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In this Supplementary Material, we provide additional simulations, extra figures, and proofs for Lemma 1, Remark

1, Theorem 1, Theorem 2 and Theorem 3.

S1 Additional Simulations

S1.1 imulation results of SHP test and cross-match test

In this section, we explore the performance of the Shortest Hamiltonian path (SHP)-

based test (Biswas et al., 2014) and the cross-match test based on non-bipartite matching

(Rosenbaum, 2005) in the high-dimensional setting.

Observations are simulated under distributional changes. Specifically, the simulation

settings are as follows:

• Mean change only. Observations are generated from multivariate normal distribu-

tions: X ∼ N (1d, Id), Y ∼ N (
√

1.5log(d)/d)1d, Id), where d denotes the dimension.

n1 = n2 = 100.

• Scale change only. Observations are generated from multivariate normal distribu-
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tions: X ∼ N (1d, Id), Y ∼ N (1d, (1+1.5log(d)/d)Id), where d denotes the dimension.

n1 = n2 = 100.

The SHP-based test and the cross-match test are designed using a similar rationale as the

original graph-based test proposed by Friedman and Rafsky (Friedman and Rafsky, 1979).

As such, these tests focus on the between-sample edge counts in the test statistic, which

can encounter problems detecting general changes as the dimension d increases (Chen and

Friedman, 2017). We compare their performances to the robust edge-count tests SR and

MR (introduced in Section 3 in the paper). From Table 1, we can see the SHP-based test

and cross-match test have reasonable power when d = 500 and d = 800 for mean change,

but its power starts to decay as d increases. Under scale change, both have lower power

than the robust edge-count tests; the cross-match test in particular seems to struggle in

this setting. As d goes to 2000, both robust edge-count tests demonstrate superior power.

Table 1: Number of trials with significance less than 5% for comparison of robust graph-based test SR,

MR, SHP-based test and cross-match test with mean change and scale change.

mean change scale change

d SHP cross-match SR MR SHP cross-match SR MR

500 95 83 100 100 76 37 100 100

800 92 84 98 100 67 24 99 99

1100 77 67 95 97 55 20 97 95

1400 68 62 93 92 43 15 94 97

1700 66 57 91 92 35 16 93 92

2000 71 55 92 96 35 24 88 86
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S1.2 Simulation results of robust edge-count tests under imbalanced sample

sizes

We carry out simulations to demonstrate the performance of the tests under imbalanced

sample sizes. The data are simulated using the same settings as those in Simulation III

in Section 5:

X ∼ exp(N (1d, 0.6Id))

Y ∼ exp(N ((1 +
√
0.01log(d)/d)1d, (0.6 + 1.8log(d)/d)Id)),

where d denotes the dimension. We investigate two unbalanced settings with different

sample sizes of the two samples. As shown in Table 2 and 3, the robust edge-count tests

SR and MR still retain good performance across all imbalanced settings, and demonstrate

improvement compared to the edge-count tests S and M . When the sample sizes are not

too unbalanced (Table 2), most of the graph-based tests are on equal footing. However,

when the imbalance between samples becomes more severe (Table 3), all tests have di-

minished power. We observe that the hubness phenomenon is not exacerbated by the

imbalanced sample size - both settings have max node degrees of similar sizes (142 and

138, when d = 2000, respectively). However, hubness is still clearly a problem here, since

the new proposed tests tend to have better (or comparable) power across all settings.

When the sample sizes are severely unbalanced (Table 3), we see the new proposed robust

tests are still performing quite well.
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Table 2: Number of trials with significance less than 5%. n1 = 50, n2 = 150.

d d̃max MMD Energy S M Rg-NN Ro-MST SR MR

500 124 52 26 96 96 97 97 99 99

800 130 49 11 90 90 90 97 97 97

1100 132 35 8 81 78 80 86 92 95

1400 137 35 3 66 78 70 87 90 91

1700 138 36 2 69 77 69 82 80 82

2000 142 31 6 71 68 72 83 81 83

Table 3: Number of trials with significance less than 5%. n1 = 15, n2 = 185.

d d̃max MMD Energy S M Rg-NN Ro-MST SR MR

500 128 24 0 70 74 69 77 80 80

800 133 20 0 59 58 64 64 68 64

1100 132 18 0 53 52 51 54 54 56

1400 138 15 1 47 48 52 52 56 53

1700 140 18 0 39 41 38 41 47 46

2000 138 16 0 43 44 43 51 48 53

S2 Extra Figures

S2.1 Hubness phenomenon in high-dimensional data using 5-NN

The maximum and 95th percentile of node degrees in the similarity graph constructed

using 5-NN are shown in Figure 1. The hubness phenomenon is similar to what we can

see using the 5-MST as the similarity graph. The maximum node degrees are over three
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Figure 1: Boxplot of maximum and 95th percentiles of node degrees for different dimensions. Results are

from 100 simulations with n = 500, where observations are drawn from multivariate normal, log-normal,

uniform, and t distributions.

times as much as the 95th percentiles.

