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The supplementary materials contain detailed technical conditions, complete proofs for all the
theorems in the main text, and examples of precision structures that satisfy condition (C1).
Additionally, we include further simulation studies, a proposed data-driven procedure for selecting

tuning parameters, and insights into the real data analysis.

1. Technique assumptions

Because S, is invariant to p, without loss of generality, we assume that g = 0 in the rest of the
proof. We replace S, by Vi, = >, X;X7 /n because the terms related to X in S, are small
order of V,,. We assume the following multivariate model (Bai and Saranadasa) |1996; |Chen et

al. | [2010) for the random variable X, which includes Gaussian distribution as a special case:

Assumption (D1): Assume X = I'"Z + u, where p is a p-dimensional constant vector, I is a
m X p constant matrix with m > p so that T'T' = X, and Z = (Z1,- -+ , Zm)" satisfies E(Z) = 0,

var(Z) = L, and E(Z!) = 3 4 & for a finite constant A. Additionally, Z; has a uniformly



bounded 8th moment for ¢ = 1,--- ,m, and for any integers I, > 0 such that Zi:l ly < 8, we
have E(Z}},Z2 -+ Z,") = B(Z!)E(Z2) - E(Z,") whenever 1 < i1, ,iq < m are distinct
indices.

Assumption (D2): Recall X; = (X11, -+, X1p)". Assume E{exp(anj)} <Cforj=1,---,p

and some finite constants n and C.

2. Examples of precision structures satisfying Condition (C1)

The main idea of the proof of Theorem 1 is to approximate the test statistics D,, by a modified
version of D,. Denote A = {(4,7),1 < 4,j < p} be the set of all pairs of indices that D, will
be maximized over and write D,, = max(; j)eA f)fj Let Ao = {(4,4),wi; # 0} be the set of
indices that excluding the sparse set of non-zeros in Q*. Let A1 = U?_ {(4, k) : limp— 00 S00ik #

0,V(i, k) ¢ Ao} be the set of indices that variables (i, k) having covariance larger than 1/so.

Define By = Ao U A; as the union of Ag and A;. For convenience, denote , D;, = max(; jjea Di*jQ7
Ak 2 N Fy*2 A*2 T ~ T 2
Dy = max( jyea/a, Di;y Dne = maxg jyea s, Di;, where Dj5 = (e; VaWio — e;€:)”/0;;.

We will show that the distribution of ﬁn can be approximated by the distribution of Dy2 =
max(; jyea, B, Dij- Notice that for technical details in the proof we need card(A/By) = p°{1 +
o(1)}, which followed by ||X*||1 < C1, for some C; > 0.

We now provide some examples of classes of precision matrices that satisfying Condition

(C1) and their corresponding forms of A/By.

Example 1. (Polynomial decay) Let 2% = (w];)pxp be a banded polynomial precision matrix
defined by wj; = 1/(1+ [i — j|)*, for |i — j| < so, so = o(v/n), A > 2, and w;; = 0 otherwise.
Lemmashows that |3; ;| < C*(1+]i—75|)~*. Therefore, ||X*||1 < C1, for some C;. Furthermore,
we also have, gz = O(1/5)) = o(1/s¢) for (4, k) such that |j — k| > so. So A; = Ule{(i,k) :

max{lk — (1 +s0 — 1), |k — (¢ —s0+1)|} < h,k ¢ [i —so+ 1,9+ so — 1]}, where h = so.
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Meanwhile By = Ule{(i, k), max{|k — (i+s0—1),|k—(i—s0+1)|} < h}. Therefore, A/By =

Ule{(i, k), min{[k— (i+s0—1)|, [k— (i—s0+1)[} > h}. As a result, card(A/Bo) = p*{1+0(1)}.

Example 2. (Exponential decay) Let Q" = (w;;)pxp be a precision matrix decaying at an
exponential rate so that wy; = 0'"=71 for |i — j| < so0,50 = o(y/n),0 < 6 < 1, and wi; =0
otherwise. Lemmashows that ojx = O{exp(—p|j — k|)}, for some 0 < 8 < —log6. Therefore,
[|X*]]1 < Ch, for some C1 > 0. So A/By = UY_,{(¢, k), min(Jk— (i+s0—1)|, |[k— (¢i—s0+1)|) > h},

where h = sJ, for some small v > 0. As a result, card(A4/Bo) = p*{1 + o(1)}.

Example 3. (Banded) Assume that precision matrix Q" has a banded structure such that

w;; =0, for [i — j| > so where so = o(y/n). Then
A/Bo = UY_ {(i,k), min(|k — (i + s0 — 1)|, ]k — (¢ — sO + 1)|) > h}

where h = 5,77, for some small ¥ > 0. Lemma |§| implies that |o;;| < C’)\lf_j‘, for 0 <
A = (y/cond(QF) — 1)/(y/cond(27) + 1) < 1, where cond(*) = ||Q*|||[2*"||. Therefore
[|IZ*]|1 < Ch, for some C1 > 0, and o, < /\fljfk‘/so = )\fsg =0(1/s0) on A/By. We also have

that card(A/Bo) = p*{1 4+ 0(1)}.

Example 4. (Factor model) Assume that 2" is generated from a factor model. Specifically,
Q =1, + Zle a;u;u; where I, is the identity matrix and for each i = 1,...,k (k € Z1),
a; € R, u; is a p-dimensional vector in R” such that ||2*]||; = O(1). Lemma [7] shows that
A/Bo = A/Ao, since o, = 0 for (j, k) € A/By. As a result, ||X*||1 < C} for some C; > 0 and

card(A/Bo) = p*{1 + o(1)}.



3. Proof of Lemmas
Proof of Lemma 1 in the main text: (1) We have
var(e; V,w; —e; e;) = var(e; i X; X wy)/n® = var(e] X1 Xiw;)/n
i=1
=E(e; XiXiwiw; X1Xe;)/n — (e] = w;)?/n.

We write X1 as I'"Z, where Z is a p-dimensional standard normally distributed random vector

and ¥* = I''T". Then we have

E(e] X1 XTw;w, X X e;) =E(e;T"ZZ " T'w;w; "T"ZZ"Te,)
=E(Z'Tw;w; ' T"ZZ"Te;e;T"Z)
= tr(Cw;w; T")tr(Teje; T") + 2tr(Tw;w; T Te;je;T")
=w; T'wie;E%e; +2(w; Zeje; T'w;)
= w0} + 2(w; TS e;je] Twy).
Since €] Z*w; =0, w; X"eje] *w; =0, for 1 <i# j < p. This yields var(e] V,w; —e]e;)
= wjoj/n. (2) If 1 < i =j < p, we have ejTE*wf =1 and WfTE*eje}E*wf =1. So
var(ef V,w; —eje;) = (wjof +1)/n.
If X; follows a multivariate model as in |Bai and Saranadasal (1996) and |Chen et al. | (2010

and £* = I'"T, then we have

E(eJTX1XfoWfTX1X?ej)

=E(ejT"Z2Z"Tw;w; T ZZ"Te,)

=E(Z"Tw;w; ' T"ZZ " Te;e;T"Z)

= tr(Dw; w; "T")tr(Te;ef T") + 2tr(Tw; w; "I Te;ef I) + Atr(Twiw; 'T" o Te;e] T')

=w; S'wie]Z%e; + 2(w; " Zreje] B w]) + A(w; T Te;)?
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=wjo}; + 2(wa2*eje?E*wf) + A(w; " 2%e;)?.

Similar to the normal distribution cases, when i # j, we have var(e] V,w; — eje;) = wj;o};/n.

(2) If 1 < i =j < p, we have var(e; V,w; —eje;) = (wj;05; + 1+ A)/n. O

4. Technical Lemmas and their proofs

We include the following Lemmas [[}f3] and Lemmas [§fT3] that are needed for the proof of the

main theorems in the main text.

Lemma 1 (Bonferroni Inequality). Let B =UY_, By we have

2k 2k—1
D D)TE <pr(B) < Y ()R
t=1 t=1

where By =37, < <<, pr(Biy N-+-N Bi,) and k < [p/2].
Lemma 2 (Berman (1962)). If X and Y are bi-variate normally distributed with expectations
0, unit variance and correlation p, then

lim pr(X >cY >c) 1
emoo {2m(1 — p)1/2c2}Lexp{—c?/(L+ p)}(1 + p)1/2

uniformly for all p such that |p| < 8, for any 0 < 6 < 1.

Lemma 3 (Zaitsev (1987)). Let 7 > 0, &,,...,&, € R* are independent random vari-
ables such that L(&;) € Bi(k,7), fori = 1,...,n, where Bi(k,7) = {L(§) € Fr : B¢ =
0,|E(&,t)(&uw)™ 2| < mlr™2||u||" 2 E(E,)?/2, for every integer m > 3 and for all t,u },
L(&) is the distribution of random variable &, Fi is the class of random distribution on R*,
(&,t) is the inner product of €& and t. Denote S = &, + &, + -+ &, F = L(S). Let ® be

a Gaussian distribution with mean vector 0 and the same covariance matriz with F. Define



(F, ®;A) = supgep, maz{F'(H) — O(HY), ®(H) — F(H™)}, where By, is the o-field of Borel

subsets of R¥, H* = {y € R* s inf, . y||ly — || < \}. Then

A

. 5/2
m(F, ®;N) < ik eXP(—W%

for all A > 0.

The following Lemmas [ - [7] are used in Examples [T}[4] for some special classes of precision

matrices.

Lemma 4 (Hall & Lin (2010)). For A > 1,¢0 > 0, M > 0. For any sequence of matrices X,

such that
B € 00N co, M) = {0 : B0 (G k)| < M x (L4 — k) |12l > co}.
There exists a constant C = C(\, co, M) such that for any n and any 1 < j, k <n,
=GRS Cx (L4 15— k)T

Lemma 5 (Gréchenig & Leitner (2006)). Let A = (aij)pxps A™5 = (bij)pxp, Amax(A) and
Amax (A7) are bounded. If aij = O{ exp(—ali — j|)}, then bi; = O{ exp(—Bli — j|)} for some

B such that 0 < 8 < a.

Lemma 6 (Demko et al. (1984)). Let A = (aij)pxp and A™1 = (bij)pxp. Assume that Amaz(A)
and Amaz(A™Y) are bounded. If A is positive definite and m-banded, then we have |by;| < CAI*=I1
where A = [{/cond(A) — 1}/{+/cond(A) + 1}]*'™, cond(A) = ||A|| ||A~"]], C = [|A~"|| max]1
and {14 /cond(A)}?/{2cond(A)}].

