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The supplementary materials contain detailed technical conditions, complete proofs for all the

theorems in the main text, and examples of precision structures that satisfy condition (C1).

Additionally, we include further simulation studies, a proposed data-driven procedure for selecting

tuning parameters, and insights into the real data analysis.

1. Technique assumptions

Because Sn is invariant to µ, without loss of generality, we assume that µ = 0 in the rest of the

proof. We replace Sn by V n =
∑n

i=1 XiX
T
i /n because the terms related to X̄ in Sn are small

order of V n. We assume the following multivariate model (Bai and Saranadasa, 1996; Chen et

al. , 2010) for the random variable X, which includes Gaussian distribution as a special case:

Assumption (D1): Assume X = ΓTZ+ µ, where µ is a p-dimensional constant vector, Γ is a

m× p constant matrix with m ≥ p so that ΓTΓ = Σ, and Z = (Z1, · · · , Zm)T satisfies E(Z) = 0,

var(Z) = Im and E(Z4
i ) = 3 + κ for a finite constant ∆. Additionally, Zi has a uniformly

1



bounded 8th moment for i = 1, · · · ,m, and for any integers lv ≥ 0 such that
∑8

v=1 lv ≤ 8, we

have E(Zl1
i1
, Zl2

i2
· · ·Zlq

iq
) = E(Zl1

i1
)E(Zl2

i2
) · · ·E(Z

lq
iq
) whenever 1 ≤ i1, · · · , iq ≤ m are distinct

indices.

Assumption (D2): Recall X1 = (X11, · · · , X1p)
T. Assume E{exp(ηX2

1j)} ≤ C for j = 1, · · · , p

and some finite constants η and C.

2. Examples of precision structures satisfying Condition (C1)

The main idea of the proof of Theorem 1 is to approximate the test statistics D̂n by a modified

version of Dn. Denote A = {(i, j), 1 ≤ i, j ≤ p} be the set of all pairs of indices that D̂n will

be maximized over and write D̂n = max(i,j)∈A D̂2
ij . Let A0 = {(i, j), ω∗

ij ̸= 0} be the set of

indices that excluding the sparse set of non-zeros in Ω∗. Let A1 = ∪p
i=1{(i, k) : limp→∞ s0σik ̸=

0, ∀(i, k) /∈ A0} be the set of indices that variables (i, k) having covariance larger than 1/s0.

Define B0 = A0∪A1 as the union of A0 and A1. For convenience, denote , D̂∗
n = max(i,j)∈A D̂∗2

ij ,

D̂∗
n1 = max(i,j)∈A/A0

D̂∗2
ij , D̂

∗
n2 = max(i,j)∈A/B0

D̂∗2
ij , where D̂∗2

ij = (eT
j Vnŵi,0 − eT

j ei)
2/θij .

We will show that the distribution of D̂n can be approximated by the distribution of Dn2 =

max(i,j)∈A/B0
D2

ij . Notice that for technical details in the proof we need card(A/B0) = p2{1 +

o(1)}, which followed by ||Σ∗||1 ≤ C1, for some C1 > 0.

We now provide some examples of classes of precision matrices that satisfying Condition

(C1) and their corresponding forms of A/B0.

Example 1. (Polynomial decay) Let Ω∗ = (ω∗
ij)p×p be a banded polynomial precision matrix

defined by ω∗
ij = 1/(1 + |i− j|)λ, for |i − j| < s0, s0 = o(

√
n), λ ≥ 2, and ω∗

ij = 0 otherwise.

Lemma 4 shows that |Σi,j | ≤ C∗(1+|i−j|)−λ.Therefore, ||Σ∗||1 < C1, for some C1. Furthermore,

we also have, σjk = O(1/sλ0 ) = o(1/s0) for (j, k) such that |j − k| ≥ s0. So A1 = ∪p
i=1

{
(i, k) :

max{|k − (i + s0 − 1)|, |k − (i − s0 + 1)|} ≤ h, k /∈ [i − s0 + 1, i + s0 − 1]
}
, where h = s0.
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Meanwhile B0 = ∪p
i=1

{
(i, k),max{|k− (i+ s0− 1)|, |k− (i− s0+ 1)|} ≤ h

}
. Therefore, A/B0 =

∪p
i=1

{
(i, k),min{|k−(i+s0−1)|, |k−(i−s0+1)|} ≥ h

}
. As a result, card(A/B0) = p2{1+o(1)}.

Example 2. (Exponential decay) Let Ω∗ = (ω∗
ij)p×p be a precision matrix decaying at an

exponential rate so that ω∗
ij = θ|i−j| for |i − j| < s0, s0 = o(

√
n), 0 < θ < 1, and ω∗

ij = 0

otherwise. Lemma 5 shows that σjk = O{exp(−β|j − k|)}, for some 0 < β < − log θ. Therefore,

||Σ∗||1 < C1, for some C1 > 0. So A/B0 = ∪p
i=1{(i, k),min(|k−(i+s0−1)|, |k−(i−s0+1)|) ≥ h},

where h = sγ0 , for some small γ > 0. As a result, card(A/B0) = p2{1 + o(1)}.

Example 3. (Banded) Assume that precision matrix Ω∗ has a banded structure such that

ω∗
ij = 0, for |i− j| ≥ s0 where s0 = o(

√
n). Then

A/B0 = ∪p
i=1{(i, k),min(|k − (i+ s0− 1)|, |k − (i− s0 + 1)|) ≥ h}

where h = s1+γ
0 , for some small γ > 0. Lemma 6 implies that |σij | ≤ Cλ

|i−j|
1 , for 0 <

λ1 = (
√

cond(Ω∗)− 1)/(
√

cond(Ω∗) + 1) < 1, where cond(Ω∗) = ||Ω∗||||Ω∗−1||. Therefore

||Σ∗||1 < C1, for some C1 > 0, and σjk < λ
2|j−k|/s0
1 = λ

2s
γ
0

1 = o(1/s0) on A/B0. We also have

that card(A/B0) = p2{1 + o(1)}.

Example 4. (Factor model) Assume that Ω∗ is generated from a factor model. Specifically,

Ω∗ = Ip +
∑k

i=1 αiuiu
T
i where Ip is the identity matrix and for each i = 1, . . . , k (k ∈ Z+),

αi ∈ R, ui is a p-dimensional vector in Rp such that ||Ω∗||1 = O(1). Lemma 7 shows that

A/B0 = A/A0, since σjk = 0 for (j, k) ∈ A/B0. As a result, ||Σ∗||1 < C1 for some C1 > 0 and

card(A/B0) = p2{1 + o(1)}.

3



3. Proof of Lemmas

Proof of Lemma 1 in the main text: (1) We have

var(eT
j Vnw

∗
i − eT

j ei) = var(eT
j

n∑
i=1

XiX
T
i w

∗
i )/n

2 = var(eT
j X1X

T
1w

∗
i )/n

= E(eT
j X1X

T
1w

∗
iw

∗
i
T
X1X

T
1 ej)/n− (eT

j Σ
∗w∗

i )
2/n.

We write X1 as ΓTZ, where Z is a p-dimensional standard normally distributed random vector

and Σ∗ = ΓTΓ. Then we have

E(eT
j X1X

T
1w

∗
iw

∗
i
T
X1X

T
1 ej) = E(eT

j Γ
TZZTΓw∗

iw
∗
i
T
ΓTZZTΓej)

= E(ZTΓw∗
iw

∗
i
T
ΓTZZTΓeje

T
j Γ

TZ)

= tr(Γw∗
iw

∗
i
T
ΓT)tr(Γeje

T
j Γ

T) + 2tr(Γw∗
iw

∗
i
T
ΓTΓeje

T
j Γ

T)

= w∗
i
T
Σ∗w∗

i e
T
j Σ

∗ej + 2(w∗
i
T
Σ∗eje

T
j Σ

∗w∗
i )

= ω∗
iiσ

∗
jj + 2(w∗

i
T
Σ∗eje

T
j Σ

∗w∗
i ).

Since eT
j Σ

∗w∗
i = 0,w∗

i
TΣ∗eje

T
j Σ

∗w∗
i = 0, for 1 ≤ i ̸= j ≤ p. This yields var(eT

j Vnw
∗
i − eT

j ei)

= ω∗
iiσ

∗
jj/n. (2) If 1 ≤ i = j ≤ p, we have eT

j Σ
∗w∗

i = 1 and w∗
i
TΣ∗eje

T
j Σ

∗w∗
i = 1. So

var(eT
i Vnw

∗
i − eT

i ei) = (ω∗
iiσ

∗
ii + 1)/n.

If X1 follows a multivariate model as in Bai and Saranadasa (1996) and Chen et al. (2010)

and Σ∗ = ΓTΓ, then we have

E(eT
j X1X

T
1w

∗
iw

∗
i
T
X1X

T
1 ej)

= E(eT
j Γ

TZZTΓw∗
iw

∗
i
T
ΓTZZTΓej)

= E(ZTΓw∗
iw

∗
i
T
ΓTZZTΓeje

T
j Γ

TZ)

= tr(Γw∗
iw

∗
i
T
ΓT)tr(Γeje

T
j Γ

T) + 2tr(Γw∗
iw

∗
i
T
ΓTΓeje

T
j Γ

T) + ∆tr(Γw∗
iw

∗
i
T
ΓT ◦ Γeje

T
j Γ

T)

= w∗
i
T
Σ∗w∗

i e
T
j Σ

∗ej + 2(w∗
i
T
Σ∗eje

T
j Σ

∗w∗
i ) + ∆(w∗

i
T
ΓTΓej)

2
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= ω∗
iiσ

∗
jj + 2(w∗

i
T
Σ∗eje

T
j Σ

∗w∗
i ) + ∆(w∗

i
T
Σ∗ej)

2.

Similar to the normal distribution cases, when i ≠ j, we have var(eT
j Vnw

∗
i − eT

j ei) = ω∗
iiσ

∗
jj/n.

(2) If 1 ≤ i = j ≤ p, we have var(eT
i Vnw

∗
i − eT

i ei) = (ω∗
iiσ

∗
ii + 1 +∆)/n. □

4. Technical Lemmas and their proofs

We include the following Lemmas 1-3 and Lemmas 8-13 that are needed for the proof of the

main theorems in the main text.

Lemma 1 (Bonferroni Inequality). Let B = ∪p
t=1Bt we have

2k∑
t=1

(−1)t−1Et ≤ pr(B) ≤
2k−1∑
t=1

(−1)t−1Et

where Et =
∑

1≤i1≤...≤it≤p pr(Bi1 ∩ · · · ∩Bit) and k < [p/2].

Lemma 2 (Berman (1962)). If X and Y are bi-variate normally distributed with expectations

0, unit variance and correlation ρ, then

lim
c→∞

pr(X > c, Y > c)

{2π(1− ρ)1/2c2}−1 exp{−c2/(1 + ρ)}(1 + ρ)1/2
= 1,

uniformly for all ρ such that |ρ| < δ, for any 0 < δ < 1.

Lemma 3 (Zaitsev (1987)). Let τ > 0, ξ1, . . . , ξn ∈ Rk are independent random vari-

ables such that L(ξi) ∈ B1(k, τ), for i = 1, . . . , n, where B1(k, τ) = {L(ξ) ∈ Fk : Eξ =

0, |E(ξ, t)2(ξ,u)m−2| ≤ m!τm−2||u||m−2E(ξ, t)2/2, for every integer m ≥ 3 and for all t,u },

L(ξ) is the distribution of random variable ξ, Fk is the class of random distribution on Rk,

(ξ, t) is the inner product of ξ and t. Denote S = ξ1 + ξ2 + · · · + ξn, F = L(S). Let Φ be

a Gaussian distribution with mean vector 0 and the same covariance matrix with F . Define
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π(F,Φ;λ) = supH∈Bk
max{F (H) − Φ(Hλ),Φ(H) − F (Hλ)}, where Bk is the σ-field of Borel

subsets of Rk, Hλ = {y ∈ Rk : infx∈H ||y − x|| ≤ λ}. Then

π(F,Φ;λ) ≤ c1k
5/2 exp(− λ

τc2k5/2
),

for all λ > 0.

The following Lemmas 4 - 7 are used in Examples 1-4 for some special classes of precision

matrices.

Lemma 4 (Hall & Lin (2010)). For λ ≥ 1, c0 > 0,M > 0. For any sequence of matrices Σn

such that

Σn ∈ Θ⋆
n(λ, c0,M) = {Σn : |Σn(j, k)| ≤ M ∗ (1 + |j − k|)−λ, ||Σn|| ≥ c0}.

There exists a constant C = C(λ, c0,M) such that for any n and any 1 ≤ j, k ≤ n,

|Σ−1
n (j, k)| ≤ C ∗ (1 + |j − k|)−λ.

Lemma 5 (Gröchenig & Leitner (2006)). Let A = (aij)p×p,A
−1 = (bij)p×p, λmax(A) and

λmax(A
−1) are bounded. If aij = O

{
exp(−α|i− j|)

}
, then bij = O

{
exp(−β|i− j|)

}
for some

β such that 0 < β < α.