S3 Proof of Lemma 1

The mean and variance of Rw
1 under the permutation null distribution can be derived as

follows:

µw
1 =

∑
(i,j)∈G

wijP (J(i,j) = 1) =
∑

(i,j)∈G

wij
n1(n1 − 1)

N(N − 1)
,

E((Rw
1 )

2) =
∑

(i,j),(k,l)∈G

wijwklP (J(i,j) = 1, J(k,l) = 1)

=S1
n1(n1 − 1)

N(N − 1)
+ S ′

2

n1(n1 − 1)(n1 − 2)

N(N − 1)(N − 2)
+

S ′
3

n1(n1 − 1)(n1 − 2)(n1 − 3)

N(N − 1)(N − 2)(N − 3)
,

Σ11 =E((Rw
1 )

2)− E2(Rw
1 ),
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where S1 =
∑

(i,j)∈Gw2
ij, S

′
2 =

∑
(i,j),(i,k)∈G

k,l are different

wijwik, and

S ′
3 =

∑
(i,j),(k,l)∈G

i,j,k,l all different

wijwkl.

Similarly, we can get the mean and variance of Rw
2 under the permutation null distri-

bution:

µw
2 =

∑
(i,j)∈G

wijP (J(i,j) = 2) =
∑

(i,j)∈G

wij
n2(n2 − 1)

N(N − 1)
,

E((Rw
2 )

2) =S1
n2(n2 − 1)

N(N − 1)
+ S ′

2

n2(n2 − 1)(n2 − 2)

N(N − 1)(N − 2)
+

S ′
3

n2(n2 − 1)(n2 − 2)(n2 − 3)

N(N − 1)(N − 2)(N − 3)

Σ22 =E((Rw
2 )

2)− E2(Rw
2 ).

The covariance of Rw
1 and Rw

2 under the permutation null distribution can be derived

as follows:

E(Rw
1 R

w
2 ) =

∑
(i,j),(k,l)∈G

wijwklP (J(i,j) = 1, J(k,l) = 2)

= S ′
3

n1(n1 − 1)n2(n2 − 1)

N(N − 1)(N − 2)(N − 3)
,

Σ12 = E(Rw
1 R

w
2 )− E(Rw

1 )E(Rw
2 ).

Note : ∑
(i,j),(k,l)∈G

i,j,k,l all different

wijwkl =
∑

(i,j),(k,l)∈G

wijwkl −
∑

(i,j),(i,k)∈G
k,l are different

wijwik −
∑

(i,j)∈G

w2
ij,

∑
(i,j),(i,k)∈G

k,l are different

wijwik =
∑

(i,j),(i,k)∈G

wijwik −
∑

(i,j)∈G

w2
ij.
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The variance and covariance can be simplified as

Σ11 = DN

{
N − 3

n2 − 1
S1 +

n1 − 2

n2 − 1
S2 +

6(n2 − 1)− 4n1(N − 3)

N(N − 1)(n2 − 1)
S3

}
= DN

{
−S2 +

2(2N − 3)

N(N − 1)
S3 +

N − 3

n2 − 1
(S1 + S2)−

4(N − 3)

N(n2 − 1)
S3

}
,

Σ12 = DN

{
−S2 +

2(2N − 3)

N(N − 1)
S3

}
,

Σ22 = DN

{
N − 3

n1 − 1
S1 +

n2 − 2

n1 − 1
S2 +

6(n1 − 1)− 4n2(N − 3)

N(N − 1)(n1 − 1)
S3

}
= DN

{
−S2 +

2(2N − 3)

N(N − 1)
S3 +

N − 3

n1 − 1
(S1 + S2)−

4(N − 3)

N(n1 − 1)
S3

}
,

where S1 =
∑

(i,j)∈Gw2
ij, S2 =

∑
(i,j),(i,k)∈Gwijwik, S3 =

∑
(i,j),(k,l)∈G wijwkl and DN =

[n1n2(n1 − 1)(n2 − 1)]/[N(N − 1)(N − 2)(N − 3)]..

