TWO-LEVEL ISOMORPHIC FOLDOVERS DESIGNS Chunyan Wang¹ and Dennis K. J. Lin² ¹Renmin University of China and ²Purdue University ### Supplementary Material The online Supplementary Material includes S1: the proofs of Theorems 1–3 and Corollaries 1 and 2; S2: the optimal foldover matrices for the three 6-IFDs in Table 1; S3: the initial designs of the IFDs in Tables 1–4; S4: the initial designs of the IFDs in Tables C.1 and C.2; and S5: the indicator function of design 10.48. #### S1. Proof of Theorems 1–3 and Corollaries 1 and 2 #### Proof of Theorem 1 Proof. Consider the f-IFD defined by foldover matrix Γ , where $\Gamma = (\gamma_1^T, \dots, \gamma_f^T)^T$, $\gamma_i = (\gamma_{i1}, \dots, \gamma_{ik})$ for $i = 1, \dots, f$, and f is even. Without loss of generality, suppose the f rows of Γ can be paired in row order so that the product of the two rows of each pair is identical. That is, $\gamma_{q_1j}\gamma_{q_2j} = 1$ with $q_1 = 2q - 1$, $q_2 = 2q$ for any $q = 1, \dots, f/2$ and $j = 1, \dots, k$. Then the jth column of the qth pairs is equal or opposite to that of the first pair, in other words, $(\gamma_{q_1j}^T, \gamma_{q_2j}^T)^T = (\gamma_{1j}^T, \gamma_{2j}^T)^T$ or $(\gamma_{q_1j}^T, \gamma_{q_2j}^T)^T = -(\gamma_{1j}^T, \gamma_{2j}^T)^T$ for any $q = 2, \dots, f/2$ and $j = 1, \dots, k$. In this way, the 2-IFD defined by the qth pair is a foldover of that defined by the first pair for any $q = 2 \dots f/2$. According to Corresponding author: Chunyan Wang, Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing 100872, China. E-mail: chunyanwang@ruc.edu.cn. the definition, the f-IFD defined by foldover matrix Γ can be merged into an f/2-IFD, and the foldover matrix is $\hat{\Gamma} = (\hat{\gamma}_{ij})$, an $f/2 \times k$ matrix determined by $$\hat{\gamma}_{ij} = \begin{cases} 1 & i = 1, \\ \gamma_{(2i-1)j} \gamma_{1j} & i = 2, \dots, f/2, j = 1, \dots, k. \end{cases}$$ #### Proof of Theorem 2 *Proof.* As we have discussed \tilde{z} is determined by B, the $u \times f$ matrix consisting of the rows $\{1, 2, 4, \dots, 2^{u-1}\}$ of \tilde{z} . And the (l, i) element of B is equal to the value of lth word of D_0 in the ith foldover. Thus the f-IFD corresponding to \tilde{z} has the foldover matrix $\Gamma = (\gamma_{i,j})_{f \times k}$ with $$\begin{cases} \prod_{v \in w_l} \gamma_{iv} = b_{li} & i = 1, \dots, f, l = 1, \dots, u, \\ \gamma_{iv} = 1 & i = 1, \dots, f, v \in F_0, \end{cases}$$ where $\{w_1, \ldots, w_u\}$ are the basic words of D_0 , b_{li} represents the (l, i) element of B for $i = 1, \ldots, f$, $l = 1, \ldots, u$, and F_0 consists of the first k - u factors of D_0 that can not be generated by its basic words. #### Proof of Theorem 3 *Proof.