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Section A - G contain the proofs of lemmas, propositions and theorems. Section H

contains additional simulation results of Section 4.

A. Proof of Lemma 1

The proof follows the same argument as in the proof the (Huang et al., 2023, Theorem 1 )

and we only need to generalize the multivariate result therein to a functional version. We

omit the proof here for simplicity.

B. Proof of Proposition 1

Suppose H is any integer greater than the constant K in Assumption 2.
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**Corresponding author.
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For any u ∈ SH, it holds that

〈Γe(u),u〉 =
∫

(E[〈X,u〉 | Y = y])2dPY (y) =
∑

h:Sh∈SH(n)

∫
Sh

(E[〈X,u〉 | Y = y])2dPY (y)

=
∑

h:Sh∈SH(n)

P(Y ∈ Sh)E
(
(E[〈X,u〉 | Y = y])2 | Y ∈ Sh

)
=

∑
h:Sh∈SH(n)

δhE[m2(u) | Y ∈ Sh]

(B.1)

where δh := P(Y ∈ Sh) and m(u) := 〈m(Y ),u〉. Furthermore, it holds that

〈(mh ⊗mh(u),u〉 = E2[m(u) | Y ∈ Sh] = E[m2(u) | Y ∈ Sh]− var(m(u) | Y ∈ Sh).

(B.2)

For any γ-partition SH(n) := {Sh, h = 1, .., H}, it holds that

∣∣∣〈(Γ̃e − Γe

)
(u),u

〉∣∣∣ =
∣∣∣∣∣∣ 1H

∑
h:Sh∈SH(n)

〈(mh ⊗mh(u),u〉 −
∑

h:Sh∈SH(n)

δhE[m2(u) | Y ∈ Sh]

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣
∑

h:Sh∈SH(n)

(
1

H
− δh)E(m2(u) | Y ∈ Sh)

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1H

∑
h:Sh∈SH(n)

var(m(u) | Y ∈ Sh)

∣∣∣∣∣∣
⩽ 1

τ − 1

∣∣∣∣∣∣
∑

h:Sh∈SH(n)

δhE[m2(u) | Y ∈ Sh]

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1H

∑
h:Sh∈SH(n)

var(m(u) | Y ∈ Sh)

∣∣∣∣∣∣
⩽2

τ
〈Γe(u),u〉+

∣∣∣∣∣∣ 1H
∑

h:Sh∈SH(n)

var(m(u) | Y ∈ Sh)

∣∣∣∣∣∣
⩽3

τ
〈Γe(u),u〉 ,

where the first inequality is due to (B.2), the second inequality is because 1− γ ⩽ Hδh since

SH(n) is a γ-partition, the third is because γ ⩽ 1
τ
, and the last is due to the Assumption 2.

Recall Lemma 18, which states that there is some H ′ and C such that for any H > H ′
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and n > 4H
γ

+ 1, the sample sliced partition is a γ-partition with probability at least

1− CH2
√
n+ 1 exp

(
−γ2(n+ 1)

32H2

)

for some absolute constant C. Then the proof is completed by choosing H0 := max{H ′, K}.

C. Proof of Lemma 2

By Proposition 1, the first statement in Lemma 2 is a direct corollary of the second one.

Now we begin to prove the second statement.

Define an event E as follows:

E := {SH(n) is a γ-partition}. (C.1)

From the proof of Proposition 1, we know that

P(E) ⩾ 1− CH2
√
n+ 1 exp

(
−γ2(n+ 1)

32H2

)
.

and we have the following lemma.

Lemma 3. Under WSSC, on the event E, the following holds:

∣∣∣〈(Γ̃e − Γe

)
(u),u

〉∣∣∣ ⩽ 3

τ
〈Γe(u),u〉 , ∀u ∈ SH.

The rest of our effort will be devoted to establishing the following lemma, which directly
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implies the second statement in Lemma 2.

Lemma 4. Suppose that Assumptions 2 and 3 hold. For any fixed integer H > H0 (H0 is

defined in Proposition 1) and any sufficiently large n > 1 + 4H/γ, we have

E
[
1E

∥∥∥Γ̂e − Γ̃e

∥∥∥2] ≲ H2

n
.

Proof of Lemma 4. For any u ∈ SH, let u :=
∑

j⩾1 bjϕj with
∑

j⩾1 b
2
j = 1 where {ϕj}∞j=1 is

the eigenfunctions of Γ. Then we have

〈(Γ̂e − Γ̃e)u,u〉 =
∑
i,j⩾1

bibj〈(Γ̂e − Γ̃e)ϕi, ϕj〉

⩽
(∑

i,j⩾1

b2i b
2
j

)1
2
(∑

i,j⩾1

〈(Γ̂e − Γ̃e)ϕi, ϕj〉2
)1

2

=

(∑
i,j⩾1

〈(Γ̂e − Γ̃e)ϕi, ϕj〉2
)1

2

.

It shows that
∥∥∥Γ̂e − Γ̃e

∥∥∥ ⩽
(∑

i,j⩾1〈(Γ̂e − Γ̃e)ϕi, ϕj〉2
)1

2 .

Let ξhj := 〈mh, ϕj〉 and ξ̂hj := 〈Xh,·, ϕj〉. The operators Γ̂e and Γ̃e can be written as

Γ̂e =
1

H

∑
h:Sh∈SH(n)

(∑
j⩾1

ξ̂hjϕj

)
⊗

(∑
j⩾1

ξ̂hjϕj

)
,

Γ̃e =
1

H

∑
h:Sh∈SH(n)

(∑
j⩾1

ξhjϕj

)
⊗

(∑
j⩾1

ξhjϕj

)
,
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respectively. Now we obtain

∑
i,j⩾1

〈(Γ̂e − Γ̃e)ϕi, ϕj〉2 ⩽
1

H

∑
i,j⩾1

∑
h:Sh∈SH(n)

(
ξ̂hiξ̂hj − ξhiξhj

)2
=

1

H

∑
i,j⩾1

∑
h:Sh∈SH(n)

(
(ξ̂hi − ξhi)(ξ̂hj − ξhj) + ξhj(ξ̂hi − ξhi) + ξhi(ξ̂hj − ξhj)

)2
.

The lemma is proved if we can show that for any h,

A := E

[
1E
∑
i,j⩾1

(
(ξ̂hi − ξhi)(ξ̂hj − ξhj) + ξhj(ξ̂hi − ξhi) + ξhi(ξ̂hj − ξhj)

)2]
⩽ C ′H2

n

for some positive constant C ′.

Note that

E

[
1E
∑
i,j⩾1

(
(ξ̂hi − ξhi)(ξ̂hj − ξhj) + ξhj(ξ̂hi − ξhi) + ξhi(ξ̂hj − ξhj)

)2]

⩽3E

[
1E
∑
i,j⩾1

(ξ̂hi − ξhi)
2(ξ̂hj − ξhj)

2 + ξ2hj(ξ̂hi − ξhi)
2 + ξ2hi(ξ̂hj − ξhj)

2

]

=3E

[
1E
∑
i,j⩾1

(ξ̂hi − ξhi)
2(ξ̂hj − ξhj)

2

]
+ 6E

[
1E
∑
i,j⩾1

ξ2hj(ξ̂hi − ξhi)
2

]

:=3I + 6II.

We first bound the term II. Recall that 〈X, ϕj〉 = ξj, ∀j. Then there exists a constant

C1 > 0, such that for all j ⩾ 1, we have

1Eξ
2
hj = 1EE2[ξj|Y ∈ Sh]

(a)

⩽ 1EE[ξ2j |Y ∈ Sh]
(b)

⩽ 1EE1/2[ξ4j |Y ∈ Sh]
(c)

⩽ C1

√
HE1/2[ξ4j ]

(d)

⩽ C
√
Hλj

(C.2)
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where we have used Jensen inequality for conditional expectation in (a) and (b), Lemma 19

in (c), and Assumption 3 in (d).

Assume Xh,j =
∑∞

i=1 ξh,j,iϕi, then one has

E[1E(ξ̂hi − ξhi)
2] =E[1E〈

1

c

c∑
j=1

Xh,j − E[X|Y ∈ Sh], ϕi〉2]

=E[1E(
1

c

c∑
j=1

ξh,j,i − E[ξi|Y ∈ Sh])
2]

=E[1E(
1

c− 1

c−1∑
j=1

ξh,j,i − E[1Eξi|Y ∈ Sh] +
ξh,c,i
c

− 1

c(c− 1)

c−1∑
j=1

ξh,j,i)
2]

≲E[1E(
1

c− 1

c−1∑
j=1

ξh,j,i − E[1Eξi|Y ∈ Sh])
2] +

1

c2
E[1Eξ2h,c,i] +

1

c2(c− 1)
E[1E

c−1∑
j=1

ξ2h,j,i]

(a)

⩽ 1

c− 1
E[1Eξ2h,1,i] +

1

c2
E[1Eξ2h,1,i] +

1

c2
E[1Eξ2h,1,i]

≲ 1

c− 1
E[1Eξ2h,1,i]

(b)

⩽ 1

c− 1
E1/2[1Eξ

4
h,1,i]

(c)

≲ 1

c− 1

√
HE1/2[ξ4i ]

(d)

⩽ 1

c− 1

√
Hλi ⩽ C ′

1H
3/2λi/n,

where we have used Jensen inequality for conditional expectation in (b), Lemma 19 in

(c), and Assumption 3 in (d). Furthermore, (a) is based on Lemma 17 and the following

derivation:
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E[(
1

c− 1

c−1∑
j=1

ξh,j,i − E[ξi|Y ∈ Sh])
2]

= E

[
E[(

1

c− 1

c−1∑
j=1

ξh,j,i − E[ξi|Y ∈ Sh])
2 | {Sh′}Hh′=1]

]

= E
[

1

c− 1
var[ξh,1,i | {Sh′}Hh′=1] | {Sh′}Hh′=1

]
⩽ 1

c− 1
E[ξ2h,1,i].

Thus

II ⩽
∑
i,j⩾1

C1H
2λiλj

n
(C.3)

for some sufficiently large C1.