S4 Proof of Remark 1

∑
(i,j)∈G

w2
ij +

∑
(i,j),(i,k)∈G

wijwik =
N∑
i=1

(
∑

{j,s.t.(i,j)∈G}

wij)
2

≥ 1

N
(

N∑
i=1

∑
{j,s.t.(i,j)∈G}

wij)
2

=
4

N
(

∑
(i,j),(k,l)∈G

wijwkl).

Var(Rw
1 −Rw

2 ) > 0 ⇔
∑

{j∈Gi}

wij are not all equal for all i ∈ [1, N ],

Var(qwR
w
1 + pwR

w
2 ) > 0 ⇔(N − 3)S1 − S2 +

2

N − 1
S3 > 0.



8 YICHUAN BAI AND LYNNA CHU

S5 Proof of Theorem 1

Let R =

Rw
1

Rw
2

, C =

1 −1

q p

, Rw
diff = Rw

1 −Rw
2 and Rw

w = qRw
1 + pRw

2 .

S = (R− E(R))TΣ−1(R− E(R))

= (R− E(R))TCT (CT )−1Σ−1C−1C(R− E(R))

= (C(R− E(R)))T (CΣCT )−1(C(R− E(R))),

CΣCT = C

 Var(Rw
1 ) Cov(Rw

1 , R
w
2 )

Cov(Rw
1 , R

w
2 ) Var(Rw

2 )

CT ,

CΣCT =

Var(Rw
diff) C1

C1 Var(Rw
w)

 ,

where

Var(Rw
diff) = Var(Rw

1 )− 2Cov(Rw
1 , R

w
2 ) + Var(Rw

2 ),

Var(Rw
w) = q2Var(Rw

1 ) + 2pqCov(Rw
1 , R

w
2 ) + p2Var(Rw

2 ),

C1 = qVar(Rw
1 ) + (p− q)Cov(Rw

1 , R
w
2 )− pVar(Rw

2 )

= DN

{
(N − 3)(n2 − 1)

(N − 2)(n2 − 1)

(
S1 + S2 −

4

N
S3

)
−

(N − 3)(n1 − 1)

(N − 2)(n1 − 1)

(
S1 + S2 −

4

N
S3

)}
= 0.

So SR =
(Rw

diff−E(Rw
diff))

2

Var(Rw
diff)

+ (Rw
w−E(Rw

w))2

Var(Rw
w)

, and the robust test statistic SR can be decom-

posed as SR = (ZR
diff)

2 + (ZR
w )

2 and Cov(ZR
diff, Z

R
w ) = 0.
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S6 Proof of Theorem 2

For s = 1, 2, Rw
j =

∑
(i,j)∈GwijIJ(i,j)=s > min(wij)

∑
(i,j)∈G IJ(i,j)=s.

Then min(wij) is asymptotically bounded below by 1/|G| and
∑

(i,j)∈G IJ(i,j)=s =

O(|G|) since
∑

(i,j)∈G IJ(i,j)=s/N converge to a constant related to the densities of the

two samples according to Theorem 2 in Henze and Penrose (1999).

So limN→∞min(wij)
∑

(i,j)∈G IJ(i,j)=s > 0, s = 1, 2.

S7 Proof of Theorem 3

We will use the bootstrap null distribution to prove Theorem 3. Under the bootstrap

null, the probability of an observation assigned to sample X is nX

N
, and the probability

of an observation assigned to sample Y is 1 − nX

N
. When nx = n1, the bootstrap null

distribution is equivalent to the permutation null. We use subscripts to denote statistics

under the bootstrap null.

First, we introduce Theorem 1 to help prove Theorem 3.

Assumption 1. [Chen and Shao (2005), p. 17] For each i ∈ J , there exists Ki ⊂ Li ⊂ J

such that ξi is independent of ξKC
i
and ξKi

is independent of ξLC
i
.