Lemma 7. Let I, be an identity matrix and A = 1, + Zle a;uiu; for any vector u; €

RPXY a; € Ryi=1,...,k. Then outside the support of A, and A~ have the same zeros pattern.



Proof: Let us denote Uy, xg, = (@1u1, . .., apur), Vixp = (1, ..., u,)", then Zle a;usuy = UV,

So A =1, + UV. Applying Woodbury formula from page 211 in Hager (1989) we have:

A7 = (I, +UV) ' =1, + U(I; — VU) 'V,

Denote M = (I, — VU)™*,H = UMV, then A~! =T, + H. Tt can be checked that the zero
patterns of H and UV are the same. For easy to understand, let us consider a special case

A =1, + wiul + usud where u; = e; + e2 € RP*! and uz = e3 + e4 € RP*'. Then

110 00 ... 0
V= and U=V".

00110 ... 0

2Xp
For (i,7)th position of H where ¢ ¢ {1,2,3,4} or j ¢ {1,2,3,4}, we have H(i,j) =

U(i, )MV(, j) = 0. Since the zero patterns on H and UV are the same, using this fact together

with A =TI, + UV and A~ =1, + H completes the proof of this Lemma. O
Lemma 8. max Dj; =o,(1).
(i,3)€Ao0

Proof: Recall that ].5;} = |e] VWi o — €] ei|/+/0i;. Consider the numerator

n—1 1 -

T A T T A T T T T _»
e, Vo,Wio—eje = (e; ShWio —eje;) — —eje; +e; XX Wi
j J n J J n I J

== 1{e]TS”Bi,O(BEOSnBi,O)ilBi,Oei — e}ei}

1 GTT o
— fe}ei + eJTXXTWi,o.
n
Notice that the first term is indeed 0. For notation convenience, consider ¢ = 1 and suppose that

T px1
Wio0 = (w11,w12,w13,w14, 07 . ,O) = B1’0W11’0 € R N



where wi1,0 = (w11, w12, w13, w14)" € R**! is non zero components of w o and

T
1 0 0 0 0 ... 0
0O 1 0 0 O ... O .
Bl,O - == (el e es3 94) c RPX .
0O 0 1 0 O 0
0 0 0 1 0 0
Then
Bf,oSn‘;Vl,o = BT,oSnBl,o(Bf,oSnBl,o)_lBLoel =B oer.
So

e;rSnBl,O(BT,OSnB1,0)71B17oe1 — e]Tel =0, fOI”j =1,2,3,4.

So we have

T -~ T T TN~ T &
~ ej VnWi,0 — e]- e; ej ei/n ej XX Wi.0

v 0;, NS NG

So

A e]Tvei/n eJTXXTX’AV7;70
max Dy < max [SUL L gy | SEE 0
(i,5)€ Ao (i,5)€A0 Gl‘j (i,5)€ Ao 0”'

(4.1)

From Lemma 1 in the main text, we have the denominator /6;; is at the order of 1/1/n.

This gives us
eje;i/n
max ————
(4,5)€A0 / (l/n)

For the second term in (4.1), we note that e]T)_(XTv?/i,o =30, X; X, i, where 1 <

= o(1). (4.2)

i1,12,...,%s, < p are non zero positions in w; 0. From page 2582 in Bickel & Levina (2008), we

have max;<;<p X; = Op{+/(log p/n)}. This gives us

S0
TR T o] < 228" i | — .
e (e XX Wiol < max X ; |hisy, | = Op(logp/n)

This gives us

A |ej XX Wi0|//0ij = Op(logp/v/n) = 0p(1). (4.3)
3V 0
The facts (4.1)), (4.2), and (4.3)) together verify the Lemma. d
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Lemma 9. /n ma e’ V,Wiol =+v/n ma eV, wi +el X*W; o| + 0,(1/Io .
Vi max e, ol =vn  max e J ol +0p(viog p)

Proof: On the one hand, we have

vVn max |e

(4,5)€EA/ Ao ;:(Vn a 2*)]31-,0(5;1 — 20|

< i — O Dii0o — W
< Viso, e, o = oyl B o — il
= Op(solog p/v/n) = op(+/10gp). (4.4)

On the other hand

T(Vn,—ZBio(S; ! — QHf:
*/ﬁu,j?éi’%o le; ( )Bi,o(S; )il

= \/’E max |6;V7L\§Vi,0 — B;Vnw: — e}E*vAvi,gL (4.5)

(4,5)€A/Ao
Combining (4.4) and (4.5), we get
T A T * T * A
n  ma e V,W;ol =+/n ma e;V,w;, +e; 3" B; oW, 0| +o0 lo .
Vi max e ol =vn max e : 0Wi0| + 0p(v/log p)
This completes the proof the Lemma. d
o T _ T Ty . *RT
. ) ) - j j 1 124,07
Lemma 10. For any (i,j) € A/Bo, let a* = e; —e; X"B; 02 B;, then
Var(@"V,wio) = (wiio); — wie; "B o2 Bi X e;)/n.
Proof: We first note that
E(aTVnw,-’o) = E(aXIXfww) = aTE*wLO
= (e] —e]X"'Bio(Bi X Bio) 'Bf)Z wio
= *E;E*Bi’o(BzOE*Biyo)ileoei = *E;E*Wiyo = 07

var(aTVnwi,o) = E{(aTVnwi,o)Q} = %E(aTX1X?Wi,OWZOX1XTa),



E(aTX1 Xfwi,owiT,OXl)(fa) = E(aT FTZZTFWL()WIOI‘TZZTFa)

= E(ZTI‘Wi,OW;F’OI‘TZZTI‘aaTI‘TZ)

= tr(Twsowi oD )tr(Taa™T'") + 2tr(Tw;ow; oI " Taa " T'™")

+Atr(FWi,owEOFT o l"aaTl"T)
= wja"S%a+ (2+A)ejaa’e;.
Thus, we have
var(a®V,w; o) = (wi;a"S"a + 2e; aa”e;) /n.

Recall that Q] = BEOQ*BZ-,O. We note the following

a’S%a = (e] — eI 2B, o2 B ()X (e; — Bi,oQ/ Bl Z"e;)
= e;‘-PE*e]- — QE;E*Bi,OQ:BiT,OX*e]'
+ Q;E*Bi’O(BzOE*BLU)_1Bz02*Bi,UQrBzOE*ej
=ejX'e; —e; 3B, 002/ B ("€,
=0j; —e; X'B; 0B Z"e;,

ejaa’e; = e (e; — Bi,OQ:BiT,OE*ej)(e;'F - eJTE*Bi’OQ:BiT»O)ei
=e;ejeje; —2e; B; o2/ B Xejeje;
+ e/ Bi0QB} (T eje] T°B, 02 B e;
=e; B, B;  Zeje; X w;
= eiTBi,onBzOE*eje]Tei

=0.

Plugging (4.7) and (4.8]) into (4.6]), we get the variance expression in the Lemma.

Lemma 11. pr(( m)a); ﬁff > tp) = o(1), where t, =t + 4logp — log(log p).
1,j)€AL
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Proof: Lemma [J] gives us

Vn max |ej VaWiol =+v/n max |e] Vaw; +e] X Wi o| + 0p(y/log p).
(4,5)€ A1 (4,7)EAL

We have

pr( max Dj} >t,) =pr( max |Dj| > \/tp)

(i,5)€A1 (i,5) €A1
eTV W'o
=pr( max |2 —=""|> ./t
P ((z’,j>eA1‘ N |2 vt)
lef V,w; + e I W, of
:pr(('max J J — + op(y/logp) > \/tp
i,j)EAL Hij
le] Vaw; + e W, ol
= pr( max — >\ /ty).
P ((@j)eAl Hij - p)
We have

A/ I/HijeJTE*vAvi’o = 1/0” (Q?E*VAVLU — e]TE*wi,o)
= V1/Be] S Bio{ 87— (BLS Bio) M,
= v 1/9ije;E*Bi’o(S;1 — Q:)fz (49)
Applying Lemma 5 in Le and Zhong (2021), we have
e;E*Biyo{S,jl — Q:}fz
—e;X"B; o (Si — =) (S; ' — Q))f;.

Let us denote R = max(; jjea, |€] £*Bi,0Q; (S — 7)(S; " — Q)fi|. Since ||Z*||1 and ||} ]|,

are bounded, so ||e] X*B; 02} |1 = O(1). Then we have

R < s  max |sij — U”| max_ Wij,0 — wij| = Op(solog p/n).
1
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So

e; 3B o[S; ' — Q/lf;
= —e; "B 002;B;(Sn,wio + Op(solog p/n)

=-m"S,wio + Op(solog p/n), (4.10)

where m™ = ] "B, 02 B. Notice that ||m|[; = O(1) and ||wiol|1 = 1.

We have

1 n o

T T T T T

m S,w;o=m V,W;o+ 71111 V.wio — 71m XX "w; .
n — n—

In addition we have,

1 T 1 T * 1 T *
- < = _ ) - )
7 Im Vawiol S = fm” (Vi = E)wio| + ——|m " E7wif
1 * * *
= m\eyiz Bi0Q2 {Bo(Vn — Z")Bio}twiio| + O(1/n)
= Op(so/n).

In other words, we have

1

p— 1|mTVnwi,o\ = Op(so/n). (4.11)
Furthermore, we have
" mTXX"wio < —— max X2 [|ml|s ||wiolls = Op(logp/n). (4.12)
n—1 n—1i=1,...,p
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Applying (T9), (L10), (E11), and (T12), we get

~ |eTVnWiO +eTE*Wi0|
r( max D7 >t,) =pr( max 2 : z .
pri ma, D 2 t) =pr( max NG
= pr( max [ VW0 — m” Snwiol

(4,7)€EAL \/Gij

T T
—prf max (@ TmOVeWel

(4,5) €A1 1/0”

T
Vni
max 2 VeWiol 5 g

a.
(4,7)€EAL \/Gij

> V)

> V)

= pr(

where a¥ = e] — e} X"B; 0Q2;B/,.

Lemma [10] implies that for (i, j) € Ay,
var(a’ V,wi o) = (wi;05; — wiie] BB X%e;) /n < (wi;05;)/n = 0ij,

where we notice that wj;e] "B, 0Q2; B (X"e; > 0, since Q] is positive definite.

By central limit theory, we have a*V,w; o = (> a" X, Xiw;0)/n — N(0,var(a” V,wi)).
k=1

In addition card(A;) = o(p?), this gives us

|e;rVnW1',0 + G;E*Bﬂ;&’i,d \/ﬁ\aTVnw,' 0|

pr( max >4/tp) =pr( max ———— >/t

((ivj)GAl Qij p) ((i»j)GAl \/Gij \/;)
|aTVnW7; 0

< pr{ max - >4/t

{(i»j)€A1 VA{var(a®V,w;o) Vi}
T
Vn 2
S S e 1 D
(i.0)€AL {var(a™Vinwio)
<o(p®)e " = o(p®)e ? 1% P = o(1)
where the last inequality is due to Gaussian tail inequality. The Lemma is proved. O

Lemma 12. max  |e] 2 B;o(S; " — Q)| = 0,(y/(log p/n)).