* Theorem 3 (i) and Theorem 3 (ii) can be easily established by the definitions of PFD and IFD. We now consider Theorem 3 (iii). If D_0 is a g-PFD, then it can be written as $(P_1^T, \ldots, P_g^T)^T$, where P_i is the ith flat. Any f-IFD based on D_0 consists of f foldovers of D_0 , while the sign of each basic column (i.e. the factor in the set F_0 in Theorem 2) remained unchanged in the f foldovers. The f-IFD based on D_0 consists of gf flats in the same family and thus is a (gf)-PFD. In particular, any 2-IFD based on D_0 is a (2g)-PFD. It can be written as $(P_1^T, P_{1'}^T, \ldots, P_g^T, P_{g'}^T)^T$ up to row permutations, where $P_{i'}$ is a foldover of P_i . It is clear that $(P_i, P_{i'}^T)^T$ is a regular design for $i = 1, \ldots, g$, while the g flats $(P_1^T, P_{1'}^T)^T, \ldots, (P_g^T, P_{g'}^T)^T$ are in the same family. Thus, the (2g)-PFD based on D_0 can be reduced into a g-PFD. ## **Proof of Corollary 1** Proof. From Theorem 1, the f-IFD defined by the foldover matrix Γ can be merged into an f/2-IFD if the rows of Γ can be paired so that the product of the two rows of each pair is identical. According to the relationship between the foldover matrix and B matrix of an f-IFD, as presented in Theorem 2, an f-IFD based on B with even f, can be merged into an f/2-IFD if the columns of B can be paired so that the product of the two columns of each pair is identical. ## Proof of Corollary 2 Proof. As discussed in Section 1, since any initial design can be expressed as a g-PFD, every f-IFD is essentially a (gf)-PFD for some $g \leq n$. In this way, two f-IFDs based on different foldovers, say $\tilde{z}_1 = \{h_0, z_1\}$ and $\tilde{z}_2 = \{h_0, z_2\}$, are equivalent if and only if the corresponding (gf)-PFDs are equivalent. Here each \tilde{z}_i is a set of f columns of length 2^u , where $u = k - \log_2(n/g)$ (see Lemma 3). Note that for i = 1, 2, the f-CFD based on $\tilde{z}_i = \{h_0, z_i\}$ corresponds to the (gf)-PFD with flats $\tilde{s}_i = \{h_0, s_i\}$. Here \tilde{s}_i is a set of gf columns of length 2^u . The columns of \tilde{s}_i can be partitioned into f groups of g columns each such that the g columns h_{p_1}, \ldots, h_{p_g} in any group can be obtained from the g columns h_{q_1}, \ldots, h_{q_g} in any other group by multiplying a common column simultaneously, i.e. $\{h_{p_1}, \ldots, h_{p_g}\} = \{h_{q_t}h_{q_1}, \ldots, h_{q_t}h_{q_g}\}$ for some $t \in \{1, \ldots, g\}$. It is worth noting that \tilde{s}_i consists of g columns from g distinct group of \tilde{z}_i . Then following the definition of equivalence, \tilde{s}_1 and \tilde{s}_2 belong to the same group if and only if \tilde{z}_1 and \tilde{z}_2 belong to the same group. According to the Theorem 1 of Wang and Mee (2021), two (gf)-PFDs based on $\tilde{s}_1 = \{h_0, s_1\}$ and $\tilde{s}_2 = \{h_0, s_2\}$ are equivalent (gf)-PFDs (for every given single flat) if and only if \tilde{s}_1 and \tilde{s}_2 belong to the same group. Thus, two f-IFDs based on different foldovers, $\tilde{z}_1 = \{h_0, z_1\}$ and $\tilde{z}_2 = \{h_0, z_2\}$, are equivalent if and only if \tilde{z}_1 and \tilde{z}_2 