Theorem 1. [Chen and Shao (2005), Theorem 3.4]

Under Assumption 1, we have sup
h∈Lip(1)

|Eh(W )−Eh(Z)| ≤ δ, where Lip(1) = {h : R →

R}, Z has N (0, 1) distribution and δ = 2
∑
i∈J

(E|ξiηiθi|+ |E(ξiηi)|E|θi|) +
∑
i∈J

|E|ξiη2i |, with

ηi =
∑
j∈Ki

ξj and θi =
∑
j∈Li

ξj, where Ki and Li are defined in Assumption 1.
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Let pn = n1

N
, qn = 1− n1

N
= n2

N
,

EB(R
w
1 ) =

∑
(i,j)∈G

wijP (J(i,1)=1) =
∑

(i,j)∈G

wijp
2
n := µB

1 ,

EB(R
w
2 ) =

∑
(i,j)∈G

wijP (J(i,1)=2) =
∑

(i,j)∈G

wijq
2
n := µB

2 ,

VarB(R
w
1 ) =

∑
(i,j)∈G

w2
ijp

2
n +

∑
(i,j),(i,k)∈G

j ̸=k

wijwikp
3
n+

∑
(i,j),(k,l)∈G

i,j,k,l all different

wijwklp
4
n − (

∑
(i,j)∈G

wij)
2p4n

=
∑

(i,j)∈G

w2
ij(p

2
n − p4n) +

∑
(i,j),(i,k)∈G

j ̸=k

wijwik(p
3
n − p4n)

=
∑

(i,j)∈G

w2
ij(p

2
n − p4n) +

∑
(i,j),(i,k)∈G

wijwik(p
3
n − p4n)−

∑
(i,j)∈G

w2
ij(p

3
n − p4n)

=
∑

(i,j)∈G

w2
ijp

2
nqn +

∑
(i,j),(i,k)∈G

wijwikp
3
nqn

:= (σB
1 )

2.

Similarly,

VarB(R
w
2 ) =

∑
(i,j)∈G

w2
ijq

2
npn +

∑
(i,j),(i,k)∈G

wijwikq
3
npn := (σB

2 )
2,

CovB(R
w
1 , R

w
2 ) = EB(R

w
1 R

w
2 )− EB(R

w
1 )EB(R

w
2 )

=
∑

(i,j)∈G

wij

∑
(k,l)∈G

i,j,k,l all different

wklp
2
nq

2
n −

∑
(i,j)∈G

wijp
2
n

∑
(i,j)∈G

wijq
2
n

= −
∑

(i,j),(i,k)∈G

wijwikp
2
nq

2
n := (σB

12)
2.
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Let Rw
diff = Rw

1 −Rw
2 , we have

EB(R
w
diff) =

∑
(i,j)∈G

wij(pn − qn) := µB
diff ,

VarB(R
w
diff) = VarB(R

w
1 ) + VarB(R

w
2 )− 2CovB(R

w
1 , R

w
2 )

= pnqn
∑

(i,j)∈G

w2
ij +

∑
(i,j),(i,k)∈G

wijwik(p
3
nqn + q3npn + 2p2nq

2
n)

= pnqn(
∑

(i,j)∈G

w2
ij +

∑
(i,j),(i,k)∈G

wijwik)

:= (σB
diff )

2.

Let Rw
w = qRw

1 + pRw
2 , we have

EB(R
w
w) =

∑
(i,j)∈G

wij
n2
2(n1 − 1) + n2

1(n2 − 1)

N2(N − 2)
:= µB

w ,

VarB(R
w
w) = q2VarB(R

w
1 ) + p2VarB(R

w
2 ) + 2pqCovB(R

w
1 , R

w
2 )

=
n1n2(n1 − n2)

2

N4(N − 2)2

∑
(i,j),(i,k)∈G

wijwik+

n1n2{n1n2(N − 4) +N}
N3(N − 2)2

∑
(i,j)∈G

w2
ij

:= (σB
w )

2.

Let,

WB
1 =

Rw
w − EB(R

w
w)√

VarB(Rw
w)

,

WB
2 =

Rw
diff − EB(R

w
diff)√

VarB(Rw
diff)

,

WB
3 =

nX − n√
Npn(1− pn)

.

Lemma 1. Under conditions
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(i) |G| = O(Nα), 1 ≤ α < 1.25,

(ii)
∑

(i,j)∈G

w2
ij +

∑
(i,j),(i,k)∈G

wijwik −
4

N

∑
(i,j),(k,l)∈G

wijwkl

=O(
∑

(i,j)∈G

w2
ij +

∑
(i,j),(i,k)∈G

wijwik),

(iii)
∑

(i,j)∈G
(wij|A(i,j)|)2 = o(

∑
(i,j)∈G

w2
ijN

0.5),

(iv)
∑

(i,j)∈G

wij

∑
(i′,j′)∈A(i,j)

wi′j′

∑
(i′′,j′′)∈B(i,j)

wi′′j′′ = o(
∑

(i,j)∈G

w2
ij)

1.5,

and under the bootstrap null, (WB
1 ,WB

2 ,WB
3 ) is multivariate normal.

