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The supplementary materials are organized as follows. Section S1 de-

scribes identification using an odds ratio parameterization, different from

m-DAG factorization. Section S2 extends the concepts of m-DAGs to m-

DAGs with hidden variables. Section S3 expands the target law identifi-

cation arguments in the manuscript to full law identification. Section S4

contains all our proofs.

S1 Identification via an Odds Ratio Parameterization

We mentioned in the main draft that Nabi et al. (2020) used an odds ra-

tio parameterization to derive a sound and complete algorithm for full law

identification in m-DAGs. In the following, we go over an example to show
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how the target law can be identified in some cases via an odds ratio param-

eterization of conditional distributions (Chen, 2007; Shpitser, 2023).

This parameterization yields a sound and complete algorithm for the

identification of the full law p(r, l(1)) in graphical missing data models, but

does not yield a complete algorithm for identification of the target law

p(l(1)). A simple example of a model where the target law is identified but

the full law is not is shown in Fig. 1(a). In fact, deriving a sound and

complete algorithm for the identification of the target law by any method

– whether by the parameterization described below, or methods based on

the g-formula described in the main draft – is currently an open problem.

Consider the m-DAG in Fig. 1(b). The non-deterministic portion of

the full law factorizes as p(l
(1)
1 ) × p(l

(1)
2 | l(1)1 ) × p(l

(1)
3 | l(1)1 , l

(1)
2 ) × p(r1 |

r2, l
(1)
3 )×p(r2 | r3, l(1)1 )×p(r3 | l(1)1 ). The following conditional independence

statements follow from this factorization: R1 ⊥⊥ {L(1)
1 , L

(1)
2 , R3} | R2, L

(1)
3 ,

and R2 ⊥⊥ {L(1)
2 , L

(1)
3 } | R3, L

(1)
1 and R3 ⊥⊥ {L(1)

2 , L
(1)
3 } | L

(1)
1 .

According to Proposition 1, we have:

p(l1, l2, l3 ∥ r = 1) =
p(l1, l2, l3, r1, r2, r3)

p(r1|l(1)3 , r2)× p(r2|l(1)1 , r3)× p(r3|l(1)1 )

∣∣∣∣∣
r=1

. (S1.1)

We can use the independencies encoded in the m-DAG and consistency in
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Figure 1: (a) A simple model where the target law p(l
(1)
1 , l

(1)
2 ) is identified, but the full

law p(l
(1)
1 , l

(1)
2 , r1, r2) is not; (b) Example of an m-DAG used to illustrate target law

identification with odds ratio parameterization of the missingness selection model; (c)

Graph derived from (b) representing an intervention on R1 and the induced selection

bias on R3; (d) An m-DAG that is Markov equivalent to the m-DAG in (b).

missing data models to identify the propensity score of R1 as follows:

p(r1 | paG(r1))|r=1 = p(r1|l(1)3 , r2)|r=1 = p(r1 = 1|l3, r2 = 1, r3 = 1). (S1.2)

We cannot immediately obtain the propensity score of R2, i.e., p(r2 |

l
(1)
1 , r3)|r=1, since R2 ̸⊥⊥ R1 | L(1)

1 , R3. This can still be identified using

a total order where R1 is intervened on before R2.

Intervening on R1 results in the following kernel that is Markov relative

to the graph in Fig. 1(c), with the induced selection bias on R3.

p(l
(1)
2 , l

(1)
3 , l1, l2, l3, r2, r3 ∥ r1 = 1) =

p(l1, l
(1)
2 , l

(1)
3 , l2, l3, r1, r2, r3)

p(r1 | r2, l(1)3 )

∣∣∣∣∣
r1=1

The propensity score of R2 evaluated at R3 = 1 is equivalent to p(r2 =

1 | r3 = 1, l
(1)
1 ∥ r1 = 1). This is identified from the marginal kernel
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p(l1, l
(1)
3 , r2, r3 = 1 ∥ r1 = 1) which is equal to p(l1, l3, r1 = 1, r2, r3 = 1)/p(r1

= 1 | r2, l3, r3 = 1).

