

∣∣∣ = op(1) as n → ∞. Then under Assumptions

(B1)-(B2), by (S5.18)-(S5.19) and Slutsky’s Theorem, we have
∣∣∣Q̂K,M,K

Y ∗|X∗ (t; τ)− Q̃M,K
Y ∗|X∗(t; τ)

∣∣∣ =
op(1) as n→ ∞ and sufficiently large K. On the other hand, it follows from Lemma 3 of Yao

et al. (2005b) that Q̃M,K
Y ∗|X∗(t; τ)

p−→ Q̃Y ∗|X∗(t; τ). Therefore, Combining them with (S5.19), we

complete the proof of Theorem 3.6.

Proof of Theorem 3.7 For a fixed M,K ≥ 1, under the Gaussian assumption and condi-

tional on N∗ and T ∗, it is shown in Subsection 3.2.3 that ζ̃
∗
M − ζ∗

M ∼ N(0,ΩM). It then

follows that

Q̃M,K
Y ∗|X∗(t; τ)−QM,K

Y ∗|X∗(t; τ)
D−→ ZM,K

τ ∼ N (0, ωM,K
τ (t)), (S5.20)

where

QM,K
Y ∗|X∗(t; τ) = ατ (t) +

M∑
m=1

K∑
k=1

σ̃mk

ρm
ζ∗mφk(t),

. Note that

Q̂K,M,K
Y ∗|X∗ (t; τ)−QY ∗|X∗(t; τ) =

(
Q̂K,M,K

Y ∗|X∗ (t; τ)− Q̃M,K
Y ∗|X∗(t; τ)

)
+
(
Q̃M,K

Y ∗|X∗(t; τ)−QM,K
Y ∗|X∗(t; τ)

)
+
(
QM,K

Y ∗|X∗(t; τ)−QY ∗|X∗(t; τ)
)
. (S5.21)

From the proof of the 1st term in (S5.19), we have the 1st term in (S5.21) for sufficiently
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large K and a fixed M,K,

lim
n→∞

sup
t∈T

∣∣∣Q̂K,M,K
Y ∗|X∗ (t; τ)− Q̃M,K

Y ∗|X∗(t; τ)
∣∣∣ = op(1).

From Theorem 3.1, (S5.17)-(S5.18), and Theorems 1 in Yao et al. (2005a), one gets ω̂K,M,K
τ (t)

p−→

ωM,K
τ (t) as n→ ∞ and sufficient large K; and then by Assumption (A8)(ii), we have

limM,K→∞ limn→∞ ω̂K,M,K
τ (t) = ωτ (t) in probability for K enough large. Thus, lettingM,K →

∞ lead (S5.20), i.e. the 2nd term of (S5.21), to

Q̃M,K
Y ∗|X∗(t; τ)−QM,K

Y ∗|X∗(t; τ)
D−→ ZM,K

τ
D−→ Zτ ∼ N (0, ωτ (t)).

For the 3rd term of (S5.21), by the Karhunen-Loéve theorem,

Q̃M,K
Y ∗|X∗(t; τ)−QY ∗|X∗(t; τ)

p−→ 0

as M,K → ∞. Therefore, together with (S5.21), Theorem 3.7 follows by Slutsky’s Theorem.

S5.3 For functional varying coefficient QR model with history

index

In the subsection, we give the proofs of Theorems

Proof of Theorem S1.3.1 Let bn =
1√
nbX

+
1√
nbY

+
1√
nh2X

+
1√
nh2Y

+
1√
nh1h2

. To prove
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uniform consistency of γ̂(1)τ (s), we first prove one of ϱ̂(1)τ (s; t). Note that by Theorem 2.1,

sup
s∈[0,∆]

|ϱ̂(1)τ (s; t)− ϱ∗τ (s; t)|

≤ sup
s∈[0,∆]

|ϱ̂(1)τ (s; t)− ϱ(1)τ (s; t)|+ sup
s∈[0,∆]

|ϱ(1)τ (s; t)− ϱ∗τ (s; t)|

≤ sup
s∈[0,∆]

∣∣∣∣∣
Mt∑
m=1

ϱ̂(1)τ,m(t)ϕ̂tm(s)−
Mt∑
m=1

ϱ(1)τ,m(t)ϕtm(s)

∣∣∣∣∣+Op(a
2
n)

+ sup
s∈[0,∆]

∣∣∣∣∣
Mt∑
m=1

ϱ(1)τ,m(t)ϕtm(s)−
∞∑

m=1

ϱ(1)τ,m(t)ϕtm(s)

∣∣∣∣∣
=: Q1(n) +Q2(n) +Op(a

2
n)

for t ∈ T . Similar to the proof of (S5.11) , we have

sup
s∈[0,∆],t∈T

∣∣r̂XỸ (t− s, t)− rXỸ (t− s, t)
∣∣ = Op (bn) . (S5.22)

By Theorem 2 of Yao et al. (2005a), one gets

sup
s∈[0,∆],t∈T

∣∣∣ϕ̂tm(s)− ϕtm(s)
∣∣∣ = Op

(
1√
nh2X

)
,

sup
t∈T

|ρ̂τ,m(t)− ρτ,m(t)| = Op

(
1√
nh2X

)
.