Lemma 2. We have

• VarB(Rw
w)

Var(Rw
w)

→ c1,

•
VarB(Rw

diff)

Var(Rw
diff)

→ c2,

• EB(Rw
w)−E(Rw

w)√
Var(Rw

w)
→ 0,

•
EB(Rw

diff)−E(Rw
diff)√

Var(Rw
diff)

→ 0,

• lim
N→∞

Cov(Zw, Zdiff) = 0,

where c1 and c2 are constant.

From Lemma 1, (WB
1 ,WB

2 |WB
3 ) is multivariate normal under the bootstrap null. Since

conditioning on WB
3 = 0, (WB

1 ,WB
2 |WB

3 = 0) and (WB
1 ,WB

2 ) under the permutation

distribution have the same distribution, and

ZR
w =

√
VarB(Rw

w)√
Var(Rw

w)
(WB

1 +
EB(R

w
w)− E(Rw

w)

VarB(Rw
w)

),

ZR
diff =

√
VarB(Rw

diff)√
Var(Rw

diff)
(WB

2 +
EB(R

w
diff)− E(Rw

diff)

VarB(Rw
diff)

),
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with Lemma 2, we conclude that ZR
w and ZR

diff are Gaussian under the permutation dis-

tribution.

S7.1 Proof of Lemma 1

We first show (WB
1 ,WB

2 ,WB
3 ) is multivariate Gaussian under the bootstrap null distribu-

tion, which is equivalent to showing that W = a1W
B
1 + a2W

B
2 + a3W

B
3 is asymptotically

Gaussian distributed for each (a1, a2, a3) ∈ R3 such that VarB(W ) > 0 by Cramer-Wold

theorem.

Let the index set J = {(i, j) ∈ G}
⋃
{1, 2, . . . , N},

ξ(i,j) =a1

wij
m−1
N−2

I(J(i,j)=1) + wij
n−1
N−2

I(J(i,j)=2)

σB
w

−
wij

n2(m−1)+m2(n−1)
N2(N−2)

σB
w

+

a2
wijI(J(i,j)=1)− wijI(J(i,j)=2)− (wij(pn − qn))

σB
diff

,

ξi =a3
I(gi = 0)− pn√
Npn(1− pn)

.

Let, a = max(|a1|, |a2|, |a3|), σ = min(σB
w , σ

B
diff ), σ0 =

√
Npn(1− pn). σ2 is at least

of order
∑

(i,j)∈G
w2

ij, σ0 = O(N0.5). Then |ξ(i,j)| ≤ 2a
wijσ

, |ξi| ≤ a
σ0

and W =
∑

j∈J ξj.

For (i, j) ∈ J , let

A(i,j) = {(i, j)} ∪ {(i′, j′) ∈ G : (i′, j′) and (i, j) share a node},

B(i,j) = A(i,j) ∪ {(i′′, j′′) ∈ G : ∃(i′, j′) ∈ A(i,j),

s.t. (i′, j′) and (i′′, j′′) share a node},

K(i,j) = A(i,j) ∪ {i, j},

L(i,j) = B(i,j) ∪ {nodes in A(i,j)}.
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For i ∈ {1, 2, ..., N}, let

Gi = {(i, j) ∈ G},

Gi,2 = {(i, j) ∈ G} ∪ {(i′′, j′′) ∈ G : ∃(i′, j′) ∈ Gi,

s.t. (i′, j′) and (i′′, j′′) share a node},

Ki = Gi ∪ {i},

Lj = Gi,2 ∪ {nodes in Gi}.

For j ∈ J , let ηj =
∑

k∈Kj
ξk and θj =

∑
k∈Lj

ξk .

suph∈Lip(1)|EBh(W )− Eh(Z)| ≤ δ for Z ∼ N(0, 1),

where δ = 1√
VarB(W )

(
2
∑

j∈J(EB|ξjηjθj|+EB(ξjηj)EB|θj|)+
∑

j∈J EB|ξjη2j |
)
, according to

Theorem 1. For j ∈ {1, 2, ..., N},

ηj =
∑
k∈Kj

ξk = ξi +
∑

(i′,j′)∈Gi

ξ(i′,j′) ≤
a

σ0

+
2a

σ

∑
(i′,j′)∈Gi

wi′j′ ,

θj =
∑
k∈Lj

ξk =
∑

nodes in Gi

ξi +
∑

(i′,j′)∈Gi,2

ξ(i′,j′) ≤ 2
a|Gi|
σ0

+
2a

σ

∑
(i′,j′)∈Gi,2

wi′j′ .