We now proceed to identify the propensity score of R3, p(r3 | l(1)1 )|r=1,

which is not immediately obvious since R3 ̸⊥⊥ R1 | L(1)
1 . Intervening on R1

and setting it to 1 leads to a distribution where R3 is necessarily selected

on since the propensity score of R1 is identified by restricting data to cases

where R3 = 1. Thus, we cannot identify the propensity score of R3 in this

post-intervention kernel distribution. A similar issue holds if we try to in-

tervene on R2 since identification of the propensity score of R2 is obtained

from a kernel distribution where we first intervene on R1, which as men-

tioned introduces selection bias on R3. It seems that we have exhausted

all of our options based on the discussion of partial orders of identification.

However, there is an alternative strategy that leads to identification of not

just the target law, but the full law as well.

Nabi et al. (2020) made the observation that the conditional probability

distribution p(r3 | r2, l(1)1 ) is identified, since R3 ⊥⊥ R1 | R2, L
(1)
1 . From the

preceding discussion, it is also clear that p(r2 | r3 = 1, l
(1)
1 ) is identified.

Given that these conditional densities p(r2 | r3 = 1, l
(1)
1 ) and p(r3 | r2, l(1)1 )

are identified, they considered an odds ratio parameterization of the joint

probability distribution p(r2, r3 | paG(r2, r3)) = p(r2, r3 | l(1)1 ) as follows
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(Chen, 2007),

p(r2, r3 | l(1)1 ) =
1

Z
× p(r2|r3 = 1, l

(1)
1 )× p(r3|r2 = 1, l

(1)
1 )×OR(r2, r3|l(1)1 ),

where Z is the normalizing term, and

OR(r2, r3 | l(1)1 ) =
p(r3 | r2, l(1)1 )

p(r3 = 1 | r2, l(1)1 )
× p(r3 = 1 | r2 = 1, l

(1)
1 )

p(r3 | r2 = 1, l
(1)
1 )

.

All the terms in above parameterization are identified. This immediately

implies the identifiability of the individual propensity scores for R2 and R3.

This result, in addition to the fact that p(r1 | r2, l(1)1 ) is identified, leads

to identification of both the target law and the full law, as the missingness

process p(r | l(1)) is also identified for all possible values of the missingness

indicators. It is interesting to point out that the m-DAG in Fig. 1(b) is

Markov equivalent to the one in Fig. 1(d), which means, the m-DAG model

in both examples implies the same set of independence restrictions on the

full data law. It is perhaps easier to see how identification in Fig. 1(d)

proceeds using techniques discussed in the main draft – the target law is

identified via parallel interventions on R1 and R3 followed by a sequential

intervention on R2. That is, identification can be obtained via the partial

order {{Ir1 , Ir3} < Ir3}.
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S2 m-DAG Models with Unmeasured Confounders

Previous sections illustrated how identification may be accomplished in

missing data models represented by a DAG where all variables are ei-

ther fully or partially observed. However, just as in standard causal in-

ference problems, most realistic missing data models include variables that

are completely unobserved. We represent such models with an m-DAG

Gm(L,R, L(1), U), where the vertex set U represents unobserved variables.

By analogy with restrictions in Section 4, we require that (L(1) ∪ U) ∩

{deGm(R) ∪ deGm(L)} = ∅, i.e., there are no directed paths from any of the

missingness indicators or proxy variables pointing towards variables in U

or L(1). To clearly distinguish hidden variables from others in the model,

we will render edges adjacent to such vertices in red.

In some m-DAGs with hidden variables, straightforward generalizations

of identification strategies developed for m-DAGs without hidden variables

can be developed. Consider the hidden variable m-DAG in Fig. 2 where

U1, U2, and U3 are completely unobserved. Although the joint over all vari-

ables in this model still factorizes with respect to this m-DAG, no factors

containing unobserved variables in U can be used in identification or esti-

mation strategies for the target p(l(1)) or the selection mechanism p(r | l(1)).

Thus, in this setting it is useful to consider a factorization of the marginal
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model defined over variables that are either fully or partially observed. Re-

call that under any valid topological ordering on the variables, the ordered

local Markov property simplifies each factor p(vi | past≺(vi)) in the chain

rule factorization to simply p(vi | paGm
(vi)), as each variable is independent

of its past (except parents) given its parents. We now describe an analogue

of the ordered local Markov property and factorization that relies only on

partially or fully observed variables in the m-DAG, and demonstrate how

this leads to an identification strategy.

