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S1 Notations

First of all, we present the notations for the entire paper and supplement. We
write the inner product as (u,v) = wu'v for any two vectors u,v € RP. For
a generic vector u = (uy,...,u,) € RP, we denote its /,-norms by ||ul|, =

P w9 for 1 < g < oo,

lullo = card{l : w, # 0}, and ||Jul| =
max;<, || Given any vector u = (u1,...,u,)" € RPandsubsetQ C {1,...,p},
we write ug € R4Q) o denote the sub-vector as restricting u to (). For a
generic matrix B = [b;;],x,, We define its matrix element-wise max-norm by
| Blloo = max; ; |b;;|. If B is symmetric, we further let Aoy (B) and Apin(B) to
represent the maximum and minimum eigenvalues. For two sequences ., and
Up, We write p, < v, if p, < kjv, for a universal constant k; > 0, and similarly

2 v, provided that u,, > kyv,, for a universal constant k3 > 0. To this

Y

write i,
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end, we write y1,, < v, as long as |u,,| < |v,] and |p,| 2 v,

Notice that we let the index set P, = {1,...,p,} to denote all predictors,
and write an arbitrary nonzero subset as H,, C P, containing |H,| = h, > 0
elements, whose complement is H¢ = P, \ #H,,. We write Y = (Y1,...,Y,) as
the response vector. We let 13, to denote the vector of attaching {n; : j € H,}
vertically in a column, whose estimator 7);;, is defined analogously. Also, we
write Sy, = {f; : j € H,} to represent the collection of regression curves.
We further denote Fiy,.i<s,}(Bwu,) = 7u, as the function of mapping 33, onto
Nu,. We write the matrix O, by attaching {©; : j € H,} in a line, and let
© = Op, for brevity. For each ;7 < p,, we write the moment estimator of
the diagonal matrix A; = diag{wji,...,w;s,} by A; = diag{®;, ..., 0js, }s
with each @, = n~' 377" | 67, We then formulate the two diagonal matrices
Ay, = diag{A; : j € H,} and A = diag{A; : j € P,}, whose moment
estimates are given by Ay, = diag{A, : j € H,} and A = diag{A; : j € P,,}.

To this end, we present a series of matrices (expressed in row vectors) as

0 =(G1,...,Gr),On, = (E1,. .., Bn)  One = (F1,..., Fo),© =0OA > = (Gy,...,G.),

On, = Ou, AP = (B, .. Bn) Ope = Ope Ayt = (B, F,), @ =0A? = (G4,
On, = O, AP = (B, Bn) One = One AP = (B4, .. B
Several scaled-forms of the vector 7 are abbreviated by 77 = A'/?p and 1 =
Ui yn Ui U]
A2y, and similarly for 7, and 77, . With some abuse of notation, we some-
Ui y M, T,
times write n* as the genuine version of 7, and denotes their differences by

v =n—n"and ¥ = AY?v. Also recall that we denote an unknown matrix
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w by

w={B(FF)} ' E(FE) = (wi, ..., wp,s,) € REmmxdns

I

with each w; = (wj1, ..., W) p,—n,)s,)- We use the value p, = sup,<;, s Pnj
(pnj = card{l : wj # 0}) to stand for the degree of sparsity of w. Based on the
penalized estimators (), &) and @ from (2.5) and (3.8) of the main article, we

write a series of random vectors for7 = 1,...,n by

SZ' = (Sﬂ, Ce 7Si,hnsn)/ = (w'Fl — EN'z){YvZ — b/(Oé() + G;T})},
Si=(Sit,- -+ Sinsn) = (W'F;, — E){Y; — ¥ (6o + Elmag, + Fling) },

~ ~ ~

Si=(Si1, ..., Sins) = (W'F; — E){Y; = V(d0 + G},

S; - <S;1’ T Zhnsn)/ = (w’ﬂ - Ei>€ia

S(ﬁHn, T]%?“ Oé()) - TL_l Z gi’ S<A M nHC ) = n_l Z Sia
i=1 —

S(A;{/SUHM e o) Z S 5Hn — 12 Z s,

Te:n_1/2Zeigi, T*:n_l/QZS;‘, T::n_l/QZeiSf,
i=1 i=1 i=1
cp(a) =inf{t e R: P.(|Tu]joc <t) >1—a}, aec(0,1),

where e = {ey,...,e,} represents a collection of i.i.d. N(0,1), that are inde-
pendent of the data. P.(-) represents the conditional probability that only treats
e as random. cp(a) is defined as the (1 — )th quantile of ||7,||«. The next

section contains the auxiliary lemmas with their proofs.
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S2 Auxiliary Lemmas and Proofs
Lemma 1. ) Under conditions (B1)—(B4), one has

loa(t1) — pa(ta)| < ALty — ta],  forany ty,ts € R.

2) Under conditions (B1)—(B4), one has |p)\(t)| < AL, for any t # 0.
3) Under conditions (B1)—(B5), one has

AL|t| < pa(t) + 27 ut?,  forany t € R.