So,

2
∑

j∈{1,2,...,N}

(EB|ξjηjθj|+ EB(ξjηj)EB|θj|) +
∑

j∈{1,2,...,N}

EB|ξjη2j |

≤ 5
a3

σ0

(
1

σ0

+
2

σ

∑
(i′,j′)∈Gi

wi′j′)(2
|Gi|
σ0

+
2

σ

∑
(i′,j′)∈Gi,2

wi′j′).
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For (i, j) ∈ G,

η(i,j) =
∑

k∈K(i,j)

ξk = ξi + ξj +
∑

(i′,j′)∈A(i,j)

ξ(i′,j′)

≤ 2a

σ0

+
2a

σ

∑
(i′,j′)∈A(i,j)

wi′j′ ,

θ(i,j) =
∑

k∈L(i,j)

ξk =
∑

nodes in A(i,j)

ξi +
∑

(i′,j′)∈B(i,j)

ξ(i′,j′)

≤ 2
a|A(i,j)|

σ0

+
2a

σ

∑
(i′,j′)∈B(i,j)

wi′j′ .

So,

2
∑

(i,j)∈G

(
EB|ξ(i,j)η(i,j)θ(i,j)|+ EB(ξ(i,j)η(i,j))EB|θ(i,j)|

)
+

∑
(i,j)∈G

EB|ξ(i,j)η2(i,j)|

≤ 5
2awij

σ
(
2a

σ0

+
2a

σ

∑
(i′,j′)∈A(i,j)

wi′j′)(2
a|A(i,j)|

σ0

+
2a

σ

∑
(i′,j′)∈B(i,j)

wi′j′)

= 40
a3wij

σ
(
1

σ0

+
1

σ

∑
(i′,j′)∈A(i,j)

wi′j′)(
|A(i,j)|
σ0

+
1

σ

∑
(i′,j′)∈B(i,j)

wi′j′).

Then we have

δ ≤[
∑

(i,j)∈G

40
a3wij

σ
(
1

σ0

+
1

σ

∑
(i′,j′)∈A(i,j)

wi′j′)(
|A(i,j)|
σ0

+
1

σ

∑
(i′,j′)∈B(i,j)

wi′j′)+

N∑
i=1

5
a3

σ0

(
1

σ0

+
2

σ

∑
(i′,j′)∈Gi

wi′j′)(2
|Gi|
σ0

+
2

σ

∑
(i′,j′)∈Gi,2

wi′j′)]
1√

VarB(W )
.

If we want δ → 0 as N → ∞, we need the following conditions to hold:

(1)
N∑
i=1

∑
(i′,j′)∈Gi

wi′j′

∑
(i′′,j′′)∈Gi,2

wi′′j′′ = o(
∑

(i,j)∈G

w2
ijN

0.5),

(2)
N∑
i=1

∑
(i′,j′)∈Gi

wi′j′|Gi| = o((
∑

(i,j)∈G
w2

ij)
0.5N),
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(3)
N∑
i=1

∑
(i′,j′)∈Gi,2

wi′j′ = o((
∑

(i,j)∈G
w2

ij)
0.5N),

(4)
N∑
i=1

|Gi| = o(N1.5),

(5)
∑

(i,j)∈G
wij|A(i,j)| = o((

∑
(i,j)∈G

w2
ij)

0.5N),

(6)
∑

(i,j)∈G
wij

∑
(i′,j′)∈B(i,j)

wi′j′ = o(
∑

(i,j)∈G
w2

ijN
0.5),

(7)
∑

(i,j)∈G

wij|A(i,j)|
∑

(i′,j′)∈A(i,j)

wi′j′ = o(
∑

(i,j)∈G

w2
ijN

0.5),

(8)
∑

(i,j)∈G

wij

∑
(i′,j′)∈A(i,j)

wi′j′

∑
(i′′,j′′)∈B(i,j)

wi′′j′′ = o(
∑

(i,j)∈G

w2
ij)

1.5.

We need conditions:

(i) |G| = O(Nα), 1 ≤ α < 1.25,

(ii)
∑

(i,j)∈G
(wij|A(i,j)|)2 = o(

∑
(i,j)∈G

w2
ijN

0.5),

(iii)
∑

(i,j)∈G
wij = o((

∑
(i,j)∈G

w2
ij)

0.5N),

(iv)
∑

(i,j)∈G

wij

∑
(i′,j′)∈A(i,j)

wi′j′

∑
(i′′,j′′)∈B(i,j)

wi′′j′′ = o(
∑

(i,j)∈G

w2
ij)

1.5,

(v)
∑

(i,j)∈G

w2
ij +

∑
(i,j),(i,k)∈G

wijwik −
4

N

∑
(i,j),(k,l)∈G

wijwkl

=O(
∑

(i,j)∈G

w2
ij +

∑
(i,j),(i,k)∈G

wijwik).