Let V = L(1) ∪ R ∪ L denote the set of all partially and fully observed

variables in Gm. We define the district of Vi ∈ V as the set of all variables

Vj ∈ V such that there exists a path connecting Vi and Vj that consists

of only red edges, where any unmeasured variable Uk ∈ U along the path

is not a collider and any variable Vk ∈ V along the path is a collider.

We will use disGm(Vi) to denote the district of Vi in Gm; by convention

disGm(Vi) includes Vi itself. Given any valid topological order on all the

variables in Gm (including unobserved variables) define (Gm)Vi
to be the

subgraph of Gm consisting of only the variables that appear before Vi in

the topological order (including Vi itself) and the arrows present between

these variables – not to be confused with alternative usage of the notation

GX employed in the causal graph literature (Pearl, 2000) to represent a
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graph where incoming edges into X have been deleted. Then, the Markov

pillow of Vi, denoted as mpGm
(Vi), is defined as the district of Vi and the

observed parents of the district of Vi (excluding Vi itself) in the subgraph

(Gm)Vi
. That is, mpGm

(Vi) :=
{
dis(Gm)Vi

(Vi)∪pa(Gm)Vi

(
dis(Gm)Vi

(Vi)
)}
∩
{
V \

Vi

}
. We suppress the dependence of the definition of the Markov pillow on

the topological order for notational simplicity. Given these definitions, we

have the following independence relations among the observed variables in

a hidden variable DAG that resemble the ordered local Markov property in

fully observed DAGs (Tian and Pearl, 2002; Bhattacharya et al., 2022):

Vi ⊥⊥ past≺(Vi) ∩ V \mpGm
(Vi) | mpGm

(Vi). (S2.3)

That is, each variable is independent of its observed past given its Markov

pillow. Using this observation we can simplify the chain rule factorization

according to any valid topological order on the observed variables as,

p(v) =
∏
vk∈V

p(vk | past≺(vk)) =
∏
vk∈V

p(vk | mpGm
(vk)). (S2.4)

We now apply the above factorization to study the identification of the

target laws p(l(1)) in hidden variable m-DAGs. The properties of missing

data graphs, as we described them, namely that for every Lk, paGm
(Lk) =

{L(1)
k , Rk}, and {deGm(R) ∪ deGm(L)} ∩ L(1) = ∅, implies that a version of

the g-formula holds for identifying p(l(1)) under topological orderings where
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Figure 2: (a) A graph corresponding to a missing data model with hidden variables where

identification of the law p(l
(1)
1 , l

(1)
2 , l

(1)
3 , l

(1)
4 , l5, l6) is possible; (b) An example where the

causal effect is identified but the target law is not identified.

variables in R∪L come after variables in L(1). That is, under a topological

ordering defined on the partially and fully observed variables we have,

p(l(1)) =
p(l, r)∏

rk∈R p(rk | past≺(rk))

∣∣∣∣∣
r=1

, (S2.5)

We have defined each past≺(rk) here as containing only observed or missing

(but not hidden) variables. However, though the above g-formula does not

contain any hidden variables, it still may not necessarily yield identification,

unless additional structure of the model can be exploited.

As an example, consider the model in Fig. 2. Fix a topological ordering

U1, U2, U3, L
(1)
1 , L

(1)
3 , L5, L6, L

(1)
2 , L

(1)
4 , R1, R2, R3, R4, L1, L2, L3, L4. Consid-

ering the subsequence of this ordering on just the observed variables the

g-formula for p(l
(1)
1 , l

(1)
2 , l

(1)
3 , l

(1)
4 , l5, l6) is

p(l1, l2, l3, l4, l5, l6, r1, r2, r3, r4)

p(r1| past≺(r1))×p(r2| past≺(r2))×p(r3| past≺(r3))×p(r4| past≺(r4))