Lemma 6 (Demko et al. (1984)). Let A = (aij)p×p and A−1 = (bij)p×p. Assume that λmax(A)

and λmax(A
−1) are bounded. If A is positive definite and m-banded, then we have |bij | ≤ Cλ|i−j|

where λ =
[
{
√

cond(A)− 1}/{
√

cond(A) + 1}
]2/m

, cond(A) = ||A|| ||A−1||, C = ||A−1||max[1

and {1 +
√

cond(A)}2/{2cond(A)}].

Lemma 7. Let Ip be an identity matrix and A = Ip +
∑k

i=1 αiuiu
T
i for any vector ui ∈

Rp×1, αi ∈ R, i = 1, . . . , k. Then outside the support of A, and A−1 have the same zeros pattern.
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Proof: Let us denote Up×k = (α1u1, . . . , αkuk),Vk×p = (u1, . . . ,uk)
T, then

∑k
i=1 αiuiu

T
i = UV.

So A = Ip +UV. Applying Woodbury formula from page 211 in Hager (1989) we have:

A−1 = (Ip +UV)−1 = Ip +U(Ik − VU)−1V.

Denote M = (Ik − VU)−1,H = UMV, then A−1 = Ip +H. It can be checked that the zero

patterns of H and UV are the same. For easy to understand, let us consider a special case

A = Ip + u1u
T
1 + u2u

T
2 where u1 = e1 + e2 ∈ Rp×1 and u2 = e3 + e4 ∈ Rp×1. Then

V =

1 1 0 0 0 . . . 0

0 0 1 1 0 . . . 0


2×p

and U = VT.

For (i, j)th position of H where i /∈ {1, 2, 3, 4} or j /∈ {1, 2, 3, 4}, we have H(i, j) =

U(i, )MV(, j) = 0. Since the zero patterns on H and UV are the same, using this fact together

with A = Ip +UV and A−1 = Ip +H completes the proof of this Lemma. □

Lemma 8. max
(i,j)∈A0

D̂∗
ij = op(1).

Proof: Recall that D̂∗
ij = |eT

j Vnŵi,0 − eT
j ei|/

√
θij . Consider the numerator

eT
j Vnŵi,0 − eT

j ei =
n− 1

n
(eT

j Snŵi,0 − eT
j ei)−

1

n
eT
j ei + eT

j X̄X̄Tŵi,0

=
n− 1

n
{eT

j SnBi,0(B
T
i,0SnBi,0)

−1Bi,0ei − eT
j ei}

− 1

n
eT
j ei + eT

j X̄X̄Tŵi,0.

Notice that the first term is indeed 0. For notation convenience, consider i = 1 and suppose that

w1,0 = (w11, w12, w13, w14, 0, . . . , 0)
T = B1,0w11,0 ∈ Rp×1,
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where w11,0 = (w11, w12, w13, w14)
T ∈ R4×1 is non zero components of w1,0 and

B1,0 =



1 0 0 0 0 . . . 0

0 1 0 0 0 . . . 0

0 0 1 0 0 . . . 0

0 0 0 1 0 . . . 0



T

=

(
e1 e2 e3 e4

)
∈ Rp×4.

Then

BT
1,0Snŵ1,0 = BT

1,0SnB1,0(B
T
1,0SnB1,0)

−1B1,0e1 = B1,0e1.

So

eT
j SnB1,0(B

T
1,0SnB1,0)

−1B1,0e1 − eT
j e1 = 0, for j = 1, 2, 3, 4.

So we have

D̂∗
ij =

eT
j Vnŵi,0 − eT

j ei√
θij

= −
eT
j ei/n√
θij

+
eT
j X̄X̄Tŵi,0√

θij
.

So

max
(i,j)∈A0

D̂∗
ij ≤ max

(i,j)∈A0

|
eT
j ei/n√
θij

|+ max
(i,j)∈A0

|
eT
j X̄X̄Tŵi,0√

θij
|. (4.1)

From Lemma 1 in the main text, we have the denominator
√

θij is at the order of 1/
√
n.

This gives us

max
(i,j)∈A0

eT
j ei/n√
(1/n)

= o(1). (4.2)

For the second term in (4.1), we note that eT
j X̄X̄Tŵi,0 =

∑s0
k=1 X̄jX̄ik ŵiik where 1 ≤

i1, i2, . . . , is0 ≤ p are non zero positions in wi,0. From page 2582 in Bickel & Levina (2008), we

have max1≤i≤p X̄i = Op{
√

(log p/n)}. This gives us

max
(i,j)∈A0

|eT
j X̄X̄Tŵi,0| ≤ max

1≤i≤p
X̄2

i

s0∑
k=1

|ŵiik | = Op(log p/n).

This gives us

max
(i,j)∈A0

|eT
j X̄X̄Tŵi,0|/

√
θij = Op(log p/

√
n) = op(1). (4.3)

The facts (4.1), (4.2), and (4.3) together verify the Lemma. □
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Lemma 9.
√
n max

(i,j)∈A/A0

|eT
j Vnŵi,0| =

√
n max

(i,j)∈A/A0

|eT
j Vnw

∗
i + eT

j Σ
∗ŵi,0|+ op(

√
log p).

Proof: On the one hand, we have

√
n max

(i,j)∈A/A0

|eT
j (Vn −Σ∗)Bi,0(S

−1
i −Ω∗

i )fi|

≤
√
ns0 max

1≤i,j≤p
|vij − σ∗

ij | max
1≤i,j≤p

|ŵij,0 − ω∗
ij |

= Op(s0log p/
√
n) = op(

√
log p). (4.4)

On the other hand

√
n max

(i,j)∈A/A0

|eT
j (Vn −Σ∗)Bi,0(S

−1
i −Ω∗

i )fi|

=
√
n max

(i,j)∈A/A0

|eT
j Vnŵi,0 − eT

j Vnw
∗
i − eT

j Σ
∗ŵi,0|. (4.5)

Combining (4.4) and (4.5), we get

√
n max

(i,j)∈A/A0

|eT
j Vnŵi,0| =

√
n max

(i,j)∈A/A0

|eT
j Vnw

∗
i + eT

j Σ
∗Bi,0ŵi,0|+ op(

√
log p).

This completes the proof the Lemma. □

Lemma 10. For any (i, j) ∈ A/B0, let aT = eT
j − eT

j Σ
∗Bi,0Ω

∗
iB

T
i,0, then

V ar(aTVnwi,0) = (ω∗
iiσ

∗
jj − ω∗

iie
T
j Σ

∗Bi,0Ω
∗
iB

T
i,0Σ

∗ej)/n.

Proof: We first note that

E(aTVnwi,0) = E(aX1X
T
1wi,0) = aTΣ∗wi,0

= (eT
j − eT

j Σ
∗Bi,0(B

T
i,0Σ

∗Bi,0)
−1BT

i,0)Σ
∗wi,0

= −eT
j Σ

∗Bi,0(B
T
i,0Σ

∗Bi,0)
−1BT

i,0ei = −eT
j Σ

∗wi,0 = 0,

var(aTVnwi,0) = E{(aTVnwi,0)
2} =

1

n
E(aTX1X

T
1wi,0w

T
i,0X1X

T
1 a),
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E(aTX1X
T
1wi,0w

T
i,0X1X

T
1 a) = E(aTΓTZZTΓwi,0w

T
i,0Γ

TZZTΓa)

= E(ZTΓwi,0w
T
i,0Γ

TZZTΓaaTΓTZ)

= tr(Γwi,0w
T
i,0Γ

T)tr(ΓaaTΓT) + 2tr(Γwi,0w
T
i,0Γ

TΓaaTΓT)

+∆tr(Γwi,0w
T
i,0Γ

T ◦ ΓaaTΓT)

= ω∗
iia

TΣ∗a+ (2 +∆)eT
i aa

Tei.

Thus, we have

var(aTVnwi,0) = (ω∗
iia

TΣ∗a+ 2eT
i aa

Tei)/n. (4.6)

Recall that Ω∗
i = BT

i,0Ω
∗Bi,0. We note the following

aTΣ∗a = (eT
j − eT

j Σ
∗Bi,0Ω

∗
iB

T
i,0)Σ

∗(ej −Bi,0Ω
∗
iB

T
i,0Σ

∗ej)

= eT
j Σ

∗ej − 2eT
j Σ

∗Bi,0Ω
∗
iB

T
i,0Σ

∗ej

+ eT
j Σ

∗Bi,0(B
T
i,0Σ

∗Bi,0)
−1BT

i,0Σ
∗Bi,0Ω

∗
iB

T
i,0Σ

∗ej

= eT
j Σ

∗ej − eT
j Σ

∗Bi,0Ω
∗
iB

T
i,0Σ

∗ej

= σ∗
jj − eT

j Σ
∗Bi,0Ω

∗
iB

T
i,0Σ

∗ej , (4.7)

eT
i aa

Tei = eT
i (ej −Bi,0Ω

∗
iB

T
i,0Σ

∗ej)(e
T
j − eT

j Σ
∗Bi,0Ω

∗
iB

T
i,0)ei

= eT
i eje

T
j ei − 2eT

i Bi,0Ω
∗
iB

T
i,0Σ

∗eje
T
j ei

+ eT
i Bi,0Ω

∗
iB

T
i,0Σ

∗eje
T
j Σ

∗Bi,0Ω
∗
iB

T
i,0ei

= eT
i Bi,0Ω

∗
iB

T
i,0Σ

∗eje
T
j Σ

∗w∗
i

= eT
i Bi,0Ω

∗
iB

T
i,0Σ

∗eje
T
j ei

= 0. (4.8)

Plugging (4.7) and (4.8) into (4.6), we get the variance expression in the Lemma. □

Lemma 11. pr( max
(i,j)∈A1

D̂∗2
ij ≥ tp) = o(1), where tp = t+ 4 log p− log(log p).
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Proof: Lemma 9 gives us

√
n max

(i,j)∈A1

|eT
j Vnŵi,0| =

√
n max

(i,j)∈A1

|eT
j Vnw

∗
i + eT

j Σ
∗ŵi,0|+ op(

√
log p).

We have

pr( max
(i,j)∈A1

D̂∗2
ij ≥ tp) = pr( max

(i,j)∈A1

|D̂∗
ij | ≥

√
tp)

= pr( max
(i,j)∈A1

|
eT
j Vnŵi,0√

θij
| ≥

√
tp)

= pr( max
(i,j)∈A1

|eT
j Vnw

∗
i + eT

j Σ
∗ŵi,0|√

θij
+ op(

√
log p) ≥

√
tp)

= pr( max
(i,j)∈A1

|eT
j Vnw

∗
i + eT

j Σ
∗ŵi,0|√

θij
≥
√

tp).

We have

√
1/θije

T
j Σ

∗ŵi,0 =
√

1/θij(e
T
j Σ

∗ŵi,0 − eT
j Σ

∗wi,0)

=
√

1/θije
T
j Σ

∗Bi,0

{
S−1

i − (BT
i,0Σ

∗Bi,0)
−1
}
fi

=
√

1/θije
T
j Σ

∗Bi,0(S
−1
i −Ω∗

i )fi. (4.9)

Applying Lemma 5 in Le and Zhong (2021), we have

eT
j Σ

∗Bi,0

{
S−1

i −Ω∗
i

}
fi

= −eT
j Σ

∗Bi,0Ω
∗
i (Si −Σ∗

i )Ω
∗
i fi

− eT
j Σ

∗Bi,0Ω
∗
i (Si −Σ∗

i )(S
−1
i −Ω∗

i )fi.

Let us denote R = max(i,j)∈A1
|eT

j Σ
∗Bi,0Ω

∗
i (Si −Σ∗

i )(S
−1
i −Ω∗

i )fi|. Since ||Σ∗||1 and ||Ω∗
i ||1

are bounded, so ||eT
j Σ

∗Bi,0Ω
∗
i ||1 = O(1). Then we have

R ≤ s0 max
1≤i,j≤p

|sij − σ∗
ij | max

1≤i,j≤p
|ω̂ij,0 − ω∗

ij | = Op(s0 log p/n).

11



So

eT
j Σ

∗Bi,0[S
−1
i −Ω∗

i ]fi

= −eT
j Σ

∗Bi,0Ω
∗
iB

T
i,0Snwi,0 +Op(s0 log p/n)

= −mTSnwi,0 +Op(s0 log p/n), (4.10)

where mT = eT
j Σ

∗Bi,0Ω
∗
iB

T
i,0. Notice that ||m||1 = O(1) and ||wi,0||1 = 1.

We have

mTSnwi,0 = mTVnwi,0 +
1

n− 1
mTVnwi,0 −

n

n− 1
mTX̄X̄Twi,0.

In addition we have,

1

n− 1
|mTVnwi,0| ≤

1

n− 1
|mT(Vn −Σ∗)wi,0|+

1

n− 1
|mTΣ∗wi,0|

=
1

n− 1
|eT

j Σ
∗Bi,0Ω

∗
i {BT

i,0(Vn −Σ∗)Bi,0}wi1,0|+O(1/n)

= Op(s0/n).