(3,5)€A/Bo

—1
i

Proof: When the underlying network structure is a factor model, it can be seen that eJTE*BZ',o(S

Q)H)f; =0, for all (i,5) € A/By. So the Lemma is satisfied.
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Now we consider the case for other network structures with their covariance matrix and
precision matrix satisfying conditions (C1). Let us denote b™ = €] X*B; o = (0J;,,- - -, ojiz, )-
where i1, ...,1s, are nonzero positions at column w; o of the precision matrix €. Since ||b||; =

O(1), applying Theorem 4 in Le and Zhong (2021), we have
V(n/ai)b" (87" — Q)fi ~ N(0,1) (4.13)

where a;; = var(b™Q; X, XT;Q;f;), for all (,5) € A/Bo.

Denote €27 = (Vi) soxso- By Lemma 7 in Le and Zhong (2021), we get

aij = var(b"Q; X1, X1, Q0 f) = E{X{,Q/bb"Q; X, X[, Q f:if Q; X1} — (b"Q; =, Q;f)?
=b QT bf QI EIQf + (b" QT ) + Atr(T7 Qbbb QT o T QI fif QT))
= b Qb QI 4+ (1 + A) (BT Q;f)?
= wj; Z ookl + (1 + A) Z O KO S1VikYil- (4.14)
ko l€{i1, visq } ko l€{it, visg }
On A/By we have

ooy = o(1/s5), for all k,1 € {i1, ... is0},5 # K, L. (4.15)

The facts (4.14) and (4.15)) give us a;; = o(1), for all (4,5) € A/Bo.

Let us denote a = max(;,jyea/B, /@ij, 0 a = o(1). Applying (4.13)), we have

pri  max el =B o(S; ! — Q)f| > t}

(,5)€A/Bo
<pri max  |\nfai)e S Bio(S; ! ~ QN > (Vat/a)}
©,J)€ 0

< p? exp{—ntQ/(QaQ)}.
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Choose t = May/{(logp)/n} for M > 0 sufficient large, then we have
r max  [e;X B o(S; ' — Q)fi| > May/ lng} <p ex nM?a’ log p)
PI G eis, ' BT p* exp(~ 2a%n

=p”exp(log p ™/?)

2—M/2

=p — 0.
Or
o max [ef 2 Buo(S; T — D] = Op{ay/(logp/n)} = 0p{v/(log p/n)}.
The Lemma is verified. g

Lemma 13.

> pr{Nalmim > t;/* £ en(logp)™/?} = =
1<ki<..<ky<q (2m)

xp(—5)} {1 +0()}, (416)

where Ng = (Ng,,...,Ng,)" is a d-dimensional multivariate Gaussian random variable
with mean vector 0 and covariance matrix cov(Ng) = cov(W1). Here W is the random variable
defined as in equation (27) of the proof of Theorem 1 in the main text.

Proof: Notice that for X ~ N(0,1), we have

—z2/2
pr(IX] = @) = 2{1 4 0(1)} =L
x4/ (27)
So when d = 1, we get
exp*tp/2

pr{|Nakuin > /% & 0 logp) ™/} = 21 +o(1)} 2

2exp(—t/2 — 210gp)(10g;p)1/2

= U o e viem)
-2 —t/2
— {1401} 2P
{1+ o(}—2
This leads
exp /2
S pr{Nlin > £/ £ e (logp) /%) = FE%) {1+ 0(1)}. (4.17)
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The Lemma is verified for d = 1.

Let us consider when d > 2, we need to show that

—f)dp*d}. (4.18)

WH o ol

pT{INd|min > /% + €n(10gp)71/2} ={l+o

Let R = (pij)pxp be the correlation matrix and € = (;;)px, is the standardized version of the
precision matrix Q2 where ©;; = wj;/,/(whws;). For a fixed constant g > 0, for j =1,2,...,p,

define
—1—a0}.

s; = s;(a0) = card{i : |pi;| > (logp) ™"~ “°}, hj = h;(c) = card{i : |@;] > (logp)

We need two following conditions for our proof

‘max s;j(ao) =o(p”), max h;(ag) =o(p?),Vy > 0. (4.19)
j=1,...,p j=1,...,p
There exists some r € (0,1), pi; < r,&i; <7, forall 1 <i#j <p. (4.20)

Notice that the above conditions are mild. Condition (4.19) is met if R, and £* has maximum

eigenvector bounded from the above. And condition (4.20)) met once the off diagonal elements

0 _ T . T . * *
of R and Q are bounded by r. We have EZj;, Z, = €y, Cik, i, Ciny + Oy g Wik iy When
either ix, # jry, O gy # jk,, then EZy, Zig, = U;kljkzw{‘klikz. Notice that on A/By, we have

* *
ik dky — Yikg kg

wj +1=

=0, so when iy, = ji, and ix, = ji,, we get EZjp, Ziy = ofkljkl .
For two different pairs (ia, ja), (is,jb), We can establish a graph defined by Gi,j.i,5, =
(Viajaivios Eiajaiviy) Where Vi o a5, = {%a, Ja, i, jo } is the set of vertices and Ej, j,4,j, i the set of

—1l—ag

edges. We say there is an edge (connection) between ¢ # j € {ia, ja, iv, jb} if |pij| > (logp)
or |@ij| > (logp)~' 7.

We say Gapea is a k-vertices graph (k-G) if the number of different vertices is k, in our case

k € {2,3,4}. For sake of convenient, we denote “3G-1E" for a three vertices graph when either

16



Pigi, O Wj,j, form an edge. We denote “4G- 2E" for a four vertices graph when both p;,;, and

@joi, form edges. We say a graph G = Gi,,,, jim,im,im, Satisfy condition (x) if

(+)  Either @i, < (087)™ % 01 py. 5, < (logp) 720,
Remark: Those graphs satisfying (x) also satisfy
coV(Zimy s Zimy) — Pimy dmyPimy imy = O{(logp)~"~}. (4.21)

As shown above for any two different pairs (i, , jr, ), (¢ks, jry) We have

cov(Ziky, Ziky) — \/{1/(0.1* w;‘kzik2 o* o* VZYEZik, Zig, -

Ukq Uk JkyJky  JkoJko

For any matrices A = (aij)pxp, B = (bij)pxp = A™', page 472 in Robinson & Wahten (1992)
tells us

2 . .
bii > ajj/(aiia;; — ai;), forany 1 <i#j <p.
This gives us
* * * * * * * * * 2
Wik iy iy kg Tiky kg Tikg dry 2 {(wiklikl Wik, Giy )/(wiklikl Wik ik, — Wik de, )} > 1/T7

for some 7 € (0,1). So for a 2G- 1E of two pairs (i, , Jk, ), (Jki, ¢k, ) we have, for some r € (0, 1),

cov(Zik,, Ziny) — \/{1/(w;=hiklw;kljkla;klikla;kljh <, (4.22)

For "4G-2E" or "3G-1E" of two different pairs (i, , Jk, ), (¢ky, jk,) We have

7 7 A * * * o ¥
cov(Ziky, Ziky) — \/{1/(wlk1 iy @iy iy T g Tk s 11Tk kg @iy g
= Pk kg Wik ing < Ts (4.23)
for some 0 < r < 1.

Now we define the following sets I = {1 < k1 < k2 < ... < kq < ¢}, d is a fixed positive

integer. Iy = {1 <ki<keo<...<kg< q: for some m1 757712 (S k1,...,k}d,G= Gimljmlimzjmz
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does not satisfy (x)}. I§ = {1 < k1 < k2 < ... < kg < q: for any m1 # ma € k1,...,kq,G =

Gy dmy imoim, Satisties (%)}

Notice that I = Iy U I§. For any subset S of {k1,...,kq}, we say that S satisfies (xx) if

(%*) for any mq # m2 € S,G satisfies (x). For 2 <1 <d, let Iy = {1 < ki <kz <

by Jmy imgdmg
... < kg <gq:card(S) =, where S is largest subset of k1 < ... < kg, satisfies (xx)}.

Ion = {1 < k1 <ha <...<kg<gq:forany mi #ma € ki,..., ki, G = Gyl iy iimyims
does not satisfy (x)}. So I§ = Ioq, lo = Uld:_f]gl.

Claim:

card(Io;) < Caq' 270470, (4.24)

where Cy is a constant depends only on d. In addition
card(I§) = {1+ o(1)}CY. (4.25)

Proof: First, we verify , card(ly) < Caqt?7(@=D There are at most Cé ways of choosing S
with cardinality I from 1,2...,q. For a fixed element "a" in S, there is at most p”p? = p>? choices
for "b" which satisfies Gi,j,s,;, not satisfies (). So there will be at most Clp*” choices for
values "b" not go with 1 elements of S for properties (). So we get card(Io;) < CL(Clp*)*~F <
Cagt27@=D

The claim is verified.

Second, we show , card(I§) = {1+ o(1)}CZ. We have card(I) = CZ, since we are

choosing d numbers from q numbers without order.

d—1 d—1
card(lo) < > card(lo) < Caq™"" = 0(¢%) = o(CY).
=1 =1

This gives us

card(I§) = C¢ — o(C3) = {1+ o(1)}C.
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This clarifies (4.25)).