Next we handle the term I. From (C.2) and Cauchy-Schwarz inequality, one has:

1E |E[ξ3i |Y ∈ Sh]| ⩽ CH3/4λ
3/2
i . By direct calculation of fourth moment (see, e.g., (Angelova,

2012, Theorem 1)), one has

E[1E(ξ̂hi − ξhi)
4] ⩽ CE[1E(

1

c− 1

c−1∑
j=1

ξh,j,i − E[ξi|Y ∈ Sh])
4] ⩽ C

H3λ2
i

n2
⩽ C

H2λ2
i

n
.

We get

I =E

[
1E
∑
i,j⩾1

(ξ̂hi − ξhi)
2(ξ̂hj − ξhj)

2

]

⩽
∑
i,j⩾1

E
1
2

[
1E(ξ̂hi − ξhi)

4
]
E

1
2

[
1E(ξ̂hj − ξhj)

4
]

⩽
∑
i,j⩾1

C2H
2λiλj

n
.

(C.4)

Since Γ has a finite trace, we can take C ′ = 6
∑

i,j⩾1(C1 +C2)λiλj < ∞. Then by Equations
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(C.3) and (C.4), we have

A ⩽ C ′H2

n

as required.

D. Proof of Theorem 1

We first provide the following lemma.

Lemma 5. Suppose Assumption 2 holds with τ > 6∥Γe∥
λ+
min(Γe)

. On the event E, we have Im(Γe) =

Im(Γ̃e) and λ+
min(Γ̃e) = λd(Γ̃e) ⩾ λd(Γe)

2
.

Proof. Recall that Γ̃e :=
1
H

∑
h:Sh∈SH(n) mh⊗mh and mh := E[m(Y ) | Y ∈ Sh] = E[X|Y ∈

Sh]. Note that mh ∈ Se = Im(Γe) for all h = 1, . . . , H . Thus, Im(Γ̃e) ⊆ Im(Γe).

Next we prove by contradiction that Im(Γe) ⊆ Im(Γ̃e). Assume that there exists a vector

u ∈ SH such that Γeu 6= 0 and Γ̃eu = 0. Since τ > 6∥Γe∥
λ+
min(Γe)

and the event E happens, we

have

‖Γe(u)‖ = ‖(Γe − Γ̃e)(u)‖ ⩽ 3

τ
‖Γe‖ ⩽ λ+

min(Γe)

2
,

where the first inequality comes from Lemma 3. This is a contradiction because 0 <

λ+
min(Γe) ⩽ ‖Γe(u)‖. Thus Im(Γe) = Im(Γ̃e) and rank(Γ̃e) = rank(Γe) = d. By Lemma

21, we have

|λd(Γ̃e)− λd(Γe)| ⩽ ‖Γ̃e − Γ‖ ⩽ 3

τ
‖Γe‖ ⩽ λd(Γe)

2
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where the second inequality comes from Proposition 1.

Under the condition of Theorem 1 with τ > 6∥Γe∥
λ+
min(Γe)

and the event E, then Im(Γ̃e) =

Im(Γe) and thus rank(Γ̃e) = rank(Γe) = d. Let {µ̂i}di=1 be the d largest eigenvalues of Γ̂e

with associated eigenfunctions {v̂i}di=1. Define

Γ̂d
e :=

d∑
i=1

µ̂iv̂i ⊗ v̂i. (D.1)

We first prove that

E
[∥∥∥Γ̂d

e − Γ̃e

∥∥∥2 1E] ≲ H2

n
.

Using Lemma 21, one can get λ2
i

(
Γ̂e

)
⩽ 2

(∥∥∥Γ̂e − Γ̃e

∥∥∥2 + λ2
i

(
Γ̃e

))
. Since rank(Γ̃e) = d,

one can get λi(Γ̃e) = 0, i ⩾ d + 1. Thus by Lemma 4, one has E
[
1E

∥∥∥Γ̂e − Γ̃e

∥∥∥2] ≲ H2

n
,

which implies

E
[∣∣∣λi

(
Γ̂e

)∣∣∣2 1E] ≲ H2

n
(i ⩾ d+ 1).

Furthermore,

E
[∥∥∥Γ̂d

e − Γ̃e

∥∥∥2 1E] ⩽ 2

(
E
[∥∥∥Γ̃e − Γ̂e

∥∥∥2 1E + ∥∥∥Γ̂e − Γ̂d
e

∥∥∥2 1E])
=2E

[∥∥∥Γ̃e − Γ̂e

∥∥∥2 1E + λ2
d+1(Γ̂e)1E

]
≲ H2

n
.

By Lemma 5, we have λ+
min(Γ̃e) ⩾ λd(Γe)/2.
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By Markov inequality, we have

P(|λd(Γ̂
d
e)− λd(Γ̃e)|1E ⩽

λd(Γ̃e)

2
) ⩾ P(|λd(Γ̂

d
e)− λd(Γ̃e)|1E ⩽

λd(Γe)

4
)

⩾1− E[|λd(Γ̂
d
e)− λd(Γ̃e)|21E]
λ2
d(Γe)/16

⩾1− E[‖Γ̂d
e − Γ̃e‖21E]

λ2
d(Γe)/16

⩾ 1− C ′H
2

n

for some constant C ′ > 0. Define F̃ := {|λd(Γ̂
d
e) − λd(Γ̃e)|1E ⩽ λd(Γ̃e)

2
}, we know under the

event E∩F̃, it hold that λd(Γ̂
d
e) ⩾ λd(Γ̃e)/2 ⩾ λd(Γe)/4. Thus we have min

{
λ+
min(Γ̂

d
e), λ

+
min(Γ̃e)

}
1E∩F̃ ⩾

λd(Γe)/4.

Then Applying sinΘ theorem (Lemma 20), we have

E
[∥∥PŜe

− PSe

∥∥2 1E∩F̃] ≲ E
[∥∥∥Γ̂d

e − Γ̃e

∥∥∥2 1E∩F̃]
min

{
λ+
min(Γ̂

d
e), λ

+
min(Γ̃e)

}2

1E∩F̃

≲ H2

n
.

Thus

E
[∥∥PŜe

− PSe

∥∥2] =E
[∥∥PŜe

− PSe

∥∥2 1E∩F̃]+ E
[∥∥PŜe

− PSe

∥∥2 1(E∩F̃)c]
≲H2

n
+ dCH2

√
n+ 1 exp

(
−γ2(n+ 1)

32H2

)
≲H2

n
.
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E. Proof of Theorem 2

By Markov inequality and E[|λ̂j − λj|2] ≲ 1
n
(see e.g., Equation (5.26) in Hall and Horowitz

(2007)), we have

P(|λ̂j − λj| ⩽
λj

2
) ⩾ 1− E[|λ̂j − λj|2]

λ2
j/4

⩾ 1− Cj2α

n
.

Define

F :=

{
λi

2
⩽ λ̂i ⩽

3λi

2
, ∀i ∈ [m]

}
=

{
|λ̂i − λi| ⩽

λi

2
, ∀i ∈ [m]

}
. (E.1)

Then we have P(F) ⩾ 1− m2α+1

n
.

We first need a preparatory theorem.

E.1 A preparatory theorem

Theorem 4. With the same conditions as in Theorem 2, we have

E
[∥∥∥Γ̂†

mΓ̂e − Γ†
mΓ̃e

∥∥∥ 1E∩F] ≲ Hn
−(2β−1)
2(α+2β) .

Proof. We can decompose Γ̂†
mΓ̂e − Γ†

mΓ̃e as follows:

Γ̂†
mΓ̂e − Γ†

mΓ̃e

=Γ†
m

(
Γ̂e − Γ̃e

)
+ (Γ̂†

m − Γ†
m)Γ̃e +

(
Γ̂†
m − Γ†

m

)(
Γ̂e − Γ̃e

)
:=B1 +B2 +B3.

(E.2)
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E.1 A preparatory theorem

Then our theorem is derived directly by the next proposition.

Proposition 2. With the same conditions as in Theorem 2, we have

(1). E[‖B1‖2 1E] = E
[∥∥∥Γ†

m

(
Γ̂e − Γ̃e

)∥∥∥2 1E] ≲ H2mα+1

n
≲ H2n

−(2β−1)
(α+2β) ;

(2). E[‖B2‖2 1E] = E
[∥∥∥(Γ̂†

m − Γ†
m

)
Γ̃e

∥∥∥2 1E] ≲ H2mα+1

n
≲ H2n

−(2β−1)
(α+2β) ;

(3). E[‖B3‖ 1E∩F] = E
[∥∥∥(Γ̂†

m − Γ†
m

)(
Γ̂e − Γ̃e

)∥∥∥ 1E∩F] ≲ Hm(α+1)/2
√
n

≲ Hn
−(2β−1)
2(α+2β) .

Proof of Proposition 2-(1). For any u =
∑

i⩾1 biϕi ∈ SH with
∑

i⩾1 b
2
i = 1, we have

∥∥∥Γ†
m

(
Γ̂e − Γ̃e

)
u
∥∥∥2 = ∞∑

j=1

〈
Γ†
m

(
Γ̂e − Γ̃e

)
u, ϕj

〉2
=

∞∑
j=1

(
∞∑
i=1

bi

〈(
Γ̂e − Γ̃e

)
(ϕi),Γ

†
mϕj

〉)2

⩽
∞∑
j=1

(
∞∑
i=1

b2i

∞∑
i=1

〈(
Γ̂e − Γ̃e

)
(ϕi),Γ

†
mϕj

〉2)

=
∑
i,j⩾1

〈(
Γ̂e − Γ̃e

)
ϕi,Γ

†
mϕj

〉2
=

m∑
j=1

1

λ2
j

∑
i⩾1

〈(
Γ̂e − Γ̃e

)
ϕi, ϕj

〉2
.

Then we obtain

∥∥∥Γ†
m

(
Γ̂e − Γ̃e

)∥∥∥2 ⩽ m∑
j=1

1

λ2
j

∑
i⩾1

〈(
Γ̂e − Γ̃e

)
ϕi, ϕj

〉2
.