4) Under conditions (B1)—(B5), if Py, (n*) — P\, (n) > 0, where n* stands for
the true version of njand Py, (n) = Y_"", px, (n7°/°||©1]|2), then one has
0< Py, (") = P, () S ML) 072 0;0m; = n))lla = > n=210;(n; — )l }
jEAn jEAS
where the subset A, C ‘P, denotes the index set corresponding to the
largest q,, elements of {n="/°|0;(n; — n;)ll2 : j < pn} in magnitude,

with AS, = P, \ Ap.

Proof. First of all, parts 1) to 3) are established via Lemma 4 in Loh and Wain-

wright (2015). To show part 4), we first define a function f,,(¢) as

t/p,(t), fort>0

falt) =
(A\L)7Y, fort=0
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which is nondecreasing in ¢ € [0, 00) by conditions (B1)—(B4). Thus, we have

> 0065 = n)lle = D oan (010, (n; = 1)) fuln 1105y = ) 2)

JEAS JEAS

< falmaxn =050 = 1) ll2) 3 pr, (0710505 = mll2), - (S2.1)

JEAS

and

S 2l050m = n)le = D aa (001 = m)lI) fa (0010 (n5 — ) o)

jEARL JEAR

> fn(mixn 2016, (n; = n))ll2) Z P, (072105 (n; — ) |l2). (52.2)

JEAR

By combining (S2.1), (S2.2) with Py, (n*) — P, (n) > 0, we have

Pn
0< Py (77) ZPA (n=11©m5112) = Y oan (0 °)|©m12)
qn Pn
< a0 =) — D e (0 |Omy12)
7=1 J=qn+1
< o 70005 = m)ll2) = D a0 N10;(n; = 7))
JEA, JEAS
< {fulamaxn 20,0, = )M} { 3 0 0,0 = )l = 3 0N = )}
JjEAR JeEAS

<MLL S 00,0 = )l — 30 005 — ) s},

JEAR JEAS

which completes the proof. [

Lemma 2. Under conditions (A2.1), (A3.1) and (A4.1), denoting I as the identity

matrix, we have that with probability tending to 1:
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1) Ais positive definite.
2) |AA =TI |loe < e1{log(npnsy,)/n} 2, for some universal constant ¢y > 0.
3) |AA =10 < ca{log(npnsy,)/n}'2, for some universal constant ¢y > 0.

4) |AV2A2 — )| < es{log(npnsn)/n}'2, for some universal constant

c3 > 0.

5) |AV2ATY2 — )| < cq{log(npnsn)/n}'2, for some universal constant

cq > 0.

6) [[n 130, GiGl — B(GiGY)|lso < cs{log(np,s,)/n}'/2, for some univer-

sal constant c5 > 0.

7) In7 'Y GG — E(GiGY)||lso < cs{log(npns,)/n}t/? for some uni-

versal constant cg > 0.

8) [[n 1Y 0, élé; — E(élé;)Hm < cr{log(npnsn)/n}'?, for some univer-

sal constant c; > 0.

9) max;jcn,s, 07" S0y Fi( By —Fjwy)|loo < cs{log(npps,)/n}'/? for some

universal constant cg > 0.

10) maxjcp, s, [0t S0y Fi(Ey—Fjw;)|leo < co{log(npns,)/n}'2, for some

universal constant cy > 0.
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11) maxjcp,s, [0 iy F(Ey—Flw;) e < cro{log(npus,)/n}'/?, for some

universal constant ci19 > 0.

12) [P Gillee < cnn{log(npns,)/n}'/?, for some universal constant

c11 > 0.

13) In7 300 Gillo < craf{log(npns,)/n}t/?, for some universal constant

c12 > 0.

14) In~ ' 350 Gilleo < cis{log(npns,)/n}'/?, for some universal constant

c13 > 0.

15) maxj<,, ., Maxi<, |Gij| < cru{log(npnsn)}'/?, for some universal con-

stant c14 > 0.

16) max;<y, s, maX;<, |w;' Fi| < ci5{log(np,s,)}/?, for some universal con-

stant c15 > 0.

17) maxjcn, s, [0 S0 {(Biy—Flw;)? = B(Ey—Flw;)?}| < cir{log(npasa) /n}'2,

for some universal constant cy7 > 0.

18) maxi<, |Emny,| < cir{log(ngns,)}2||AY?n]|1, for some universal con-

stant c17 > 0. Note that H,, can be arbitrary subset of {1, ... ,p,}.
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Proof. First of all, note that for any ¢ > 0,

P(JAA™ = Il > t) = P{maxmax|n" Y (w0, — 1)| >t}

J<pn k<sn

Pn  Sn n

<SSP Y (w1 > 1)

j=1 k=1 i=1

<2p, s, exp{—nmin(c; %%, c; ')}, (52.3)

for some universal constant ¢; > 0, where the first inequality is by union bound
inequality and the second inequality holds from (A2.1) and Bernstein’s inequal-

ity. Plugging t = ¢;{log(np,s,)/n}/? into (S2.3) yields
P[|AA™ = Il < er{log(npps,)/n}?] > 1—2n71 =1, (S2.4)
which completes the proof of part 2). To show part 1), notice that

~

Arnin(]\) - )\min(A[\A_l) Z )\min<A))\min(AA_1) - AInin(/\))\min<[xjx_1 -1 + ])