∣∣∣∣
r=1

.
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Using the independence relations described in (S2.3), we have that each

p(rk | past≺(rk)) simplifies as p(rk | mpGm
(rk)). The propensity scores for

each missingness indicator then simplifies under the proposed topological

order on Gm as follows:

p(r1 | past≺(r1))|r=1 = p(r1 | l(1)3 , l6)|r=1 = p(r1 = 1 | l6, l3, r3 = 1),

p(r2 | past≺(r2))|r=1 = p(r2 | l(1)3 , l
(1)
4 , l6, r1)|r=1 = p(r2 = 1 | l3, l4, l6, r1 = 1, r3 = 1, r4 = 1),

p(r3 | past≺(r3))|r=1 = p(r3 | l5, l(1)1 , r1)|r=1 = p(r3 | l5, l1, r1 = 1),

p(r4 | past≺(r4))|r=1 = p(r4 | l(1)1 , l
(1)
2 , l5, r3)|r=1 = p(r4 | l1, l2, l5, r3 = 1, r1 = 1, r2 = 1).

Since these terms are all functions of the observed data law, p(l
(1)
1 , l

(1)
2 , l

(1)
3 , l

(1)
4 , l5,

l6) is identified.

S3 Identification of the Full Law

All of our examples so far have focused on identification of the target law,

or equivalently the missingness mechanism evaluated at 1, i.e., p(R = 1 |

paGm
(r)). If identification of the full law is of interest (for instance for

model selection purposes as in Gain and Shpitser (2018) and Tu et al.

(2019)), the missingness mechanism p(r | paGm
(r)), for all r ∈ {0, 1}K must

be identified. It is possible that in certain missing data DAG models, the

target law is identified whereas the full law is not. For instance, in the model

shown in Fig. 6(a) in the main draft, p(r2 | R1 = 0, l
(1)
1 ) is not identified, and

in the model in Fig. 7(a) in the main body of the draft, p(r1 | R2 = 0, l
(1)
2 )
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is not identified, though the target law is identified in both cases. Both

examples have a special colluder structure L
(1)
j → Ri ← Rj in common.

Bhattacharya et al. (2019) show that the presence of colluders in a graph

always implies the full law of the corresponding missing data model is not

identified.

Nabi et al. (2020) studied identification of the full law in missing data

DAG models, and provided the first completeness result in a subclass of

missing data DAGs where the proxy variables L are childless. They show

the missingness mechanism p(r | l(1)) that is Markov relative to a miss-

ing data DAG Gm, where Ls are childless, is identified if and only if Gm

does not contain self-censoring edges and colluders. The identification is

given via an odds ratio parameterization (Chen, 2007) of the missingness

mechanism. An example of identification with odds ratio parameteriza-

tion is provided in Appendix S1. Nabi et al. (2020) drew an important

connection between missing data models of a DAG Gm that are devoid of

self-censoring and colluders, and the itemwise conditionally independent

nonresponse (ICIN) model described in (Shpitser, 2016; Sadinle and Re-

iter, 2017) (the ICIN model is referred to as the “no self-censoring” model

in Shpitser (2016)). As a substantive model, the ICIN model implies that

no partially observed variable directly determines its own missingness, and
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is defined by the restrictions that for every pair L
(1)
k , Rk, it is the case that

L
(1)
k ⊥⊥ Rk | R−k, L

(1)
−k.

The no-self-censoring and no-colluder assumptions imply that L
(1)
i is

not in the Markov blanket of Ri, where the Markov blanket is defined as

mbGm(Vi) = paGm
(Vi) ∪ chGm(Vi) ∪ paGm

(chG(Vi)). Given the local Markov

property, Vi ⊥⊥ V \mbGm(Vi) | mbGm(Vi). If the full law is identified, then

the target law is guaranteed to be identified. For instance, since there is no

self-censoring edges or colluder structures in Figs. 4(a) and 5(a), we can im-

mediately conclude that the full law and hence the target law are identified.

However, the reverse is not necessarily true – that is if the full law is not

identified (due to presence of colluders or self-censoring edges), the target

law might still be identified as discussed in examples related to Figs. 6(a)

and 7(a). Nabi et al. (2020) generalized this theory to scenarios where some

variables are not just missing, but completely unobserved. They proposed

necessary and sufficient graphical conditions that must hold in a missing

data DAG model with unmeasured confounders to permit identification of

the full law. They defined a colluding path between L
(1)
k and Rk as a path

where every collider is a variable in L(1)∪R and every non-collider is a vari-

able in U. They showed that in the absence of such paths, the odds ratio

parameterization can be used to identify the full law, while their presence
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results in non-identification.