12



E.1 A preparatory theorem

By the proof of Lemma 4, we see that there exists some constant C > 0, such that

E

[
1E

m∑
j=1

1

λ2
j

∑
i⩾1

〈(
Γ̂e − Γ̃e

)
ϕi, ϕj

〉2]
⩽

m∑
j=1

1

λ2
j

∑
i⩾1

CH2λiλj

n

= CH2

m∑
j=1

1

λjn

∑
i⩾1

λi

⩽ C ′CH2mα+1

n
,

where the last inequality comes from λj ⩾ Cj−α by Assumption 4. It implies that E[1E ‖B1‖2] ≲

H2mα+1

n
≲ H2n

−(2β−1)
α+2β .

Proof of Proposition 2-(2). We can reformulate B2 to

B2 =
(
Γ̂†
m − Γ†

m

)
Γ̃e =

(
Γ̂†
m − Γ†

m

)
ΓΓ−1Γ̃e.

When E happens, it holds that Im(Γe) = Im(Γ̃e). For any u ∈ H with ‖u‖ = 1, we can

write

Γ−1Γ̃e(u) =
d∑

k=1

ckηk

with |ck| ⩽
∥∥∥Γ−1Γ̃e

∥∥∥ for all k = 1, . . . , d and {ηk}dk=1 are the generalized eigenfunctions of Γe

associated with eigenvalues {µk}dk=1 (i.e., Γeηk = µkΓηk).

We conclude that

‖B2‖2 1E ⩽ d
d∑

k=1

∥∥∥Γ−1Γ̃e

∥∥∥2 1E ∥∥∥(Γ̂†
m − Γ†

m)Γηk

∥∥∥2 1E.
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E.1 A preparatory theorem

Now we need two lemmas:

Lemma 6.

E
[∥∥∥(Γ̂†

m − Γ†
m)Γηk

∥∥∥2 1E] ≲ H2mα+1

n
, k = 1, . . . , d. (E.3)

Proof. We first decompose
(
Γ̂†
m − Γ†

m

)
Γηk as follows:

(
Γ̂†
m − Γ†

m

)
Γηk = Γ̂†

m(Γ̂ + (Γ− Γ̂))(η̂k + (ηk − η̂k))− Γ†
mΓηk

= Γ̂†
mΓ̂η̂k − Γ†

mΓηk + Γ̂†
mΓ̂(ηk − η̂k) + Γ̂†

m(Γ− Γ̂)ηk.

(E.4)

Suppose ηk =
∑

j⩾1 bkjϕj and η̂k =
∑

j⩾1 bkjϕ̂j. Let η(m)
k =

∑m
j=1 bkjϕj and η̂

(m)
k =

∑m
j=1 bkjϕ̂j.

Recall that we have introduced the notation Πm :=
∑m

i=1 ϕi ⊗ ϕi and Π̂m :=
∑m

i=1 ϕ̂i ⊗ ϕ̂i,

then it holds that Γ̂†
mΓ̂η̂k = Π̂mη̂k = η̂

(m)
k and similarly, Γ†

mΓηk = Πmηk = η
(m)
k . In addition,

Γ̂†
mΓ̂η̂k = Γ̂†

mΓ̂η̂
(m)
k . Thus,

Γ̂†
mΓ̂η̂k − Γ†

mΓηk + Γ̂†
mΓ̂(ηk − η̂k) = η̂

(m)
k − η

(m)
k + Γ̂†

mΓ̂(ηk − η̂
(m)
k ).

Insert this equality into (E.4), we have

(
Γ̂†
m − Γ†

m

)
Γηk = η̂

(m)
k − η

(m)
k − Γ̂†

mΓ̂(η̂
(m)
k − η

(m)
k + η

(m)
k − ηk) + Γ̂†

m(Γ− Γ̂)ηk

= (I − Πm)(η̂
(m)
k − η

(m)
k )− Π̂m(η

(m)
k − ηk) + Γ̂†

m(Γ− Γ̂)ηk

(E.5)

where I is the identity operator.

We first find a bound for

‖(I − Πm)(η̂
(m)
k − η

(m)
k )‖ ⩽ ‖η̂(m)

k − η
(m)
k ‖.

14



E.1 A preparatory theorem

Note that

η̂
(m)
k − η

(m)
k =

m∑
j=1

bkj(ϕ̂j − ϕj). (E.6)

It reduces to analyzing
∥∥∥ϕ̂j − ϕj

∥∥∥. Note that our predictor X satisfies the assumptions in

(Hall and Horowitz, 2007). By Equation (5.22) of (Hall and Horowitz, 2007), we have

E
[∥∥∥ϕ̂j − ϕj

∥∥∥2] ≲ j2/n (E.7)

uniformly in 1 ⩽ j ⩽ m. Substituting it into Equation (E.6) and using Cauchy–Schwarz

inequality, we obtain

E
[∥∥∥η̂(m)

k − η
(m)
k

∥∥∥2] = E

∥∥∥∥∥
m∑
j=1

bkj(ϕ̂j − ϕj)

∥∥∥∥∥
2


≲ 1

n

m∑
j=1

mj−2βj2 ⩽ m

n

∞∑
j=1

j2−2β ≲ m

n
≲ mα+1

n

by Assumption 4. Then we have

E
[
‖(I − Πm)(η̂

(m)
k − η

(m)
k )‖2

]
≲ mα+1

n
.

Next, we bound ‖Π̂m(η
(m)
k − ηk)‖ as follows:

∥∥∥Π̂m(η
(m)
k − ηk)

∥∥∥2 = ∥∥∥∥∥Π̂m

∞∑
j=m+1

bkjϕj

∥∥∥∥∥
2

⩽
∥∥∥∥∥

∞∑
j=m+1

bkjϕj

∥∥∥∥∥
2

=
∞∑

j=m+1

b2kj ⩽ C

∞∑
j=m+1

j−2β � m1−2β � mα+1

n
.

by Assumption 4 and the choice of m in Theorem 2.
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E.1 A preparatory theorem

Finally, using a similar argument in the proof of Proposition 2 (1), we can easily derive

the following inequality:

E
[∥∥∥Γ̂†

m

(
Γ̂− Γ

)∥∥∥2 1E] ≲ H2mα+1

n

by noting that E
[∥∥∥Γ̂− Γ

∥∥∥2] = O(n−1) (see e.g., Equation (5.9) in Hall and Horowitz (2007)).

This proves the desired Equation (E.3)

Lemma 7. Suppose Assumption 1 holds. There exists a constant C that depends only on Γ

and Γe, such that if τ > 6∥Γe∥
λ+
min(Γe)

and the event E holds, then the norm of the operator Γ−1Γ̃e

is no greater than C.

Proof. By Lemma 5, if τ > 6∥Γe∥
λ+
min(Γe)

, then we have Im(Γe) = Im(Γ̃e) on the event E. Further-

more,

‖Γ−1Γ̃e‖1E ⩽‖Γ−1 |Se ‖‖Γ̃e‖1E ⩽ ‖Γ−1 |Se ‖
(
‖Γ̃e − Γe‖+ ‖Γe‖

)
1E

⩽‖Γ−1 |Se ‖(
3

τ
+ 1)‖Γe‖ ⩽ ‖Γ−1 |Se ‖(

λ+
min(Γe)

2‖Γe‖
+ 1)‖Γe‖.

The last expression is bounded since Γe is of rank d and under Assumption 1, ‖Γ−1 |Se ‖ is

upper bounded since Γ−1Se = SY |X .

Thanks to these two lemmas, we obtain E
[
‖B2‖2

]
≲ H2mα+1

n
, and finish the proof of

Part-(2).
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E.1 A preparatory theorem

Proof of Proposition 2-(3). For the term B3, we have

Γ̂†
m − Γ†

m =
m∑
j=1

(λ̂−1
j − λ−1

j )ϕ̂j ⊗ ϕ̂j +
m∑
j=1

λ−1
j

(
ϕ̂j ⊗ ϕ̂j − ϕj ⊗ ϕj

)
=: A11 + A12.

By Cauchy–Schwarz inequality, we have

E2
[∥∥∥A12

(
Γ̂e − Γ̃e

)∥∥∥ 1E] ⩽E
[
‖A12‖2

]
E
[∥∥∥(Γ̂e − Γ̃e

)∥∥∥2 1E] ≲ 1

n
E
[
‖A12‖2

]
≲ 1

n
m

m∑
j=1

λ−2
j E[‖ϕ̂j − ϕj‖2].

By Equation (5.22) in Hall and Horowitz (2007), we have E
[∥∥∥ϕ̂j − ϕj

∥∥∥2] ≲ j2

n
holds

uniformly for all j ⩽ m. Hence, by Assumption 4, we have

1

n
m

m∑
j=1

λ−2
j E[‖ϕ̂j − ϕj‖2] ≲

m

n2

m∑
j=1

j2+2α � m4+2α

n2
≲ mα+1

n
.

Also, we have

A11 =
m∑
j=1

λ̂j − λj

λ̂jλj

(
ϕ̂j ⊗ ϕ̂j − ϕj ⊗ ϕj

)
+

m∑
j=1

λ̂j − λj

λ̂jλj

ϕj ⊗ ϕj =: A111 +A112 .

By direct calculation, we find that

∥∥∥A111

(
Γ̂e − Γ̃e

)∥∥∥ =

∥∥∥∥∥
m∑
j=1

λ̂j − λj

λ̂jλj

(
ϕ̂j ⊗ ϕ̂j − ϕj ⊗ ϕj

)(
Γ̂e − Γ̃e

)∥∥∥∥∥
⩽C

m∑
j=1

| λ̂j − λj

λ̂jλj

|‖ϕj − ϕ̂j‖‖Γ̂e − Γ̃e‖.
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E.1 A preparatory theorem

Recall the definition of F in (E.1), we have

E2
[∥∥∥A111

(
Γ̂e − Γ̃e

)∥∥∥ 1E1F] ⩽ C2m
m∑
j=1

λ−2
j E2[‖ϕj − ϕ̂j‖‖Γ̂e − Γ̃e‖]

⩽C2m
m∑
j=1

λ−2
j E[‖ϕj − ϕ̂j‖2]E[‖Γ̂e − Γ̃e‖21E]

⩽C2m

n

m∑
j=1

λ−2
j E

[
‖ϕj − ϕ̂j‖2

]
≲ m

n2

m∑
j=1

j2+2α ≲ mα+1

n
.