We claim that the follows are true:

> pr{INulain > 1% % en(logp) ™} = 0(1) (4.26)

I

and

SNl > 6% % enlogp) %} = { s ewl-g o) 420)

Proof: Before verify , we need to divide our set Ip; a bit further. For 1 < a # b < ¢, we
define d((ia,ja), (iv,jv)) = 1, if Gigjaips, does not satisfies (x); d((a, ja), (%6, jb)) = 0 otherwise.
We further divide Io; as the following. Let (k1,k2,...,kq) € Io; and let Sy C (k1,...,kq) be the
largest cardinality subset satisfying (%) (if there are more than two subsets attain the largest
cardinality, then we choose any of them). Define Io;1 = {(k1,...,kd) € Io; : there exists an a ¢ S,,
such that for some by # by € Sy with, d((ia;ja), (iby,61)) = 1, and d((ia, Ja ), (ibs, b2 )) = 1},
Ioi2 = Ioi/Ioin. We have Ip11 = @, Io12 = Io1. Recall that d fixed and | < d — 1. We can show
that

card(Io;y) < Cgl =1 H2(d=tHD), (4.28)
Card([alz) S qul+27(d7l>. (4.29)

Write S, = (b1,b2,...,b), for (ki,...,kq) € Ioi2. Since there exists an a ¢ S, such that
d((tay Ja), (tby,796,)) = 1 and d((ia,Ja)s (iby, Jby)) = 1 for some b1 # be € S.. We consider b; is
the first element in S, there are at most q ways to choose b;. There are at most p>” to choose
the second element in S, not goes with "a" for x. For the other [ — 2 elements in S, there are at
2vy(d—1)

most Cf;Q ways of choosing. For the rest d — [ elements outside S, there are at most p

ways of choosing. So on the whole, we have

card(lon) < qp™ Oy *p™ 70 < g 7MY,
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which verifies (4.28). We have

card(Io)) = card(Ion) + card(lo;2) < Cag' 2770, (4.30)

On the other hand

card(Io;n) < Cg'~HH27 =D — (gh). (4.31)

Applying and ([£:31)), we get (4.29).
We go back to check our claim
> pr{Nalmin > t,/* + ea(log p) ™%} = o(1).
Io
On Iy we have For any ki,...,kq € Io, write Si = (b1,b2,...,b), U; is the covariance
matrix of (Np,, ..., Ny,), then ||U; — || = O{(logp)~*~*°} (by ) As a result, we also
have |U;| — 1 as p — co. Let us denote |y|max = maxi<i<i |yi|, for y = (y1,...,5)" and

Tp = 2611,/2 + €, (log p) /2. We claim that

1 / [
—_— exp(—=y U; "y)dy
22 U2 iy i > 2p y o > (log p) 1/ 20 /4 (v Ury)
1
-0 [exp{jaog p)teo/ 2}] (4.32)

and

1 / Tyr—1
ToN/2ITT. 12 exp(—5y U Y)dy
2m) 2 UL iy in >, Iy lmax < (log p) /2 +e0/4 27
1+ O(logp) ~@0/2 1
= oz exp(—iny)dy. (4.33)
(27) |¥ | min>2p, |y max < (log p)1/2+e0/4
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First, we check (4.32]). We have

1 / 1 ooy
N T exp(—zy U; y)dy
22 [ULNY2 iy > 2p y > (log p) 1/ 20 /4 27

= pr{|Ng|min > Zp, |Nd|max > (logp)1/2+ao/4}

l
<> pr{|Ni| > (logp)"/*T0/*}

i=1

= O[exp{—%(logp)Ha”/Q}] = O[exp{—%(logp)l-s-aoﬂ}]’

which validates (4.32]).

We now verify . We have
U7 = 1l < 1U7 1[0 — L] = Of(log p)~'~0}.
So, on set {|¥|min > Zp, [Y|max < (log p)'/>7*0/4} using Taylor expansion we have:
exp{~2y" (U7 ~ Ty} = 1+0{~ Ly (U ~ )y} = 1+ O{(logp) "%},

Therefore,

1 / 1 ooy
S NIBRTIiE exp(—zy U; y)dy
(2m)! /2 [0 /2 ¥ [min>2p .|y Imax < (10gp) 1/ 2+ 0 /4 2 :

L P 1 o
N ZSRNIOIE T RED) exp{—= U, -1 exp(—= d
(2m)!/2 [0, |/ /‘Y‘xninzzpvly‘lnaxg(logp)l/2+o‘0/4 P 27 (U, Hyyeap( 2Y y)dy

1 / 1
SRR T exp(—zy U; 'y)dy
@) 2[ULY2 iy i > ap ly lmax < (l0gp) /20 /4 27 7!

1+ 0((logp)—*/?) /
(2m)1/2 13 linin 2 p [y lmax < (10gp) 1/2+e0 /4

1
exp(—5y"y)dy.

So we proved (4.33)). The two claims are proved, we come back to show ([4.26]).
pr{[Nalmin > 1, £ €n(logp) "/*} <pr(INo,| > @y, .., [Ny | > 25)
1 / | —
= oNi2ITT 172 exp(—5y U; y)dy
@D iy, 27
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1 /
/2 1/2
(2m)!/2[U |1/ ¥ min >2p, |y max < (log p)t/2+e0/4

1 _
exp(—5y Uy 'y)dy
1 /
(2m)V/2| U1/ [¥ | min>2p, |y max > (log p)t/2+0/4

o ),
@) 2 IULY2 |y in > |y e < (log p) /200 /4

1 oo
exp(—>y U, ly)dy

" 2

1 g
exp(—5y" U y)dy

+0 [ exp{— % (logp) teo/2 }]

1+ O(logp) ~0/2 1
= % exp(~5y"y)dy
( 7T) |Y‘minZzp:‘ylmaxf(logp)l/2+a0/4

1 a
+0 [exp{—i(logp)l'*' 0/2}}
— M / exp(—lyTy)dy + O[exp{—l(logp)pr“"ﬁ}]
(2m)!/ 13 lmin > 2 4 '

‘We have

1+ 1, l
exp(—5y y)dy = / exp(—-u’)du
/|Y|min21p 2 ( |u|>zp 2 )
21 — 11, £ en(logp) 1/
( \/07) eXP[ 2{ P €n (logp) H
VY £ cn(logp)-1/2)

2

V/(87)

y

= {1+ o)} — = exp(~2)}'p

In addition,

o [eXp{—i(logp)Ha“/Q}] =o(p~ ).

The facts (4.34), (4.35), and (4.36) together give us

1+ O(logp)—™"2 / 1a 1.0 iags
(2172 IylminZ%eXp( Y y)dy+0[exp{ 4 (logp) }}

= {1+o()H

t _
eXP(—g)}lp 21

2
V/(8m)

=0(p™™).
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So we have

> pr{|Nalmin >t/ £ en(log p)~'/*} < card(lon) O(p~>)

Toin

_ O(le—2+47(d7l+1)72l)

=o0(1).

(4.38)

Let a = min{a : a € (k1,k2,...,kq),a ¢ Si}. WLOG we assume d((%a, ja), (¢6,,76,)) = 1,

then 1012 = {(kl, .

we have

,kd) c 1012 . Giajaibljbl is 2F — 1G OI‘ 7736’ — 1E” OI‘ ”4G — 2E”}. On 1012,

Zpr{|Nd‘Inin > t112/2 + 6"(10gp)71/2} < Zpr{lNﬁl > Tp, |N’11| > Tpy .-y |Nbl| > zP}' (439)

Ioi2 Ioi2

Now covariance matrix of (Na, Ny, , ..
Vi — diag(D, Ti—1)|| = O{(logp) ™"~}

where D is the covariance matrix of (Na, Np, ).

Applying (4.22)), , and Lemma in Berman (1962), we obtain

4lo _
Pr(INal = @y, |Noy | > 2p) < Cexp(=07) = Cp /07,

Combining (4.39) and (4.40]), we get

ZPT(U\TE‘ > xp7|Nb1| > .’L’p,...,|Nbl| > xp)

Toi2

., N,) is Vi, and the covariance matrix satisfies

(4.40)

<O [pr(Nal > @y, [Ny, | > ) x p~** + exp{—(logp) "/ /a}]

Ioi2

< OZ [p72l7(272r)/(1+r) + eXp{—(logp)1+a°/2/4}]

Ioi2

<C p7(272r)/(1+7')+4’y(d71) _ 0(1)

23

(4.41)



The facts (4.38]) and (4.41) yield (4.26]).

Last but not least, we prove (4.27). Repeat the above argument on I§, and since I§ = Ioq,

or | = d, we have

pr{|Nalmin > t3/% £ en(logp) ™"/*} = P(INy, | > zp, ..., [Ny, | > )

1 |
L ——yTU; y)d
(2m)!/2| U/ /|y|mmz:cp Ry vy

1

L A
exp(—-y U d
(27T)l/2| 1‘1/2 ‘/Iylminzzpv‘Y‘maxS(IOgP)1/2+a0/4 p( Y : y) Y

2
1

1 oo g
e exp(—=y"U; ly)dy
(2m)!/2[0, |1/ /\y\minzmy\maxz(logml/”ao/‘* (=37 0y)

_l’_

1 /
/2 1/2
Q) 2O iy > a1y max <(log p)L/2+00/4

1 o
exp(—5y U y)dy

+ O exp{~ (logn) *0/2}]

1+ O(logp)fo‘(’/2

/ exp(— 2y "y)dy
<D (— —
(27T)l/2 ‘Y‘minzzpﬂlylmaxS(Ing)l/2+a0/4

2

+ O exp{— (logp) +*2}]

14 O(logp) /2 1 . 1 ey
- (2m)/ ¥ lmin >p oP(=5Y y)dy+o[eXp{ 7 (loep) }]

= {1+ oD e el
-0 1 2 t\yd —2d
={1+0( )}{\/@exp(—g)}p -

So

S pr{Nalmin > 13/ + €n(logp) ™/} = card(I§){1 + o(1) }{ (28@ exp(—2)}p ™

15

— {1+ 0(1)}05;{% exp(—%)}dp*“

Ca)

1, »

= {1+ o) ™ = ep(=5) ™
:$ (1%) eXP(—%)}d{HO(l)}, (4.42)
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which confirms (4.27).
Using (4.26)) and ( , we have

1 1 t
> pr{|Nalmin >t/ & €, (logp)~/?} = — 7exp(—§)}d{l+o(1)}, (4.43)
1<ki<...<kq<q (2m)
for any d > 2 and ¢t € R. Lemma [13| now is verified due to ) and (| - d

5. Proof of main theorems

Proof of Theorem 1: Let us first assume 8 = 0 and then v = 1. The proof of the general case is
given at the end of this proof. Denote V,, =37 | X;X7 /n, the leading order term of quantity
e Snwz o is also equivalent with e; AV Wi,0. Therefore, it is sufficient to prove the theorem under
the leading order term eJTVn‘?vw.

We first approximate D, by its counter part D defined by DI = maxi<i,;<p D;}?

and D}; = (€] V,W; o —ele;)//0;;. Based on Theorem 3 in |Le & Zhong| (]2021[), we have

maxi<; j<p |Wijo — wi;| = Op{+/(logp/n)}. Moreover, by Lemma A.3 in |Bicke1 & Levinal (]2008')7

we have maxi<; j<p |vij — 05| = Op{+/(logp/n)}, and |k — k| = Op(1/,/np). Then we have

Do/ Di =11 < max [0150/655 1
1<4,5<
= max v — Wi/ @io3,) + & — k| = op{/(ogp/m)}.

Since log p/n — 0, we have |D,, — D}| = 0,(D}). Therefore, it is sufficient to prove that

pr{D;, — 4log(p) + log(logp) < t} — exp { — exp(—t/2)/+/(27)}.