In other words, we have

1

n− 1
|mTVnwi,0| = Op(s0/n). (4.11)

Furthermore, we have

n

n− 1
mTX̄X̄Twi,0 ≤ n

n− 1
max

i=1,...,p
X̄2

i ||m||1 ||wi,0||1 = Op(log p/n). (4.12)

12



Applying (4.9), (4.10), (4.11), and (4.12), we get

pr( max
(i,j)∈A1

D̂∗2
ij ≥ tp) = pr( max

(i,j)∈A1

|eT
j Vnwi,0 + eT

j Σ
∗ŵi,0|√

θij
≥
√

tp)

= pr( max
(i,j)∈A1

|eT
j Vnwi,0 −mTSnwi,0|√

θij
≥
√

tp)

= pr{ max
(i,j)∈A1

|(eT
j −mT)Vnwi,0|√

θij
≥
√

tp}

= pr( max
(i,j)∈A1

|aTVnwi,0|√
θij

≥
√

tp)

where aT = eT
j − eT

j Σ
∗Bi,0Ω

∗
iB

T
i,0.

Lemma 10 implies that for (i, j) ∈ A1,

var(aTVnwi,0) = (ω∗
iiσ

∗
jj − ω∗

iie
T
j Σ

∗BiΩ
∗
iB

T
i Σ

∗ej)/n ≤ (ω∗
iiσ

∗
jj)/n = θij ,

where we notice that ω∗
iie

T
j Σ

∗Bi,0Ω
∗
iB

T
i,0Σ

∗ej ≥ 0, since Ω∗
i is positive definite.

By central limit theory, we have aTVnwi,0 = (
n∑

k=1

aTXkX
T
kwi,0)/n → N(0, var(aTVnwi,0)).

In addition card(A1) = o(p2), this gives us

pr( max
(i,j)∈A1

|eT
j Vnwi,0 + eT

j Σ
∗Biŵi,0|√

θij
≥
√

tp) = pr( max
(i,j)∈A1

√
n|aTVnwi,0|√

θij
≥
√

tp)

≤ pr{ max
(i,j)∈A1

|aTVnwi,0|√
{var(aTVnwi,0)}

≥
√

tp}

≤
∑

(i,j)∈A1

pr{ |aTVnwi,0|√
{var(aTVnwi,0)}

≥
√

tp}

≤ o(p2)e−tp/2 = o(p2)e−2 log p = o(1)

where the last inequality is due to Gaussian tail inequality. The Lemma is proved. □

Lemma 12. max
(i,j)∈A/B0

|eT
j Σ

∗Bi,0(S
−1
i −Ω∗

i )fi| = op(
√

(log p/n)).

Proof: When the underlying network structure is a factor model, it can be seen that eT
j Σ

∗Bi,0(S
−1
i −

Ω∗
i )fi = 0, for all (i, j) ∈ A/B0. So the Lemma is satisfied.
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Now we consider the case for other network structures with their covariance matrix and

precision matrix satisfying conditions (C1). Let us denote bT = eT
j Σ

∗Bi,0 = (σ∗
ji1 , . . . , σji∗s0

).

where i1, . . . , is0 are nonzero positions at column wi,0 of the precision matrix Ω. Since ||b||1 =

O(1), applying Theorem 4 in Le and Zhong (2021), we have

√
(n/aij)b

T(S−1
i −Ω∗

i )fi ∼ N(0, 1) (4.13)

where aij = var(bTΩ∗
iX1iX

T
1iΩ

∗
i fi), for all (i, j) ∈ A/B0.

Denote Ω∗
i = (γij)s0×s0 . By Lemma 7 in Le and Zhong (2021), we get

aij = var(bTΩ∗
iX1iX

T
1iΩ

∗
i fi) = E{XT

1iΩ
∗
ibb

TΩ∗
iX1iX

T
1iΩ

∗
i fif

T
i Ω∗

iX1i} − (bTΩ∗
iΣiΩ

∗
i fi)

2

= bTΩ∗
iΣ

∗
iΩ

∗
ibf

T
i Ω

∗
iΣ

∗
iΩ

∗
i fi + (bTΩ∗

iΣiΩ
∗
i fi)

2 +∆tr(ΓT
i Ω

∗
ibb

TΩ∗
iΓ

T
i ◦ ΓT

i Ω
∗
i fif

T
i Ω∗

iΓ
T
i )

= bTΩ∗
ibf

T
i Ω

∗
i fi + (1 +∆)(bTΩ∗

i fi)
2

= ω∗
ii

∑
k,l∈{i1,...,is0}

σ∗
jkσ

∗
jlγkl + (1 +∆)

∑
k,l∈{i1,...,is0}

σ∗
jkσ

∗
jlγikγil. (4.14)

On A/B0 we have

σ∗
jkσ

∗
jl = o(1/s20), for all k, l ∈ {i1, . . . , is0}, j ̸= k, l. (4.15)

The facts (4.14) and (4.15) give us aij = o(1), for all (i, j) ∈ A/B0.

Let us denote a = max(i,j)∈A/B0

√
aij , so a = o(1). Applying (4.13), we have

pr
{

max
(i,j)∈A/B0

|eT
j Σ

∗Bi,0(S
−1
i −Ω∗

i )fi| ≥ t
}

≤ pr
{

max
(i,j)∈A/B0

|
√

(n/aij)ejΣ
∗Bi,0(S

−1
i −Ω∗

i )fi| ≥ (
√
nt/a)

}
≤ p2 exp{−nt2/(2a2)}.

14



Choose t = Ma
√

{(log p)/n} for M > 0 sufficient large, then we have

pr
{

max
(i,j)∈A/B0

|ejΣ
∗Bi,0(S

−1
i −Ω∗

i )fi| ≥ Ma

√
log p

n

}
≤ p2 exp(−nM2a2 log p

2a2n
)

= p2 exp(log p−M/2)

= p2−M/2 → 0.

Or

max
(i,j)∈A/B0

|eT
j Σ

∗Bi,0(S
−1
i −Ω∗

i )fi| = Op{a
√

(log p/n)} = op{
√

(log p/n)}.

The Lemma is verified. □

Lemma 13.

∑
1≤k1<...<kd≤q

pr{|Nd|min ≥ t1/2p ± ϵn(log p)
−1/2} =

1

d!
{ 1√

(2π)
exp(− t

2
)}d{1 + o(1)}, (4.16)

where Nd = (Nk1 , . . . , Nkd)
T is a d-dimensional multivariate Gaussian random variable

with mean vector 0 and covariance matrix cov(Nd) = cov(W1). Here W1 is the random variable

defined as in equation (27) of the proof of Theorem 1 in the main text.

Proof: Notice that for X ∼ N(0, 1), we have

pr(|X| ≥ x) = 2{1 + o(1)}exp
−x2/2

x
√

(2π)
.

So when d = 1, we get

pr
{
|N1|min ≥ t1/2p ± ϵn(log p)

−1/2
}
= 2{1 + o(1)} exp−tp/2

√
tp
√

(2π)

= {1 + o(1)}2 exp(−t/2− 2logp)(logp)1/2

2
√

(logp)
√

(2π)

= {1 + o(1)}p
−2 exp−t/2√

(2π)
.

This leads ∑
1≤k1≤q

pr{|N1|min ≥ t1/2p ± ϵn(logp)−1/2} =
exp−t/2√

(2π)
{1 + o(1)}. (4.17)
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The Lemma is verified for d = 1.

Let us consider when d ≥ 2, we need to show that

pr
{
|Nd|min ≥ t1/2p ± ϵn(log p)

−1/2
}
= {1 + o(1)}

{ 1√
(2π)

exp(− t

2
)dp−2d

}
. (4.18)

Let R = (ρij)p×p be the correlation matrix and Ω̃ = (ω̃ij)p×p is the standardized version of the

precision matrix Ω∗ where ω̃ij = ω∗
ij/
√

(ω∗
iiω

∗
jj). For a fixed constant α0 > 0, for j = 1, 2, . . . , p,

define

sj = sj(α0) = card{i : |ρij | ≥ (log p)−1−α0}, hj = hj(α0) = card{i : |ω̃ij | ≥ (log p)−1−α0}.

We need two following conditions for our proof

max
j=1,...,p

sj(α0) = o(pγ), max
j=1,...,p

hj(α0) = o(pγ), ∀γ > 0. (4.19)

There exists some r ∈ (0, 1), ρij < r, ω̃ij < r, for all 1 ≤ i ̸= j ≤ p. (4.20)

Notice that the above conditions are mild. Condition (4.19) is met if R, and Ω∗ has maximum

eigenvector bounded from the above. And condition (4.20) met once the off diagonal elements

of R and Ω̃ are bounded by r. We have EZlk1Zlk2 = eT
jk2

eik1
eT
jk1

eik2
+ σ∗

jk1
jk2

ω∗
ik1

ik2
. When

either ik1 ̸= jk2 or ik2 ̸= jk1 , then EZlk1Zlk2 = σ∗
jk1

jk2
ω∗
ik1

ik2
. Notice that on A/B0, we have

ω∗
ik1

jk1
= ω∗

ik2
jk2

= 0, so when ik1 = jk2 and ik2 = jk1 , we get EZlk1Zlk2 = σ∗
ik1

jk1
ω∗
ik1

jk1
+1 =

1.

For two different pairs (ia, ja), (ib, jb), we can establish a graph defined by Giajaibjb =

(Viajaibjb , Eiajaibjb) where Viajaibjb = {ia, ja, ib, jb} is the set of vertices and Eiajaibjb is the set of

edges. We say there is an edge (connection) between i ̸= j ∈ {ia, ja, ib, jb} if |ρij | ≥ (log p)−1−α0

or |ω̃ij | ≥ (log p)−1−α0 .

We say Gabcd is a k-vertices graph (k-G) if the number of different vertices is k, in our case

k ∈ {2, 3, 4}. For sake of convenient, we denote “3G-1E" for a three vertices graph when either
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ρiaib or ω̃jajb form an edge. We denote “4G- 2E" for a four vertices graph when both ρiaib and

ω̃jajb form edges. We say a graph G = Gim1 jm1 im2 jm2
satisfy condition (⋆) if

(⋆) : Either ω̃im1 im2
≤ (log p)−1−α0 or ρjm1

jm2
≤ (log p)−1−α0 .

Remark: Those graphs satisfying (⋆) also satisfy

cov(Z̃lm1 , Z̃lm2) → ρjm1 jm2
ω̃im1 im2

= O{(log p)−1−α0}. (4.21)

As shown above for any two different pairs (ik1 , jk1), (ik2 , jk2) we have

cov(Z̃lk1 , Z̃lk2) →
√

{1/(ω∗
ik1

ik1
ω∗
ik2

ik2
σ∗
jk1

jk1
σ∗
jk2

jk2
)}EZlk1Zlk2 .

For any matrices A = (aij)p×p,B = (bij)p×p = A−1, page 472 in Robinson & Wahten (1992)

tells us

bii ≥ ajj/(aiiajj − a2
ij), for any 1 ≤ i ̸= j ≤ p.

This gives us

ω∗
ik1

ik1
ω∗
jk1

jk1
σ∗
ik1

ik1
σ∗
jk1

jk1
≥ {(ω∗

ik1
ik1

ω∗
jk1

jk1
)/(ω∗

ik1
ik1

ω∗
jk1

jk1
− ω∗

ik1
jk1

)}2 > 1/r,

for some r ∈ (0, 1). So for a 2G- 1E of two pairs (ik1 , jk1), (jk1 , ik1) we have, for some r ∈ (0, 1),

cov(Z̃lk1 , Z̃lk2) →
√

{1/(ω∗
ik1

ik1
ω∗
jk1

jk1
σ∗
ik1

ik1
σ∗
jk1

jk1
)} < r, (4.22)

For "4G-2E" or "3G-1E" of two different pairs (ik1 , jk1), (ik2 , jk2) we have

cov(Z̃lk1 , Z̃lk2) →
√

{1/(ωik1
ik1

ω∗
ik2

ik2
σ∗
jk1

jk1
σ∗
jk2

jk2
)}σ∗

jk1
jk2

ω∗
ik1

ik2

= ρjk1
jk2

ω̃ik1
ik2

< r, (4.23)

for some 0 < r < 1.

Now we define the following sets I = {1 ≤ k1 < k2 < . . . < kd ≤ q}, d is a fixed positive

integer. I0 = {1 ≤ k1 < k2 < . . . < kd ≤ q : for some m1 ̸= m2 ∈ k1, . . . , kd, G = Gim1 jm1 im2 jm2
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does not satisfy (⋆)}. Ic0 = {1 ≤ k1 < k2 < . . . < kd ≤ q : for any m1 ̸= m2 ∈ k1, . . . , kd, G =

Gim1 jm1 im2 jm2
satisfies (⋆)}.

Notice that I = I0 ∪ Ic0 . For any subset S of {k1, . . . , kd}, we say that S satisfies (⋆⋆) if

(⋆⋆) for any m1 ̸= m2 ∈ S,Gim1 jm1 im2 jm2
satisfies (⋆). For 2 ≤ l ≤ d, let I0l = {1 ≤ k1 < k2 <

. . . < kd ≤ q : card(S) = l, where S is largest subset of k1 < . . . < kd, satisfies (⋆⋆)}.

I01 = {1 ≤ k1 < k2 < . . . < kd ≤ q : for any m1 ̸= m2 ∈ k1, . . . , kd, G = Gim1
jm1

im2
jm2

does not satisfy (⋆)}. So Ic0 = I0d, I0 = ∪d−1
l=1 I0l.