For the term A112, we have

∥∥∥A112

(
Γ̂e − Γ̃e

)∥∥∥ = sup
u:∥u∥=1

∥∥∥∥∥
m∑
j=1

λ̂j − λj

λ̂jλj

ϕj ⊗ ϕj

(
Γ̂e − Γ̃e

)
u

∥∥∥∥∥
= sup

u:∥u∥=1

∥∥∥∥∥
m∑
j=1

λ̂j − λj

λ̂jλj

〈(
Γ̂e − Γ̃e

)
u, ϕj

〉
ϕj

∥∥∥∥∥
= sup

u:∥u∥=1

∥∥∥∥∥
m∑
j=1

λ̂j − λj

λ̂jλj

∑
i⩾1

ui

〈(
Γ̂e − Γ̃e

)
ϕi, ϕj

〉
ϕj

∥∥∥∥∥ (u =
∑
i⩾1

uiϕi)

⩽

 m∑
j=1

(
λ̂j − λj

λ̂jλj

)2∑
i⩾1

〈(
Γ̂e − Γ̃e

)
ϕi, ϕj

〉21/2

where in the fourth line, we use the Cauchy-Schwarz inequality and the relation that
∑

i⩾1 u
2
i =

18



E.2 The proof of Theorem 2

1. Then we have

E
[∥∥∥A112

(
Γ̂e − Γ̃e

)∥∥∥2 1E∩F]

⩽E

 m∑
j=1

(
λ̂j − λj

λ̂jλj

)2∑
i⩾1

〈(
Γ̂e − Γ̃e

)
ϕi, ϕj

〉2 1E∩F


⩽

m∑
j=1

λ−2
j

∑
i⩾1

E
[
1E

〈(
Γ̂e − Γ̃e

)
ϕi, ϕj

〉2]

⩽
m∑
j=1

λ−2
j

∑
i⩾1

CH2λiλj

n
⩽ CH2

m∑
j=1

1

λjn

∑
i⩾1

λi ≲
H2mα+1

n
.

where the third inequality follows the same proof of Lemma 2. Thus, we complete the proof

of Proposition 2-(3).

E.2 The proof of Theorem 2

Let T := Γ−1Γ̃e

(
Γ−1Γ̃e

)∗
and T̂m = Γ̂†

mΓ̂
d
eΓ̂

d
eΓ̂

†
m where Γ̂d

e is defined in (D.1). Define

F′ :=

{
λd(T )

2
⩽ λd(T̂m) ⩽

3λd(T )

2

}
=

{
|λd(T̂m)− λd(T )| ⩽

λd(T )

2

}
. (E.8)

To prove Theorem 2, we only need to prove E
[∥∥∥PŜY |X

− PSY |X

∥∥∥1/2 1E∩F∩F′] ≲ n
−(2β−1)
4(α+2β)

and P(E ∩ F ∩ F′)
n→∞−−−→ 1.

Before we delve into the prove, we introduce some convenient notation. For any u ∈ H,

define u∗ : H → R,v 7→ 〈u,v〉. Then u∗ is the adjoint operator of u : R → H, λ 7→

λu, (∀λ ∈ R) since u∗v = 〈u∗v, 1〉 = 〈v,u〉.

Similarly, for any d elements in H, say β1, . . . ,βd, we can define B := (β1, . . . ,βd) :

Rd → L2[0, 1] and its adjoint B∗.
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E.2 The proof of Theorem 2

We also define the ‘truncated central space’

S(m)
Y |X = ΠmSY |X = span{β(m)

1 , . . . ,β
(m)
d }, (E.9)

where β
(m)
k := Πm(βk), k ∈ [d]. For such a truncated central space, we have the following

proposition, whose proof is deferred to the end.

Proposition 3. Under Assumption 4, if m is sufficiently large, we have

∥∥∥∥PSY |X − PS(m)
Y |X

∥∥∥∥ ≲ m− 2β−1
2 . (E.10)

Then we only need to show that

E

[∥∥∥∥PŜY |X
− PS(m)

Y |X

∥∥∥∥1/2 1E∩F∩F′
]
≲ n

−(2β−1)
4(α+2β) .

Recall that T := Γ−1Γ̃e

(
Γ−1Γ̃e

)∗
and T̂m = Γ̂†

mΓ̂
d
eΓ̂

d
eΓ̂

†
m. Let Tm := ΠmTΠm. We have

PS(m)
Y |X

= PTm and Tm = Γ†
mΓ̃eΓ̃eΓ

†
m. Furthermore, PŜY |X

= PΓ̂†
mΓ̂d

e
= PT̂m

.

By sinΘ theorem (Lemma 20), we have

∥∥∥∥PŜY |X
− PS(m)

Y |X

∥∥∥∥ =
∥∥PTm − PT̂m

∥∥ ⩽ π

2

∥∥∥Tm − T̂m

∥∥∥
min{λ+

min(Tm), λ
+
min(T̂m)}

⩽ π

2

(∥∥∥Γ̂†
mΓ̂

d
e

∥∥∥+ ∥∥∥Γ†
mΓ̃e

∥∥∥)∥∥∥Γ̂†
mΓ̂

d
e − Γ†

mΓ̃e

∥∥∥
min{λ+

min(Tm), λ
+
min(T̂m)}

.

(E.11)

We first provide an upper bound on the numerator of the right hand side of (E.11).
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E.2 The proof of Theorem 2

Similar to the argument of Lemma 7, we find that

E
[∥∥∥Γ†

mΓ̃e

∥∥∥2 1E∩F] ≲ 1 and E
[∥∥∥Γ̂†

mΓ̂
d
e

∥∥∥2 1E∩F] ≲ 1. (E.12)

We move on to analyze
∥∥∥Γ̂†

mΓ̂
d
e − Γ†

mΓ̃e

∥∥∥.

Firstly, for any u ∈ Ŝe with ‖u‖ = 1, we have Γ̂d
eu = Γ̂eu. Then by Theorem 4, we have

E
[
1E∩F

∥∥∥(Γ̂†
mΓ̂

d
e − Γ†

mΓ̃e

)
(u)
∥∥∥] = E

[
1E∩F

∥∥∥(Γ̂†
mΓ̂e − Γ†

mΓ̃e

)
(u)
∥∥∥]

⩽E
[
1E∩F

∥∥∥(Γ̂†
mΓ̂e − Γ†

mΓ̃e

)∥∥∥] ≲ Hn
−(2β−1)
2(α+2β) .

(E.13)

This shows that E
[∥∥∥(Γ̂†

mΓ̂
d
e − Γ†

mΓ̃e

)
|Ŝe

∥∥∥ 1E∩F] ≲ Hn
−(2β−1)
2(α+2β) .

Secondly, for any u ∈ Ŝ⊥
e with ‖u‖ = 1,

∥∥∥(Γ̂†
mΓ̂

d
e − Γ†

mΓ̃e

)
(u)
∥∥∥ =

∥∥∥Γ†
mΓ̃e(u)

∥∥∥ =
∥∥∥ΓmΓ

−1Γ̃ePSe(u)
∥∥∥

=
∥∥∥ΓmΓ

−1Γ̃e(PSe − PŜe
)u
∥∥∥ ⩽

∥∥∥ΓmΓ
−1Γ̃e(PSe − PŜe

)
∥∥∥

⩽ ‖Γm‖
∥∥∥Γ−1Γ̃e

∥∥∥ ∥∥PSe − PŜe

∥∥ .
(E.14)

Then by Lemma 7 and Theorem 1, we have

E
[∥∥∥(Γ̂†

mΓ̂
d
e − Γ†

mΓ̃e

)
(u)
∥∥∥ 1E∩F] ≲√H2

n
.

It implies that E
[
1E∩F

∥∥∥(Γ̂†
mΓ̂

d
e − Γ†

mΓ̃e

)
|Ŝ⊥

e

∥∥∥] ≲
√

H2

n
. Combing Equations (E.13) and

(E.14), we obtain

E
[
1E∩F

∥∥∥Γ̂†
mΓ̂

d
e − Γ†

mΓ̃e

∥∥∥] ≲ (Hn
−(2β−1)
2(α+2β)

)
. (E.15)

Lastly, we provide a lower bound on the denominator of the right hand side of (E.11).
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E.2 The proof of Theorem 2

If τ > 6∥Γe∥
λ+
min(Γe)

, then Im(Γ̃e) = Im(Γe) on the event E . By Lemma 16, one has

‖Γ−1Γ̃e − Γ†
mΓ̃e‖

m→∞−−−→ 0. (E.16)

By Lemma 21, one has σ+
min(Γ

†
mΓ̃e) ⩾ σ+

min(Γ
−1Γe)

2
for sufficiently large m, where σ+

min denotes

the infimum of the positive singular values.

By Markov inequality, we have

P(1E∩F|λd(T̂m)− λd(T )| ⩾
λd(T )

2
) ⩽ E[1E∩F|λd(T̂m)− λd(T )|]

λd(T )/2
⩽ E[1E∩F‖T̂m − T‖]

λd(T )/2

≲E[1E∩F(‖Γ̂†
mΓ̂

d
e − Γ−1Γ̃e‖2 + 2‖Γ̂†

mΓ̂
d
e − Γ−1Γ̃e‖‖Γ−1Γ̃e‖)]

λd(T )/2

≲E[1E∩F‖Γ̂†
mΓ̂

d
e − Γ−1Γ̃e‖]

λd(T )/2

m→∞−−−→ 0.

(E.17)

where the second inequality comes from Lemma 21, the fourth comes from Lemma 7 and

the fifth comes from (E.15)-(E.16).

