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S1 Identification

For any given u ∈ U , consider the following model for the complete data

distribution under assumptions 1 and 2,

p(r, y, z;φ) = π(y, z; τ)r{1− π(y, z; τ)}1−rp(y;ψ)p(z; β),

where φ = (τ, ψ, β). Suppose two candidate values φ1 and φ2 of φ yields

the same observed data distribution,

p(z;φ1) = p(z;φ2), p(R = 1, y | z;φ1) = p(R = 1, y | z;φ2),
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which characterizes all values of φ to be ruled out for identification. This

yields the result below.

Lemma 1. For any given u ∈ U , the parameter φ is identified if and only

if for any two values φ1 and φ2 of φ,

(a) p(z;φ1) ̸= p(z;φ2); or

(b) p(R = 1, y | z;φ1) ̸= p(R = 1, y | z;φ2).

Because for any given u ∈ U , p(z) can be uniquely determined from the

observed data, (a) can be checked based on observed data, but (b) involves

the missingness process. An equivalent statement of (b) is π(y,z;τ1)
π(y,z;τ2)

̸= p(y;ψ2)
p(y;ψ1)

.

For any two candidate values φ1 and φ2 of φ such that p(z;φ1) = p(z;φ2),

the ratio p(y;ψ2)
p(y;ψ1)

must vary with y. A straightforward corollary follows if the

ratio π(y,z;τ1)
π(y,z;τ2)

is a constant or varies with z.

Corollary 1. For any given u ∈ U , the parameter φ is identified if π(y,z;τ1)
π(y,z;τ2)

is either a constant or varies with z for any two values τ1 and τ2 of τ .

Note that the condition in corollary 1 does not restrict the models p(y;ψ)

and p(z; β). We can check the condition in corollary 1 for specific semi-

parametric or parametric models; examples may be found in Sun et al.

(2018).
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S2 Proof of Proposition 1

We first prove the following result.

Lemma 2. Suppose the exclusion restriction Z ⊥ Y | U holds for the full

data distribution. Then the following mean zero condition holds,

E
{
f(W )− f † (W ; β̄, ψ̄

)}
= 0,

for arbitrary measurable and square-integrable function f(W ) of the full

data W , if either (a) p(z | u; β̄) = p(z | u) or (b) p(y | u; ψ̄) = p(y | u).

Proof. If (a) holds, then by the Law of Iterated Expectations,

E
[
f(W )− E{f(W ) | V } − E

{
f(W ) | X; ψ̄

}
+ E

{
E
(
f(W ) | X; ψ̄

)
| U

}]
= 0,

where V = (Y, U) and E
{
f(W ) | X; ψ̄

}
denotes expectation taken under a

possibly misspecified model for p(y | u). Similarly, if (b) holds,

E
[
f(W )− E {f(W ) | X} − E

{
f(W ) | V ; β̄

}
+ E

{
E
(
f(W ) | V ; β̄

)
| U

}]
= 0,

where E
{
f(W ) | V ; β̄

}
denotes expectation taken under a possibly mis-

specified model for p(z | u).

We assume that the regularity conditions of Newey and McFadden (1994,

Theorem 3.4) hold for the moment function {gT(O;ϕ, θ, c, d),mT(O; γ, θ)}T.

Then the probability limit of the empirical moment condition

Pn{gT(O;ϕ, θ, c, d),mT(O; γ, θ)}T = 0,
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has a unique solution (ϕ̄T, θ̄T)T, and by standard Taylor expansion,

0 =n−1/2

n∑
i=1

g(Oi; ϕ̄, θ̄, c, d)+

[
E
{
∂

∂ϕ
g(O;ϕ, θ̄, c, d)

}∣∣∣∣
ϕ=ϕ̄

− E
{
∂

∂θ
g(O; ϕ̄, θ, c, d)

}∣∣∣∣
θ=θ̄

× E
{
∂

∂θ
m(O; γ̄, θ)

}−1∣∣∣∣
θ=θ̄

E
{
∂

∂ϕ
m(O; γ, θ̄)

}∣∣∣∣
ϕ=ϕ̄

]
n1/2(ϕ̂(c, d)− ϕ̄)

− E
{
∂

∂θ
g(O; ϕ̄, θ, c, d)

}∣∣∣∣
θ=θ̄

E
{
∂

∂θ
m(O; γ̄, θ)

}−1∣∣∣∣
θ=θ̄

m(O; γ̄, θ̄) + op(1)

=n−1/2

n∑
i=1

G(O; ϕ̄, θ̄, c, d) + E
{
∂

∂ϕ
G(O;ϕ, θ̄, c, d)

}∣∣∣∣
ϕ=ϕ̄

n1/2(ϕ̂(c, d)− ϕ̄) + op(1),

where

G(O;ϕ, θ̄, c, d) = g(O;ϕ, θ̄, c, d)

− E
{
∂

∂θ
g(O; ϕ̄, θ, c, d)

}∣∣∣∣
θ=θ̄

E
{
∂

∂θ
m(O; γ̄, θ)

}−1∣∣∣∣
θ=θ̄

m(O; γ, θ̄).