Claim:

card(I0l) ≤ Cdq
l+2γ(d−l), (4.24)

where Cd is a constant depends only on d. In addition

card(Ic0) = {1 + o(1)}Cd
q . (4.25)

Proof: First, we verify (4.24), card(I0l) ≤ Cdq
l+2γ(d−l). There are at most Cl

q ways of choosing S

with cardinality l from 1, 2..., q. For a fixed element "a" in S, there is at most pγpγ = p2γ choices

for "b" which satisfies Giajaibjb not satisfies (⋆). So there will be at most Clp2γ choices for

values "b" not go with l elements of S for properties (⋆). So we get card(I0l) ≤ Cl
q(Clp2γ)d−l ≤

Cdq
l+2γ(d−l) .

The claim (4.24) is verified.

Second, we show (4.25), card(Ic0) = {1 + o(1)}Cd
q . We have card(I) = Cd

q , since we are

choosing d numbers from q numbers without order.

card(I0) ≤
d−1∑
l=1

card(I0l) ≤
d−1∑
l=1

Cdq
l+2γ(d−l) = o(qd) = o(Cd

q ).

This gives us

card(Ic0) = Cd
q − o(Cd

q ) = {1 + o(1)}Cd
q .
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This clarifies (4.25).

We claim that the follows are true:

∑
I0

pr{|Nd|min ≥ t1/2p ± ϵn(log p)
−1/2} = o(1) (4.26)

and

∑
Ic0

pr{|Nd|min ≥ t1/2p ± ϵn(log p)
−1/2} =

1

d!
{ 1√

(2π)
exp(− t

2
)}d{1 + o(1)}, (4.27)

Proof: Before verify (4.26), we need to divide our set I0l a bit further. For 1 ≤ a ̸= b ≤ q, we

define d((ia, ja), (ib, jb)) = 1, if Giajaibjb does not satisfies (⋆); d((ia, ja), (ib, jb)) = 0 otherwise.

We further divide I0l as the following. Let (k1, k2, . . . , kd) ∈ I0l and let S⋆ ⊂ (k1, . . . , kd) be the

largest cardinality subset satisfying (⋆⋆) (if there are more than two subsets attain the largest

cardinality, then we choose any of them). Define I0l1 = {(k1, . . . , kd) ∈ I0l : there exists an a /∈ S⋆,

such that for some b1 ̸= b2 ∈ S⋆ with, d((ia, ja), (ib1 , jb1)) = 1, and d((ia, ja), (ib2 , jb2)) = 1},

I0l2 = I0l/I0l1. We have I011 = ∅, I012 = I01. Recall that d fixed and l ≤ d− 1. We can show

that

card(I0l1) ≤ Cql−1+2γ(d−l+1). (4.28)

card(I0l2) ≤ Cdq
l+2γ(d−l). (4.29)

Write S⋆ = (b1, b2, . . . , bl), for (k1, . . . , kd) ∈ I0l2. Since there exists an a /∈ S⋆ such that

d((ia, ja), (ib1 , jb1)) = 1 and d((ia, ja), (ib2 , jb2)) = 1 for some b1 ̸= b2 ∈ S⋆. We consider b1 is

the first element in S⋆, there are at most q ways to choose b1. There are at most p2γ to choose

the second element in S⋆ not goes with "a" for ⋆. For the other l− 2 elements in S⋆ there are at

most Cl−2
q ways of choosing. For the rest d− l elements outside S⋆, there are at most p2γ(d−l)

ways of choosing. So on the whole, we have

card(I0l1) ≤ qp2γCl−2
q p2γ(d−l) ≤ Cql−1+2γ(d−l+1),
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which verifies (4.28). We have

card(I0l) = card(I0l1) + card(I0l2) ≤ Cdq
l+2γ(d−l). (4.30)

On the other hand

card(I0l1) ≤ Cql−1+2γ(d−l+1) = o(ql). (4.31)

Applying (4.30) and (4.31), we get (4.29).

We go back to check our claim (4.26)

∑
I0

pr{|Nd|min ≥ t1/2p ± ϵn(log p)
−1/2} = o(1).

On I0l we have For any k1, . . . , kd ∈ I0l, write S⋆ = (b1, b2, . . . , bl), Ul is the covariance

matrix of (Nb1 , . . . , Nbl), then ||Ul − Il|| = O{(log p)−1−α0} (by (4.21)). As a result, we also

have |Ul| → 1 as p → ∞. Let us denote |y|max = max1≤i≤l |yi|, for y = (y1, . . . , yl)
T and

xp = t
1/2
p ± ϵn(log p)

−1/2. We claim that

1

(2π)l/2|Ul|1/2

∫
|y|min≥xp,|y|max≥(log p)1/2+α0/4

exp(−1

2
yTU−1

l y)dy

= O
[
exp{−1

4
(log p)1+α0/2}

]
(4.32)

and

1

(2π)l/2|Ul|1/2

∫
|y|min≥xp,|y|max≤(log p)1/2+α0/4

exp(−1

2
yTU−1

l y)dy

=
1 +O(log p)−α0/2

(2π)l/2

∫
|y|min≥xp,|y|max≤(log p)1/2+α0/4

exp(−1

2
yTy)dy. (4.33)
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First, we check (4.32). We have

1

(2π)l/2|Ul|1/2

∫
|y|min≥xp,|y|max≥(log p)1/2+α0/4

exp(−1

2
yTU−1

l y)dy

= pr{|Nd|min ≥ xp, |Nd|max ≥ (log p)1/2+α0/4}

≤
l∑

i=1

pr{|Ni| ≥ (log p)1/2+α0/4}

= O
[
exp{−1

2
(log p)1+α0/2}

]
= O

[
exp{−1

4
(log p)1+α0/2}

]
,

which validates (4.32).

We now verify (4.33). We have

||U−1
l − Il|| ≤ ||U−1

l ||||Ul − Il|| = O{(log p)−1−α0}.

So, on set {|y|min ≥ xp, |y|max ≤ (log p)1/2+α0/4}, using Taylor expansion we have:

exp{−1

2
yT(U−1

l − Il)y} = 1 +O{−1

2
yT(U−1

l − Il)y} = 1 +O{(logp)−α0/2}.

Therefore,

1

(2π)l/2|Ul|1/2

∫
|y|min≥xp,|y|max≤(logp)1/2+α0/4

exp(−1

2
yTU−1

l y)dy

=
1

(2π)l/2|Ul|1/2

∫
|y|min≥xp,|y|max≤(logp)1/2+α0/4

exp{−1

2
yT(U−1

l − Il)y}exp(−
1

2
yTy)dy

=
1

(2π)l/2|Ul|1/2

∫
|y|min≥xp,|y|max≤(logp)1/2+α0/4

exp(−1

2
yTU−1

l y)dy

=
1 +O((logp)−α0/2)

(2π)l/2

∫
|y|min≥xp,|y|max≤(logp)1/2+α0/4

exp(−1

2
yTy)dy.

So we proved (4.33). The two claims are proved, we come back to show (4.26).

pr{|Nd|min ≥ t1/2p ± ϵn(logp)−1/2} ≤ pr(|Nb1 | ≥ xp, . . . , |Nbl | ≥ xp)

=
1

(2π)l/2|Ul|1/2

∫
|y|min≥xp

exp(−1

2
yTU−1

l y)dy
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=
1

(2π)l/2|Ul|1/2

∫
|y|min≥xp,|y|max≤(log p)1/2+α0/4

exp(−1

2
yTU−1

l y)dy

+
1

(2π)l/2|Ul|1/2

∫
|y|min≥xp,|y|max≥(log p)1/2+α0/4

exp(−1

2
yTU−1

l y)dy

=
1

(2π)l/2|Ul|1/2

∫
|y|min≥xp,|y|max≤(log p)1/2+α0/4

exp(−1

2
yTU−1

l y)dy

+O
[
exp{−1

4
(logp)1+α0/2}

]
=

1 +O(logp)−α0/2

(2π)l/2

∫
|y|min≥xp,|y|max≤(log p)1/2+α0/4

exp(−1

2
yTy)dy

+O
[
exp{−1

4
(logp)1+α0/2}

]
=

1 +O(logp)−α0/2

(2π)l/2

∫
|y|min≥xp

exp(−1

2
yTy)dy +O

[
exp{−1

4
(logp)1+α0/2}

]
. (4.34)

We have

∫
|y|min≥xp

exp(−1

2
yTy)dy =

(∫
|u|≥xp

exp(−1

2
u2)du

)l

=
(2 1√

(2π)
exp[− 1

2
{t1/2p ± ϵn(logp)−1/2}]√

{t1/2p ± ϵn(logp)−1/2}

)l

= {1 + o(1)}{ 2√
(8π)

exp(− t

2
)}lp−2l. (4.35)

In addition,

O
[
exp{−1

4
(logp)1+α0/2}

]
= o(p−2l). (4.36)

The facts (4.34), (4.35), and (4.36) together give us

1 +O(logp)−α0/2

(2π)l/2

∫
|y|min≥xp

exp(−1

2
yTy)dy +O

[
exp{−1

4
(logp)1+α0/2}

]
= {1 + o(1)}{ 2√

(8π)
exp(− t

2
)}lp−2l

= O(p−2l). (4.37)
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So we have

∑
I0l1

pr{|Nd|min ≥ t1/2p ± ϵn(log p)−1/2} ≤ card(I0l1) O(p−2l)

= O(p2l−2+4γ(d−l+1)−2l)

= o(1). (4.38)

Let ā = min{a : a ∈ (k1, k2, . . . , kd), a /∈ S⋆}. WLOG we assume d((iā, jā), (ib1 , jb1)) = 1,

then I0l2 = {(k1, . . . , kd) ∈ I0l2 : Giājāib1 jb1
is 2E − 1G Or ”3G− 1E” Or ”4G− 2E”}. On I0l2,

we have

∑
I0l2

pr{|Nd|min ≥ t1/2p ± ϵn(log p)
−1/2} ≤

∑
I0l2

pr{|Nā| ≥ xp, |Nb1 | ≥ xp, . . . , |Nbl | ≥ xp}. (4.39)

Now covariance matrix of (Nā, Nb1 , . . . , Nbl) is Vl, and the covariance matrix satisfies

||Vl − diag(D, Il−1)|| = O{(logp)−1−α0}

where D is the covariance matrix of (Nā, Nb1).

Applying (4.22), (4.23), and Lemma 2 in Berman (1962), we obtain

pr(|Nā| ≥ xp, |Nb1 | ≥ xp) ≤ C exp(−4log p

1 + r
) = Cp−4/(1+r). (4.40)

Combining (4.39) and (4.40), we get

∑
I0l2

pr(|Nā| ≥ xp,|Nb1 | ≥ xp, . . . , |Nbl | ≥ xp)

≤ C
∑
I0l2

[
pr(|Nā| ≥ xp, |Nb1 | ≥ xp)× p−2l+2 + exp{−(log p)1+α0/2/4}

]

≤ C
∑
I0l2

[
p−2l−(2−2r)/(1+r) + exp{−(logp)1+α0/2/4}

]

≤ C p−(2−2r)/(1+r)+4γ(d−l) = o(1). (4.41)

23



The facts (4.38) and (4.41) yield (4.26).

Last but not least, we prove (4.27). Repeat the above argument on Ic0 , and since Ic0 = I0d,

or l = d, we have

pr{|Nd|min ≥ t1/2p ± ϵn(logp)−1/2} = P (|Nb1 | ≥ xp, . . . , |Nbl | ≥ xp)

=
1

(2π)l/2|Ul|1/2

∫
|y|min≥xp

exp(−1

2
yTU−1

l y)dy

=
1

(2π)l/2|Ul|1/2

∫
|y|min≥xp,|y|max≤(log p)1/2+α0/4

exp(−1

2
yTU−1

l y)dy

+
1

(2π)l/2|Ul|1/2

∫
|y|min≥xp,|y|max≥(log p)1/2+α0/4

exp(−1

2
yTU−1

l y)dy

=
1

(2π)l/2|Ul|1/2

∫
|y|min≥xp,|y|max≤(log p)1/2+α0/4

exp(−1

2
yTU−1

l y)dy

+O
[
exp{−1

4
(logp)1+α0/2}

]
=

1 +O(logp)−α0/2

(2π)l/2

∫
|y|min≥xp,|y|max≤(log p)1/2+α0/4

exp(−1

2
yTy)dy

+O
[
exp{−1

4
(logp)1+α0/2}

]
=

1 +O(logp)−α0/2

(2π)l/2

∫
|y|min≥xp

exp(−1

2
yTy)dy +O

[
exp{−1

4
(logp)1+α0/2}

]
= {1 + o(1)}{ 2√

(8π)
exp(− t

2
)}lp−2l

= {1 + o(1)}{ 2√
(8π)

exp(− t

2
)}dp−2d.

So

∑
Ic0

pr{|Nd|min ≥ t1/2p ± ϵn(logp)−1/2} = card(Ic0){1 + o(1)}{ 2√
(8π)

exp(− t

2
)}dp−2d

= {1 + o(1)}Cd
q {

2√
(8π)

exp(− t

2
)}dp−2d

= {1 + o(1)} 1

d!
p2d{ 2√

(8π)
exp(− t

2
)}dp−2d

=
1

d!
{ 1√

(2π)
exp(− t

2
)}d{1 + o(1)}, (4.42)
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which confirms (4.27).