Define t, = t+4log(p)—log(logp) and D}y = mMax(; j)eA/Ao f);‘f where A = {(i,7) : 1 <14,5 < p}

and Ag = {(4,7) : wi; # 0}. Applying Lemma 8, it is enough to show that

pr(Djy < tp) — exp { —exp(—t/2)/1/(27)}. (5.44)
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Define ﬁfﬂ = Max(, j)eA/By ﬁ;}z where Bg = Ag U A1 and Ay = UL_ {(4,k) : lim sooik #
p—o0

0, for all (i,k) ¢ Ao}. Using Lemma 11, we have
lpr(Djy > tp) — pr(Diy > t,)| < pr( max Dj? > t,) = o(1).

o a (1,7) €A1

It is then sufficient to show that

pr(Di, < t,) — exp { —exp(—t/2)//(2m)}. (5.45)

Recall that D;; = (ef Vow; —eje;)//0i; and Dypo =  max ij. It then follows that

(i,5)€A/Bo
|D:Y? —DMP =] max |Djl— max |Dy||< max |Dj; — Dyl
(i,j)€A/Bo (i,5)€A/Bo (i,j)€A/Bo

<C TV (Wio —w;
S OV B g, 19 V(a0 =)

=C IV.Bio(S; ' — QN
Vi max e 0(S; )|

<C T(Vn — 29Bio(S;! — QD
\F(”r)g%o le; ( )Bio(S; )il

C TS *Bio(S;t — QN 5.46
+ OV max e EBio(S; )il (5.46)

for some positive constant C' where 2; = Bf;2*B; o and S; = B];5;,Bi .

For the first term on the right-hand side of (5.46)), we have

Vi max o lej (Vi — =7)Bio(S; ' — 2)fi
< V/nso  ax lvij — o  max [Wiz,0 — wijl
= Oy(s0logp/v/n) = 0,(1/1og p). (5.47)
Applying Lemma 12, the second term on the right-hand side of is at the order of
0p(v/10g p). Then we have |D5/> — D!/?| = 0,(v/Iog p). Because of the inequality | Dy — Dpa| <
2|D1/2| |D*1/2 - D1/2\ + |D*1/2 1/2|2 to verify (5 is sufficient to show

pr(Dnz < tp) — exp { — exp(—t/2)//(27)}. (5.48)
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Suppose there are k isolated nodes in the true network, for any two nodes ¢ and j belong
to this isolated nodes set, we have (€] V,w;)?/(nwj;05;) = (e] V,w})?/(nwj;o};). On the
set of isolated nodes, we are only maximizing over [k2/2] components. Thus, Dys involves
the maximization of p* — k*/2 components D;;. For convenience, denote the set that Dy2 is
maximizing over as A/Bg. For any (i,j) € A/Bg, D}; # D3;. It is clear that A/Bj C A/Bo.

Re-enumerate the index pairs (4,5) in A/B§ to (ig,jk), where k = 1,...,¢q, for ¢ =
card(A/Bg). Since k = o(p) and card(A/Bg) = p*{1 + o(1)}, we have ¢ = p*>{1 + o(1)}. Then,

(5.48]) is rewritten as

pr( max Vi’ <t,) — exp { — exp(—t/2)/+/(2m)} (5.49)

1<k<q

where Vi, = >, eJTk Xlewak \/m

Define Zy, = €}, X;X;w;, and 7, = 8Cn~'log(p + n) where C is some positive constant
and 7 is a constant as in . Define Zi, = ZiI{|Zix| < 7} — E[Zind{|Zix| < 7}] as the
centralized truncated version of Zj, and Vi = 27:1 Zlk/m To show , it is sufficient

to show

pr( max Vi <t,) — exp { — exp(—t/2)//(2m)}. (5.50)

1<k<q

The above claim is true if (5.50) implies (5.49)). First, note that

1 «— 1 «— 4
>} = — >
X e ;:1 E|Zu| I{|Zi] 2 T} = max NG ;:1 E|Zik| I{|nZik| = 2C log(p +n)"}

< max max v/n E|Zy| I{|nZi| > 2C log(p +n)"}

~ 1<k<q1<i<n

< max max v/n(p+n)~* E|Zy| exp (nlZik/(20))).

T 1<k<q 1<i<n

(5.51)

The last inequality is due to exp{|nZw/(2C)|}(p +n)~* > 1 if [nZ1x/(2C)| > log(p + n)*.
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Assume that the first so components w;, are non-zeros to simplify notations, that is

*

— * * T
w;, = (Wi 1, W ser0,-..,0)", then

|Zuk| = |ej, Xu Xy wi, | = |wi, 1. X15, Xin + -+ + Wi s Xijy Xiso |
1
< 2()(“,C +  max Xla Z |wi, ol < Cmax X7, (5.52)
a=1

where Uy = {ji,l1,...,lss}. If X = (X1,Xo,...,Xp)T is multivariate Gaussian or X; has a

sub-Gaussian tail, then for some 1 > 0 we have
E{exp(n X})} < C, (5.53)
fori=1,2,...,p. Applying (5.53)), we get

E|| Zu| exp{n|Zu./ (2C)|}] < CE{exp(n|Zu/C|)} < CElexp{n }rlré%ﬁ(th)}]

_ 2y _
=CE max exp(nXi,) = O(s0). (5.54)

Combining (5.51) and (5.54)), we obtain

ZEIsz\ I{|Zik| = 7} = O{sov/nng(p+n) ™"} = o{ (logp) ™' }. (5.55)

ma:
1<k<q

Because maxi<w<q | 21y EZuI{|Zix] > m}| < maxi<i<q > iy E|Zix|I{|Zix| > o}, equation
(5.55)) gives us

max

1<k<gq T

In addition, on the set A/Bj, we have EZy, = E(e] XiX{w;, ) = e, X*w] =0, therefore

ZEZlk H{|Zik| > 0} = o{ (logp) '} (5.56)

Joax f' ZEZM\ = 0. (5.57)
Using (5.56) and ( -, we get
|ZEZlk H{|Zi| < 7} = o{(logp) '} (5.58)

l<k<q \f
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Hence

1<k<q

. _ 1< S _
pr{max |Vi = Vi| = (logp) '} = pr{ max |ﬁ > (Zk — Zi)| > (logp) ™'}
- =1
I 1
= —_— > < >
prl ma | 72 S o(ZuT{\ 2] 2 7} + B2 12l < 7)) = (og)”
1 < .
= — > > )
pr| mex |7 2 ZuH{|Z] 2 70} > (o) ]

It follows that

— V> - < >
pr{lrgggq [Vi — Vi| > (logp)™ "} < pr(lrgggq ax |Zik| > 7n)

2 2 2
<pr [ 1211?%((1 1rglagxn C{Xj;, +max(X7,...,X5,)} > Tn:|

<gq- pr{lrgﬂxn ijk >7/(2C)} +q- pr{lrgixn max(Xfl, . ,XLZSO) > 1 /(20)}. (5.59)
For j=1,...,p, we have

pr(X; > 7/2C) = pr{exp(nXj) > exp(n7a/2C)}

< E{ exp(an)} exp(—n7n/2C) < 2(p+n) "
This gives us
q- pr(llgl%xn Xij, =7 /2C) < ngq Jfpax P(X} > 7./2C) < 2ng/(n+p)* = o(1) (5.60)
and

q - pr{ max max(Xlzl, .. .,X;‘;O) > 7/(2C)} < ngso max p?"(XJ2 > 7,/20)
1<i<n 1<5<p

< 2ngso/(n +p)* = o(1). (5.61)

Combining (5.59)), (5.60), and (5.61)), we obtain pr{llzlgi( [Vi — Vi| > (logp) ™'} = o(1).
<k<q

This means

max |V — Vk| = Op{(logp)_l}. (5.62)

1<k<q
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We have

| max Vi — max V| <2 max |Vi| max |Vi — Vi| + max |Vi — Vi|*. (5.63)
1<k<q 1<k<q 1<k<q' "' 1<k<q 1<k<q

If (5.50) holds, then max Ve = Op(V/logp). In addition, (5.62) and (5.63|) implies that
<k<q

| max;<x<q Vi2 — maxi<x<q Vi2| = 0p(1). As a result, to prove (5.49), it is sufficient to prove
G-50).

Finally, we prove (5.50). Let us denote

Zie = Zu/ Wi, Ohnr Wi= (Ziky Zikgs - - > Ziky)s (5.64)

for i =1,...,n, and denote Ex; = {V,f] > tp} for any integer 1 < k; < q. Applying Bonferroni

inequality in Lemma 1 for pr(maxi<g<q V> > t,), we have

2m d

d—1 "2
> (-1 > pr([) Br,) < pr(max Vie > t,)
d=1 1<k <+ <kg<q Jj=1

2m—1 d
<> DT YT er(()Exy), (569
d=1 1<ki<--<kg<q  j=1
for any fixed integer m < [q/2].

Rewrite pr(ﬂjzl Ey;) as pr(ﬂ;l:l Ey;) = pr(n™ 230 Wilmin > t;,/Q). We will apply

Zaitsev approximation to approximate this probability. To this end, we first check the conditions

for Zaitsev approximation in Lemma 3. Define

gi = n71/2W? = nil/Q(Zih ) Zikga ceey Zikd)

—1/2¢ 754 * * 1/2 ~ * * 1/2
=0V iy [ (Wi i, O i) Dina /(@i T i)
We have FE, =0, fori=1,...,n, and &, ...,&, are independent. We also have

(&)™ <&M 2 ™2 < Jlull™ 2 (2y/(d/n)m) ™2 = 277202 a2

mlr

S m72||u|‘m72

N =
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where m > 3and 7 = /(@) = 5Cy~" /(@) log(p+n). Tt follows that [E(E,, /(€. u)™ | <
1/2mir™ 2| |lu||™2E(¢,, t)?, fori=1,...,n.

Applying Lemma 3, we have
pr(|Nalwmin > \/tp + €n/v/1ogp) = pr(l Y Wilmin > \/nt;)
=1
< ce1d®? exp { —en(d® 10gp)71/2/(702)} (5.66)

where Ny = (Nj,, Niy, -+ , Nk, )" is a d-dimensional multivariate normal distributed random
vector with mean vector ENy = 0 and covariance matrix cov(Ng) = cov(W1). Notice that d is

fixed and does not depend on n,p, and

n(log P)71/2 5/2 en(log p)71/2
e1d®? ex _¢n(log p)—'" = c1d®? exp{—
1 - opr 1=a p{ 8Cn~1\/(d/n)log(p + n)cad®/? J
= O] exp{—env/n/(logn)*/*}] = O™, (5.67)

for some M > 0 and €, — 0 sufficient slow. The facts and give us
P (Nalwin > v/l + en/v/1089) = 97| S Wilwin 2 V@) = 06™),  (5.68)
=1
for some M > 0. Similarly, we can prove
pril iwmm > /(ntp)} = pr(Nalmin > v/t — €a//logp) = 0(p™"),  (5.69)
=1

for some M > 0.