> (1= [IAA" = Iloo) Amin(A). (S2.5)
By combining (S2.4), (S2.5), (A4.1) with A\, (A) > 0, it can be deduced that
P{min(A) >0} >1—2n"" 1, (S2.6)

which completes the proof of part 1). To show part 3), note that on the event
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{/\min(f\) >0} N {Hf\/\_1 — I|oo < c1{log(npps,)/n}/?}, we have

AL = I = |(AA" = T+ 1) M (AA™" = D)
<1~ JAA — I MAAT — Tl < 2AAT — Il

<2¢1{log(np,sn)/n}2.
Together with (S2.4) and (S2.6), it is apparent that
P|AA — Il < 2c1{log(np,s,)/n}/?] > 1—4n~' — 1, (S2.7)
which completes the proof of part 3). To show part 4), note that
IAVEAT2 — Floe < RV2AY2 = DAYAT 4 Doe = AN = Il
Together with (S2.4), it is clear that
P[||/A\1/2A_1/2 — Il < cl{log(npnsn)/n}l/ﬂ >1-2n"' =1, (S2.8)

which completes the proof of part 4). To show part 5), note that on the event

{Amin(A) > 0} N {|[AA = I]|oo < 2¢1{log(npns,)/n}"/?}, we have
JAYZA2 ~ Il < AR = Tl < 26 {log(npus,) fn} 2
Together with (S2.6) and (S2.7), it is obvious that

P[|AY2AY2 — 1| < 2¢i{log(npnsn)/n}?] > 1—6n"" — 1, (S2.9)
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which completes the proof of part 5). To show part 6), note that for any ¢ > 0,

P(||n? ZG G — B(GGY)lw > t)

—P[ max max |n~ 2:{(}’1;16?@12 (G, Ga,) }| Zt]

l1<pnsn l2<pnsn

PnSn PnSn

< Z Z P n~t Z{éilléilg - E(éilléiZQ)}| > ﬂ

11=1l2=1 =1

<2(ppsn)? exp{—nmin(c, *?, c; ')}, (S2.10)

for some universal constant ¢, > 0, where the last inequality follows from (A2.1)
and Bernstein’s inequality. Plugging ¢t = 2cy{log(np,s,)/n}"/? into (S2.10)

yields

(I3 GiGl = B(GG) e < 2e2{l0g(npnsa) /n}?)

>1 — 2(ppsn) 20t = 1, (S2.11)
which completes the proof of part 6). To show part 7), note that

—1ZGG’ E(GiG)]l
<{1+ Aa(A }Hn*ZG G = B(GiG)) |l
<es|lnt Z GGl — E(GiG) || o
=1

for some universal constant c3 > 0, where the last inequality is based on (A3.1).
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Together with (S2.11), it is obvious that

<Hn*1 Z GG/ — E(GiG)|le < 20203{10g(npn8n)/n}1/2)

>1 —2(pps,) 20t = 1, (S2.12)
which completes the proof of part 7). To show part 8), note that

In=' Y GG — E(GiG))]l

=1
:H(A—I/QAI/Q _1ZGG/ GG/)}(A—I/QAI/Q)
+ (AN B(GE) AN — 1)+ (ATVENY? = D{E(GIG)} o

<IATEA) 0Ty GG — B(GG)HATPAY?) o

i=1

+ [AT2PAVHB(GG) AT A = Do + [(AT2AY2 = D{E(GiG)) i

<@+ AT = Il lIn 7! Z GG} = E(GiG)) oo + [ATPAYE — 1| || E(GiG) |
=1

+ (24 [|ATVPAY2 — T O ATV2AY2 — 1) o | E(GiGY) | e (S2.13)

By combining parts 1-6), (A2.1), and (A4.1) with (S2.13), we have that with

probability tending to 1:

n! Z GG — B(GiG) oo < ea{log(npasn)/n}'/2,

for some universal constant ¢, > 0, which completes the proof of part 8). To
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show part 9), note that for any ¢ > 0,

—1 = —
PL e 0™ 32 Ay = Fiuy)le 2 1}
hnsn (pn hn Sn
<>, Z P{WZFﬂ i — Fiwy)l >t}
=1 I=1
<2hSn(Pn — hn)Sn exp{—n min(cg2t2, cglt)}

2

<2(ppsn)? exp{—nmin(c; *t?, c; 't)}, (S2.14)

for some universal constant c5; > 0, where the first inequality is by union bound
inequality and the second inequality holds from (A2.1) and Bernstein’s inequal-

ity. Plugging t = 2cs{log(np,s,)/n}"/? into (S2.14) yields
P( max |n- Z Fi(Eiy = Flwy)llso < 2e5{log(npus,)/n}'/?)
>1 = 2(pnsn) 2t = 1,
which completes the proof of part 9). To show part 10), note that

max |[n” ZF i = Fjw;)lloo

J<hnsn

< max |n~ ZF}(EH wj)uoo+ max Hn ZF — Eij)loo

J<hnsn p—

max [n ZF 5= Flwplloo + [A72AY — I, max HnleEmnoo

j<hn8n i1

max [n” ZF = Flw) oo + [A7Y2A2 — 1|,

.7<h'n5n

{In? ZG Gl — E(GG) oo + |1 E(GAG)]| oo }- (52.15)
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By combining parts 1-9), (A2.1), and (A4.1) with (S2.15), we have that with

probability tending to 1:

J<hnsn

max ||n~*! ZF}(EU — Flw))|loo < cs{log(npnsy)/n}?,
=1

for some universal constant cg > 0, which completes the proof of part 10). To

show part 11), note that

J<hnsn

max [ ) Fi(Eij — Fjwj)lle
=1
<(24 [[ATHEAY2 f||oo)jg}3§n In~" z; Fi(Eij — Fjwj)|lo.  (S2.16)

By combining parts 1-10), (A4.1) with (S2.16), we have that with probability

tending to 1:

max [0t Y Fy(Ey — Flwy)llso < er{log(npasa)/n}'/?,
i=1

J<hnsn

for some universal constant ¢; > 0, which completes the proof of part 11). To
show part 12), note that for any ¢ > 0,
-1 T >t = -1 o>
P(|n ; Gillo > t) P(lg% n=' Y Gal > t)

=1
PnsSn n

< Z P(|n_1 Z ézl| > t) < 2pnsn exp{—n(t/cS)Q}, (S2.17)
=1 i=1

for some universal constant cg > 0, where the last inequality follows from (A2.1)

and Hoeffding’s inequality. Plugging t = cs{log(npns,)/n}"/? into (S2.17)
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yields
P(Hn_l ZGZHOO < 68{10g(npnsn)/n}1/2> >1—-2n"' =1, (S2.18)
i=1

which completes the proof of part 12). To show part 13), note that

7Y Gilloo < {14+ A AV MY Gl < colln ™ Gl
i=1 i=1 i=1

for some universal constant cg > 0, where the last inequality is based on (A3.1).

Together with (S2.18), it is obvious that

P(||n_1 ZGi“oo < 0809{10g(npnsn)/n}1/2) >1-2n"t =1, (S2.19)

which completes the proof of part 13). To show part 14), note that
Hn’lzG oo < 2+ [JAT2AY2 — Tl HWIZG loc-

Together with parts 5) and 12), the assertion in part 14) holds obviously. To

show part 15), note that for any ¢ > 0,

P( max max |Gl;| > t)
1<pnsn i<n

PnSn N
<Y > P(IGyl = t) < 2npps, exp{—(t/c10)’}, (S2.20)
=1 i=1

for some universal constant c;y > 0, where the last inequality is based on (A2.1).

Plugging ¢t = 2c1{log(np,s,)/n}'/? into (S2.20) yields

P( max maX|G”] < 2010{10g(npnsn)/n}1/2> >1—2n"3(pusn) > — 1,

1<pnsn i<n
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which completes the proof of part 15). In a similar fashion to part 15), one can
show parts 16). Similar reasoning as part 6) leads to part 17). Part 26) follows

from Holder’s inequality and (A2.1). [

Lemma 3. Under conditions (Al), (A2.1), (A2.3), (A3), (A4.1), (A4.3), we have

that with probability tending to 1:
1) max;<,, 07| < c1qn log2(ngynsy), for some universal constant ¢, > 0.
2) max;<, || < gy logl/Q(nqnsn),for some universal constant ¢y > 0.

n R 2 2 —25+1 ;
3) D Q05 D1 Qigkmin)® < cangps, X", for some universal con-

stant c3 > 0.

g o0 2 2 —25+1 ;
4) maxi<n | Y2501 D it 11 Oiknkl® < cangys, T, for some universal con-

stant ¢4 > 0.

5) max;<, var(¢;| X;) < csexp{csqn 10g1/2(nqnsn)}, for some universal con-

stant c5 > 0.

6) max;<, |e;] < cglog(n) exp{ceqn log"/*(ng,s,)}, for some universal con-

stant cg > 0.

7) In7' 00 6] < er{log(n)/n}? exp{crgn log*(ngns,)}, for some uni-

versal constant c; > 0.
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8) ||In7t Yo @ieiHoo < 08{10g2(npnsn)/n}1/2 exp{csqn logl/Z(nqnsn)}, for

some universal constant cg > 0.

9) [[n™t Y0, Gigilloo < co{log®(np,s,) /n}'/? exp{cyqn logl/Z(nqnsn)}, for

some universal constant cg > 0.

10) |nt 370, éieiHOO < cip{log®(npnsy)/n}? exp{cioqn logl/Q(nqnsn)},for

some universal constant cyy > 0.

1) [0 S Y=V ()} < enlgasn”*+{log(n) /n} /2] exp{enga log'* (ngusa)},

Jfor some universal constant c1; > 0.

12) [0 S0, GYi =V ()} oo < cragnsn” " expiernga log'* (ngpsn)} +
c1o{log? (npnsn) /n Y2 exp{ciagn 10g'/*(ngns, )}, for some universal con-

stant c19 > 0.

13) [0t S, Gi{Yi = b/(5) oo < c1sgnsn % exp{cisgn log"(ngnsn)} +
c13{log®(nppsn ) /n}2 exp{ci3qn 1083 (nqnsy )}, for some universal con-

stant ci13 > 0.