Using (4.26) and (4.27), we have

∑
1≤k1<...<kd≤q

pr{|Nd|min ≥ t1/2p ± ϵn(logp)−1/2} =
1

d!
{ 1√

(2π)
exp(− t

2
)}d{1 + o(1)}, (4.43)

for any d ≥ 2 and t ∈ R. Lemma 13 now is verified due to (4.17 ) and (4.43). □

5. Proof of main theorems

Proof of Theorem 1: Let us first assume β = 0 and then γ = 1. The proof of the general case is

given at the end of this proof. Denote Vn =
∑n

i=1 XiX
T
i /n, the leading order term of quantity

eT
j Snŵi,0 is also equivalent with eT

j Vnŵi,0. Therefore, it is sufficient to prove the theorem under

the leading order term eT
j Vnŵi,0.

We first approximate D̂n by its counter part D̂∗
n defined by D̂∗

n = max1≤i,j≤p D̂
∗2
ij

and D̂∗
ij = (eT

j Vnŵi,0 − eT
j ei)/

√
θij . Based on Theorem 3 in Le & Zhong (2021), we have

max1≤i,j≤p |ω̂ij,0 − ω∗
ij | = Op{

√
(logp/n)}. Moreover, by Lemma A.3 in Bickel & Levina (2008),

we have max1≤i,j≤p |vij − σ∗
ij | = Op{

√
(log p/n)}, and |κ̂− κ| = Op(1/

√
np). Then we have

|D̂n/D̂
∗
n − 1| ≤ max

1≤i,j≤p
|θ̂ij,0/θij − 1|

= max
1≤i,j≤p

|ω̂ii,0vjj − ω∗
iiσ

∗
jj |/(ω∗

iiσ
∗
jj) + |κ̂− κ| = op{

√
(log p/n)}.

Since log p/n → 0, we have |D̂n − D̂∗
n| = op(D̂

∗
n). Therefore, it is sufficient to prove that

pr{D̂∗
n − 4 log(p) + log(log p) ≤ t} → exp

{
− exp(−t/2)/

√
(2π)

}
.

Define tp = t+4 log(p)−log(log p) and D̂∗
n1 = max(i,j)∈A/A0

D̂∗2
ij where A = {(i, j) : 1 ≤ i, j ≤ p}

and A0 = {(i, j) : ω∗
ij ̸= 0}. Applying Lemma 8, it is enough to show that

pr(D̂∗
n1 ≤ tp) → exp

{
− exp(−t/2)/

√
(2π)

}
. (5.44)
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Define D̂∗
n2 = max(i,j)∈A/B0

D̂∗2
ij where B0 = A0 ∪A1 and A1 = ∪p

i=1{(i, k) : lim
p→∞

s0σik ≠

0, for all (i, k) /∈ A0}. Using Lemma 11, we have

|pr(D̂∗
n2 ≥ tp)− pr(D̂∗

n1 ≥ tp)| ≤ pr( max
(i,j)∈A1

D̂∗2
ij ≥ tp) = o(1).

It is then sufficient to show that

pr(D̂∗
n2 ≤ tp) → exp

{
− exp(−t/2)/

√
(2π)

}
. (5.45)

Recall that Dij = (eT
j Vnwi − eT

j ei)/
√

θij and Dn2 = max
(i,j)∈A/B0

D2
ij . It then follows that

|D̂∗1/2
n2 −D

1/2
n2 | = | max

(i,j)∈A/B0

|D̂∗
ij | − max

(i,j)∈A/B0

|Dij || ≤ max
(i,j)∈A/B0

|D̂∗
ij −Dij |

≤ C
√
n max

(i,j)∈A/B0

|eT
j Vn(ŵi,0 −w∗

i )|

= C
√
n max

(i,j)∈A/B0

|eT
j VnBi,0(S

−1
i −Ω∗

i )fi|

≤ C
√
n max

(i,j)∈A/B0

|eT
j (Vn −Σ∗)Bi,0(S

−1
i −Ω∗

i )fi|

+ C
√
n max

(i,j)∈A/B0

|eT
j Σ

∗Bi,0(S
−1
i −Ω∗

i )fi| (5.46)

for some positive constant C where Ω∗
i = BT

i,0Ω
∗Bi,0 and Si = BT

i,0S
∗
nBi,0.

For the first term on the right-hand side of (5.46), we have

√
n max

(i,j)∈A/B0

|eT
j (Vn −Σ∗)Bi,0(S

−1
i −Ω∗

i )fi|

≤
√
ns0 max

1≤i,j≤p
|vij − σ∗

ij | max
1≤i,j≤p

|ŵij,0 − ω∗
ij |

= Op(s0 log p/
√
n) = op(

√
log p). (5.47)

Applying Lemma 12, the second term on the right-hand side of (5.46) is at the order of

op(
√
log p). Then we have |D̂∗1/2

n2 −D
1/2
n2 | = op(

√
log p). Because of the inequality |D̂∗

n2−Dn2| ≤

2|D1/2
n2 | |D̂∗1/2

n2 −D
1/2
n2 |+ |D̂∗1/2

n2 −D
1/2
n2 |2, to verify (5.45) is sufficient to show

pr(Dn2 ≤ tp) → exp
{
− exp(−t/2)/

√
(2π)

}
. (5.48)
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Suppose there are k isolated nodes in the true network, for any two nodes i and j belong

to this isolated nodes set, we have (eT
j Vnw

∗
i )

2/(nω∗
iiσ

∗
jj) = (eT

i Vnw
∗
j )

2/(nω∗
jjσ

∗
ii). On the

set of isolated nodes, we are only maximizing over [k2/2] components. Thus, Dn2 involves

the maximization of p2 − k2/2 components D2
ij . For convenience, denote the set that Dn2 is

maximizing over as A/B∗
0 . For any (i, j) ∈ A/B∗

0 , D
2
ij ̸= D2

ji. It is clear that A/B∗
0 ⊂ A/B0.

Re-enumerate the index pairs (i, j) in A/B∗
0 to (ik, jk), where k = 1, . . . , q, for q =

card(A/B∗
0 ). Since k = o(p) and card(A/B∗

0 ) = p2{1 + o(1)}, we have q = p2{1 + o(1)}. Then,

(5.48) is rewritten as

pr( max
1≤k≤q

Vk
2 ≤ tp) → exp

{
− exp(−t/2)/

√
(2π)

}
(5.49)

where Vk =
∑n

l=1 e
T
jk
XlX

T
l w

∗
ik
/
√

n2θikjk .

Define Zlk = eT
jk
XlX

T
l w

∗
ik

and τn = 8Cη−1log(p+ n) where C is some positive constant

and η is a constant as in (5.53). Define Ẑlk = ZlkI{|Zlk| ≤ τn} − E[ZlkI{|Zlk| ≤ τn}] as the

centralized truncated version of Zlk, and V̂k =
∑n

l=1 Ẑlk/
√

n2θikjk . To show (5.49), it is sufficient

to show

pr( max
1≤k≤q

V̂ 2
k ≤ tp) → exp

{
− exp(−t/2)/

√
(2π)

}
. (5.50)

The above claim is true if (5.50) implies (5.49). First, note that

max
1≤k≤q

1√
n

n∑
l=1

E|Zlk| I{|Zlk| ≥ τn} = max
1≤k≤q

1√
n

n∑
l=1

E|Zlk| I{|ηZlk| ≥ 2C log(p+ n)4}

≤ max
1≤k≤q

max
1≤l≤n

√
n E|Zlk| I{|ηZlk| ≥ 2C log(p+ n)4}

≤ max
1≤k≤q

max
1≤l≤n

√
n(p+ n)−4 E|Zlk| exp

(
η|Zlk/(2C)|

)
.

(5.51)

The last inequality is due to exp{|ηZlk/(2C)|}(p+ n)−4 ≥ 1 if |ηZlk/(2C)| ≥ log(p+ n)4.
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Assume that the first s0 components w∗
ik

are non-zeros to simplify notations, that is

w∗
ik

= (ω∗
ik1

, . . . , ω∗
iks0

, 0, . . . , 0)T, then

|Zlk| = |eT
jkXlX

T
l w

∗
ik | = |ω∗

ik1XljkXl1 + · · ·+ ω∗
iks0XljkXls0 |

≤ 1

2
(X2

ljk + max
a=1,...,s0

X2
la)

s0∑
a=1

|ω∗
ika| ≤ C max

h∈U0

X2
lh, (5.52)

where U0 = {jk, l1, . . . , ls0}. If X = (X1, X2, . . . , Xp)
T is multivariate Gaussian or Xi has a

sub-Gaussian tail, then for some η > 0 we have

E{exp(η X2
i )} ≤ C, (5.53)

for i = 1, 2, . . . , p. Applying (5.53), we get

E[|Zlk| exp{η|Zlk/(2C)|}] ≤ CE{exp(η|Zlk/C|)} ≤ CE[exp{η max
h∈U0

(X2
lh)}]

= CE max
h∈U0

exp(ηX2
lh) = O(s0). (5.54)

Combining (5.51) and (5.54), we obtain

max
1≤k≤q

1√
n

n∑
l=1

E|Zlk| I{|Zlk| ≥ τn} = O{s0
√
nnq(p+ n)−4} = o

{
(logp)−1}. (5.55)

Because max1≤k≤q |
∑n

l=1 EZlkI{|Zlk| ≥ τn}| ≤ max1≤k≤q

∑n
l=1 E|Zlk|I{|Zlk| ≥ τn}, equation

(5.55) gives us

max
1≤k≤q

1√
n
|

n∑
l=1

EZlk I{|Zlk| ≥ τn}| = o
{
(logp)−1}. (5.56)

In addition, on the set A/B∗
0 , we have EZlk = E(eT

jk
XlX

T
l wik ) = eT

jk
Σ∗w∗

ik
= 0, therefore

max
1≤k≤q

1√
n
|

n∑
l=1

EZlk| = 0. (5.57)

Using (5.56) and (5.57), we get

max
1≤k≤q

1√
n
|

n∑
l=1

EZlk I{|Zlk| ≤ τn}| = o
{
(logp)−1}. (5.58)
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Hence

pr{ max
1≤k≤q

|Vk − V̂k| ≥ (log p)−1} = pr{ max
1≤k≤q

| 1√
n

n∑
l=1

(Zlk − Ẑlk)| ≥ (logp)−1}

= pr
[
max
1≤k≤q

| 1√
n

n∑
l=1

(ZlkI{|Zlk| ≥ τn}+ EZlk I{|Zlk| ≤ τn})| ≥ (logp)−1
]

= pr
[
max
1≤k≤q

| 1√
n

n∑
l=1

ZlkI{|Zlk| ≥ τn}| ≥ (logp)−1
]
.

It follows that

pr{ max
1≤k≤q

|Vk − V̂k| ≥ (log p)−1} ≤ pr( max
1≤k≤q

max
1≤l≤n

|Zlk| ≥ τn)

≤ pr
[
max
1≤k≤q

max
1≤l≤n

C{X2
ljk +max(X2

l1, . . . , X
2
ls0)} ≥ τn

]
≤ q · pr{ max

1≤l≤n
X2

ljk ≥ τn/(2C)}+ q · pr{ max
1≤l≤n

max(X2
l1, . . . , X

2
ls0) ≥ τn/(2C)}. (5.59)

For j = 1, . . . , p, we have

pr(X2
j ≥ τn/2C) = pr

{
exp(ηX2

j ) ≥ exp(ητn/2C)
}

≤ E
{
exp(ηX2

j )
}
exp(−ητn/2C) ≤ 2(p+ n)−4.

This gives us

q · pr( max
1≤l≤n

X2
ljk ≥ τn/2C) ≤ nq max

1≤j≤p
P (X2

j ≥ τn/2C) ≤ 2nq/(n+ p)4 = o(1) (5.60)

and

q · pr{ max
1≤l≤n

max(X2
l1, . . . , X

2
ls0) ≥ τn/(2C)} ≤ nqs0 max

1≤j≤p
pr(X2

j ≥ τn/2C)

≤ 2nqs0/(n+ p)4 = o(1). (5.61)

Combining (5.59), (5.60), and (5.61), we obtain pr{ max
1≤k≤q

|Vk − V̂k| ≥ (logp)−1} = o(1).

This means

max
1≤k≤q

|Vk − V̂k| = OP

{
(logp)−1}. (5.62)
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We have

| max
1≤k≤q

V 2
k − max

1≤k≤q
V̂ 2
k | ≤ 2 max

1≤k≤q
|V̂k| max

1≤k≤q
|Vk − V̂k|+ max

1≤k≤q
|Vk − V̂k|2. (5.63)

If (5.50) holds, then max
1≤k≤q

V̂k = Op(
√
log p). In addition, (5.62) and (5.63) implies that

|max1≤k≤q V
2
k − max1≤k≤q V̂

2
k | = op(1). As a result, to prove (5.49), it is sufficient to prove

(5.50).