belong to the same group. ## S2: Optimal foldover matrices for the three 6-IFDs in Table 1 # S3: The initial designs of the IFDs in Tables 1–4. Here we list the initial 16×10 designs of the IFDs in Tables 1, 2 and 3 (i.e. designs 10.44, 10,69 and 10.48), and the initial 32×15 design (denoted as H_{32}) of the 4-IFD in Table 4. | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |----|----|----|----|----|----|----|----|----|----| | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | | | | | | | | | | | | | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | design 10.44: | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |---|----|----|----|----|----|----|----|----|----|----| | | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | | | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | | | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | | | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | | | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | | | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | | | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | | : | i | | | 1 | | | | | | | | | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | | | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | | | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | | | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | | | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | | | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | | | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | design 10.69 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |--|--------------|---------------|---------------|--------------------|----------------------|--------------------|---------------|--------------------|---------------| | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | | - | | | | | | | | | | | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | | | 1 | | | | | | | | | | -1 | 1 | -1 | -1 | 1 | -1 | | -1 | -1 | -1 | | -1 | 1 | -1 | -1
-1 | 1
1 | -1
-1 | 1 | -1
1 | -1
1 | -1
1 | | $\begin{vmatrix} -1 \\ -1 \\ -1 \end{vmatrix}$ | 1 | -1
-1
1 | -1
-1
1 | 1
1
-1 | -1
-1
-1 | 1
-1
1 | -1
1
-1 | -1
1
1 | -1
1
-1 | | -1
-1
-1
-1 | 1
1
-1 | -1
-1
1 | -1
-1
1 | 1
1
-1
-1 | -1
-1
-1
-1 | 1
-1
1
-1 | -1
1
-1 | -1
1
1
-1 | -1
1
-1 | design 10.68: -1 -1 -1-1 -1 -11 1 1 1 1 -1 $H_{32} =$ 1 -1-11 1 1 -1-11 1 1 ## S4: The initial designs of the IFDs in Tables C.1 and C.2 Here we list the unique 12×11 strength-two design (Plackett-Burman design) labeled H_{12} , and five nonisomorphic 16×15 strength-two designs labeled $H_{16.II}$, $H_{16.II}$, $H_{16.II}$, $H_{16.IV}$, $H_{16.V}$. # S5: The indicator function of design 10.48 We provide the indicator function $F(x) = \sum_{V \in \mathcal{P}} b_V X_V(x)$ of design 10.48 in Sun (1993) by listing all $V \in \mathcal{P}$ with coefficient $b_V > 0$, as shown in Table S.1. Table S.1: The indicator function of design 