Recall that

F′ :=

{
λd(T )

2
⩽ λd(T̂m) ⩽

3λd(T )

2

}
=

{
|λd(T̂m)− λd(T )| ⩽

λd(T )

2

}
.

Thus (E.17) implies

P((F′)c ∩ (E ∩ F))
m→∞−−−→ 0. (E.18)
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E.2 The proof of Theorem 2

Furthermore,

P(E ∩ F ∩ F′) = P(E ∩ F)− P(E ∩ F ∩ (F′)c)
m→∞−−−→ 1.

On the event E ∩ F ∩ F′, it holds that σ+
min(Γ̂

†
mΓ̂

d
e) ⩾

σ+
min(Γ

−1Γe)

4
, which implies

min{λ+
min(Tm), λ

+
min(T̂m)} ⩾ C (E.19)

for some constant C > 0.

Inserting (E.12), (E.15) and (E.19) into (E.11), we have

E2

[∥∥∥∥PŜY |X
− PS(m)

Y |X

∥∥∥∥1/2 1E∩F∩F′
]
= E2

[∥∥PTm − PT̂m

∥∥1/2 1E∩F∩F′]

≲
E2

[(∥∥∥Γ̂†
mΓ̂

d
e

∥∥∥+ ∥∥∥Γ†
mΓ̃e

∥∥∥)1/2 ∥∥∥Γ̂†
mΓ̂

d
e − Γ†

mΓ̃e

∥∥∥1/2 1E∩F∩F′]
min{λ+

min(Tm), λ
+
min(T̂m)}1E∩F∩F′

≲E
[(∥∥∥Γ̂†

mΓ̂
d
e

∥∥∥+ ∥∥∥Γ†
mΓ̃e

∥∥∥) 1E∩F∩F′]E [∥∥∥Γ̂†
mΓ̂

d
e − Γ†

mΓ̃e

∥∥∥ 1E∩F∩F′] ≲ Hn
−(2β−1)
2(α+2β) .

This completes the proof of Theorem 2.

Proof of Proposition 3. Let B :=
d∑

i=1

βi⊗βi and B(m) :=
d∑

i=1

β
(m)
i ⊗β

(m)
i . Note that Im(B) =

span{β1, . . . ,βd} = SY |X . Similarly, Im(B(m)) = span{β(m)
1 , . . . ,β

(m)
d } = S(m)

Y |X . Thus∥∥∥∥PSY |X − PS(m)
Y |X

∥∥∥∥ = ‖PB − PB(m)‖.

By Lemma 20, we have

‖PB − PB(m)‖ ⩽ π

2

‖B − B(m)‖
min{λ+

min(B), λ+
min(B(m))}

. (E.20)
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Note that B − B(m) is self-adjoint, then

∥∥B − B(m)
∥∥ = sup

u∈SH
|〈(B − B(m))(u),u〉| = sup

u∈SH
|〈Bu,u〉 − 〈B(m)u,u〉|

= sup
u∈SH

∣∣∣∣∣
d∑

i=1

[
〈βi,u〉2 − 〈β(m)

i ,u〉2
]∣∣∣∣∣ = sup

u∈SH

∣∣∣∣∣
d∑

i=1

〈βi − β
(m)
i ,u〉〈βi + β

(m)
i ,u〉

∣∣∣∣∣
⩽ sup

u∈SH

d∑
i=1

∣∣∣〈βi − β
(m)
i ,u〉〈βi + β

(m)
i ,u〉

∣∣∣ ⩽ d∑
i=1

∥∥∥βi − β
(m)
i

∥∥∥ ∥∥∥βi + β
(m)
i

∥∥∥ ,
where the first inequality comes from the triangle inequality, and the second inequality comes

from the Cauchy-Schwarz inequality and ‖u‖ = 1. According to Assumption 4, one can get

∥∥∥βi − β
(m)
i

∥∥∥ =

∥∥∥∥∥
∞∑

j=m+1

bijϕj

∥∥∥∥∥ =

√√√√ ∞∑
j=m+1

b2ij ≲

√√√√ ∞∑
j=m+1

j−2β;

∥∥∥βi + β
(m)
i

∥∥∥ ⩽ ‖βi‖+
∥∥∥β(m)

i

∥∥∥ ⩽ 2‖βi‖ = 2

√√√√ ∞∑
j=1

b2ij ≲

√√√√ ∞∑
j=1

j−2β.

Because β > 1/2, one has

∞∑
j=m+1

1

j2β
≲ 1

m2β−1
;

∞∑
j=1

1

j2β
< ∞.

Thus, one can get ∥∥B − B(m)
∥∥ ≲ m− 2β−1

2 . (E.21)

Then we show that min{λ+
min(B), λ+

min(B(m))} ⩾ C for some constant C > 0. Since

rank(B) = d, one can get that λ+
min(B) = λd(B). It is easy to see rank(B(m)) ⩽ d by

B(m) = ΠmBΠm, thus one can assume that λ+
min(B(m)) = λj(B(m)) for some j ⩽ d. By
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Lemma 21 and (E.21), one has:

|λj(B(m))− λj (B) | ⩽
∥∥B − B(m)

∥∥ ≲ m− 2β−1
2 .

Thus for sufficiently large m, one has

λj

(
B(m)

)
⩾ λd (B)

2
=⇒ min{λ+

min(B), λ+
min(B(m))} ⩾ λd(B)

2
. (E.22)

Inserting (E.21) and (E.22) into (E.20) leads to

∥∥∥∥PSY |X − PS(m)
Y |X

∥∥∥∥ ≲ m− 2β−1
2 .

Thus we complete the proof of Proposition 3.

F. Proof of Theorem 3

F.1 Proof outline

We sketch the proof outline in this subsection and defer the proof details to the subsequent

subsections.

We follow the the standard procedure of applying Fano’s inequality to obtain the mini-

max lower bound. The following lemma is one version of the generalized Fano method.

Lemma 8 (Yu (1997)). Let N ⩾ 2 be an integer and {θ1, . . . , θN} ⊂ Θ0 index a collection

of probability measures Pθi
on a measurable space (X ,A). Let ρ be a pseudometric on Θ0
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F.1 Proof outline

and suppose that for all i 6= j

ρ(θi,θj) ⩾ αN , and KL(Pθi
,Pθj

) ⩽ βN .

Then every A-measurable estimator θ̂ satisfies

max
i

P
(
ρ(θ̂,θi) ⩾

αN

2

)
⩾ 1− βN + log 2

logN
.

To apply Lemma 8, we need to construct a family of distributions that are separated

from each other in the parameter space but close to each other in terms of the KL-divergence.

Let us first recall the following Varshamov–Gilbert bound (Tsybakov, 2009, Lemma 2.9).

Lemma 9. For any m > 8, there exists a set Θ := {θ(0), . . . , θ(N)} ⊂ {−1, 1}m, such that

1). θ(0) = (−1, . . . ,−1);

2). for any θ,θ′ ∈ Θ and θ 6= θ′, ‖θ − θ′‖2 ⩾ m/2;

3). N ⩾ 2m/8.

Let ϕ1(t) = 1, ϕj+1(t) =
√
2 cos(jπt), j ⩾ 1. For any θ = (θi)i∈[m] ∈ Θ in Lemma 9 and

any β > 3/2, let us define the central space S(θ) := span{βθ
1 , . . . ,β

θ
d} as follows:

βθ
i :=

(i+1)m∑
k=im+1

θk−imk
−βϕk + ϕi

where m = C̃n
1

α+2β for some C̃ = C̃(α, β) to be determined. We assume d is fixed and m > d.

The collection {S(θ) : θ ∈ Θ} satisfies a nice property stated in the following lemma.

26



F.1 Proof outline

Lemma 10. For any different θ and θ′ in Θ, we have

‖PS(θ) − PS(θ′)‖2 ⩾ 4ϑn− 2β−1
α+2β

for some constant ϑ > 0 that depends on α and β.

We next move on to construct a population corresponds to each S(θ). For this purpose,

we will make use of a construction in Lin et al. (2021b), described as follows. For any x ∈ R,

let ϕ(x) be a smooth function which maps (−∞, 0] to 0 and [1,∞) to 1 and has a positive

first derivative over (0, 1). For any z = (zi)
d
i=1 ∈ Rd, let f(z) :=

∑
i⩽d 2

i−1ϕ (zi/ζ) where ζ is

sufficiently small such that for Z = (Zi)i∈[d] ∼ N(0, Id), the probability P (∃i, 0 < Zi < ζ) ⩽

dζ/(
√
2π) < 2−d. Let Y = Af (Z) + ε for some positive constant A and ε ∼ N(0, 1). If

A is sufficiently large, the distribution of (Z, Y ) satisfies the coverage condition (Lin et al.,

2021b, Lemma 15). Note that the joint distribution of (Z, Y ) is Lebesgue continuous and it

is easy to check that E[Z|Y = y] is a continuous function with respect to y using the formula

for conditional expectation. Thus by Lemma 1, we know that (Z, Y ) satisfied WSSC.

Now we describe how to construct a distribution Pθ of (X, Y ) for any given θ ∈ Θ.

For some α satisfying α > 1 and 1
2
α + 1 < β, let X =

∑∞
j=1 j

−α/2Xjϕj such that Xj
iid∼

N(0, 1), j ⩾ 1. Then Γ =
∑∞

j=1 j
−αϕj ⊗ ϕj. For any βi(i ∈ [d]), we construct the joint

distribution of (X, Y ) as follows:

Y = Af((B∗ΓB)−1/2B∗X) + ε, X =
∞∑
j=1

j−α/2Xjϕj, ϵ ∼ N(0, 1), (F.1)

where B := (β1, . . . ,βd) : Rd → L2[0, 1].

For this distribution of (X, Y ), we can prove that it belongs to the distribution class
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F.1 Proof outline

M (α, β, τ ).

Lemma 11. For (X, Y ) constructed in (F.1), it holds that

i) ‖Γ‖ ⩽ C, λmin(Γ|Se) ⩾ c and c ⩽ λd(Γe) ⩽ λ1(Γe) ⩽ C for two positive constants c

and C that do not depend on θ, n, and m;

ii) the central curve m(y) = E[X|Y = y] is weak sliced stable with respect to Y ;

iii) (X, Y ) ∈ F(α, β, c1, c2).