Finally, we prove (5.50). Let us denote

Z̃lk = Ẑlk/
√

ω∗
ikik

σ∗
jkjk

, Wl = (Z̃lk1 , Z̃lk2 , . . . , Z̃lkd), (5.64)

for l = 1, . . . , n, and denote Ekj = {V̂ 2
kj ≥ tp} for any integer 1 ≤ kj ≤ q. Applying Bonferroni

inequality in Lemma 1 for pr(max1≤k≤q V̂
2
k ≥ tp), we have

2m∑
d=1

(−1)d−1
∑

1≤k1<···<kd≤q

pr(

d⋂
j=1

Ekj ) ≤ pr( max
1≤k≤q

V̂ 2
k ≥ tp)

≤
2m−1∑
d=1

(−1)d−1
∑

1≤k1<···<kd≤q

pr(

d⋂
j=1

Ekj ), (5.65)

for any fixed integer m < [q/2].

Rewrite pr(
⋂d

j=1 Ekj ) as pr(
⋂d

j=1 Ekj ) = pr(|n−1/2∑n
l=1 Wl|min ≥ t

1/2
p ). We will apply

Zaitsev approximation to approximate this probability. To this end, we first check the conditions

for Zaitsev approximation in Lemma 3. Define

ξi = n−1/2w∗
i = n−1/2(Z̃ik1 , Z̃ik2 , . . . , Z̃ikd)

= n−1/2{Ẑik1/(ω
∗
ik1

ik1
σ∗
jk1

jk1
)1/2, . . . , Ẑikd/(ω

∗
ikd

ikd
σ∗
jkd

jkd
)1/2}.

We have Eξi = 0, for i = 1, . . . , n, and ξ1, . . . , ξn are independent. We also have

|(ξi,u)|
m−2 ≤ ||ξi||

m−2||u||m−2 ≤ ||u||m−2(2
√

(d/n)τn)
m−2 = 2m−2τm−2||u||m−2

≤ 1

2
m!τm−2||u||m−2
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where m ≥ 3 and τ =
√

(d/n)τn = 8Cη−1
√

(d/n) log(p+n). It follows that |E(ξi, t)
2(ξi,u)

m−2| ≤

1/2m!τm−2||u||m−2E(ξi, t)
2, for i = 1, . . . , n.

Applying Lemma 3, we have

pr(|Nd|min ≥
√

tp + ϵn/
√

log p)− pr(|
n∑

l=1

Wl|min ≥
√

ntp)

≤ c1d
5/2 exp

{
− ϵn(d

5 log p)−1/2/(τc2)
}

(5.66)

where Nd = (Nk1 , Nk2 , · · · , Nkd)
T is a d-dimensional multivariate normal distributed random

vector with mean vector ENd = 0 and covariance matrix cov(Nd) = cov(W1). Notice that d is

fixed and does not depend on n, p, and

c1d
5/2 exp{− ϵn(log p)−1/2

τc2d5/2
} = c1d

5/2 exp{− ϵn(log p)−1/2

8Cη−1
√

(d/n)log(p+ n)c2d5/2
}

= O
[
exp{−ϵn

√
n/(logp)3/2}

]
= O(p−M ), (5.67)

for some M > 0 and ϵn → 0 sufficient slow. The facts (5.66) and (5.67) give us

pr(|Nd|min ≥
√

tp + ϵn/
√

logp)− pr{|
n∑

l=1

Wl|min ≥
√

(ntp)} = O(p−M ), (5.68)

for some M > 0. Similarly, we can prove

pr{|
n∑

l=1

Wl|min ≥
√

(ntp)} − pr(|Nd|min ≥
√

tp − ϵn/
√

logp) = O(p−M ), (5.69)

for some M > 0.

Applying (5.65) and (5.69), we get

pr( max
1≤k≤q

V̂ 2
k ≥ tp) ≤

2m−1∑
d=1

(−1)d−1
∑

1≤k1<···<kd≤q

pr(

d⋂
j=1

Ekj )

=

2m−1∑
d=1

(−1)d−1
∑

1≤k1<···<kd≤q

pr(|n−1/2
n∑

l=1

Wl|min ≥ t1/2p )

=

2m−1∑
d=1

(−1)d−1
∑

1≤k1<···<kd≤q

pr{|Nd|min ≥ t1/2p − ϵn(logp)−1/2}+ o(1).

(5.70)
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Similarly, applying (5.65) and (5.68), we get

pr( max
1≤k≤q

V̂ 2
k ≥ tp) ≥

2m−1∑
d=1

(−1)d−1
∑

1≤k1<···<kd≤q

pr{|Nd|min ≥ t1/2p + ϵn(logp)−1/2} − o(1).

(5.71)

Combining Lemma 13, (5.65), (5.70), and (5.71), we obtain

2m∑
d=1

(−1)d−1 1

d!
{ 1√

2π
exp(− t

2
)}d{1 + o(1)} ≤ pr( max

1≤k≤q
V̂ 2
k ≥ tp)

≤
2m−1∑
d=1

(−1)d−1 1

d!
{ 1√

2π
exp(− t

2
)}d{1 + o(1)}.

It follows that

lim sup
n→∞

pr( max
1≤k≤q

V̂ 2
k ≥ tp) ≤

2m−1∑
d=1

(−1)d−1 1

d!

{ 1√
(2π)

exp(−t/2)
}d

.

Let m → ∞ then

lim sup
n→∞

pr( max
1≤k≤q

V̂ 2
k ≥ tp) ≤ 1− exp

{
− exp(−t/2)/

√
(2π)

}
. (5.72)

Similarly, we get

lim inf
n→∞

pr( max
1≤k≤q

V̂ 2
k ≥ tp) ≥ 1− exp

{
− exp(−t/2)/

√
(2π)

}
. (5.73)

The facts (5.72) and (5.73) give us

lim
n→∞

pr( max
1≤k≤q

V̂ 2
k ≥ tp) = 1− exp

{
− exp(−t/2)/

√
(2π)

}
.

In other words,

lim
n→∞

pr( max
1≤k≤q

V̂ 2
k ≤ tp) = exp

{
− exp(−t/2)/

√
(2π)

}
.

This finishes the proof of equation (5.50) and then the result in Theorem 1 holds.
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The proof of the general case with β ≠ 0 is similar to the above proof with β = 0 but we

are maximizing over q = p2 − k2/2 = p2(1− β2/2) components which changes Lemma 13 to

∑
1≤k1<···<kd≤q

pr{|Nd|min ≥ t1/2p ± ϵn(logp)−1/2} =
1

d!
{ 1√

(2γπ)
exp(−t/2)}d{1 + o(1)}.

To verify this, we can repeat the proof of Lemma 13 where equation (4.42) in the lemma is

replaced by

∑
Ic0

pr{|Nd|min ≥ t1/2p ± ϵn(logp)−1/2} = {1 + o(1)}Cl
q{

2√
(8π)

exp(−t/2)}lp−2l

= p2l{(1− β2

2
)

2√
(8π)

exp(−t/2)}lp−2l{1 + o(1)}

=
1

d!
{ 1√

(2γπ)
exp(−t/2)}d{1 + o(1)}. □

Proof of Theorem 2: Let ω̂(j)
i1,0 and ω̂

∗,(j)
i1 be the jth components of non-zeros parts estimators ŵi1,0

and ŵ∗
i1 that are constructed under the hypothesis H2 : E∗ ⊊ E0 and the true underlying structure

E∗, respectively. Denote ŵi1,0 = (ω̂
(1)
i1,0, . . . , ω̂

(gi)
i1,0 )

T and ŵ∗
i1 = (ω̂

∗,(1)
i1 , . . . , ω̂

∗,(si)
i1 )T, where

gi ≥ si. The asymptotic normality result in (2.2) in the main text gives ω̂(j)
i1,0 = ω

(j)
i1,0+Op(1/

√
n).

Therefore, under the hypothesis H2 : E∗ ⊊ E0, an estimator for the position j of column i of

the precision matrix wi that belongs to E0 ∩ E∗,c is a consistent estimator of 0. Here E∗,cis the

complement set of E∗. So both ŵi,0 = Bi,0ŵi1,0 and ŵ∗
i = B∗

i ŵ
∗
i1 are consistent estimators

of w∗
i , column i of the underlying precision matrix Ω∗. Here, Bi,0, and B∗

i are 0, 1 matrices

corresponding the hypothesis H2 and the underlying true structure.

Rewrite ŵi1,0 = (ω̂
(1)
i1,0, . . . , ω̂

(gi)
i1,0 )

T = ŵi1,01+ŵi1,02, where ŵi1,01 = (ω̂
∗,(1)
i1 , . . . , ω̂

∗,(si)
i1 , 0, . . . , 0)T

and ŵi1,02 = (ω̂
(1)
i1,0 − ω̂

∗,(1)
i1 , . . . , ω̂

(si)
i1,0 − ω̂

∗,(si)
i1 , ω̂

(si+1)
i1,0 , . . . , ω̂

(gi)
i1,0 ))

T. Notice that, Bi,0ŵi1,01 =

ŵ∗
i . In addition, we also have ω̂

(k)
i1,0 − ω̂

∗,(k)
i1 = (ω̂

(k)
i1,0 − ω

(k)
i1 )− (ω̂

∗,(k)
i1 − ω

(k)
i1 ) = Op(1/

√
n), for

all 1 ≤ k ≤ si and ω̂
(m)
i1,0 = Op(1/

√
n) for all si + 1 ≤ m ≤ gi. Thus componentwise, all elements

of ŵi1,02 are at the order Op(1/
√
n).
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The test statistic under H2 is D̂n = max1≤i,j≤p (e
T
j Snŵi,0 − eT

j ei)
2/θ̂ij,0, so its leading order

terms for the numerator and denominator are the same as the test statistic constructed under

the underlying true structure, E∗. In other words, the limiting distribution of the test statistic

constructed under the hypothesis H2 is the same as the test statistic constructed under the

underlying true structure, E∗. □

Proof of Theorem 3: We will show that, under H0, the modified test statistic D̃n converges to

the same distributions as D̂n as in Theorem 1. We first note that D̃2
ij = D̂2

ij if ∆i = 0 for all

i = 1, . . . , p. Then,

pr(D̃n ≤ tp) = pr(D̃n ≤ tp,∆i = 0) + pr(D̃n ≤ tp,∆i ̸= 0)

= pr(D̂n ≤ tp) + pr(D̃n ≤ tp,∆i ̸= 0).

Since pr(D̃n ≤ tp,∆i ̸= 0) ≤ pr(∆i ̸= 0), it is sufficient to show that pr(∆i ̸= 0) = 0 under H0.

For any (i, j) ∈ E but (i, j) /∈ E0, under H0, ∆ij = 0 according to the definition of Bi,0. Thus, it

is enough to show:

pr( max
(i,j)∈E0

∆ij = 0) = 1. (5.74)

To this end, we note

pr( max
(i,j)∈E0

∆ij = 0) = pr( min
i=1,...,p,j=1,...,si

|ω̂(j)
i1,0|/σ̂

(j)
i1,0 > δn)

= 1− ∪i=1,...,p,j=1,...,sipr(|ω̂
(j)
i1,0|/σ̂

(j)
i1,0 ≤ δn)

≥ 1−
p∑

i=1

si∑
j=1

pr(|ω̂(j)
i1,0|/σ̂

(j)
i1,0 ≤ δn).

Under H0, ω
(j)
i1,0 ̸= 0, and hence w

(j)
i1,0/σ

(j)
i1,0 = Cij

√
n for some constants Cij . Then, for

δn ≍
√

log(n), we have

pr
(
|ω̂(j)

i1,0|/σ̂
(j)
i1,0 ≤ δn

)
= pr

(
− δn −

ω
(j)
i1,0

σ
(j)
i1,0

≤
ω̂

(j)
i1,0 − ω

(j)
i1,0

σ
(j)
i1,0

≤ δn −
ω

(j)
i1,0

σ
(j)
i1,0

)
≤ Φ(δn − Cij

√
n) ≍ exp(−C2

ijn/2)/
√
n,
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where Φ(·) is the CDF of the standard normal. Under Condition (C2) and s0 ≍ o(
√
n), we have∑p

i=1

∑si
j=1 pr(|ω̂

(j)
i1,0|/σ̂

(j)
i1,0 ≤ δn) → 0. Therefore, under the null hypothesis H0, (5.74) holds

and the asymptotic distributions of D̂n and D̃n are the same when δn ≍
√

log(n) and Cn > 0.

□

Proof of Theorem 4: If E0 specified under the null hypothesis H0 includes the true network

structure E∗, then there exist some ω
(j)
i1,0 = 0, say ω

(j0)
i01,0

= 0 and the corresponding ω̂
(j0)
i01,0

are

consistent estimators of ω
(j0)
i01,0

= 0 for some i0 ∈ {1, . . . , p} and j0 ∈ {1, . . . , si}. This event

happens with probability one because

pr(∆i1 ̸= 0 for some i = 1, . . . , p) = pr
(
∪p

i=1 ∪
si
j=1{|ω̂

(j)
i1,0|/σ̂

(j)
i1,0 ≤ δn}

)
≥ pr

(
{|ω̂(j0)

i01,0
|/σ̂(j0)

i01,0
≤ δn}

)
= pr

(
− δn ≤ ω̂

(j0)
i01,0

/σ̂
(j0)
i01,0

≤ δn
)

= Φ(δn)− Φ(−δn) → 1.

This implies that pr(∆i = 0 for all i) = 0. It follows that

pr(D̃n > tp) = pr(D̃n > tp,∆i = 0 for all i) + pr(D̃n > tp,∆i ̸= 0 for some i)

= pr(D̃n > tp,∆i ̸= 0 for some i).