Applying (5.65) and (5.69)), we get

[~
3

L
a

(72
>
g, Vi 2 t)

IN
RN
T
=
=9

L
)
s
-
=

1<ki<-<kg<q  j=1

Yoo eIy Wil > /%)

1<k; <--<kg<q 1=1

n
i

Il
L
1]
i
-
|
0
L
b
:

»
i

= (_1)d71 Z pr{lNdlmin > t}l}/2 - €n(108p)71/2} + 0(1)

1<k < <kq<q

a
Il
i

(5.70)
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Similarly, applying (5.65)) and -, we get

2m—1
pr(max V& >1,)> > (=D > pr{[Nafmin > £,/ + ex(logp) "%} = o(1).
1sk<q d=1 1<ki<-<kg<q
(5.71)
Combining Lemma 13, (5.65), (5.70), and (5.71), we obtain
2m
SOyt L Xp(—f)} {14 0(1)} < pr(max V2 >t,)
= d'' /2 1<k<q
= it 1 1
——exp(—= 1+o0
ZI; o= e} 1+ o)),
It follows that
2m—1 1
> yd-1
hmnsgfo)opr( max. Vi >t,) < ; {ﬁexp t/2)}
Let m — oo then
lim sup pr( max Vk >tp) <1—exp{ —exp(—t/2)/\/(2m)}. (5.72)
n— oo
Similarly, we get
lim inf pr( max Vi@ >t,)>1— exp { — exp(—t/2)//(2m)}. (5.73)
n— o0 1<k<q

The facts (5.72) and (5.73]) give us

lim pr(maic Vi>t p) =1—exp{ —exp(—t/2)//(27)}.

n—o0o

In other words,

lim pr( max. Vk <tp) =exp{ —exp(—t/2)//(2m)}.

n— 00 1<

This finishes the proof of equation (5.50) and then the result in Theorem 1 holds.
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The proof of the general case with 8 # 0 is similar to the above proof with 8 = 0 but we

are maximizing over ¢ = p*> — k?/2 = p*>(1 — $%/2) components which changes Lemma 13 to

S e Nalmin > 657 % enlogp) 2} = - {—— exp(—t/2)}{1 + o(1)}.
P d! (2y)
1<k <--<kq<q i

To verify this, we can repeat the proof of Lemma 13 where equation (4.42)) in the lemma is

replaced by

exp(—t/2)}'p~*

_ 2
S pr{INaluin > 642 % en(logp) 2} = {1+ o(1)}Cl{

IT: V (877)

=70 ) expl/2)) 5 (1 o)
1 1
=7 \/ﬁ exp(—t/2)}{1 4 o(1)}. O

Proof of Theorem 2: Let @f{)o and @7 @) be the jth components of non-zeros parts estimators w;1,0
and w;; that are constructed under the hypothesis Ha : £ C & and the true underlying structure

E*, respectively. Denote W;1,0 = (dzl(ll)o, . ,oﬁ)gffo))T and Wj; = (@:1’(1),...,&):1’(5’7>)T, where

gi > si. The asymptotic normality result in (2.2) in the main text gives (.Z;l({)o = wg’)o +0,(1//n).
Therefore, under the hypothesis Ha : £ C &, an estimator for the position j of column 4 of
the precision matrix w; that belongs to & N E° is a consistent estimator of 0. Here £ “is the
complement set of £*. So both W; 0 = B;oW;1,0 and w; = B;Wj; are consistent estimators

of w;, column i of the underlying precision matrix Q. Here, B, o, and Bj are 0, 1 matrices

corresponding the hypothesis Hs and the underlying true structure.

. ~ _ A ~(gi\T _ = ~ ~ _a,(1) ~x,(85) T
Rewrite Wi1,0 = (wiLO7 .. ,wﬂjo) = Wj1,01+Wi1,02, where W1 01 = (&7 ,...,@;; ,0,...,0)
~ ~ (1) ~ %, (1) ~(54) ~*,(85)  ~(si+1) ~(9i)\\T : ~
and W;1,02 = (%1,0 — @i Wl — Wi @ ,...,wiljo)) . Notice that, B; oW;1,01 =

w;. In addition, we also have djff’)o - &;;‘1’(’“) = (d)gf)o - wif)) - (d)i*l’(k) - wﬁ”) = 0p(1/+/n), for
all1 <k <s; and d}f{"& = 0p(1/+/n) for all s; + 1 < m < g;. Thus componentwise, all elements

of Wi1,02 are at the order Op(1/y/n).

33



The test statistic under Hs is D,, = maxi<;,;<p (e]TvSnvAvi,o — e§e¢)2/éi]~,o, so its leading order
terms for the numerator and denominator are the same as the test statistic constructed under
the underlying true structure, &,. In other words, the limiting distribution of the test statistic
constructed under the hypothesis H2 is the same as the test statistic constructed under the
underlying true structure, £*. g
Proof of Theorem 3: We will show that, under Ho, the modified test statistic D,, converges to
the same distributions as ﬁn as in Theorem 1. We first note that 1312] = ].A)?J if A; =0 for all
i=1,...,p. Then,

pr(Dn < tp) = pr(Dn < tp, As = 0) + pr(Dp < ty, Ai #0)
= pr(Dn <tp) +pr(Dy < tp, Ai #0).
Since pr(Dn < tp, A; # 0) < pr(A; # 0), it is sufficient to show that pr(A; # 0) = 0 under Hy.

For any (i,7) € € but (i,7) ¢ o, under Hy, A;; = 0 according to the definition of B;o. Thus, it

is enough to show:

pr( max A;; =0) =1. (5.74)
(4,3)€E0
To this end, we note
pr((ir?)agéo Ay=0)=pr(_| min @i0l/3 2 > 6n)

=1 —Uirt,.pjmt,s (1055169 < 62)

p Sq
> 1= pr(lefl /6 < 6n).

i=1 j=1

Under Ho, w§{?0 # 0, and hence wg’)o/ogfo = Cyj+/n for some constants C;;. Then, for

0n =< /log(n), we have

)

~(3) €] €))

N¢i ~(j Wil0 Wit,0 — Wil Wil,0
pr(leol/6)y < 8n) =pr( =80 - S22 < SO <6, - 20)
(5) (4) ()

Ji1,0 Ji1,0 01,0

< ‘I)((Sn — Cij\/ﬁ) = eXp(—ijn/Q)/\/ﬁa
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where ®(-) is the CDF of the standard normal. Under Condition (C2) and so =< o(y/n), we have
b Zj;lpr(mg?d/&g’)o < 8,) — 0. Therefore, under the null hypothesis Hy, holds

and the asymptotic distributions of D,, and D,, are the same when §,, = log(n) and C, > 0.

O

Proof of Theorem 4: If & specified under the null hypothesis Hy includes the true network

structure £*, then there exist some wg?o =0, say wfg‘{)o = 0 and the corresponding obf;({)o are

consistent estimators of ng{?o = 0 for some 4o € {1,...,p} and jo € {1,...,s:}. This event

happens with probability one because

PT(Ail # 0 for some i =1,... 717) = pr( Uf:l U;i:l{“:’g,)ov&g?o < 5n})
> ~ (Jo) ~ (o) < 6 — _6 < ~ (Jo) ~(d3o0) < 5
2 pr {|wi01,o‘/‘7i01,0 <dn}t) =pr n S wi01,o/‘7¢01,0 = On

=P(6p) — P(—dn) — 1.
This implies that pr(A; = 0 for all i) = 0. It follows that

pr(Dy > tp) = pr(Dy > tp, A; = 0 for all 1) + pr(Dy > tp, A; # 0 for some 7)

= pr(Dy, > tp, A; # 0 for some 7).

When the event {A; # 0 for some i} happens, there exists at least one A;; = C), <

v/1og(p) # 0. Without loss of generality, assume that there exists one A;j+ = Cp, = C'y/log(p) # 0

and o, # 0 for some j, then, in probability, we have (e?VnAi)Q/éij,() >Cr(>m, X1 X15+)% /0?0550 —

C?log(p)(o};05«j+ + 20753 )/ (wi;05; + 1), for some positive constant C.

Applying Theorem 1, for a small € > 0, pr{max; ; ij < (44¢€)log(p)} — 1. Using the definition

of D?j, we have the following decomposition of ij,

D}; = D} + {(e] Vali)® +2(e] VaWwio — €] ei)e; VaAi}/bij0.
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If C > dmax; j(wiol; + 1)/(cfio); + 2077), then max; ; D7

~ . T . 2 A.. ]
07 105 ' i; < max; j(e; VoA;)"/0i;0 with

probability one and hence

pr(Dn > tp, A; # 0 for some i) = pr{ max (e]TVnAi)2/9Aij,o > tp, A; # 0 for some z}

1<i,j<p

> pr{Cr(>_ Xi;Xij=)?/n*0s50 > tp} — 1.

i=1
So, pr(Dy, > t,) — 1 for all the alternatives in H» where & includes £*.

If & # £* in Hy but not in Ha, then there exist pairs of k # [ such that e} X*w; o—eje; # 0.

By the construction of the estimator Wy, it could be shown that there exist w; and

constants cx; such that el *W; 0 — efe; = e, X*W; — ele; + cr, where W, is a consistent
estimator of w; such that ef X*w; — eje; = 0. It follows that we can decompose the test

statistic D, as following. Using Theorem 1 and condition (C2), we may find the leading
order term as D, = maxi<ki<p {(ex=*w; — efer)” + 2(ef T*w; — efer)cr + Cil}/ékl,o =
maxi<g.i<p C21/0k,0 < n. Then, we have P(D,, — 4logp + log(logp) — c0) = 1 as n — oo under
condition (C2). Hence, Dn is also consistent for any fixed alternatives in H; but not in Hy. In

summary, Theorem 4 is proved. d

6. Additional simulation results

6.1 Simulation with non-Gaussian random vectors

We investigate the performance of the proposed test statistics under model misspecification.
The simulation settings are the same as that in Section 4.2 of the main text for so = 4, except
that data Xy,--- ,X,, are not drawn from a multivariate normal distribution. Instead, they are
generated from the multivariate model specified in Assumption (D1) using the following three

steps.