Furthermore, we have the following upper bound on the pairwise KL-divergence:

Lemma 12. Let Pθ and Pθ′ be the joint distributions of (X, Y ) induced by βθ
i (i ∈ [d]) and

βθ′

i (i ∈ [d]) respectively. Then we have

KL(Pθ,Pθ′) ≲ m−α

d∑
i=1

‖βθ
i − βθ′

i ‖2.

Since

d∑
i=1

‖βθ
i − βθ′

i ‖2 ≲m−2β‖θ − θ′‖2,

we have

KL(Pθ,Pθ′) ⩽ C(d)m−(α+2β)

d∑
i=1

‖βθ
i − βθ′

i ‖2 ⩽ C(d)m−(α+2β−1).

We can now prove the minimax lower bound using Lemma 8:
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F.2 Proof of Lemma 10

inf
ŜY |X

sup
M∈M(α,β,τ)

PM

(∥∥∥PŜY |X
− PSY |X

∥∥∥2 ⩾ ϑn− 2β−1
α+2β

)
⩾ inf

ŜY |X

sup
θ∈Θ

Pθ

(
‖PŜY |X

− PS(θ)‖2 ⩾ ϑn
−2β+1
α+2β

)
⩾1−

maxKL(Pn
θ,Pn

θ′) + log(2)

log(|Θ|)

⩾1− C(d)nm−(α+2β−1) + log 2
m
2
log(2)

=1− C(d)C̃−(α+2β)m+ log(2)
m
2
log(2)

⩾ 0.9

where the constant ϑ comes from Lemma 10 and in the last equation we have chosen m =

C̃n
1

α+2β for some C̃ ⩾
(

log(2)
30C(d)

)− 1
α+2β . This finishes the proof of Theorem 3.

F.2 Proof of Lemma 10

Proof. Note that PS(θ) =
∑d

i=1 β̃
θ
i ⊗ β̃θ

i , where β̃θ
i is the normalization of βθ

i . By the

definition of βθ
i , for any θ and θ′, 〈βθ

i ,β
θ′

j 〉 = 0 if i 6= j. We have
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F.3 Proof of Lemma 11

∥∥PS(θ) − PS(θ′)

∥∥2 ⩾ ∥∥∥(PS(θ) − PS(θ′))(β̃
θ
1 )
∥∥∥2 = ∥∥∥β̃θ

1 − 〈β̃θ
1 , β̃

θ′

1 〉β̃θ′

1

∥∥∥2
=

1

‖βθ
1‖2

∥∥∥∥∥
2m∑

k=m+1

(θk−m − 〈β̃θ
1 , β̃

θ′

1 〉θ′k−m)k
−βϕk

∥∥∥∥∥
2

=
1

‖βθ
1‖2

∥∥∥∥∥∥∥∥∥
∑

k∈{m+1,...,2m}
θk−m ̸=θ′k−m

(θk−m − 〈β̃θ
1 , β̃

θ′

1 〉θ′k−m)k
−βϕk +

∑
k∈{m+1,...,2m}
θk−m=θ′k−m

(θk−m − 〈β̃θ
1 , β̃

θ′

1 〉θ′k−m)k
−βϕk

∥∥∥∥∥∥∥∥∥
2

⩾ 1

‖βθ
1‖2

∥∥∥∥∥∥∥∥∥
∑

k∈{m+1,...,2m}
θk−m ̸=θ′k−m

(θk−m − 〈β̃θ
1 , β̃

θ′

1 〉θ′k−m)k
−βϕk

∥∥∥∥∥∥∥∥∥
2

⩾ 1

‖βθ
1‖2

∥∥∥∥∥∥∥∥∥
∑

k∈{m+1,...,2m}
θk−m ̸=θ′k−m

k−βϕk

∥∥∥∥∥∥∥∥∥
2

=
1

‖βθ
1‖2

∑
k∈{m+1,...,2m}
θk−m ̸=θ′k−m

k−2β.

From the property (2) of Lemma 9, we know that there are at least m/8 k’s satisfying

k ∈ {m+ 1, . . . , 2m}, θk−m 6= θ′k−m. Thus

1

‖βθ
1‖2

∑
k∈{m+1,...,2m}
θk−m ̸=θ′k−m

k−2β ⩾ 1

(1 +
∑2m

k=m+1 k
−2β)2

2m∑
k=15m/8

k−2β � m−2β+1.

F.3 Proof of Lemma 11

Proof. Proof of i)

It is easy to check that ‖Γ‖ = 1. Now we give a lower bound of λmin(Γ|Se). For any unit
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F.3 Proof of Lemma 11

function u ⊆ Im(Γe) = ΓSY |X , let u =
∑d

i=1 aiΓβi, then

Γβi =

(i+1)m∑
k=im+1

θk−imk
−(α+β)ϕk + i−αϕi

u =
d∑

i=1

aiΓβi =
d∑

i=1

(

(i+1)m∑
k=im+1

aiθk−imk
−(α+β)ϕk + aii

−αϕi)

where ai satisfies
d∑

i=1

a2i (

(i+1)m∑
k=im+1

k−(2α+2β) + i−2α) = 1.

This implies that
∑d

i=1 a
2
i ⩾ 1/4.

Then

〈Γ(u),u〉 =
d∑

i=1

a2i [

(i+1)m∑
k=im+1

k−(3α+2β) + i−3α] ⩾
d∑

i=1

a2i i
−3α ⩾ d−3α

d∑
i=1

a2i ⩾ d−3α/4

which means

λmin(Γ|Se) ⩾ d−3α/4.

Next we show that there exist positive constants λ− and λ+ such that λ− ⩽ λd(Γe) ⩽

λ1(Γe) ⩽ λ+.

On the one hand, since X is a Gaussian process, the linearity condition holds and

Im(Γe) ⊆ ΓSY |X (Lian and Li, 2014). Thus, rank(Γe) ⩽ d. On the other hand, let

Z = (B∗ΓB)−1/2B∗X and Γez = Cov(E[Z|Y ]). Then by Lemma 15, since B∗ΓB =

diag{
∑(i+1)m

k=im+1 k
−(α+2β) + i−α}di=1 is positive definite and invertible, we have

Z ∼ N(0, Id) and Γez = (B∗ΓB)−1/2B∗ΓeB(B∗ΓB)−1/2.
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F.3 Proof of Lemma 11

Thus, rank(Γe) ⩾ rank(Γez) = d. We conclude that rank(Γe) = rank(Γez) = d, i.e., the

coverage condition holds and Im(Γe) = ΓSY |X .

For the unit function u ⊆ Im(Γe) = ΓSY |X , we have 〈Γe(u),u〉 = var(E[〈X,u〉|Y ]).

Then we know that E[〈X,u〉|B∗X] = u∗ΓB(B∗ΓB)−1B∗X by Lemma 14.

By the law of total expectation,

E[〈X,u〉|Y ] = E[E[〈X,u〉|B∗X]|Y ] = E[u∗ΓB(B∗ΓB)−1B∗X|Y ] = u∗ΓB(B∗ΓB)−1/2E[Z|Y ],

thus 〈Γe(u),u〉 = u∗ΓB(B∗ΓB)−1/2Γez(B
∗ΓB)−1/2B∗Γu where Γez := var(E[Z|Y ]).

Upper bound on λ1(Γe). We immediately have

‖Γe‖ =‖ΓB(B∗ΓB)−1/2Γez(B
∗ΓB)−1/2B∗Γ‖

⩽‖Γ1/2B(B∗ΓB)−1/2Γez(B
∗ΓB)−1/2B∗Γ1/2‖‖Γ1/2‖2 ⩽ ‖Γ‖‖Γez‖

where Γ1/2 is the unique positive operator such that Γ1/2Γ1/2 = Γ, i.e., Γ1/2 :=
∑∞

j=1 j
−α/2ϕj⊗

ϕj.

Lower bound on λd(Γe). By Lemma 13 (min-max theorem), we have

λi(Γe) =λi(ΓB(B∗ΓB)−1/2Γez(B
∗ΓB)−1/2B∗Γ)

=λi(Γ
1/2B(B∗ΓB)−1/2Γez(B

∗ΓB)−1/2B∗Γ1/2Γ)

⩾λi(Γ
1/2B(B∗ΓB)−1/2Γez(B

∗ΓB)−1/2B∗Γ1/2)λmin(Γ|Se) ⩾ λmin(Γ|Se)λi(Γez).

Since ‖Γ‖, d−3α/4, and the matrix Γez do not depend on n, we conclude the existence of
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F.4 Proof of Lemma 12

the constants λ− and λ+.

Proof of ii)

Next we show that the central curve m(y) = E[X|Y = y] is weak sliced stable with

respect to Y . The WSSC for E[Z|Y = y] implies WSSC for E[X|Y = y] since

1

H

H−1∑
h=0

var (〈u,E[X|Y ]〉 | ah ⩽ Y ⩽ ah+1)

=
1

H

H−1∑
h=0

var
(
〈u,ΓB(B∗ΓB)−1/2E[Z|Y ]〉 | ah ⩽ Y ⩽ ah+1

)
=

1

H

H−1∑
h=0

var
(
〈(B∗ΓB)−1/2B∗Γu,E[Z|Y ]〉 | ah ⩽ Y ⩽ ah+1

)
⩽1

τ
var
(
〈(B∗ΓB)−1/2B∗Γu,E[Z|Y ]〉

)
=
1

τ
var (〈u,E[X|Y ]〉) (∀u ∈ SH)

where the inequality comes from the WSSC of E[Z|Y = y] and the fact that (B∗ΓB)−1/2B∗Γu ∈

Rd.

Proof of iii) Since E[X4
i ] = 3, we know that Assumption 3 holds by taking c1 to be

3. Since α > 1, 1
2
α + 1 < β, λj = j−α and |bij| ≲ j−β by the definition of βθ

i , we know

that Assumption 4 holds. Combining these two results with i) and ii), we know that iii)

holds.