When the event {∆i ≠ 0 for some i} happens, there exists at least one ∆ij = Cn ≍√
log(p) ̸= 0. Without loss of generality, assume that there exists one ∆ij∗ = Cn = C

√
log(p) ≠ 0

and σjj∗ ̸= 0 for some j, then, in probability, we have (eTj Vn∆i)
2/θ̂ij,0 ≥ C2

n(
∑n

l=1 XljXlj∗)
2/n2θ̂ij,0 →

C2 log(p)(σ∗
jjσ

∗
j∗j∗ + 2σ∗2

jj∗)/(ω
∗
iiσ

∗
jj + 1), for some positive constant C.

Applying Theorem 1, for a small ϵ > 0, pr{maxi,j D̂
2
ij ≤ (4+ ϵ) log(p)} → 1. Using the definition

of D̃2
ij , we have the following decomposition of D̃2

ij ,

D̃2
ij = D̂2

ij + {(eT
j Vn∆i)

2 + 2(eT
j Vnŵi,0 − eT

j ei)e
T
j Vn∆i}/θ̂ij,0.
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If C > 4maxi,j(ω
∗
iiσ

∗
jj + 1)/(σ∗

iiσ
∗
jj + 2σ∗2

ij ), then maxi,j D̃
2
ij ≍ maxi,j(e

T
j Vn∆i)

2/θ̂ij,0 with

probability one and hence

pr(D̃n > tp,∆i ̸= 0 for some i) = pr
{

max
1≤i,j≤p

(eT
j Vn∆i)

2/θ̂ij,0 > tp,∆i ̸= 0 for some i
}

≥ pr
{
C2

n(

n∑
i=1

XijXij∗)
2/n2θ̂ij,0 > tp

}
→ 1.

So, pr(D̃n > tp) → 1 for all the alternatives in H2 where E0 includes E∗.

If E0 ̸= E∗ in H1 but not in H2, then there exist pairs of k ̸= l such that eT
kΣ

∗wl,0−eT
kel ≠ 0.

By the construction of the estimator ŵl,0, it could be shown that there exist ŵ∗
l and

constants ckl such that eT
kΣ

∗ŵl,0 − eT
kel = eT

kΣ
∗ŵ∗

l − eT
kel + ckl, where ŵ∗

l is a consistent

estimator of w∗
l such that eT

kΣ
∗w∗

l − eT
kel = 0. It follows that we can decompose the test

statistic D̂n as following. Using Theorem 1 and condition (C2), we may find the leading

order term as D̂n = max1≤k,l≤p

{
(eT

kΣ
∗w∗

l − eT
kel)

2 + 2(eT
kΣ

∗w∗
l − eT

kel)ckl + c2kl
}
/θ̂kl,0 ≍

max1≤k,l≤p c
2
kl/θkl,0 ≍ n. Then, we have P (D̂n − 4 log p+ log(log p) → ∞) = 1 as n → ∞ under

condition (C2). Hence, D̃n is also consistent for any fixed alternatives in H1 but not in H2. In

summary, Theorem 4 is proved. □

6. Additional simulation results

6.1 Simulation with non-Gaussian random vectors

We investigate the performance of the proposed test statistics under model misspecification.

The simulation settings are the same as that in Section 4.2 of the main text for s0 = 4, except

that data X1, · · · ,Xn are not drawn from a multivariate normal distribution. Instead, they are

generated from the multivariate model specified in Assumption (D1) using the following three

steps.

(1) Generate np independent observations (hij)p×n from a Gamma(α = 2, β = 1) distribution,
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where α is the shape parameter and β is the scale parameter. Normalize the dataset using

the transformation zij = (hij − 2)/
√
2. The standardized values zij are then assigned to

a p× n matrix Z = (zij)p×n.

(2) Perform eigenvalue decomposition on the underlying covariance matrix under the null

hypothesis, Σ∗ = QΛQT . Denote Γ = QΛ1/2. It follows that ΓΓT = Σ∗, where Γ is a

p× p matrix.

(3) Use X = (ΓZ)T as the n× p observed data matrix, where X = (X1, · · · ,Xn).

We applied the test statistics D̂n and D̃n from the main paper, using the estimated κ given

by κ̂ = 1
np

∑n
i=1 s

−4
jj (Xij − X̄i)

4. Table 1 reports the empirical sizes and powers of the proposed

test statistics D̂n and D̃n. We observe that the proposed tests perform reasonably well, with

empirical sizes close to the nominal 5% level under the null hypothesis and empirical powers

close to one, indicating the consistency of the proposed tests. Overall, the proposed tests are

robust with respect to the Gaussian distribution assumption.

6.2 Simulation with an underlying sparse graph and small signals

in Ω∗

In this subsection, we report simulation studies for examining the performance of the proposed

tests when the underlying graph is sparse. The simulation settings are the same as that in

Section 4.2 except that the underlying graph structure is a sparse matrix generated randomly.

More specifically, we construct the random sparse structure, its nested structure, and included

structure as follows. We first choose an identical matrix Ip, then for every column of Ip, we

randomly assign the weight 0.8 to one of its elements. The obtained matrix is denoted as B.

Then the underlying precision matrix is chosen as BBT. For the nested structure, we replace
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Table 1: Type 1 error and empirical power of the test statistics D̂n and D̃n

for nested and included structures with non-Gaussian data.

D̂n D̃n

Empirical Power of D̂n Empirical Power of D̃n

s0 n p/n Size Nested Included Size Nested Included

4 500 0.50 0.080 1.000 0.080 0.080 1.000 0.210

1.00 0.010 1.000 0.010 0.010 1.000 0.070

2.00 0.020 1.000 0.040 0.020 1.000 0.120

1000 0.50 0.030 1.000 0.030 0.030 1.000 1.000

1.00 0.020 1.000 0.020 0.020 1.000 1.000

2.00 0.030 1.000 0.030 0.030 1.000 1.000

the first column of B by the first column of Ip and obtain matrix B1. Then we use B1B
T
1 as the

nested structure. For the included structure, we randomly assign 0.8 to one element of the first

column of B, and denote it as the matrix B2. We then use B2B
T
2 as the included structure.

Table 2 reports the empirical size, power, and running time (in seconds) of the two proposed

test statistics, D̂n and D̃n. For the test statistic D̃n, we choose Cn = 0.3 and δn =
√

log(n).

We observe that Table 2 has a similar pattern with that in Table 3 of the main text. Both tests

maintain the type I error at the nominal level and exhibit comparable power in detecting the

alternative with the nested structure. The modified test statistic D̃n outperforms D̂n when

dealing with the included structure. We also include the average computation time for each

simulation replication in Table 2. Both tests demonstrate similar computational complexity in

terms of running time.

Table 3 examines the performance of our proposed tests when the signal size in Ω∗ is
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Table 2: Empirical size and power of the test statistics D̂n and D̃n for both

nested and included structures when the true network structure is a random

sparse matrix.

D̂n D̃n

Power Running Power Running

s0 n p/n Size Nested Included Time Size Nested Included Time

4 500 0.50 0.030 1.000 0.030 0.178 0.030 1.000 0.700 0.18

1.00 0.040 1.000 0.040 1.09 0.040 1.000 0.970 1.10

2.00 0.030 1.000 0.030 6.93 0.030 1.000 1.000 6.96

1000 0.50 0.010 1.000 0.010 1.14 0.010 1.000 1.000 1.14

1.00 0.060 1.000 0.060 6.54 0.060 1.000 1.000 6.54

2.00 0.020 1.000 0.020 56.21 0.020 1.000 0.990 56.26

6 500 0.50 0.030 1.000 0.030 0.17 0.030 1.000 1.000 0.17

1.00 0.020 1.000 0.020 1.11 0.020 1.000 0.890 1.11

2.00 0.040 1.000 0.040 7.11 0.040 1.000 1.000 7.15

1000 0.50 0.020 1.000 0.020 1.13 0.020 1.000 1.000 1.14

1.00 0.060 1.000 0.060 6.54 0.060 1.000 1.000 6.54

2.00 0.000 1.000 0.000 55.25 0.000 1.000 0.990 55.27
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Table 3: Type I error and empirical power of the test statistics D̂n and D̃n

for nested and included structures as affected by sample size at the sparsity

level s0 = 10

D̂n D̃n

Power Running Power Running

p n Size Nested Included Time Size Nested Included Time

500 500 0.020 0.020 0.020 1.8 0.020 0.020 0.020 1.8

5000 0.020 0.020 0.020 1.7 0.020 0.020 0.040 1.7

20000 0.030 0.020 0.020 1.7 0.030 0.130 0.520 1.7

1000 500 0.010 0.020 0.020 11.1 0.030 0.050 0.040 11.1

5000 0.030 0.030 0.030 11.1 0.030 0.040 0.040 11.1

20000 0.040 0.050 0.040 10.9 0.040 0.130 0.460 11.1

small. The simulation settings mirror those described in Section 4.2 of the main text, with the

exception that the bandwidth s0 is increased to s0 = 10 so that the smallest signal approaches

zero, presenting a more challenging scenario. We use dimensions p = 500 and 1000, and sample

sizes n = 500, 1000, and 20000. As shown in the table, increasing the sample size does not

significantly impact the performance of the naive test statistic D̂n or the modified test statistic

D̃n.

6.3 Simulation for test statistics with different estimators for Ω0

To evaluate the performance of the test statistics using different estimators for the precision

matrix Ω0, we conducted a simulation study. We compared test statistics constructed similarly

to D̂n, but with alternative estimators for Ω0. Specifically, we used the GLASSO estimator
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(Friedman, 2019) with a known graphical structure (denoted as D̂n,G) and a modified positive

definite and symmetric estimator described in Section 2 of the main text (denoted as D̂n,PSD).

The positive definite and symmetric estimator was obtained by symmetrizing Ω̂ using

Ω̂1 =
Ω̂+ Ω̂

T

2
.

To ensure that Ω̂1 is positive definite, we applied a small perturbation to its eigenvalues:

Ω̂τ = Ω̂1 + τIp,

where

τ =
(∣∣∣Λmin(Ω̂1)

∣∣∣+ n−1/2
)
· 1
{
Λmin(Ω̂1) ≤ 0

}
.

For further details, see Remark 1 in Liu (2015).

Tables 4 and 5 compare the performance of the proposed test statistic D̂n with D̂n,G and

D̂n,PSD, respectively.

Table 4 demonstrates that D̂n performs slightly better in terms of power compared to D̂n,G,

which is based on the GLASSO estimator. Additionally, D̂n consistently shows greater efficiency

than D̂n,G with respect to computational time.

Results from Table 5 reveal that D̂n and D̂n,PSD exhibit similar performance in terms of

empirical size and computational time. Both statistics have comparable power for detecting

included structure alternatives. However, D̂n,PSD slightly outperforms D̂n for nested structure

alternatives, likely due to the symmetric information of Ω0 being utilized in D̂n,PSD but not in

D̂n.

6.4 Tuning parameter selection and computational time

In this subsection, we investigate the sensitivity of the proposed test D̃n to the choices of tuning

parameters Cn and δn. Tables 6 and 7 report the performance of D̃n for various choices of tuning
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Table 4: Type I error and empirical power of the test statistics D̂n and D̂n,G

(with Ω0 estimated by the GLASSO) for nested and included structures

D̂n D̂n,G

Power Running Power Running

s0 n p/n Size Nested Included Time Size Nested Included Time

4 500 0.50 0.020 1.000 0.010 0.20 0.030 1.000 0.020 0.49

1.00 0.030 1.000 0.040 1.19 0.040 1.000 0.040 3.50

2.00 0.030 1.000 0.020 6.39 0.030 1.000 0.020 22.30

1000 0.50 0.040 1.000 0.040 1.19 0.050 1.000 0.030 3.39

1.00 0.030 1.000 0.030 6.33 0.030 1.000 0.030 21.62

2.00 0.020 1.000 0.010 54.70 0.010 1.000 0.010 187.26

6 500 0.50 0.030 0.100 0.020 0.19 0.020 0.050 0.020 0.42

1.00 0.050 0.060 0.050 1.23 0.050 0.040 0.040 2.90

2.00 0.020 0.040 0.030 6.37 0.020 0.030 0.020 17.80

1000 0.50 0.030 0.720 0.040 1.21 0.030 0.190 0.040 2.87

1.00 0.070 0.700 0.060 6.35 0.060 0.150 0.060 17.41

2.00 0.040 0.480 0.040 54.71 0.040 0.050 0.040 148.24

parameters with sample sizes n = 500 and n = 1000, respectively. We find that the performance

of the proposed test is influenced by the choices of both δn and Cn, but it is more sensitive to the

selection of δn, as the empirical size and power remain similar across different Cn values when

δn is fixed. The test performs well when δn is of the order {log(n)}1/k for k ≥ 2, particularly for

k = 4 and a sample size of n = 1000. This finding is consistent with the recommended choice

in Theorems 3 and 4 of the main text. Moreover, in Section 7 of the supplemental material, a
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Table 5: Type I error and empirical power of the test statistics D̂n and

D̂n,PSD (with Ω0 estimated by the positive definite and symmetric estimator

defined in Section 2 of the main paper) for nested and included structures

D̂n D̂n,PSD

Power Running Power Running

s0 n p/n Size Nested Included Time Size Nested Included Time

4 500 0.50 0.070 1.000 0.080 0.20 0.100 1.000 0.090 0.20

1.00 0.060 1.000 0.050 0.65 0.070 1.000 0.060 0.70

2.00 0.020 1.000 0.030 7.93 0.030 1.000 0.030 8.13

1000 0.50 0.030 1.000 0.040 1.16 0.030 1.000 0.030 1.19

1.00 0.060 1.000 0.060 7.85 0.050 1.000 0.040 8.04

2.00 0.060 1.000 0.060 67.03 0.060 1.000 0.050 68.28

6 500 0.50 0.020 0.080 0.020 0.20 0.020 0.320 0.010 0.21

1.00 0.020 0.040 0.020 1.36 0.020 0.280 0.020 1.40

2.00 0.030 0.050 0.030 8.36 0.030 0.170 0.030 8.54

1000 0.50 0.020 0.740 0.010 1.24 0.020 1.000 0.010 1.27

1.00 0.040 0.640 0.040 8.23 0.040 0.960 0.040 8.44

2.00 0.040 0.510 0.040 58.89 0.040 0.970 0.040 58.92

data-driven procedure is developed to choose δn and Cn.