10.48 in Sun (1993). | | | V | | hyr | | | V | | | hv | | | | | V | | | | hv | |---|--------|---------|--------|-----------------|-----|---------------|---------------|--------|---------|------------------|-----|---|--------|--------|--------|---------|---------|----|-----------------| | 1 | 5 | 7 | | $\frac{b_V}{8}$ | 3 | 4 | $\frac{v}{7}$ | 8 | | $\frac{b_V}{16}$ | 1 | 3 | 5 | 6 | 7 | 9 | | | $\frac{b_V}{8}$ | | 1 | 5 | 8 | | 8 | 3 | 4 | 9 | 10 | | 16 | 1 | 3 | 5 | 6 | 7 | 10 | | | 8 | | 1 | 5 | 9 | | 8 | 5 | 6 | 7 | 8 | | 16 | 1 | 3 | 5 | 6 | 8 | 9 | | | 8 | | 1 | 5 | 10 | | -8 | 5 | 6 | 9 | 10 | | 16 | 1 | 3 | 5 | 6 | 8 | 10 | | | 8 | | 1 | 6 | 7 | | 8 | 7 | 8 | 9 | 10 | | 16 | 1 | 3 | 5 | 7 | 9 | 10 | | | -8 | | 1 | 6 | 8 | | 8 | 1 | 2 | 3 | 5 | 9 | 8 | 1 | 3 | 5 | 8 | 9 | 10 | | | 8 | | 1 | 6 | 9 | | -8 | 1 | 2 | 3 | 5 | 10 | 8 | 1 | 3 | 6 | 7 | 9 | 10 | | | 8 | | 1 | 6 | 10 | | 8 | 1 | 2 | 3 | 6 | 9 | 8 | 1 | 3 | 6 | 8 | 9 | 10 | | | -8 | | 2 | 5 | 7 | | 8 | 1 | 2 | 3 | 6 | 10 | 8 | 1 | 4 | 5 | 6 | 7 | 9 | | | 8 | | 2 | 5 | 8 | | 8 | 1 | 2 | 3 | 7 | 9 | -8 | 1 | 4 | 5 | 6 | 7 | 10 | | | 8 | | 2 | 5 | 9 | | -8 | 1 | 2 | 3 | 7 | 10 | 8 | 1 | 4 | 5 | 6 | 8 | 9 | | | 8 | | 2 | 5 | 10 | | 8 | 1 | 2 | 3 | 8 | 9 | 8 | 1 | 4 | 5 | 6 | 8 | 10 | | | 8 | | 2 | 6 | 7 | | 8 | 1 | 2 | 3 | 8 | 10 | -8 | 1 | 4 | 5 | 7 | 9 | 10 | | | 8 | | 2 | 6 | 8 | | 8 | 1 | 2 | 4 | 5 | 9 | 8 | 1 | 4 | 5 | 8 | 9 | 10 | | | -8 | | 2 | 6 | 9 | | 8 | 1 | 2 | 4 | 5 | 10 | 8 | 1 | 4 | 6 | 7 | 9 | 10 | | | -8 | | 2 | 6 | 10 | | -8 | 1 | 2 | 4 | 6 | 9 | 8 | 1 | 4 | 6 | 8 | 9 | 10 | | | 8 | | 3 | 5
5 | 9
10 | | 8 | 1 | $\frac{2}{2}$ | 4 | 6
7 | 10 | 8 | 2 2 | 3 | 5
5 | 6 | 7
7 | 9
10 | | | 8 | | 3 | 6 | 9 | | 8 | 1 | 2 | 4 | 7 | 9
10 | 8
-8 | 2 | 3 | 5
5 | 6
6 | 8 | 9 | | | 8
8 | | 3 | 6 | 10 | | 8 | 1 | 2 | 4 | 8 | 9 | -8 | 2 | 3 | 5
5 | 6 | 8 | 10 | | | 8 | | 3 | 7 | 9 | | 8 | 1 | 2 | 4 | 8 | 10 | 8 | 2 | 3 | 5 | 7 | 9 | 10 | | | 8 | | 3 | 7 | 10 | | -8 | 1 | 3 | 4 | 5 | 7 | 8 | 2 | 3 | 5 | 8 | 9 | 10 | | | -8 | | 3 | 8 | 9 | | -8 | 1 | 3 | 4 | 5 | 8 | 8 | 2 | 3 | 6 | 7 | 9 | 10 | | | -8 | | 3 | 8 | 10 | | 8 | 1 | 3 | 4 | 5 | 9 | -8 | 2 | 3 | 6 | 8 | 9 | 10 | | | 8 | | 4 | 5 | 9 | | 8 | 1 | 3 | 4 | 5 | 10 | 8 | 2 | 4 | 5 | 6 | 7 | 9 | | | 8 | | 4 | 5 | 10 | | 8 | 1 | 3 | 4 | 6 | 7 | 8 | 2 | 4 | 5 | 6 | 7 | 10 | | | 8 | | 4 | 6 | 9 | | 8 | 1 | 3 | 4 | 6 | 8 | 8 | 2 | 4 | 5 | 6 | 8 | 9 | | | 8 | | 4 | 6 | 10 | | 8 | 1 | 3 | 4 | 6 | 9 | 8 | 2 | 4 | 5 | 6 | 8 | 10 | | | 8 | | 4 | 7 | 9 | | -8 | 1 | 3 | 4 | 6 | 10 | -8 | 2 | 4 | 5 | 7 | 9 | 10 | | | -8 | | 4 | 7 | 10 | | 8 | 1 | 5 | 7 | 8 | 9 | -8 | 2 | 4 | 5 | 8 | 9 | 10 | | | 8 | | 4 | 8 | 9 | | 8 | 1 | 5 | 7 | 8 | 10 | 8 | 2 | 4 | 6 | 7 | 9 | 10 | | | 8 | | 4 | 8 | 10 | | -8 | 1 | 5 | 7 | 9 | 10 | 8 | 2 | 4 | 6 | 8 | 9 | 10 | | | -8 | | 1 | 2 | 3 | 4 | 16 | 1 | 5 | 8 | 9 | 10 | 8 | 1 | 2 | 3 | 5 | 6 | 7 | 9 | | 8 | | 1 | 2 | 5 | 6 | 16 | 1 | 6 | 7 | 8 | 9 | 8 | 1 | 2 | 3 | 5 | 6 | 7 | 10 | | -8 | | 1 | 2 | 7 | 8 | 16 | 1 | 6 | 7 | 8 | 10 | -8 | 1 | 2 | 3 | 5 | 6 | 8 | 9 | | -8 | | 1 | 2 | 9 | 10 | 16 | 1 | 6 | 7 | 9 | 10 | 8 | 1 | 2 | 3 | 5 | 6 | 8 | 10 | | 8 | | 1 | 3 | 5 | 7 | 8 | 1 2 | 6 | 8 | 9