14) [[n=' 370 GAY; =V (0:) e < Cragnsn’ exp{c1agn 10g"*(ngns,)} +
c14{log?(npnsn ) /n Y2 exp{ciagn 10g'/*(ngns, )}, for some universal con-

stant c1q4 > 0.

Recall that 67 = ag + Z?; Yoy Oiginyn and 0; = o + ?; 2 Oijiine
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Proof. To show part 1), note that with probability tending to 1,

max[57] < o] + e {log(ngus,) /2[4,

<|ao| + c1{log(ngns,)}"*{gn(sup Z wirk™2)Y2(sup Z k)2 }

J<am J<an

<oy log"?(ng,s,), (S2.21)

for some universal constants cy,co, > 0, where the first inequality holds from
part 18) of Lemma 2, and the last inequality is based on (A3). This completes

the proof of part 1). To show part 3), first note that

n dn (o0 n dn o
Efn™> 00 > )y <nand Y E( D i)’
=1 j=1 k=s,+1 =1 j5=1 k=sn+1
gn (o) o0
gy () wipk ™) (D mkY)
7=1  k=sp+1 k=sn+1
Sap(sup Y wpk ™) (sup Y nhk?) S olgls, ),
IS =g t1 L

where the last inequality follows from (A3.1), (A3.2) and (A4.3). Together with

Markov inequality yields that with probability tending to 1,

n

qn o]
Z(Z Z Oiisnin)? < csngls, 2 (52.22)

i=1 j=1 k=sp+1

for some universal constant c3 > 0, which completes the proof of part 3). Thus,

we have that with probability tending to 1,

n qn

dn 9] e o]
max |y Y Ol <D0 Y Gwngn)” < canapsy ™, (52.23)

j=1 k=sp+1 i=1 j=1 k=s,+1



FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME?2

which completes the proof of part 4). To show part 2), note that

max|6| = max|5* + Z Z O;jknjk| < max|5 | + maX|Z Z 05k

7=1 k=sp,+1 7=1 k=sp+1

<c4qn log'? (ng,s,), (S2.24)

for some universal constant ¢, > 0, with probability tending to 1, where the last
inequality is based on part 1), part 4), and (A4.3). This completes the proof of

part 2). To show part 5), note that

i<n

max var(e;| X;) = max a;(¢;)b"(0;) < {m<ax a;(¢i)} - {m<ax b (6:)}
g{m<ax a; ()} - exp{m<ax 16,1} < e5 exp{esqn log*(ngns,)},  (S2.25)

for some universal constant c; > 0, with probability tending to 1, where the

second last inequality is by (A1), and the last inequality is by max;<, a;(¢;) <

00, and part 2). This completes the proof of part 5). To show part 6), note that

conditional on the data { X;}?_,, we have that for any ¢ > 0,
Plmax|e;| > t{X;}i]

<D Pllal > t{X}] =) Pllel > t1X))
i=1 i=1

o242 ~1y
t Ce ' t

<2 — mi 2
- ;eXp( mm[{l + Var(ez\X )}27 1+ var ez’X )+ Zexp{ 1+ Var(ez\X )}
—2,9 1
cs °t cq t
<2 — mi 6 6
<2n exp( mm[{l + max;<, var(e;]| X;)}?’ 1 + max;<, var(ei|Xi)])+
—2,9
t
2n exp{— } (S2.26)

1 4+ max;<, var(e;| X;) "’
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for some universal constant ¢g > 0, where the first inequality is by union bound
inequality, and the second inequality holds from (A2.3). Plugging ¢t = 2¢g{log(n)}{1+

max;<, var(e;| X;) } into (S2.26) yields

P[m<aX les] < 2ce{log(n) {1+ m<aXVar(€i|Xi)}|{Xi}?:1]

>1—2n"%—2n"". (S2.27)
Taking expectation on both sides of (S2.27), we obtain
P[rzngailx le;] < 2c¢6{log(n)}{1 + rlr'glxvar(ei\Xi)}] >1-2n3—2n7".
Together with (S2.25) yields that with probability tending to 1,
max le;] < e7log(n) exp{crqn log"*(ngns,)?, (S2.28)

for some universal constant ¢; > 0, which finishes the proof of part 6). To show

part 7), note that conditional on the data { X;}”_,, we have that for any ¢ > 0,

n

Pl Yy el = t{X}]

i=1
2,2 —1
cgt cg't

+ max;<, var(€;|X; + max;<,, var(€;|.X;
1 < X)) 1 < X

<2exp(—n min| D+

—2, 42
cgnt

2 exp{— (S2.29)

14+ maX;<n Var(ei|XZ~) ’

for some universal constant cg > 0, where the first inequality is based on (A2.3),

Hoeffding’s inequality, and Bernstein’s inequality. Plugging t = cg{log(n)/n}'/2{1+
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max; <, var(¢;|X;)} into (S2.29) yields

Pln~"> il < cx{log(m) /m}/2{1 + max var(ei X)X}

>1 —4n~h (S2.30)

Taking expectation on both sides of (S2.30), we obtain

n

Plln™") el < es{log(n)/n}'/*{1 + max var(e;| X;)}] > 1 —dn~".