We illustrate the running time, in seconds (s), for the modified test statistic D̃n as a function

of the data dimension in Figure 1. This figure is based on the simulation study described in

Section 4.2 of the main text. We plot the data dimension p against the square root of the running

time for four scenarios: (S1) n = 500, s0 = 4; (S2) n = 1000, s0 = 4; (S3) n = 500, s0 = 6; and
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Table 6: Type I error and empirical power of the test statistics D̂n and

D̃n for nested and included structures as affected by tuning parameters,

n = 500, p = 1000, s0 = 4, δn = (log n)1/k

D̂n D̃n

Power Running Power Running

Cn k Size Nested Included Time Size Nested Included Time

.05 1 0.050 1.000 0.040 6.47 1.000 1.000 1.000 6.48

2 0.020 1.000 0.020 6.38 0.020 1.000 1.000 6.40

4 0.030 1.000 0.050 6.36 0.030 1.000 0.990 6.39

.2 1 0.070 1.000 0.070 6.37 0.160 1.000 1.000 6.42

2 0.040 1.000 0.050 6.39 0.040 1.000 1.000 6.42

4 0.020 1.000 0.020 6.34 0.020 1.000 1.000 6.37

.5 1 0.030 1.000 0.040 6.36 1.000 1.000 1.000 6.38

2 0.010 1.000 0.010 6.36 0.820 1.000 1.000 6.40

4 0.030 1.000 0.040 6.34 0.040 1.000 1.000 6.37

1 1 0.040 1.000 0.040 6.39 1.000 1.000 1.000 6.42

2 0.020 1.000 0.000 6.36 0.850 1.000 1.000 6.37

4 0.050 1.000 0.040 6.34 0.070 1.000 1.000 6.38

(S4) n = 1000, s0 = 6.

In general, we observe a linear relationship between the data dimension p and the square

root of the running time. This indicates that the computational time grows quadratically with

respect to p, i.e., the computational time is on the order of p2 with respect to the data dimension.
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Table 7: Type I error and empirical power of the test statistics D̂n and

D̃n for nested and included structures as affected tuning parameters, n =

1000, p = 1000, s0 = 4, δn = (log n)1/k

D̂n D̃n

Power Running Power Running

Cn k Size Nested Included Time Size Nested Included Time

.05 1 0.030 1.000 0.030 6.40 1.000 1.000 1.000 6.41

2 0.040 1.000 0.040 6.30 0.040 1.000 1.000 6.32

4 0.050 1.000 0.030 6.30 0.050 1.000 1.000 6.32

.2 1 0.100 1.000 0.090 6.31 0.090 1.000 1.000 6.32

2 0.030 1.000 0.040 6.31 0.030 1.000 1.000 6.32

4 0.050 1.000 0.050 6.30 0.050 1.000 1.000 6.32

.5 1 0.040 1.000 0.030 6.31 1.000 1.000 1.000 6.32

2 0.070 1.000 0.050 6.31 0.070 1.000 1.000 6.33

4 0.050 1.000 0.050 6.29 0.050 1.000 1.000 6.30

1 1 0.070 1.000 0.070 6.31 1.000 1.000 1.000 6.32

2 0.020 1.000 0.020 6.31 0.020 1.000 1.000 6.32

4 0.070 1.000 0.070 6.28 0.070 1.000 1.000 6.30

7. A data-driven procedure for choosing tuning parameters in

the proposed test

The key idea behind the consistency-enhanced test is to introduce pseudo signals to edges

whose underlying weights are essentially zero but are included in the specified null structure E0.

Specifically, for all edges with ω∗
ij = 0, the estimated weights ω̂ij should remain close to zero.
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Figure 1: The square root of the running time for the test statistic D̃n versus the

data dimension is shown for different combinations of n, p, and s0 in the following

scenarios. S1 : (n, s0) = (500, 4), S2 : (n, s0) = (1000, 4), S3 : (n, s0) = (500, 6),

S4 : (n, s0) = (1000, 6).

When pseudo signals are added to an edge (i, j) where ω∗
ij = 0, replacing

w̃
(j)
i1,0 = ŵ

(j)
i1,0 +∆

(j)
i1

with w̃
(j)
i1,0 = ∆

(j)
i1 in the test statistic D̃n should not significantly alter its value. Here, the

pseudo signal is defined as

∆
(j)
i1 = CnI

{
|ω̂(j)

i1,0|
σ̂
(j)
i1,0

≤ δn

}
.

This motivates us to compare the test statistic D̃n with a modified version:

D̃∗
n = max

1≤i,j≤p

(
eT
j Snw̃

∗
i,0 − eT

j ei

)2
θ̂ij,0

= max
1≤i,j≤p

(D̃∗
ij)

2,

where w̃∗
i1,0 =

(
ω̃

∗(1)
i1,0 , . . . , ω̃

∗(si)
i1,0

)T
, with

w̃
∗(j)
i1,0 = ŵ

(j)
i1,0I

(
|ŵ(j)

i1,0|
σ̂
(j)
i1,0

> δn

)
+∆

(j)
i1 .
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It is worth noting that if δn is chosen appropriately, the distributions of D̃n and D̃∗
n should be

approximately the same. However, if δn is chosen incorrectly, their distributions will differ.

More specifically, the proposed data-driven procedure for selecting the tuning parameters

Cn and δn consists of the following steps:

1. Choose Cn based on Theorem 4, where

Cn =
√

log(p)max
i,j

4
ω∗
iiσ

∗
jj + 1

σ∗
iiσ

∗
jj + 2σ∗2

ij

.

Estimate ω∗
ii, σ

∗
jj , σ

∗
ij using their sample versions. Order the candidate values for δn from

smallest to largest, given by

Sδn :=

{
|ω̂(j)

i1,0|
σ̂
(j)
i1,0

, (i, j) ∈ Supp(Ω0)

}
= {δ(k)n : k = 1, . . . , |Supp(Ω0)|}.

Initialize k = 1.

2. Randomly split the data into two equal-sized parts.

3. For the k-th candidate value δ
(k)
n in Sδn , compute the test statistic D̃n using the first half

of the data, denoted as D̃k
n. Compute the modified test statistic D̃∗

n using the second

half of the data, denoted as D̃∗k
n .

4. Repeat Steps 2-3 for B iterations, obtaining two sets of test statistics:

{D̃k,b
n }Bb=1 and {D̃∗k,b

n }Bb=1.

5. Perform a t-test to compare the means of {D̃k,b
n }Bb=1 and {D̃∗k,b

n }Bb=1.

6. If the p-value from the t-test is large (e.g., > 0.05), increment k by 1, set δn = δ
(k)
n , and

repeat Steps 2-6. If the p-value is small (e.g., < 0.05), terminate the algorithm.

47



We conducted a small simulation study to evaluate the performance of the proposed data-

driven procedure for selecting the tuning parameter δn. The data were generated using the

same simulation settings as in Table 2 of Section 6.2 of the supplemental material, where the

underlying graph E∗ follows a random sparse structure matrix.

The hypothesis test is defined as H0 : E = E0 versus H1 : E ≠ E0, where E0 = E∗ ∪ E1, and

E1 is a banded structure with bandwidth 2, i.e., E1 = {(i, j) : |i− j| < 3}.

All simulation results are based on 100 replications. For each replication, we apply the

above data-driven procedure to select the tuning parameters Cn and δn, with B = 20. Table

8 summarizes the empirical size and power of the proposed test statistic, with the tuning

parameters chosen using the described procedure.

Table 8: Empirical size and power of the proposed test statistic D̃n using the

tuning parameters selected from the proposed data-driven procedure.

n p Empirical Size Empirical Power

500 250 0.020 1.000

500 500 0.040 1.000

500 1000 0.070 1.000

Figure 2 displays the histograms of the selected values of the constant Cn and threshold δn

for all 100 replications when n = 500 and p = 250.
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Figure 2: Histograms of the selected tuning parameters Cn and δn for

n = 500 and p = 250.

8. Extension: a goodness-of-fit test of graphical structure families

In this section, we outline the generalization of our test for the goodness-of-fit for a family of

graphical structures. Specifically, we aim to test the goodness-of-fit for a family of graphical

structures indexed by some parameters. We can generalize our test to:

H0 : E∗ ∈ E0(γ) vs. H1 : E∗ ̸∈ E0(γ), (8.75)

where E0(γ) represents a family of graphical structures indexed by parameters γ, and γ is

unknown. For example, E0(γ) could represent a banded structure with an unknown bandwidth

γ. For this goodness-of-fit test, there is no need to specify a single particular graph; instead, one

only needs to specify a family of graphical structures.

To test the hypothesis in (8.75), we propose the following algorithm:

1. Split the sample S = {1, · · · , n} into two non-overlapping parts, S1 and S2, such that

S = S1 ∪ S2 and S1 ∩ S2 = ∅.

2. Use the first part of the sample, S1, to estimate the unknown parameters γ in E0(γ).

Denote the estimated parameters as γ̂.
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3. Apply the proposed test statistic D̃n from Section 3 of the paper to test:

H0 : E∗ = E0(γ̂) vs. H1 : E∗ ̸= E0(γ̂), (8.76)

using the second part of the data, S2. Reject the null hypothesis H0 in (8.76) if the test

statistic D̃n exceeds the given critical values.

4. Repeat Steps 1-3 for B iterations and reject the null hypothesis (8.75) if the null hypothesis

(8.76) is rejected in more than qB cases (for some q > 0.5).

We conducted a small simulation study to illustrate the performance of the proposed

algorithm for testing if E∗ belongs to a banded graphical structure E0(γ), given by the following

hypothesis:

H0 : E∗ ∈ E0(γ) vs. H1 : E∗ ̸∈ E0(γ), (8.77)

where E0(γ) = {(i, j) : |i− j| < γ} ⊂ V × V is the set of edges consisting of node pairs whose

corresponding entries in Ω∗ are non-zero among the nodes V = {1, · · · , p}. Here, γ represents

an unknown bandwidth.

We generated n = 1, 000 independent and identically distributed p = 1, 000-dimensional

random vectors from a multivariate normal distribution with mean zero and precision matrix

Ω∗ under the following two scenarios:

(a) Ω∗ = (ω∗
ij)p×p where ω∗

ij = 0.6−|i−j| for |i − j| < 4 and ω∗
ij = 0 otherwise. In this

example, the underlying true γ is 4.

(b) Ω∗ has the same sparse structure as specified in Table 2.

We aim to test the hypothesis in (8.77) to determine if the underlying graphical structure

belongs to a banded graphical structure family. For data generated under scenario (a), we
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evaluate the type I error of the proposed algorithm. For data generated under scenario (b), we

assess the empirical power of the proposed algorithm.

The simulation results are based on 100 replications. For each simulated dataset, we used

40% of the data as the training set S1 and 60% as the test set S2. Let D̃n(γ) be the proposed

test statistic for testing:

H0 : E∗ = E0(γ) vs. H1 : E∗ ̸= E0(γ),

where E0(γ) is specified in (8.77). We estimate the unknown bandwidth γ by choosing the value

that minimizes the test statistic D̃n(γ). Specifically, we use:

γ̂ = argmin
γ

D̃n(γ).

The empirical size of the proposed algorithm was 0.07 for data generated under scenario (a).

The empirical power of the proposed algorithm was 1.00 for data generated under scenario (b).

9. Additional information on real data analysis

Figure 3 presents heatmaps of the estimated graphical structures from the real data analyzed

in Section 5 of the main paper. The left panel displays the graph estimated using the TIGER

approach Liu & Wang (2017), while the right panel shows the graph estimated using the GLASSO

method Friedman (2019). For the TIGER method, we applied the default settings to estimate

the precision matrix and derived the corresponding graphical structure. For the GLASSO

approach, we used a tuning parameter ρ = 10. Both estimated network structures suggest that a

banded structure is reasonable for this dataset, motivating us to test whether a banded structure

adequately models the underlying graph in the real data discussed in the main text.
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Figure 3: Heatmaps of estimated graphical structures obtained by (a) TIGER

estimation and (b) GLASSO estimation.
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