Often, instead of identifying the entire full law or target law, we might

simply be interested in a simple outcome mean or a causal effect. There

are plenty of examples where such parameters are indeed identified, but

the underlying joint distribution is not. For instance, consider the graph

in Fig. 2(b), which is discussed in Mohan and Pearl (2021). The outcome

is missing due to a common unmeasured confounder with pre-treatment

variables X. The causal effect of A on Y here is indeed identified, even

though the target law is not identified. Briefly, the target law is not iden-

tified due to the presence of a colluding path between Y (1) and RY , which

prevents identification of p(y(1) | a, x) (Mohan and Pearl, 2021; Nabi et al.,

2020). However, the model encodes the following independence restric-

tions which enable identification of the causal effect: Y (a,RY =1) ⊥⊥ RY and

Y (a,RY =1) ⊥⊥ A | X,RY , where Y (a,RY =1) denotes the potential outcome

when A is set to some value a and had we, in fact, been able to observe

it. Such counterfactual independence restrictions are often read using d-

separation rules applied to single-world intervention graphs (SWIGs). A

detailed discussion on how missing data graphical models which contain

counterfactuals relate to SWIGs is left to future work. The counterfactual
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distribution p(y(a,RY =1)) is identified as:

p(y(a,RY =1)) = p(y(a,RY =1) | RY = 1)

=
∑
x

p(y(a,RY =1) | x,RY = 1)× p(x | RY = 1)

=
∑
x

p(y(a,RY =1) | x,A = a,RY = 1)× p(x | RY = 1)

=
∑
x

p(y | x,A = a,RY = 1)× p(x | RY = 1).

The first equality follows from Y (a,RY =1) ⊥⊥ RY , the second from rules of

probability, the third from Y (a,RY =1) ⊥⊥ A | X,RY , and the final equality

follows from consistency.

S4 Additional Results and Proofs

S4.1 Proposition 1

Proof. Since deG(Ri)∩L(1), the vertex set L(1) is ancestral in Gm This implies

p(l(1)) is equal to

∑
r∪l

p(l, r, l(1)) =
∑
r∪l

( ∏
vk∈r∪l

p(vk | paGm
(vk))

)
×

( ∏
vk∈l(1)

p(vk | paGm
(vk))

)
=

∏
vk∈l(1)

p(vk | paGm
(vk)).

Further, using Bayes rule, we conclude the second equality in (4.8) by

noting that p(l, r, l(1))|r=1 = p(l, r)|r=1 (by consistency) and

p(r, l | l(1))|r=1 =
∏
lk∈l

p(lk | rk = 1, l
(1)
k )×

∏
rk∈r

p(rk | paGm
(rk))|r=1 =

∏
rk∈r

p(rk | paGm
(rk))|r=1.
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S4.2 Lemma 1

Proof. Given a set R∗ ⊆ R and the corresponding set of counterfactuals

L∗(1), the distribution

p(l(1) \ l∗(1), r \ r∗, l ∥ r∗ = 1) :=
p(l(1) \ l∗(1), r, l)∏

rk∈r∗ p(rk | paGm
(rk))

∣∣∣∣∣
R∗=1

factorizes with respect to a conditional DAG (CDAG) G̃m(L(1)∪{R\R∗}∪

L,R∗), which is a DAG containing random vertices L(1) ∪ {R \ R∗} ∪ L

and fixed vertices R∗ with the property that all fixed vertices can only have

outgoing directed edges. G̃m is constructed from original m-DAG Gm by re-

moving all edges with arrowheads into R∗, marking R∗ as fixed vertices, and

treating each L
(1)
k ∈ L∗(1) as equivalent to its corresponding proxy (by con-

sistency). The CDAG factorization of any p(v ∥ w) with respect to a CDAG

G(V,W ) is a straightforward generalization of the DAG factorization:

p(v ∥ w) =
∏
vi∈v

p(vi | paG(vi) \ w ∥ paG(vi) ∩ w),

where conditioning in p(v ∥ w) is defined as in (3.5).