i=1
Together with (S2.25) yields that with probability tending to 1,

n

In~! Z & < coflog(n)/n}? exp{cogy log"*(ngns,)?, (S2.31)

i=1

for some universal constant cg > 0, which finishes the proof of part 7). To show
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part 8), note that conditional on the data { X} ,, we have that for any ¢ > 0,

Hn*lZGQHOONHX} J= [maX In~ ZGMN;{X} ]

< inp It ZGM > tH{X 1]

PnSn

cint?
< 2ex = 10 +
Z Pl max; <, |Gu|?{1 + max;<, var(ei|Xi)}]

PnSn

Z 2 exp(—n min]|

-1
Ciot

max;<, |C~¥d|{1 + max;<, var(e;] X;) }

2
C1o 2t

max;<y, ]éﬂ|2{1 + max;<, V211‘(61-|Xi)}27

)

2
C1o Int

<2pnSn €Xp|— +
P l Max;<,,s, MaxX;<p |Gil| {1 + max;<, Var(ei|Xi)}]

_2t2

2D S exp(—n min| -
e maxi<p, s, Max;<p |G1l‘2{1 + max;<n Var(ei|Xi)}2’

-1
Ciot

_ D, (S2.32)
maxlgpnsn maX;<n |Gzl’{1 + maX;<n Var(el\XZ)}

for some universal constant c;q > 0, where the first inequality is by union bound
inequality, and the second inequality is based on (A2.3), Hoeffding’s inequality,
and Bernstein’s inequality. Plugging t = ¢ o{log(np,s,)/n}"/? maxi<,, s, +4, Maxi<y |Gil {1+

max;<, var(e;| X;) } into (S2.32) yields

P(||n"" Zézeznoo < cro{log(npns,)/n}?  max  max |Gyl{1 + maxvar(eZ|X ) }H
— <

I<pnsn+dn, i<n

(X)) >1—4n". (S2.33)
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Taking expectation on both sides of (S2.33), we obtain
-1 e 1/2 gl 1 X
P(||n Zl Gi€illoo < cr0{log(npy,s,)/n} Jpax max |Gul{1 + max var(e;| X;)})

>1—4n~".
Together with (S2.25) and Lemma 2 yields that with probability tending to 1,

[ Z éiEiHoo < 011{10g2(npn8n)/n}1/2 exp{ci1qn logl/Q(nQnSn)}7

i=1

(S2.34)
for some universal constant c¢;; > 0, which completes the proof of part 8). Part
9) is due to part 8) and (A3.1). Part 10) is based on part 8) and Lemma 2. Before
showing part 11), first note that it follows from mean value theorem that for any

1< n

_— b

dn o0 dn e’}
V() =0 (0;) =007+t Y > Ouwmi) - Y, Y Oiumje, (52.35)

j=1 k=sp+1 j=1 k=sp+1

for some ¢; € [0, 1]. In addition, we have

dn oo qn o0
max |B(65; +4: ) D Oine)| < exp(max|0f +4:Y Y Ouguniel)

7=1 k=s,+1 =1 k=sp+1
dn oo
< exp(max|6;]) - exp(max|} D Oiiel)
= =0 =1 k=sn+1
<crg exp{eiagn log"?(ngnsn)}, (S2.36)

for some universal constant ¢ > 0, with probability tending to 1, where the first

inequality holds from (A1), and the last inequality is based on (S2.21), (S2.23),
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and (A4.3). To this end, note that

_IZ{Y—U O} = In~ Z{ez+b’ b (57)}

<|n~ Zez|+|n Z{b’ ) = V(6
n dn

:lnilz@w + |TL Zb" (5* +t Z Z ezﬂcnyk Z Z (‘)wknjk|

i=1 =1 k=sn+1 7=1 k=sp+1

<In~ Z€z|+{max b (67 + t; Z Z Oiunje)| } - {n” Z(Z Z Oignge) 12

=1 7=1 k=s,+1 i=1 j=1 k=s,+1

<ci3 [qns;5+1/2 + {log(n)/n}l/Q] exp{ci3qn logl/Q(nqnsn)}, (S2.37)

for some universal constant c;3 > 0, with probability tending to 1, where the
second equality holds from (S2.35), and the last inequality is based on (S2.31),
(S82.36), and (S2.22). This completes the proof of part 11). To show part 12),

note that

n” ZG {Yi =0(6) oo < lIn” ZG €illso + [In”" ZG {t'(6:) = V'(67) }Hl oo

—||n_1ZGeZ||OO+ maX |n ZG”bH o0F + 1, Z Z Osjenjn) - Z Z O:jxnik |

J=1 k=sp+1 j=1 k=sp+1

<[ln~" Z Gi€illoo + {é%?}?n n! Z G} {n™! Z(Z Z Oujinin)*

i=1 j=1 k=s,+1

max [B (57 + Z Z Oikmi) - (S2.38)

7=1 k=sn+1

For the term max;<,, ., n ' Y. G2, it follows from Lemma 2, (A2.1), and
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(A4.1) that with probability tending to 1,
I<pnsn

max n~' Y G < cu, (52.39)
=1

for some universal constant c¢;4 > 0. By combining (S2.39), (S2.36), (S2.22),

(S82.34) with (S2.38), it can be deduced that with probability tending to 1,
1" G{Ye = V(5 oo < c15n5, /2 exp{eisga log'/(ngasn) -+
1=1
c15{10g” (npys,) /n}'? exp{eisgn log!* (ngnsn)}, (52.40)

for some universal constant ¢;5 > 0, which completes the proof of part 12).
Piecing (S2.40) and (A3.1) together yields part 13). Finally, part 14) holds from

(52.40) and Lemma 2. L]

Lemma 4. Under conditions (A2.1), (A3.1), (A3.3), (A4.1)-(A4.2) and (BI)-

(B5), we have that with probability tending to 1:

1) Y2 185(n; —m3)|I5 < cunl|P|l3, for some universal constant ¢y > 0.