F.4 Proof of Lemma 12

Proof. For simplicity of notation, we define B := (βθ
1 , . . . ,β

θ
d ) : Rd → L2[0, 1] and B′ :=

(βθ′

1 , . . . ,βθ′

d ) : Rd → L2[0, 1]. Let Eθ denotes the expectation with respective to PB and ϕd
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be the density function for N(0, Id). Then we have

KL(Pθ,Pθ′) ⩽ KL(Pθ,Pθ′) + E(X,Y )∼Pθ
(KL(Pθ(Z | X, Y ),Pθ′(Z | X, Y ))

= KL(Pθ(X,Z, Y ),Pθ′(X,Z, Y ))

= Eθ[log

(
ϕd(Z −B∗X)

ϕd(Z −B
′∗X)

)
]

= Eθ

(
−1

2
‖Z −B∗X‖2 + 1

2
‖Z −B

′∗X‖2
)

=
1

2
E[‖(B −B′)∗X‖2]

=
1

2
E[

d∑
i=1

〈βθ
i − βθ′

i ,X〉2]

≲ m−α

d∑
i=1

‖βθ
i − βθ′

i ‖2.

G. Assisting Lemmas

Lemma 13 (Minimax theorem). Assume that A is a positive semi-definite and compact

operator with its eigenvalues {λ̃i} ordered as λ̃1 ⩾ · · · ⩾ λ̃n ⩾ · · · ⩾ 0, then

λ̃n = inf
En−1

sup
x∈E⊥

n−1,∥x∥=1

〈Ax, x〉

where En−1 with dimension n− 1 is a closed linear subspace of an Hilbert space H̃.

It is a classic result in standard functional analysis textbook.

Lemma 14. Assume X =
∑∞

i=1 aiXiϕi ∈ H,u =
∑N

i=1 biϕi ∈ H,βj =
∑N

i=1 cijϕi ∈
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H, ∀j ∈ [d], then we have

E[〈X,u〉|B∗X] = u∗ΓB(B∗ΓB)−1B∗X

where Γ = E[X ⊗X],B := (β1, . . . ,βd) : Rd → L2[0, 1].

Proof. Define X ′ = {aiXi}Ni=1 ∈ RN ,u′ = {bi}Ni=1,β
′
j = {cij}Ni=1,B

′ = (β′
1, . . . ,β

′
d) ∈ Rp×d.

Then using results from multivariate normal distribution, we have

E[〈X,u〉|B∗X] = E[〈X ′,u′〉|B′⊤X ′] = u
′⊤ΣB′(B

′⊤ΣB′)−1B
′⊤X ′

where Σ is the covariance matrix of X ′.

We then complete the proof by using the following relationships:

u
′⊤ΣB′ = u∗ΓB, (B

′⊤ΣB′)−1 = (B∗ΓB)−1,B
′⊤X ′ = B∗X.

Lemma 15. If T is an operator defined on H1 → H2 where Hi, i = 1, 2 is a Hilbert space.

X ∈ H1 is a random element satisfying E[X] = 0 . Then we have var(TX) = Tvar(X)T ∗.

Proof. For any u1,u2 ∈ H2, we have

〈Tvar(X)T ∗u1,u2〉 = 〈TE[X ⊗X]T ∗u1,u2〉 = 〈E[X ⊗X]T ∗u1, T
∗u2〉
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since E[X] = 0. By the definition of convariance operator and expectation, we have

〈E[X ⊗X]T ∗u1, T
∗u2〉 = 〈E[〈X, T ∗u1〉X], T ∗u2〉 = E[〈X, T ∗u1〉 〈X, T ∗u2〉].

Similarly, we have

〈var(TX)u1,u2〉 = 〈E[TX ⊗ TX]u1,u2〉 = E[〈TX,u1〉 〈TX,u2〉].

Then the proof is completed by noticing the following

E[〈TX,u1〉 〈TX,u2〉] = E[〈X, T ∗u1〉 〈X, T ∗u2〉].

Lemma 16. If T is of finite rank, then we have lim
m→∞

‖ΠmT − T‖ = 0.

Proof. By the triangle inequality and compatibility of operator norm, one has

‖ΠmT − T‖ ⩽ ‖(Πm − I)T‖

where I =
∞∑
i=1

ϕi ⊗ ϕi for {ϕi}i∈Z⩾1
being an orthonormal basis of H.

Since T is of finite rank, let us assume that {ei}ki=1 is an orthonormal basis of Im(T )

where k = rank(T ). For any β ∈ H such that ‖β‖ = 1, one has ‖Tβ‖ ⩽ ‖T‖‖β‖ = ‖T‖, so
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one can assume that Tβ ∈ Im(T ) admits the following expansion under basis {ei}ki=1:

Tβ =
k∑

i=1

biei,
k∑

i=1

b2i ⩽ ‖T‖2 < ∞.

Thus

‖(I − Πm)Tβ‖ =

∥∥∥∥∥
k∑

i=1

(I − Πm)biei

∥∥∥∥∥ ⩽
k∑

i=1

|bi| · ‖(I − Πm)ei‖.

Clearly, ‖(Πm − I)α‖ (∀α ∈ H) tends to 0 as m → ∞ since

(I − Πm)α =

(
∞∑

i=m+1

ϕi ⊗ ϕi

)(
∞∑
i=1

ciϕi

)
=

∞∑
i=m+1

ciϕi
m→∞−−−→ 0

where we have assumed that α =
∞∑
i=1

ciϕi .

Thus ∀ε > 0, there exists some Ni > 0 such that ∀m > Ni one has ‖(Πm − I)ei‖ < ε,

(∀i = 1, ..., k). Let N = max{N1, · · · , Nk}, then ∀m > N one has

‖(I − Πm)Tβ‖ ⩽
k∑

i=1

|bi| · ‖(I − Πm)ei‖ ⩽
k∑

i=1

|bi|ε ⩽ kε‖T‖,

which means that ∀m > N , one has

‖(Πm − I)T‖ = sup
∥β∥=1

‖(Πm − I)Tβ‖ ⩽ kε‖T‖.

Thus lim
m→∞

‖(Πm − I)T‖ = 0. Then the proof of Lemma 16 is completed.
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G.1 Properties of sliced partition

G.1 Properties of sliced partition

Lemma 17 (Corollary 1 in Lin et al. (2018b)). In the slicing inverse regression contexts,

recall that Sh denotes the h-th interval (yh−1,c, yh,c] for 2 ⩽ h ⩽ H − 1 and S1 = (−∞, y1,c],

SH = (yH−1,c,∞). We have that xh,i, i = 1, · · · , c− 1 can be treated as c− 1 random samples

of x
∣∣∣(y ∈ Sh) for h = 1, ..., H − 1 and xH,1, ..., xH,c can be treated as c random samples of

x
∣∣∣(y ∈ SH).

Lemma 18 (Lemma 11 in Lin et al. (2018b)). For any sufficiently large H, c and n > 4H
γ
+1,

the sliced partition SH(n) is a γ-partition with probability at least

1− CH2
√
n+ 1 exp

(
−γ2(n+ 1)

32H2

)

for some absolute constant C.

Lemma 19 (Lemma 10 in Lin et al. (2018b)). Suppose that (x, y) are defined over σ-finite

space X ×Y and g is a non-negative function such that E[g(x)] exists. For any fixed positive

constants C1 < 1 < C2, there exists a constant C which only depends on C1, C2 such that for

any partition R =
⋃H

h=1 Sh where Sh are intervals satisfying

C1

H
⩽ P(y ∈ Sh) ⩽

C2

H
, ∀h, (G.1)

we have

sup
h

E(g(x)
∣∣∣y ∈ S ′

h) ⩽ CHE[g(x)].
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G.2 Sin Theta Theorem

G.2 Sin Theta Theorem

Lemma 20 (Proposition 2.3 in Seelmann (2014)). Let B be a self-adjoint operator on a

separable Hilbert space H̃, and let V ∈ L(H̃) be another self-adjoint operator where L
(
H̃
)

stands for the space of bounded linear operators from a Hilbert space H̃ to H̃. Write the

spectra of B and B + V as

spec(B) = σ ∪ Σ and spec(B + V ) = ω ∪ Ω

with σ ∩ Σ = ∅ = ω ∩ Ω, and suppose that there is d̂ > 0 such that

dist(σ,Ω) ⩾ d̂ and dist(Σ, ω) ⩾ d̂

where dist(σ,Σ) := min{|a− b| : a ∈ σ, b ∈ Ω}. Then, it holds that

‖PB(σ)− PB+V (ω)‖ ⩽ π

2

‖V ‖
d̂

where PB(σ) denotes the spectral projection for B associated with σ, i.e.,

PB(σ) :=
1

2πi

∮
γ

dz

z − B
,

where γ is a contour on C that encloses σ but no other elements of spec(B).

Remark 2 (Spectral projection). We note that, if further B is compact, the spectral pro-

jection PB(σ) coincide with the projection operator onto the closure of the space spanned by

the eigenfunctions associated with the eigenvalues in σ.
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G.3 Wely inequality for a self-adjoint and compact operator

Specifically, if B is compact, by the spectral decomposition theorem one has

B =
∞∑
i=1

µiei ⊗ ei and (z − B)−1 =
∞∑
i=1

(z − µi)
−1ei ⊗ ei,

where spec(B) := {µi}∞i=1 satisfies |µi|
i→∞−−−→ 0. Then ∀v ∈ H, it holds that

PB(σ)v =
1

2πi

∮
γ

(z − B)−1v dz =
1

2πi

∮
γ

∞∑
i=1

(z − µi)
−1〈ei, v〉ei dz

=
∞∑
i=1

[(
1

2πi

∮
γ

(z − µi)
−1 dz

)
〈ei, v〉ei

]
=

∑
i∈{i:µi∈σ}

〈ei, v〉ei.

In particular, if σ = spec(B)\{0}, then PB(σ) is the projection operator onto the Im(B).