(1) Generate np independent observations (h;;)px» from a Gamma(a = 2, 8 = 1) distribution,
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where « is the shape parameter and [ is the scale parameter. Normalize the dataset using
the transformation z;; = (hi; — 2)/v/2. The standardized values z;; are then assigned to

a p X n matrix Z = (2ij)pxn-

(2) Perform eigenvalue decomposition on the underlying covariance matrix under the null
hypothesis, &* = QAQ”. Denote I' = QA2 Tt follows that I'T” = 2*, where I' is a

p X p matrix.

(3) Use X = (I'Z)T as the n x p observed data matrix, where X = (X, --,X,).

We applied the test statistics D, and D,, from the main paper, using the estimated s given

by & = nip A sj-_j4(X¢j - X¢)4. Table |1{ reports the empirical sizes and powers of the proposed
test statistics Dy, and D,,. We observe that the proposed tests perform reasonably well, with
empirical sizes close to the nominal 5% level under the null hypothesis and empirical powers

close to one, indicating the consistency of the proposed tests. Overall, the proposed tests are

robust with respect to the Gaussian distribution assumption.

6.2 Simulation with an underlying sparse graph and small signals
in Q*

In this subsection, we report simulation studies for examining the performance of the proposed

tests when the underlying graph is sparse. The simulation settings are the same as that in

Section 4.2 except that the underlying graph structure is a sparse matrix generated randomly.

More specifically, we construct the random sparse structure, its nested structure, and included

structure as follows. We first choose an identical matrix I,, then for every column of I, we

randomly assign the weight 0.8 to one of its elements. The obtained matrix is denoted as B.

Then the underlying precision matrix is chosen as BB™. For the nested structure, we replace
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Table 1: Type 1 error and empirical power of the test statistics D,, and D,

for nested and included structures with non-Gaussian data.

~ ~

D, D,

Empirical Power of D, Empirical  Power of D,
so n p/n Size  Nested Included  Size  Nested Included
4 500 0.50 0.080  1.000  0.080 0.080  1.000  0.210

1.00 0.010  1.000  0.010 0.010  1.000  0.070
2.00 0.020  1.000  0.040 0.020  1.000  0.120
1000 0.50  0.030  1.000  0.030 0.030  1.000  1.000
1.00 0.020  1.000  0.020 0.020  1.000  1.000
2.00 0.030  1.000  0.030 0.030  1.000  1.000

the first column of B by the first column of I, and obtain matrix B;. Then we use B;B7 as the
nested structure. For the included structure, we randomly assign 0.8 to one element of the first
column of B, and denote it as the matrix Bo. We then use BoB3 as the included structure.

Table reports the empirical size, power, and running time (in seconds) of the two proposed
test statistics, ﬁn and Dn. For the test statistic Dn, we choose C,, = 0.3 and §,, = /log(n).
We observe that Table [2] has a similar pattern with that in Table 3 of the main text. Both tests
maintain the type I error at the nominal level and exhibit comparable power in detecting the
alternative with the nested structure. The modified test statistic Dn outperforms Dn when
dealing with the included structure. We also include the average computation time for each
simulation replication in Table |2} Both tests demonstrate similar computational complexity in
terms of running time.

Table [3| examines the performance of our proposed tests when the signal size in Q" is
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Table 2: Empirical size and power of the test statistics D,, and D,, for both
nested and included structures when the true network structure is a random

sparse matrix.

A ~

D, D,

Power Running Power Running
so n p/n Size Nested Included Time Size Nested Included Time
4 500 0.500.030 1.000 0.030  0.178 0.030 1.000 0.700 0.18

1.00 0.040 1.000  0.040 1.09 0.040 1.000 0.970 1.10
2.00 0.030 1.000 0.030 6.93 0.030 1.000 1.000 6.96
1000 0.50 0.010 1.000  0.010 1.14 0.010 1.000 1.000 1.14
1.00 0.060 1.000  0.060 6.54 0.060 1.000 1.000 6.54
2.00 0.020 1.000 0.020  56.21 0.020 1.000 0.990  56.26

6 500 0.500.030 1.000 0.030 0.17 0.030 1.000 1.000 0.17
1.00 0.020 1.000  0.020 1.11  0.020 1.000 0.890 1.11
2.00 0.040 1.000 0.040 7.11 0.040 1.000 1.000 7.15
1000 0.50 0.020 1.000  0.020 1.13  0.020 1.000 1.000 1.14
1.00 0.060 1.000  0.060 6.54 0.060 1.000 1.000 6.54
2.00 0.000 1.000 0.000  55.25 0.000 1.000 0.990  55.27
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Table 3: Type I error and empirical power of the test statistics D,, and D,
for nested and included structures as affected by sample size at the sparsity

level s = 10

~ ~

D, D,

Power Running Power Running

D n  Size Nested Included Time Size Nested Included Time
500 500 0.020 0.020  0.020 1.8 0.020 0.020 0.020 1.8
5000 0.020 0.020  0.020 1.7 0.020 0.020 0.040 1.7
20000 0.030 0.020  0.020 1.7 0.030 0.130 0.520 1.7
1000 500 0.010 0.020  0.020 11.1  0.030 0.050 0.040 11.1
5000 0.030 0.030  0.030 11.1  0.030 0.040 0.040 11.1
20000 0.040 0.050  0.040 10.9 0.040 0.130  0.460 11.1

small. The simulation settings mirror those described in Section 4.2 of the main text, with the
exception that the bandwidth s¢ is increased to sp = 10 so that the smallest signal approaches
zero, presenting a more challenging scenario. We use dimensions p = 500 and 1000, and sample
sizes n = 500, 1000, and 20000. As shown in the table, increasing the sample size does not
significantly impact the performance of the naive test statistic D, or the modified test statistic

D,,.

6.3 Simulation for test statistics with different estimators for 2

To evaluate the performance of the test statistics using different estimators for the precision
matrix 2o, we conducted a simulation study. We compared test statistics constructed similarly

to D,, but with alternative estimators for €. Specifically, we used the GLASSO estimator
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(Friedman, [2019) with a known graphical structure (denoted as ﬁnyg) and a modified positive
definite and symmetric estimator described in Section 2 of the main text (denoted as Dy, psp).

The positive definite and symmetric estimator was obtained by symmetrizing Q using

To ensure that €25 is positive definite, we applied a small perturbation to its eigenvalues:

Q =Q + 71,

where
T = ()Amin(ﬂl)’ + n*l/Z) 1 {Amin(le) < ()} )

For further details, see Remark 1 in |Liu | (2015).

Tables [4| and [5| compare the performance of the proposed test statistic D,, with ZA)n,G and
lA)n, PSD, respectively.

Table [4| demonstrates that D, performs slightly better in terms of power compared to f)nyc,
which is based on the GLASSO estimator. Additionally, D,, consistently shows greater efficiency
than IA),LG with respect to computational time.

Results from Table |5| reveal that ﬁn and ﬁn, psp exhibit similar performance in terms of
empirical size and computational time. Both statistics have comparable power for detecting
included structure alternatives. However, ﬁn, psp slightly outperforms D, for nested structure
alternatives, likely due to the symmetric information of 2y being utilized in ﬁm psp but not in

D,,.

6.4 Tuning parameter selection and computational time

In this subsection, we investigate the sensitivity of the proposed test D, to the choices of tuning

parameters C',, and d,,. Tables |§| and report the performance of D,, for various choices of tuning
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Table 4: Type I error and empirical power of the test statistics f)n and ZA)n,G
(with € estimated by the GLASSO) for nested and included structures

A A

D, D,

Power Running Power Running
so n  p/n Size Nested Included Time Size Nested Included Time
4 500 0.50 0.020 1.000  0.010 0.20 0.030 1.000 0.020 0.49

1.00 0.030 1.000  0.040 1.19 0.040 1.000 0.040 3.50

2.00 0.030 1.000  0.020 6.39 0.030 1.000 0.020  22.30
1000 0.50 0.040 1.000  0.040 1.19 0.050 1.000 0.030 3.39
1.00 0.030 1.000  0.030 6.33 0.030 1.000 0.030  21.62

2.00 0.020 1.000 0.010  54.70 0.010 1.000 0.010  187.26

6 500 0.50 0.030 0.100  0.020 0.19 0.020 0.050 0.020 0.42
1.00 0.050 0.060  0.050 1.23  0.050 0.040 0.040 2.90
2.00 0.020 0.040 0.030 6.37 0.020 0.030 0.020  17.80
1000 0.50 0.030 0.720  0.040 1.21  0.030 0.190 0.040 2.87
1.00 0.070 0.700  0.060 6.35 0.060 0.150 0.060  17.41
2.00 0.040 0.480 0.040  54.71 0.040 0.050 0.040  148.24

parameters with sample sizes n = 500 and n = 1000, respectively. We find that the performance
of the proposed test is influenced by the choices of both 6, and C,,, but it is more sensitive to the
selection of d,,, as the empirical size and power remain similar across different C,, values when
On is fixed. The test performs well when §,, is of the order {log(n)}l/k for k > 2, particularly for
k = 4 and a sample size of n = 1000. This finding is consistent with the recommended choice

in Theorems 3 and 4 of the main text. Moreover, in Section 7 of the supplemental material, a
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Table 5: Type I error and empirical power of the test statistics D,, and

D, psp (with £ estimated by the positive definite and symmetric estimator

defined in Section 2 of the main paper) for nested and included structures

~ A

D, Dy, psp

Power Running Power Running

so nm  p/n Size Nested Included Time Size Nested Included Time
4 500 0.50 0.070 1.000  0.080 0.20 0.100 1.000  0.090 0.20
1.00 0.060 1.000  0.050 0.65 0.070 1.000  0.060 0.70

2.00 0.020 1.000  0.030 7.93 0.030 1.000 0.030 8.13

1000 0.50 0.030 1.000  0.040 1.16  0.030 1.000 0.030 1.19
1.00 0.060 1.000  0.060 7.85 0.050 1.000  0.040 8.04

2.00 0.060 1.000 0.060  67.03 0.060 1.000 0.050  68.28

6 500 0.50 0.020 0.080  0.020 0.20 0.020 0.320 0.010 0.21
1.00 0.020 0.040  0.020 1.36  0.020 0.280  0.020 1.40

2.00 0.030 0.050  0.030 8.36 0.030 0.170  0.030 8.54

1000 0.50 0.020 0.740  0.010 1.24 0.020 1.000 0.010 1.27
1.00 0.040 0.640  0.040 8.23 0.040 0.960 0.040 8.44

2.00 0.040 0.510 0.040  58.89 0.040 0.970 0.040  58.92

data-driven procedure is developed to choose d,, and C,,.