It follows by Slutsky’s Theorem and the Central Limit Theorem that

n1/2(ϕ̂(c, d)− ϕ̄) = −n1/2

[
E
{
∂

∂ϕ
G(O;ϕ, θ̄, c, d)

}∣∣∣∣
ϕ=ϕ̄

]−1

Pn{G(O; ϕ̄, θ̄, c, d)}

+ op(1).

In the union semiparametric model ∪j=1,2Mj,

E{g(O;ϕ0, θ̄, c, d)} = E{E(g(O;ϕ0, θ̄, c, d) | W )} = E{q(W ;µ0, β̄, ψ̄, c, d)} = 0,

where the last equality holds due to lemma 2. The second part of the

proposition follows from Neyman orthogonality (Chernozhukov et al., 2018,
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2022). At the intersection submodel ∩j=1,2Mj,

E
{
∂

∂θ
g(O;ϕ0, θ, c, d)

}∣∣∣∣
θ=θ̄

= 0.

S3 Proof of Proposition 2

The proof is similar to that of proposition 1 and is thus omitted.

S4 Local efficiency

The efficient influence function can be computed as the orthogonal projec-

tion of any influence function onto the tangent space of the model M (van

der Laan and Robins, 2003; Tsiatis, 2007). A closed form expression for

this projection is available when both Y and Z are general discrete variables

taking values in {0, 1, ..., ℓz} and {0, 1, ..., ℓy}, respectively (Sun et al., 2018).

Specifically, let v1(Y ) = {I(Y = 1), ..., I(Y = ℓy)}T and v2(Z) = {I(Z =

1), ..., I(Z = ℓz)}T, where I(·) is the indicator function. Then for any func-

tion of the full dataW , f(W )−f †(W ) = fyz(U)v(W ) for some conformable

fyz(U), where v(W ) = {v1(Y ) − E(v1(Y ) | U)} ⊗ {v2(Z) − E(v2(Z) | U)}.
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To characterize the optimal choice of the index function, let

g1(O;ϕ) =
R(Y − µ)

π(W ; γ)
+

{
1− R

π(W ; γ)

}
E{(Y − µ) | R = 0, X; γ};

g2(O; γ) =
Rv(W )

π(W ; γ)
+

{
1− R

π(W ; γ)

}
E{v(W ) | R = 0, X; γ}.

Then the efficient influence function is indexed by c∗(W ) = cyz(U)v(W )

and d∗(W ) = dyz(U)v(W ), where

cTyz(U) = E{g2(O; γ0)gT

2 (O; γ0) | U}−1E{g2(O; γ0)g1(O;ϕ0) | U},

dT

yz(U) = E{g2(O; γ0)gT

2 (O; γ0) | U}−1E{∂g2(O; γ)/∂γ |γ=γ0| U}.

(Sun et al., 2018). In practice, these optimal index functions are estimated.

Let ĉ∗(W ) = c∗(W ; ϕ̂, θ̂) and d̂∗(W ) = d∗(W ; ϕ̂, θ̂), where ϕ̂ is any initial

doubly robust estimator of ϕ0. A doubly robust and locally efficient esti-

mator of ϕ0 is given by the first (p+1) elements of the joint solution to the

empirical moment condition

Pn{gT(O;ϕ, θ, ĉ∗, d̂∗),mT(O; γ, θ)}T = 0.