5 | 10
7 | 8 | 1 1 | 2 | 3 | 5 | 7
7 | 8 | 9 | | 8 | | 1 | 3 | 5
6 | 8
7 | -8
-8 | 2 | 3
3 | 4 | э
5 | 8 | 8 | 1 | 2 | 3 | 5
6 | 7 | 8 | 10
9 | | 8
8 | | 1 | 3 | 6 | 8 | 8 | 2 | 3 | 4 | 5 | 9 | 8 | 1 | 2 | 3 | 6 | 7 | 8 | 10 | | 8 | | 1 | 3 | 7 | 9 | 8 | 2 | 3 | 4 | 5 | 10 | -8 | 1 | 2 | 4 | 5 | 6 | 7 | 9 | | -8 | | 1 | 3 | 7 | 10 | 8 | 2 | 3 | 4 | 6 | 7 | 8 | 1 | 2 | 4 | 5 | 6 | 7 | 10 | | 8 | | 1 | 3 | 8 | 9 | 8 | 2 | 3 | 4 | 6 | 8 | 8 | 1 | 2 | 4 | 5 | 6 | 8 | 9 | | 8 | | 1 | 3 | 8 | 10 | 8 | 2 | 3 | 4 | 6 | 9 | -8 | 1 | 2 | 4 | 5 | 6 | 8 | 10 | | -8 | | 1 | 4 | 5 | 7 | -8 | 2 | 3 | 4 | 6 | 10 | 8 | 1 | 2 | 4 | 5 | 7 | 8 | 9 | | 8 | | 1 | 4 | 5 | 8 | 8 | 2 | 5 | 7 | 8 | 9 | 8 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | | 8 | | 1 | 4 | 6 | 7 | 8 | 2 | 5 | 7 | 8 | 10 | -8 | 1 | 2 | 4 | 6 | 7 | 8 | 9 | | 8 | | 1 | 4 | 6 | 8 | -8 | 2 | 5 | 7 | 9 | 10 | 8 | 1 | 2 | 4 | 6 | 7 | 8 | 10 | | 8 | | 1 | 4 | 7 | 9 | 8 | 2 | 5 | 8 | 9 | 10 | 8 | 1 | 3 | 4 | 5 | 7 | 8 | 9 | | 8 | | 1 | 4 | 7 | 10 | 8 | 2 | 6 | 7 | 8 | 9 | -8 | 1 | 3 | 4 | 5 | 7 | 8 | 10 | | -8 | | 1 | 4 | 8 | 9 | 8 | 2 | 6 | 7 | 8 | 10 | 8 | 1 | 3 | 4 | 5 | 7 | 9 | 10 | | 8 | | 1 | 4 | 8 | 10 | 8 | 2 | 6 | 7 | 9 | 10 | 8 | 1 | 3 | 4 | 5 | 8 | 9 | 10 | | 8 | | 2 | 3 | 5 | 7 | -8 | 2 | 6 | 8 | 9 | 10 | 8 | 1 | 3 | 4 | 6 | 7 | 8 | 9 | | -8 | | 2 | 3 | 5 | 8 | 8 | 3 | 5 | 6 | 7 | 9 | -8 | 1 | 3 | 4 | 6 | 7 | 8 | 10 | | 8 | | 2 | 3 | 6 | 7 | 8 | 3 | 5 | 6 | 7 | 10 | 8 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | | 8 | | 2 | 3 | 6 | 8 | -8 | 3 | 5 | 6 | 8 | 9 | 8 | 1 | 3 | 4 | 6 | 8 | 9 | 10 | | 8 | | 2 | 3 | 7 | 9 | 8 | 3 | 5 | 6 | 8 | 10 | -8 | 2 | 3 | 4 | 5 | 7 | 8 | 9 | | -8 | | 2 | 3 | 7 | 10 | 8 | 3 | 5 | 7 | 8 | 9 | 8 | 2 | 3 | 4 | 5 | 7 | 8 | 10 | | 8 | | 2 | 3 | 8 | 9 | 8 | 3 | 5 | 7 | 8 | 10 | 8 | 2 | 3 | 4 | 5 | 7 | 9 | 10 | | 8 | | 2 | 3
4 | 8 | 10 | 8 | 3 | 6 | 7
7 | 8 | 9 | 8 | 2 2 | 3 | 4 | 5 | 8 | 9
8 | 10 | | 8 | | 2 | 4 | 5
5 | 7 | 8 | 4 | 6 | | 8
7 | 10
9 | 8 | 2 2 | | 4 | 6 | 7
7 | 8 | 9
10 | | 8 | | 2 | 4 | 6 | 8
7 | -8
-8 | 4 | 5
5 | 6
6 | 7 | 10 | 8
-8 | 2 2 | 3 | 4 | 6
6 | 7 | 9 | 10 | | -8
8 | | 2 | 4 | 6 | 8 | -8
8 | 4 | о
5 | 6 | 8 | 9 | -8
-8 | 2 2 | 3 | 4 | 6 | 8 | 9 | 10 | | 8 | | 2 | 4 | 7 | 9 | 8 | 4 | 5
5 | 6 | 8 | 10 | -8
8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 16 | | 2 | 4 | 7 | 10 | 8 | 4 | 5 | 7 | 8 | 9 | 8 | 1 | 2 | 3 | 4 | 5 | 6 | 9 | 10 | 16 | | 2 | 4 | 8 | 9 | 8 | 4 | 5 | 7 | 8 | 10 | 8 | 1 | 2 | 3 | 4 | 7 | 8 | 9 | 10 | 16 | | 2 | 4 | 8 | 10 | 8 | 4 | 6 | 7 | 8 | 9 | 8 | 1 | 2 | 5 | 6 | 7 | 8 | 9 | 10 | 16 | | | | 5 | 6 | 16 | 4 | 6 | 7 | 8 | 10 | 8 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 16 |