~ _ 1/2 n *
2) |7l < en V252520 10,(n; — )

9, for some universal constant

cy > 0.

3) AallPlly < s *n/B{ Py, (%) + Py, () + 0| 5|2}, for some universal

constant cz > (.

Recall that n* is the true n, and 7 = AY/?(n — n*).
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Proof. First of all, note that with probability tending to 1,

ZH@ =)l

Pn

—Z{A” OY{A20,/6,0 — B(A?0,0,8 VA (g —ni)+

J

Z{AW )Y B(A; 26,00 VA2 (n; — )}

J

n Pn
s (B(GIG) + salln™ Y GiGy = E(GiG)) oo} - > 1Ay = )13
7=1

=1

<ern[l+ {s; log(npys,) /n}?] - |73 < can| |3, (52.41)

for some universal constants c;, co > 0, where the second last inequality follows
from (A3.3) and Lemma 2, and the last inequality is by (A4.2). This completes

the proof of part 1). To show part 2), note that with probability tending to 1,

p’!L p'VL
~ 1/2 % 1/2 * 1/2 * 1/2
7l =D IA 2 =)l < sy A2ty — ) YAA 2 (0 — ) }]
j=1 j=1
Pn

<5y i (B(GG)Y YT (A2 — )Y In T B(A; 20,0,A7 ) HA (1

j=1
p’ﬂ
<eqst/® 3 [N}y — )Y I A 0,0,0 2 HAY (o — )}
j=1
<eqn V% ”22|’@ — )|z + cssh/ |~ ZGG’ E(GG) 1271
j=1 i=1

Pn
<cgn™ s/ 110,(n; — )12 + ca{sh log(npusa) /n} 1)1,

=1

for some universal constants c3, ¢4 > 0, where the third inequality follows from

(A3.3), and the last inequality is based on Lemma 2. Together with the fact that

*
J

— )3
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s2log(np,s,)/n — 0 under (A4.2), it is seen that with probability tending to 1,

Pn
7]l S 022> (1050 — )2, (S2.42)
j=1

which completes the proof of part 2). To show part 3), note that with probability

tending to 1,

Pn
Mol S >n ALY 7?0100 — 0l

j=1

Pn Pn
<Y S0ST o (0110, — ) lz) + 27 0 N 105 (ny — )3}
j=1

Jj=1

S 2P () + P, () + 0707133,

where the first inequality holds from (S2.42), the second inequality is based on
part 3) of Lemma 1, and the last inequality follows from the subadditivity of

px(+) and (S2.41). This completes the proof of part 3). O

Lemma 5. Let X, X5,..., X, be centered independent random vectors, with

each X; = (Xu,...,X;y)" € RP. Then, we have parts 1)-2) below,

1) Assume the following conditions (a)—(c):
(a) minj<,n 1" E(XZQJ) > ¢y, for some universal constant c; > 0.

(b) There exists a sequence of constants u, > 1 such that all X;; are sub-

exponential with variance proxy ..

(c) u log”(np)/n — 0.
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Then, under (a)—(c), we have:

lim sup |P(V € A)—P.(V,€ A)| =0,

N0 Ac ARe
with V. = n=V25"" X, and V, = n V23" e, X; where e = {e1,...,en}
is a set of i.i.d standard normals independent of the data, and P,(-) means the
probability with respect to e only. The set A% consists of all hyperrectangles A
of the form A = {w € R? : a; < w; <bj,j < p} for some —oo < a; <b; < oo
forall j < p. Further assume that there exist statistics V and V, in R? satisfying

conditions (d)—(e):
(d) There exists a sequence of constants a,, > 0 such that

PV =V]ew>an) =0,  P([Ve = Velloo > an) 2 0.

(e) The sequence a,, in (d) also satisfies
a2 max{1,log(p/a,)} — 0.

Then, under (a)—(e), we have:

~

lim sup |[P(V € A)—P.(V.e A)|=0.

n—=00 gc ARe
2) Assume the following conditions (a’)—(c’):

(a’) minj<,n~ "> °" | E(X}) > ¢y, for some universal constant ¢y > 0.

(b’) There exists a sequence of constants v, > 1 such that all X;; are sub-

gaussian with variance proxy v,,.
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(c’) v3log’ (np)/n — 0.
Then, under (a’)—(c’), we have:

lim sup |P(Ve€A)—P.(V. € A)|=0.

n—o0 AEARe
Further assume that there exist statistics V and V, in RP satisfying conditions
(d’)—(e’):

(d’) There exists a sequence of constants a,, > 0 such that

P(||V—V||002an)—>0, P6(||‘7e_‘/e||oozan)£>0'

(e’) The sequence a,, in (d’) also satisfies

a2 max{1,log(p/a,)} — 0.