S5 Additional simulation results

S5.1 Violations of exclusion restriction

To evaluate the finite-sample properties of the proposed estimator under

departures from the exclusion restriction in assumption 2, the baseline co-
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variate U = (U1, U2)
T is generated from a bivariate normal distribution

N(0,Σ), where the elements of Σ are σ2
1 = σ2

2 = 1 and σ12 = 0.2. Con-

ditional on U , (R, Y, Z) is generated from the following generalized linear

models,

Z | U ∼ Bernoulli{p1 = expit(1 + 2U1 − U2 − 0.8U1U2)},

Y | Z,U ∼ Bernoulli{p2 = expit(0.5− 2U1 + U2 − ρZ)},

R | Y,X ∼ Bernoulli{π = expit(2− 3Z + 0.8U1 + U2 + γY )},

where γ = 2, and ρ encodes the log odds ratio between Y and Z conditional

on U . The estimators are implemented in the same way as described in

the main manuscript, but with data generated under ρ = −0.1 or −0.2.

The results of 1000 simulation replicates of sample size n = 500, 1000 or

5000 are summarized in Tables S1 and S2. The bias and undercoverage of

the estimators µ̃ and µ̂dr become noticeable when ρ = −0.2, which is in

agreement with theory. The conclusions are otherwise qualitatively similar

to those obtained under exclusion restriction.
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Table S1: Summary of results for estimation of the outcome mean when ρ = −0.1.

(C1) (C2) (C3) (C4) (C5)

All correct mis p(z | u) mis p(y | u) mis η(x) All mis

µ̂cc µ̂full µ̃ µ̂dr µ̃ µ̂dr µ̃ µ̂dr µ̃ µ̂dr µ̃ µ̂dr

n = 500†

|Bias| .138 .002 .009 .016 .012 .100 .007 .016 .054 .042 .105 .112

√
Var .025 .021 .056 .053 .057 .046 .059 .053 .049 .098 .047 .040

√
EVar .026 .022 .055 .139 .324 6.110 .065 .107 .071 .042 .048 .045

Cov95 .000 .958 .919 .936 .930 .939 .916 .947 .788 .813 .400 .295

n = 1000

|Bias| .138 .001 .009 .011 .012 .098 .008 .012 .054 .029 .103 .110

√
Var .017 .016 .040 .041 .040 .032 .041 .037 .034 .035 .033 .028

√
EVar .019 .016 .038 .039 .039 .838 .039 .039 .034 .029 .034 .032

Cov95 .000 .945 .932 .934 .937 .937 .926 .942 .614 .812 .148 .040

n = 5000

|Bias| .139 .001 .011 .011 .012 .100 .011 .010 .056 .025 .104 .111

√
Var .008 .007 .018 .016 .017 .014 .018 .016 .015 .015 .015 .013

√
EVar .008 .007 .018 .016 .018 .055 .018 .017 .015 .013 .015 .014

Cov95 .000 .952 .915 .924 .916 .409 .919 .934 .043 .529 .000 .000

Note: †The results for µ̂dr excluded 6 simulation replicates due to convergence failure at n = 500.

|Bias| and
√
Var are the Monte Carlo absolute bias and standard deviation of the point estimates,

√
EVar is the square root of the mean of the variance estimates and Cov95 is the coverage proportion

of the 95% confidence intervals, based on 1000 repeated simulations. Zeros denote values smaller than

.0005.
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Table S2: Summary of results for estimation of the outcome mean when ρ = −0.2.

(C1) (C2) (C3) (C4) (C5)

All correct mis p(z | u) mis p(y | u) mis η(x) All mis

µ̂cc µ̂full µ̃ µ̂dr µ̃ µ̂dr µ̃ µ̂dr µ̃ µ̂dr µ̃ µ̂dr

n = 500†

|Bias| .141 .002 .022 .026 .026 .110 .020 .026 .066 .050 .116 .121

√
Var .025 .021 .057 .051 .058 .046 .060 .053 .049 .064 .047 .040

√
EVar .026 .022 .057 .084 .120 4.817 .612 .071 .049 .044 .048 .046

Cov95 .000 .960 .919 .937 .927 .934 .908 .939 .700 .767 .315 .216

n = 1000

|Bias| .140 .002 .022 .024 .026 .108 .021 .023 .066 .041 .115 .119

√
Var .018 .016 .041 .038 .042 .033 .042 .039 .034 .035 .033 .028

√
EVar .019 .016 .038 .040 .040 0.730 .040 .040 .034 .030 .033 .032

Cov95 .000 .958 .908 .915 .906 .936 .898 .923 .465 .725 .087 .020

n = 5000

|Bias| .142 .001 .024 .022 .026 .111 .024 .022 .068 .037 .116 .121

√
Var .008 .007 .018 .016 .018 .015 .019 .016 .015 .016 .015 .013

√
EVar .008 .007 .018 .016 .018 .050 .018 .017 .015 .014 .015 .014

Cov95 .000 .953 .729 .742 .702 .251 .751 .791 .005 .246 .000 .000

Note: †The results for µ̂dr excluded 10 simulation replicates due to convergence failure at n = 500.