If p(v ∥ w) factorizes with respect to G(V,W ), it obeys the local Markov

property which states that for each variable Vi, the distribution p(vi |

pastG(vi) \ w ∥ w ∩ paG(vi)) is only a function of Vi and its direct causes

paG(Vi). This immediately implies the conclusion, since the kernel p(l(1) \

l∗(1), r \ r∗, l ∥ r∗ = 1) factorizes according to the CDAG G̃m(L(1) ∪ {R \
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R∗} ∪ L,R∗) where all direct causes of each Rk ̸∈ R∗ are preserved. See

Richardson et al. (2023) for more details on conditional DAG factorization.

S4.3 Identification under rank preservation in a K variable block-

parallel model

In Section 6 we saw how missing data identification strategies can be applied

in conjunction with additional assumptions, such as rank preservation, to

attain identification in a two variable causal analogue of the block-parallel

missing data model. The following theorem shows how this applies to any

causal model endowed with rank preservation that is analogous to a K vari-

able block-parallel model (as well as any sub models of it). For simplicity,

we will assume all treatment variables are binary though the result trivially

extends to non-binary treatments.

Theorem 1. Given a causal model that encodes the following independence

restrictions: for each k ∈ {1, . . . , K}

Ak ⊥⊥ L
(0)
k , L

(1)
k , A−k | L(0)

−k, L
(1)
−k,

and the following rank preservation assumptions: for each k ∈ {1, . . . , K}

and j = {0, 1} there exists a bijection gk such that L
(1−j)
k = gk(L

(j)
k ). The

counterfactual distribution p(l
(a1)
1 , . . . l

(aK)
2 ), where each ak ∈ {0, 1}, is iden-
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tified and given by the following functional:

p(l1, . . . , lK , A1 = a1, . . . , AK = aK)∏
Ak∈A p(Ak = ak | l−k, A−k = a−k)

.

Proof. The counterfactual distribution p(l
(a1)
1 , . . . , l

(aK)
k ) is identified via the

following identities following a very similar strategy to the one used in the

main text. In the following we will use l(a) and l(1−a) as short hand for

l
(a1)
1 , . . . , l

(aK)
K and l

(1−a1)
1 , . . . , l

(1−aK)
K respectively:

p(l(a)) =
p(l

(a1)
1 , . . . , l

(aK)
K , A1 = a1, . . . , AK = aK)

p(A1 = a1, . . . , AK = aK | l(a1)1 , . . . , l
(aK)
K )

=
p(l(a), A1 = a1, . . . , AK = aK)

p(A1 = a1, . . . , AK = aK | l(a))

=
p(l(a), A1 = a1, . . . , AK = aK)∑

l(1−a)

p(A1 = a1, . . . , AK = aK | l(a), l(1−a))× p(l(1−a) | l(a))

=
p(l(a), A1 = a1, . . . , AK = aK)∑

l(1−a)

∏
Ak∈A

p(Ak = ak | l(a), l(1−a), A−k = a−k)× p(l(1−a) | l(a))

=

{∑
l(1−a)

∏
Ak∈A

p(Ak=ak|l(a), l(1−a), A−k=a−k)×p(l(1−a)|l(a))

×I(l(1−a1)
1 =g1(l

(a1)
1 ), . . . , l

(1−aK)
K =gK(l

(aK)
K ))

}−1

× p(l(a), A1 = a1, . . . , AK = aK)

=
p(l(a), A1 = a1, . . . , AK = aK)∏

Ak∈A

p(Ak = ak | l(a)−k, A−k = a−k)

=
p(l1, . . . , lK , A1 = a1, . . . , AK = aK)∏

Ak∈A

p(Ak = ak | l−k, A−k = a−k)
.
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The first equality follows from Bayes rule, the second from our notational

convention, the third from rules of probability, the fourth from applying

the chain rule of factorization and using the independence restrictions im-

plied by the model, the fifth and sixth from rank preservation as well as

restrictions encoded by the model, and finally, the last equality follows from

consistency.
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