(S5.23)

From (S5.22)-(S5.23), we have

sup
t∈T

∣∣ϱ̂(1)τ,m(t)− ϱ(1)τ,m(t)
∣∣ = Op (bn) . (S5.24)

Together with (S5.24), we have Q1(n) = Op (bn) uniformly.

Further, similar to the proof of (S5.14), we have

sup
s∈[0,∆],t∈T

∣∣rXỸ (t− s, t)− rXỸ ∗(t− s, t)
∣∣ = Op

(
a2n
)
,
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thus, by Theorem 2 of Yao et al. (2005a), supt∈T

∣∣∣ϱ(1)τ,m(t)− ϱ∗τ,m(t)
∣∣∣ = Op (a

2
n). By Assumption

(C1), one gets Q2(n) = δ3n +Op (a
2
n). Thus, we obtain

sup
s∈[0,∆],t∈T

|ϱ̂(1)τ (s; t)− ϱ∗τ (s; t)| = Op(δ3n + bn + a2n).

So, the rate of uniform consistency of ϱ̂(1)τ (s; t) leads to the one of γ̂(1)τ (s). The uniform

consistency of α̂(1)
τ (t) and β̂

(1)
τ (t) follows analogously. By the k iteration, we complete the

proof of Theorem S1.3.1.

Proof of Theorem S1.3.2 For a fixed M,Mt, let

Q̂
(M,Mt)
Y ∗|X∗ (t; τ) = α̂τ (t) +

∫ ∆

0

ϱ̂(s; τ)µ̂X(t− s)ds

+
β̂τ (t)

∑Mt

m=1 ζ̂
∗
tm

∑R
r=1

∑Mr

m′=1 ϱ̂τ,m′(t)
∫ ∆

0
ϕ̂tm(s)ϕ̂tm′(s)ds[∫ ∆

0

(∑R
r=1 ϱ̂τ (s; tr)

)2
ds

]1/2 .

Similar to the proof of Theorem 3.6, note that

∣∣∣Q̂(K,M,Mt)
Y ∗|X∗ (t; τ)− Q̃Y ∗|X∗(t; τ)

∣∣∣ ≤
∣∣∣Q̂(K,M,Mt)

Y ∗|X∗ (t; τ)− Q̃
(M,Mt)
Y ∗|X∗ (t; τ)

∣∣∣
+
∣∣∣Q̃(M,Mt)

Y ∗|X∗ (t; τ)− Q̃Y ∗|X∗(t; τ)
∣∣∣ . (S5.25)

By similar to arguments as in the proof of Lemma 3 in Yao et al. (2005b), Q̃(M,Mt)
Y ∗|X∗ (t; τ)

p−→

Q̃Y ∗|X∗(t; τ) as Mt, M1, · · · ,MR → ∞ and n→ ∞. On the other hand, from Theorem S1.3.1,

sups∈[0,∆] |γ̂
(k)
τ (s)−γ∗τ (s)| → 0, supt∈T |α̂(k)

τ (t)−α∗
τ (t)| → 0 and supt∈T |β̂(0)

τ (t)−β∗
τ (t)| → 0 in

probability for enough large K. By Theorem 1 of Yao et al. (2005a), Lemma A.1 and (B5),

one gets supt∈T |µ̂X(t)− µX(t)| = op(1) and
∣∣∣ζ̂∗m − ζ̃∗m

∣∣∣ = op(1) as n→ ∞. Then by Slutsky’s

Theorem, we have supt∈T

∣∣∣Q̂(K,M,Mt)
Y ∗|X∗ (t; τ)− Q̃

(M,Mt)
Y ∗|X∗ (t; τ)

∣∣∣→ 0 in probability for sufficiently

large K and n→ ∞. Thus, it follows Theorem S1.3.2.
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Proof of Theorem S1.3.3 The proof is similar to the proofs of Theorems 3.4 and 3.7. Note

that the decomposition

Q̂K,M,Mt

Y ∗|X∗ (t; τ)−QY ∗|X∗(t; τ) =
(
Q̂K,M,Mt

Y ∗|X∗ (t; τ)− Q̃M,Mt

Y ∗|X∗(t; τ)
)

+
(
Q̃M,Mt

Y ∗|X∗(t; τ)−QM,Mt

Y ∗|X∗(t; τ)
)

+
(
QM,Mt

Y ∗|X∗(t; τ)−QMt

Y ∗|X∗(t; τ)
)

+
(
QMt

Y ∗|X∗(t; τ)−QY ∗|X∗(t; τ)
)

(S5.26)

where

Q̃M,Mt

Y ∗|X∗(t; τ) = ατ (t) +

∫ ∆

0

ϱ(s; τ)µX(t− s)ds+
(
ζ̃
Mt

∗,t

)T
ϕt,M,

QM,Mt

Y ∗|X∗(t; τ) = ατ (t) +

∫ ∆

0

ϱ(s; τ)µX(t− s)ds+
(
ζMt
∗,t
)T

ϕt,M.