|Bias| and
√
Var are the Monte Carlo absolute bias and standard deviation of the point estimates,

√
EVar is the square root of the mean of the variance estimates and Cov95 is the coverage proportion

of the 95% confidence intervals, based on 1000 repeated simulations. Zeros denote values smaller than

.0005.
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S5.2 Continuous outcome

We perform additional Monte Carlo simulations with continuous Y . The

baseline covariate Uj is generated independently from the truncated nor-

mal distribution in the interval (−1, 1), for j = 1, 2. Conditional on

U = (U1, U2)
T, (R, Y, Z) is generated from the following process consistent

with assumptions 1–3,

Z | U ∼ Bernoulli{p = expit(1 + 2U1 − U2 − 0.8U1U2)},

Y | Z,U ∼ Normal(0.5− 2U1 + U2, σ2 = 0.25),

R | Y,X ∼ Bernoulli{π = expit(2− 4Z + 0.8U1 + U2 + γY )},

where γ = 2. We implement the proposed estimator ϕ̃(c, d) = (µ̃, γ̃)T with

c(w) = 0, d(w) = yz and the models

π(w; ξ, γ) = expit{(1, z, u1, u2)ξ + γy},

p(y | u;ψ) = 1√
2π

exp

{
−(y − h1(u)λ)

2

(2σ2)

}
, ψ = (σ, λT)T,

p(Z = 1 | u; β) = expit{h2(u)β}.

To investigate its performance under possible model misspecifications, we

implement the doubly robust estimator based on the following specifica-

tions, (TT) h1(u) = (1, u1, u2), h2(u) = (1, u1, u2, u1u2), (TF) h1(u) =

(1, u1, u2), h2(u) = (1, u1, u
2
1), (FT) h1(u) = (1, u1, u

2
1), h2(u) = (1, u1, u2, u1u2),
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and (FF) h1(u) = (1, u1, u
2
1), h2(u) = (1, u1, u

2
1). We also implement the

complete-case estimator µ̂cc = Pn{RY }, and the infeasible full-data esti-

mator µ̂full = n−1
∑n

i=1 Yi as performance benchmark. For inference, we

construct 95% Wald confidence intervals based on the sandwich estimator

of asymptotic variance.

We perform 1000 simulation replicates under each specification and

sample size n = 1000, 5000. Convergence failure occurred in a small number

of these replicates when solving the nonlinear moment condition for ϕ̃, and

the convergence failure rates are tabulated in Table S3. The simulation

results for estimation of the outcome mean based on the replicates with

successful convergence are summarized in Table S4. The complete-case

estimator µ̂cc shows severe bias and undercoverage. The proposed doubly

robust estimator µ̃ performs well in terms of bias and coverage across the

simulation scenarios TT, TF and, FT, but exhibits bias and undercoverage

in scenario FF, which is in agreement with theory.
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Table S3: Convergence failure rate for

ϕ̃ out of 1000 Monte Carlo replicates.

n TT TF FT FF

1000 0.007 0.049 0.008 0.001

5000 0.000 0.001 0.000 0.000

Note: The convergence criteria is the

residual of the square average estimat-

ing equation component being less than

1e-7.
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Table S4: Summary of results for estimation of the

mean of a continuous outcome.

µ̂cc µ̂full µ̃

TT TF FT FF

|Bias| 0.742 0.001 0.001 0.008 0.003 0.208

0.743 0.000 0.002 0.001 0.002 0.206

√
Var 0.053 0.042 0.066 0.080 0.067 0.072

0.023 0.018 0.030 0.036 0.030 0.031

√
EVar 0.053 0.041 0.063 0.075 0.064 0.071

0.024 0.018 0.029 0.036 0.031 0.031

Cov95 0.000 0.942 0.932 0.912 0.932 0.173

0.000 0.961 0.939 0.949 0.943 0.000

Note: The results are presented in two rows, of which the

first stands for sample size n = 1000, and the second for

n = 5000. |Bias| and
√
Var are the Monte Carlo absolute bias

and standard deviation of the point estimates,
√
EVar is the

square root of the mean of the variance estimates and Cov95 is

the coverage proportion of the 95% confidence intervals, based

on replicates with successful convergence in 1000 repeated

simulations. Zeros denote values smaller than .0005.
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