We illustrate the running time, in seconds (s), for the modified test statistic D,, as a function
of the data dimension in Figure [I| This figure is based on the simulation study described in
Section 4.2 of the main text. We plot the data dimension p against the square root of the running

time for four scenarios: (S1) n = 500, so = 4; (S2) n = 1000, so = 4; (S3) n = 500, so = 6; and
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Table 6: Type I error and empirical power of the test statistics D,, and
D,, for nested and included structures as affected by tuning parameters,

n = 500, p = 1000, so = 4, 6, = (log n)'/*

A ~

D, D,
Power Running Power Running
C,, k Size Nested Included Time Size Nested Included Time
.051 0.050 1.000 0.040 6.47 1.000 1.000  1.000 6.48
2 0.020 1.000  0.020 6.38 0.020 1.000  1.000 6.40
4 0.030 1.000 0.050 6.36  0.030 1.000  0.990 6.39
.2 10.070 1.000 0.070 6.37 0.160 1.000  1.000 6.42
2 0.040 1.000  0.050 6.39 0.040 1.000  1.000 6.42
4 0.020 1.000  0.020 6.34 0.020 1.000 1.000 6.37
.5 1.0.030 1.000 0.040 6.36  1.000 1.000  1.000 6.38
2 0.010 1.000 0.010 6.36  0.820 1.000  1.000 6.40
4 0.030 1.000 0.040 6.34 0.040 1.000  1.000 6.37
1 10.040 1.000 0.040 6.39 1.000 1.000  1.000 6.42
2 0.020 1.000  0.000 6.36  0.850 1.000  1.000 6.37
4 0.050 1.000  0.040 6.34 0.070 1.000  1.000 6.38

(S4) n = 1000, so = 6.
In general, we observe a linear relationship between the data dimension p and the square
root of the running time. This indicates that the computational time grows quadratically with

respect to p, i.e., the computational time is on the order of p? with respect to the data dimension.
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Table 7: Type I error and empirical power of the test statistics D,, and
D,, for nested and included structures as affected tuning parameters, n =

1000, p = 1000, sg = 4,4, = (log n)*/*

A ~

D, D,
Power Running Power Running
C,, k Size Nested Included Time Size Nested Included Time
.0510.030 1.000 0.030 6.40 1.000 1.000  1.000 6.41
2 0.040 1.000  0.040 6.30  0.040 1.000  1.000 6.32
4 0.050 1.000 0.030 6.30  0.050 1.000  1.000 6.32
.2 10.100 1.000 0.090 6.31  0.090 1.000 1.000 6.32
2 0.030 1.000  0.040 6.31 0.030 1.000 1.000 6.32
4 0.050 1.000  0.050 6.30  0.050 1.000  1.000 6.32
.5 10.040 1.000 0.030 6.31 1.000 1.000 1.000 6.32
2 0.070 1.000  0.050 6.31 0.070 1.000  1.000 6.33
4 0.050 1.000  0.050 6.29 0.050 1.000  1.000 6.30
1 10.070 1.000 0.070 6.31 1.000 1.000  1.000 6.32
2 0.020 1.000  0.020 6.31 0.020 1.000  1.000 6.32
4 0.070 1.000 0.070 6.28 0.070 1.000  1.000 6.30

7. A data-driven procedure for choosing tuning parameters in

the proposed test

The key idea behind the consistency-enhanced test is to introduce pseudo signals to edges
whose underlying weights are essentially zero but are included in the specified null structure &.

Specifically, for all edges with w;; = 0, the estimated weights @;; should remain close to zero.
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Figure 1: The square root of the running time for the test statistic D,, versus the

data dimension is shown for different combinations of n, p, and sg in the following

scenarios. S7 :

Sy : (n,s0) = (1000, 6).

(nas()) = (50074)a 52 :

(’I’L, 80) = (100074)7 S3

When pseudo signals are added to an edge (i, j) where wj; = 0, replacing

V~V({>0 =W E{)o + AE{)

i,

(n,s0) = (500,6),

with VVE{?O = AZ(-{) in the test statistic D,, should not significantly alter its value. Here, the

pseudo signal is defined as

: s,
AR = Cnl{ 10

~(5)
31,0

<a).

This motivates us to compare the test statistic bn with a modified version:

where W} o = (

~ (1)
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It is worth noting that if &, is chosen appropriately, the distributions of D, and D should be
approximately the same. However, if §,, is chosen incorrectly, their distributions will differ.
More specifically, the proposed data-driven procedure for selecting the tuning parameters

C,, and d,, consists of the following steps:

1. Choose C), based on Theorem 4, where

* *
w055 +1

®

Cn =+/1 d—
08(p) Hil%X 05,075 4 2077

Estimate wj;, 07, 07; using their sample versions. Order the candidate values for 6, from

smallest to largest, given by

25
Ss., :—{ 5 (i) € Supp(no)} = {6" :k=1,....|Supp(€0)[}.

01,0

Initialize &k = 1.
2. Randomly split the data into two equal-sized parts.

3. For the k-th candidate value 65 in Ss compute the test statistic D,, using the first half

n?

of the data, denoted as D¥. Compute the modified test statistic D, using the second

half of the data, denoted as D:*.

4. Repeat Steps 2-3 for B iterations, obtaining two sets of test statistics:

(DY, and {D3U}E.

5. Perform a t-test to compare the means of {D5°}E | and {D;F*}E .

®

6. If the p-value from the t-test is large (e.g., > 0.05), increment k by 1, set é, = dr ', and

repeat Steps 2-6. If the p-value is small (e.g., < 0.05), terminate the algorithm.
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We conducted a small simulation study to evaluate the performance of the proposed data-
driven procedure for selecting the tuning parameter d,,. The data were generated using the
same simulation settings as in Table 2 of Section 6.2 of the supplemental material, where the
underlying graph £* follows a random sparse structure matrix.

The hypothesis test is defined as Ho : £ = &y versus Hy : € # &y, where & = £ U &1, and
&1 is a banded structure with bandwidth 2, i.e., & = {(4,7) : |1 — j| < 3}.

All simulation results are based on 100 replications. For each replication, we apply the
above data-driven procedure to select the tuning parameters C,, and ¢,, with B = 20. Table
summarizes the empirical size and power of the proposed test statistic, with the tuning

parameters chosen using the described procedure.

Table 8: Empirical size and power of the proposed test statistic D,, using the

tuning parameters selected from the proposed data-driven procedure.

n p Empirical Size Empirical Power
500 250 0.020 1.000
200 500 0.040 1.000
500 1000 0.070 1.000

Figure 2] displays the histograms of the selected values of the constant C, and threshold 4,

for all 100 replications when n = 500 and p = 250.
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Figure 2: Histograms of the selected tuning parameters C, and 9, for

n = 500 and p = 250.

8. Extension: a goodness-of-fit test of graphical structure families

In this section, we outline the generalization of our test for the goodness-of-fit for a family of
graphical structures. Specifically, we aim to test the goodness-of-fit for a family of graphical

structures indexed by some parameters. We can generalize our test to:
Hy : E* S go(’y) vs. Hi: E* g 50(’}/), (875)

where & (y) represents a family of graphical structures indexed by parameters v, and ~ is
unknown. For example, £y(7) could represent a banded structure with an unknown bandwidth
~. For this goodness-of-fit test, there is no need to specify a single particular graph; instead, one
only needs to specify a family of graphical structures.

To test the hypothesis in (8.75)), we propose the following algorithm:

1. Split the sample § = {1, -+ ,n} into two non-overlapping parts, S1 and Sa, such that

S=85US8s and S1 032:@.

2. Use the first part of the sample, Si, to estimate the unknown parameters v in &y (7).

Denote the estimated parameters as 7.
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3. Apply the proposed test statistic D, from Section 3 of the paper to test:

Ho: £ =&(7) vs. Hi:E" # &), (8.76)

using the second part of the data, Sa. Reject the null hypothesis Hy in (8.76) if the test

statistic D,, exceeds the given critical values.

4. Repeat Steps 1-3 for B iterations and reject the null hypothesis (8.75) if the null hypothesis

(8.76)) is rejected in more than ¢B cases (for some g > 0.5).

We conducted a small simulation study to illustrate the performance of the proposed
algorithm for testing if £* belongs to a banded graphical structure &y(7), given by the following
hypothesis:

Ho:E €&(vy) vs. Hyi:E & &(y), (8.77)

where E(y) = {(4,4) : |1 — j] <~} CV x V is the set of edges consisting of node pairs whose
corresponding entries in 2% are non-zero among the nodes V = {1,--- ,p}. Here, ~ represents
an unknown bandwidth.

We generated n = 1,000 independent and identically distributed p = 1, 000-dimensional
random vectors from a multivariate normal distribution with mean zero and precision matrix

Q" under the following two scenarios:

(a) Q" = (wjj)pxp Where wj; = 0.671"731 for |i — j| < 4 and wj; = 0 otherwise. In this

example, the underlying true = is 4.
(b) Q" has the same sparse structure as specified in Table 2.

We aim to test the hypothesis in (8.77) to determine if the underlying graphical structure

belongs to a banded graphical structure family. For data generated under scenario (a), we
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evaluate the type I error of the proposed algorithm. For data generated under scenario (b), we
assess the empirical power of the proposed algorithm.

The simulation results are based on 100 replications. For each simulated dataset, we used
40% of the data as the training set S; and 60% as the test set S2. Let D, (7) be the proposed

test statistic for testing:
H() 1 EF = 50(’}/) vs. Hi: o 76 50(7),

where Eo(7) is specified in (8.77). We estimate the unknown bandwidth v by choosing the value

that minimizes the test statistic Dy, (). Specifically, we use:
4 = argmin D, (7).
¥

The empirical size of the proposed algorithm was 0.07 for data generated under scenario (a).

The empirical power of the proposed algorithm was 1.00 for data generated under scenario (b).

9. Additional information on real data analysis

Figure [3] presents heatmaps of the estimated graphical structures from the real data analyzed
in Section 5 of the main paper. The left panel displays the graph estimated using the TIGER
approach [Liu & Wang| (2017)), while the right panel shows the graph estimated using the GLASSO
method |[Friedman| (2019)). For the TIGER method, we applied the default settings to estimate
the precision matrix and derived the corresponding graphical structure. For the GLASSO
approach, we used a tuning parameter p = 10. Both estimated network structures suggest that a
banded structure is reasonable for this dataset, motivating us to test whether a banded structure

adequately models the underlying graph in the real data discussed in the main text.
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(a) TIGER Estimation (b) GLASSO Estimation

Figure 3: Heatmaps of estimated graphical structures obtained by (a) TIGER

estimation and (b) GLASSO estimation.
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