G.3 Wely inequality for a self-adjoint and compact operator

Lemma 21. Let M and N be two self-adjoint, positive semi-definite and compact operators

defined on a Hilbert space H̃ with their respective eigenvalues {µi}, {νi} ordered as follows

M : µ1 ⩾ · · · ⩾ µn ⩾ · · · ⩾ 0 and N : ν1 ⩾ · · · ⩾ νn ⩾ · · · ⩾ 0.

Then the following inequalities hold: |µk − νk| ⩽ ‖M −N‖, k ⩾ 1.

H. Additional Simulation Results

This section contains additional simulation results of Section 4. Specifically, in Section H.1,

we give an explanation of why X in Model I to III is equivalent to a construction that

satisfies the assumption that Γ is non-singular. In Section H.2, we provide guidelines for

the choice of H in practice. Sections H.3 and H.4 contain additional simulation results of
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H.1 The explanation on difference between simulation models and the theoretical
assumptions

Sections 4.2 and 4.3 respectively when (i): ε ∼ N(0, 1), H = 10; (ii):ε ∼ N(0, 0.25), H = 10;

(iii):ε ∼ N(0, 2), H = 10. Lastly, we compare FSIR with PCA on selecting optimal m in

Section H.5.

H.1 The explanation on difference between simulation models and the theoret-

ical assumptions

Here, we explain why the construction of X in simulation models do not contradict the

assumption that Γ is non-singular.

Assume X =
∑∞

i=1 aiXiϕi ∈ H and βj =
∑N

i=1 cijϕi ∈ H, ∀j ∈ [d]. Then, we have

E[X|f(B∗X, ϵ)] =E[
N∑
i=1

aiXiϕi|f(B∗X, ϵ)] + E[
∞∑

i=N+1

aiXiϕi|f(B∗X, ϵ)]

=E[
N∑
i=1

aiXiϕi|f(B∗X, ϵ)] + E[
∞∑

i=N+1

aiXiϕi]

=E[
N∑
i=1

aiXiϕi|f(B∗X, ϵ)].

Thus, in terms of Γe, the truncation on βj can be transferred to the truncation on X. Note

that the SIR estimate only involves Γm and Γe. This suggests that when X has infinitely

many terms, the SIR estimate remains the same before and after we do truncation on X as

long as m is smaller than N . Therefore, we directly simulate the truncated version of X in

Model I to III.

H.2 Guidelines on selecting H

In practical scenarios, the selection of the slices number H can be influential. Our simulation

studies suggest that selecting H ≥ ln(n) is often sufficient to achieve desirable numerical
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H.2 Guidelines on selecting H

results and this selection meets the theoretical requirement that H > H0 since ln(n) will

eventually exceed the constant H0 defined in Theorem 2. Furthermore, we recommend

selecting H within the range [10, 35] to accommodate finite-sample scenarios in practice.

We conducted a series of experiments to substantiate the practicality of this guideline.

Specifically, we simulated the FSIR process as described in Section 4.3 and determined the

minimum average subspace estimation error across 100 repetitions for various values of m

in the set {2, 3, . . . , 13, 14, 20, 30, 40}. We first set n = 20, 000. The value of H is initiated

at a baseline value ln(n) = ln(20000) ≈ 10 and increased in increments of 5. The results

are presented in Table 2, which illustrates that the subspace estimation error is relatively

insensitive to variations in H as long as H ≥ ln(n). For comparative purposes, at an

exceptionally low H value, such as H = 2, the errors for the three models are recorded at

0.077, 0.291, and 0.02, respectively, which are significantly higher than those obtained for

H ≥ 10. This comparison highlights the necessity of adhering to the guideline of H ≥ ln(n)

for robust model performances. We then expanded the dataset sizes to n = 50, 000 and

n = 200, 000 respectively and conducted the experiments with H chosen in the same way as

before; the results are consistent with earlier findings. These empirical results substantiate

the practicality of our proposed guideline.
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H.3 Additional simulation results of Section 4.2

FSIR-OT H 2 10 15 20 25 30

n = 20000

Model I 0.077 0.067 0.06 0.066 0.066 0.065

Model II 0.291 0.024 0.03 0.026 0.028 0.026

Model III 0.02 0.01 0.01 0.01 0.01 0.01

H 2 11 16 21 26 31

n = 50000

Model I 0.060 0.051 0.052 0.053 0.052 0.050

Model II 0.464 0.016 0.015 0.015 0.016 0.016

Model III 0.013 0.010 0.009 0.009 0.010 0.009

H 2 13 18 23 28 33

n = 200000

Model I 0.041 0.036 0.035 0.036 0.036 0.036

Model II 0.338 0.008 0.007 0.008 0.008 0.008

Model III 0.007 0.004 0.004 0.005 0.004 0.005

Table 2: The minimum average subspace estimation error over 100 repeated experiments
with respect to different m of FSIR-OT for various models in the case of ε ∼ N(0, 2).

H.3 Additional simulation results of Section 4.2

The left panels of Figures 4 - 6 are the average subspace estimation error under Model (I)

where n ranges in {2×103, 2×104, 5×104, 2×105, 5×105, 106}, m ranges in {3, 4, . . . , 25}. The

optimal value of m (denoted by m∗) for each n is marked with a red circle. The shaded areas

represent the standard error bands associated with these estimates (all smaller than 0.011).

The right panel of Figures 4 - 6 illustrate the linear dependence of log(m∗) on log(n). The

solid line characterizes the linear trend of log(m∗) against log(n). The dotted lines are their

least-squares fittings, with their slopes estimated as 0.183, 0.2 and 0.196 respectively, which

are close to the theoretical value of 2/11. These results are consistent with the theoretically

optimal choice of m in FSIR-OT.
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H.3 Additional simulation results of Section 4.2
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Figure 4: Experiments for the optimal choice of truncation parameter m with ε ∼ N(0, 1)
and H = 10. Left: average subspace estimation error with increasing m for different n.
Right: linear trend of log(m∗) against log(n), with a slope of 0.183 and R2 > 0.98.
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Figure 5: Experiments for the optimal choice of truncation parameter m with ε ∼ N(0, 0.25)
and H = 10. Left: average subspace estimation error with increasing m for different n. Right:
linear trend of log(m∗) against log(n), with a slope of 0.2 and R2 > 0.99.
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H.4 Additional simulation results of Section 4.3
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Figure 6: Experiments for the optimal choice of truncation parameter m with ε ∼ N(0, 2)
and H = 10. Left: average subspace estimation error with increasing m for different n.
Right: linear trend of log(m∗) against log(n), with a slope of 0.196 and R2 > 0.98.

H.4 Additional simulation results of Section 4.3

For each model of Models (I) - (III), we calculate the average subspace estimation error of

FSIR-OT and RFSIR based on 100 replications, where n = 20000, the truncation parameter

of FSIR-OT m ranges in {2, 3, . . . , 13, 14, 20, 30, 40}, and the regularization parameter in

RFSIR ρ ranges in 0.01 × {1, 2, · · · , 9, 10, 15, 20, 25, 30, 40, · · · , 140, 150}. Detailed results

are presented in Figures 7 - 9, where we mark the minimal error in each model with red

‘×’. The shaded areas represent the corresponding standard errors, all of which are less than

0.01. When ε ∼ N(0, 1), H = 10, for FSIR-OT, the minimal errors for M1, M2, and M3 are

0.06, 0.02, and 0.01 respectively. For RFSIR, the corresponding minimal errors are 0.08, 0.06,

and 0.01. When ε ∼ N(0, 0.25), H = 10, for FSIR-OT, the minimal errors for M1, M2,

and M3 are 0.04, 0.02, and 0.01 respectively. For RFSIR, the corresponding minimal errors

are 0.06, 0.04, and 0.01. When ε ∼ N(0, 2), H = 10, for FSIR-OT, the minimal errors for

M1, M2, and M3 are 0.078, 0.032, and 0.017 respectively. For RFSIR, the corresponding

minimal errors are 0.109, 0.105, and 0.014. The results here suggest that the performance of
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H.4 Additional simulation results of Section 4.3

FSIR-OT is generally superior to, or at the very least equivalent to, that of the RFSIR.
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Figure 7: Average subspace estimation error of FSIR-OT and RFSIR for various models
in the case of ε ∼ N(0, 1) and H = 10. The standard errors are all below 0.01. Left:
FSIR-OT with different truncation parameter m; Right: RFSIR with different values of the
regularization parameter ρ.
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Figure 8: Average subspace estimation error of FSIR-OT and RFSIR for various models in
the case of ε ∼ N(0, 0.25) and H = 10. Average subspace estimation error of FSIR-OT and
RFSIR for various models. The standard errors are all below 0.008. Left: FSIR-OT with
different truncation parameter m; Right: RFSIR with different values of the regularization
parameter ρ.
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H.5 Comparison with PCA on selecting optimal m
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Figure 9: Average subspace estimation error of FSIR-OT and RFSIR for various models in
the case of ε ∼ N(0, 2) and H = 10. Average subspace estimation error of FSIR-OT and
RFSIR for various models. The standard errors are all below 0.012. Left: FSIR-OT with
different truncation parameter m; Right: RFSIR with different values of the regularization
parameter ρ.

H.5 Comparison with PCA on selecting optimal m

SIR is a supervised learning method, whereas PCA is an unsupervised learning method.

Consequently, using PCA to select m without any information from the response variable is

intuitively incorrect.

Specifically, we attempt to use PCA to select m and highlight the drawbacks of this

approach in the following. Here we consider the bike sharing data set studied in Section 4.4.

First, we calculate the proportion of the total eigenvalue sum explained by the first i (i ≤ 14)

eigenvalues of Γ̂. We find that the first eigenvalue alone accounts for over 99.4% ≥ 99% of

the total, suggesting that choosing m as 1 is a good option, and increasing m further adds

little value. Under this parameter selection (with d only taking 1), the Gaussian process

regression error after SIR dimension reduction is 0.201, significantly higher than the optimal

result 0.188 in Table 1, corresponding to d = 2 and m = 6. Therefore, using the unsupervised

learning method PCA does not provide a reasonable way to select m.
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