∑N
i=1 |Gi| = 2|G|, so condition (4) holds according to (i). Since

∑
(i′,j′)∈A(i,j)

wi′j′ ≤ |A(i,j)| max
(i′,j′)∈A(i,j)

wi′j′ =: |A(i,j)|wmax = |A(i,j)|wij
wmax

wij

,
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(i′,j′)∈A(i,j)

wi′j′ = O(|A(i,j)|wij), and condition (7) holds according to (ii). Besides,

∑
(i,j)∈G

wij|A(i,j)|
∑

(i′,j′)∈A(i,j)

wi′j′

=O(
∑

(i,j)∈G

w2
ij|A(i,j)|2)

=O(
N∑
i=1

∑
(i′,j′)∈Gi

w2
i′j′|A(i′,j′)|2)

=O(
N∑
i=1

∑
(i′,j′)∈Gi

w2
i′j′ |Gi|2)

≤O(
∑

(i,j)∈G

w2
ij)N

2α−2

=o(
∑

(i,j)∈G

w2
ijN

0.5).

So 2α− 2 ≤ 0.5, α ≤ 1.25.

Let γGi
denotes the vertex set of Gi/{i},

N∑
i=1

∑
(i′,j′)∈Gi

wi′j′

∑
(i′′,j′′)∈Gi,2

wi′′j′′ ≤
N∑
i=1

∑
(i′,j′)∈Gi

wi′j′

∑
j∈γGi

∑
(i′′,j′′)∈Gj

wi′′j′′

=
N∑
i=1

∑
j∈γGi

∑
(i′,j′)∈Gi

wi′j′

∑
(i′′,j′′)∈Gj

wi′′j′′

= 2
∑

(i,j)∈G

∑
(i′,j′)∈Gi

wi′j′

∑
(i′′,j′′)∈Gj

wi′′j′′

≤ 2
∑

(i,j)∈G

(
∑

(i′,j′)∈A(i,j)

wi′j′)
2

= O(
∑

(i,j)∈G

wij|A(i,j)|
∑

(i′,j′)∈A(i,j)

wi′j′).

So condition (7) implies condition (1).
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By Cauchy-Schwarz inequality and (ii)∑
(i,j)∈G

wij|A(i,j)| ≤
√ ∑

(i,j)∈G

w2
ij|A(i,j)|2|G|

= o((
∑

(i,j)∈G

w2
ij)

0.5N0.25)|G|0.5.

So (i) ensures that condition (5) holds.

∑
(i,j)∈G

∑
(i′,j′)∈A(i,j)

wi′j′ = O(
∑

(i,j)∈G

wij|A(i,j)|)

∑
(i,j)∈G

∑
(i′,j′)∈A(i,j)

wi′j′ =
∑

(i,j)∈G

(
∑

(i′,j′)∈Gi

wi′j′ +
∑

(i′′,j′′)∈Gj

wi′′j′′ − wij)

=
N∑
i=1

∑
j∈γGi

∑
(i′,j′)∈Gj

wi′j′ −
∑

(i,j)∈G

wij

=
N∑
i=1

∑
(i′,j′)∈Gi

wi′j′ |Gi| −
∑

(i,j)∈G

wij.

According to conditions (5) and (iii), condition (2) holds.

Gi,2 ⊂
⋃

j∈γGi

Gj,

N∑
i=1

∑
(i′,j′)∈Gi,2

wi′j′ ≤
N∑
i=1

∑
j∈γGi

∑
(i′,j′)∈Gj

wi′j′

=
∑

(i,j)∈G

(
∑

(i′,j′)∈Gi

wi′j′ +
∑

(i′′,j′′)∈Gj

wi′′j′′)

≤ 2
∑

(i,j)∈G

∑
(i′,j′)∈A(i,j)

wi′j′ = O(
∑

(i,j)∈G

wij|A(i,j)|).
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So condition (5) implies condition (3).∑
(i,j)∈G

wij

∑
(i′,j′)∈B(i,j)

wi′j′ ≤
∑

(i,j)∈G

wij

∑
(i′,j′)∈A(i,j)

∑
(i′′,j′′)∈A(i′,j′)

wi′′j′′

=
∑

(i,j)∈G

wij(
∑

(i′,j′)∈A(i,j)

wi′j′)
2

= O(
∑

(i,j)∈G

wij|A(i,j)|
∑

(i′,j′)∈A(i,j)

wi′j′).