For a fixed (M,Mt), under the Gaussian assumption and conditional on N∗ and T ∗, it

is shown in Subsection S1.3 that ζ̃
Mt

∗,t − ζMt
∗,t ∼ N(0,ΩtMt). It then follows that

Q̃M,Mt

Y ∗|X∗(t; τ)−QM,Mt

Y ∗|X∗(t; τ)
D−→ ZM,Mt

τ ∼ N (0, ωM,Mt
τ (t)). (S5.27)

From the proof of the 1st term in (S5.25), we have the 1st term in (S5.26) for sufficiently

large K and a fixed (M,Mt),

lim
n→∞

sup
t∈T

∣∣∣Q̂K,M,M
Y ∗|X∗ (t; τ)− Q̃M,M

Y ∗|X∗(t; τ)
∣∣∣ = op(1).

When M1(n), · · · ,MR(n) → ∞ as n→ ∞, one gets

lim
n→∞

sup
t∈T

∣∣∣QM,Mt

Y ∗|X∗(t; τ)−QMt

Y ∗|X∗(t; τ)
∣∣∣ = op(1).



From Theorem S1.3.1 and Theorems 1 and 2 in Yao et al. (2005a), one gets ω̂K,M,Mt
τ (t)

p−→

ωM,Mt
τ (t) as n→ ∞ and sufficient large K; and then by Assumption (A8)(iii), we have

limMt,M1,··· ,MR→∞ limn→∞ ω̂K,M,Mt
τ (t) = ωτ (t) in probability for K enough large. Thus, letting

M → ∞ lead (S5.27), i.e. the 2nd term of (S5.26), to

Q̃M,Mt

Y ∗|X∗(t; τ)−QM,Mt

Y ∗|X∗(t; τ)
D−→ ZM,Mt

τ
D−→ Zτ ∼ N (0, ωτ (t)).

For the 4th term of (S5.26), by the Karhunen-Loéve theorem,

QMt

Y ∗|X∗(t; τ)−QY ∗|X∗(t; τ) → 0

as Mt → ∞. Therefore, together with (S5.26), Theorem S1.3.3 follows by Slutsky’s Theorem.

S6 Boxplots of MSEs

Boxplots of MSEs for example 2 are presented in Figures S1 and S2.

S7 Estimated pointwise coefficient of determination

For evaluating performance of our FL-QR and FLR, we also give the curve of estimated

pointwise functional coefficients of determination R2
Q(t) based on FL-QR with the definition

R2
Q(t) =

Var[QY |X(Y (t; τ) | X)]

Var[Y (t)]
,

and compare with that of determination R2
M(t) based on FLR with the similar definition

R2
M(t) =

Var(E[Y (t) | X])

Var(Y (t))
.
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Figure S1: Boxplots of MSE when τ = 0.25 for Example 2. blue: FLR method, : FL-QR

method, green: RFL-QR method. The first row corresponds to the normal errors, the second

row to the Cauchy errors, and the third row to the Chi-square errors.
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Figure S2: Boxplots of MSE when τ = 0.90 for Example 2. blue: FLR method, : FL-QR

method, green: RFL-QR method. The first row corresponds to the normal errors, the second

row to the Cauchy errors, and the third row to the Chi-square errors.
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Figure S3: Estimated pointwise coefficient of determination R̂2(t) for FLR and FL-QR.

They are displayed in Figure S3, indicating that the dynamics of albumin in FL-QR are more

capable of explaining the total variation of prothrombin time trajectories over a more time

range (from 0 to 1975 days), than the one in FLQ. In addition, it indicates generally stronger

linear association at intermediate days (1000 to 2000 days) compare to the earlier days (0 to

500 days) and later days (2250 to 2500 days).

Last, we reconstruct mean trajectories of prothrombin times by using FLR and quantile

trajectories of prothrombin times by applying FL-QR with the levels of quantile τ = 0.1, 0.5

and 0.9, which is presented in Figure S4. We see that these trajectories have the same growth

mode; mean and quantile with τ = 0.5 trajectories of prothrombin times are almost identical,

which implies that the conditional distributions of prothrombin time given albumin at each

day don’t skew; our FL-QR can capture lower (e.g. τ = 0.1) and upper (e.g. τ = 0.9)

conditional quantiles of the trajectories of prothrombin time, which cannot be characterized
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by analyzing the conditional mean of FLR model alone.
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