So condition (7) implies condition (6).

Finally, since (
∑

(i,j)∈G
wij)

2 ≤ |G|
∑

(i,j)∈G
w2

ij ,

∑
(i,j)∈G

wij = o(|G|0.5(
∑

(i,j)∈G

w2
ij)

0.5) = o((
∑

(i,j)∈G

w2
ij)

0.5N),

if condition (i) is satisfied.

So we need conditions (i), (iii), (iv), (v).

S7.2 Proof of Lemma 2

VarB(R
w
w)

=
n1n2(n1 − n2)

2

N4(N − 2)2

∑
(i,j),(i,k)∈G

wijwik +
n1n2{n1n2(N − 4) +N}

N3(N − 2)2

∑
(i,j)∈G

w2
ij

=O(
∑

(i,j)∈G

w2
ij),

since

∑
(i,j),(i,k)∈G

wijwik ≤ (
∑

(i,j)∈G

wij)
2 = o(

∑
(i,j)∈G

w2
ijN

2).
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Var(Rw
w) =

n1n2(n1 − 1)(n2 − 1)

N(N − 1)(N − 2)(N − 3)

{ ∑
(i,j)∈G

w2
ij−

1

N − 2
(
∑

(i,j)∈G

w2
ij +

∑
(i,j),(i,k)∈G

wijwik −
4

N

∑
(i,j),(k,l)∈G

wijwkl)−

2

N(N − 1)

∑
(i,j),(k,l)∈G

wijwkl

}
= O(

∑
(i,j)∈G

w2
ij).

So, limN→∞
VarB(Rw

w)
Var(Rw

w)
= c1, where c1 is a constant.

lim
N→∞

VarB(R
w
diff)

Var(Rw
diff)

= lim
N→∞

 ∑
(i,j)∈G

w2
ij +

∑
(i,j),(i,k)∈G

wijwik

 /

 ∑
(i,j)∈G

w2
ij +

∑
(i,j),(i,k)∈G

wijwik −
4

N

∑
(i,j),(k,l)∈G

wijwkl


= c2,

where c2 is a constant, according to condition (v).

Since EB(R
w
w)− E(Rw

w) =
n1n2

N2(N−1)

∑
(i,j)∈Gwij,

lim
N→∞

EB(R
w
w)− E(Rw

w)√
Var(Rw

w)
= lim

N→∞

1

N

∑
(i,j)∈G

wij

c3
√ ∑

(i,j)∈G
w2

ij

,

where c3 is a constant.

From condition (iii)
∑

(i,j)∈Gwij = o((
∑

(i,j)∈Gw2
ij)

0.5N),

lim
N→∞

EB(R
w
w)− E(Rw

w)√
Var(Rw

w)
= 0.

Since EB(R
w
diff)− E(Rw

diff) = 0,

lim
N→∞

EB(R
w
diff)− E(Rw

diff)√
Var(Rw

diff)
= 0.
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We still need to show limN→∞ Cov(Zw, Zdiff) = 0.

Cov(Zw, Zdiff) =
E(Rw

wR
w
diff)− E(Rw

w)E(Rw
diff)√

Var(Rw
w)Var(R

w
diff)

,

E(Rw
wR

w
diff) = S3[q

n2
1(n1 − 1)2

N2(N − 1)2
− p

n2
2(n2 − 1)2

N2(N − 1)2
+

(p− q)
n1n2(n1 − 1)(n2 − 1)

N2(N − 1)2
]

=
(n1 − 1)(n2 − 1)(n1 − n2)

N(N − 1)(N − 2)
S3,

E(Rw
w)E(Rw

diff) = S3[(
n1 − n2

N
)(

n1n2 −N + 1

(N − 1)(N − 2)
)],

where S3 =
∑

(i,j),(k,l)∈G wijwkl.

lim
N→∞

E(Rw
wR

w
diff) =

∑
(i,j),(k,l)∈G

wijwklpnqn(pn − qn),

lim
N→∞

E(Rw
w)E(Rw

diff) =
∑

(i,j),(k,l)∈G

wijwklpnqn(pn − qn).

So limN→∞(E(Rw
wR

w
diff)− E(Rw

w)E(Rw
diff)) = 0.
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