Then, under (a’)—(e’), we have:

~

lim sup |[P(V € A)—P.(V.e A)|=0.

n—0o0 Ac ARe

Proof. Similar to the Lemma H.7 in Ning and Liu (2017), this is adapted from

Chernozhukov et al. (2013) and Chernozhukov et al. (2017). L]
Next, we state Lemma 6, which is on the property of w.

Lemma 6. Under conditions (A2.1), (A3.1), (A3.3), (A4.1), (A5.3) and (A5.4),

we have
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1) There is a universal constant c; > 0 such that:

1/2
jg}i)s(n ||TL ZFF/ — w])Hoo < Cl{log(npnsn)/n} / :| — 17

1/2
JLI}L%}; [n~ ZFF' — w;)|loo < c1{log(npnsn)/n} / ] — 1.

2) There is a universal constant co > 0 such that:

hnsn

ﬂ {HAl/2 i wj)||2 < CQ{Pnj 10g(npn5n)/n}1/2}] — 1

P[ max ||A ( C—wj) |2 < ca{pn log(npnsn)/n}l/ﬂ — L

J<hnsn

3) There is a universal constant cs > 0 such that:

hnsn

ﬂ {HAl/2 i wj)”l < CS{P%j 10g(npn5n)/n}1/2}] —1

P max [|Az7 (5 — w;) |1 < es{pp log(npas,) /n}?] = 1.

J<hnsn

Proof. By the definition of w in (3.8) of the main paper, it holds true for all

7 < h,s, that
(2n)™1 > (Eyy — Flivg)* + Nyl Ay |y < (20) 70> (B D2+ Al Agewsl,

i=1 =1

which implies that for all j < h,s,,

0 < (1 — w;){(2n) "D FF} (i — wy) < [[n" > Fi(Ey — Flwy) oo - [1A35 (5 — wy)]s
=1 i=1

+ A Aewsll = ALl Ay L. (S2.43)
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Now, we denote S; = {l : w;; # 0} as the support set of w,;, whose complement
is §¢ = {1,...,(pn — hn)sn}/S;. For any vector v = (v1,..., V4, h,)s,) s

we write the vector vs; as restricting v to S;. Then, it follows from triangle

inequality that for all 7 < h,,s,,,

15 sl = I (Asig) I+ 1 (A s) el

2| Asigwglh = 11 (A by = wy) g I+ 11 Ay ) e
Together with (S2.43) yields that for all j < h,s,,
0 <(w; — wy)'{(2n)™" Z FiF{} (b — wy) (52.44)
<{A + [In ZF i = Flwg) oo} - 11 (A5 (o — wy)) g =
- Hn”ZF = Ffwj)llse} - | Ay (= 07)) .
* _ = ~ 12
<N+ max (I Y BBy — Flugleo} - (A3 (5 = w))) g -

=1

. rA1/2/ &
= max a7 Y Fi(Ba = Fulle} - 1 (AH2 G — 0) 5l
=1

Based on Lemma 2, there is a universal constant ¢; > 0 such that with probabil-
ity tending to 1:
C(F . — . < 1/2
max o~ ZIFZ(EU Flw;)lloe < c1{log(npas,)/n}'>.
By choosing K > 2c¢; in (A5.3), we have that with probability tending to 1:

max ||n~ (B — Flwy)||ee < 270\ .
Fi(E;; — Flw, 27T\ (S2.45)

i<hnsn
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It follows from (S2.44) and (S2.45) that

hnsn

ﬂ{n Aggg (15 = 07)) el < 311 (Agig (a2 = wy)) Il }] =

which further implies that

hnsn

ﬂ{HAW i = w)ll < 4p A (@ —wp)lla}] = 1. (S2.46)

Based on (3.10) of the main paper and the Karush-Kuhn-Tucker condition, it is

seen that

i<hpnsn

max [ Y Fi(Ei; — Fij)|le < X;. (S2.47)
i=1
To bound the term max;<y,s, [|[n~ ' > 1, FiF!(1; — w;)||oo» note that

n
max [n7! Z FyF! (1 — w)) oo

]Shn5n+kn

< max ||n” ZF ¥ F’w])Hoo—i—max |n~ ZF i — Flw;)] o

J<hnsn

<3\: /2 < (3K,/2) - {log(npps,)/n}?, (S2.48)

with probability tending to 1, where the second inequality follows from (S2.45)
and (52.47), and the last inequality holds from (AS5.3). Together with Lemma 2,

it can be deduced that with probability tending to 1:

max |[|n" ZEF{(?% —w))|loo < (3K3) - {log(npns,)/n}'.

J<hnsn
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This finishes the proof of part 1). To show part 2), first note that for all j < h,,s,,
0 < (i — w;) (n™" Y FF) iy — wy) = {Ay (o —wy)Yn ™ FF] (i — wy)
i=1 i=1
<t Y e = wg) o - 1A (105 — wy)]ls
i=1

Together with (S2.46) and (S2.48) yields

hnsn n

P[() {t; —w;) (™) BF) (b — w;) < 6Ky{pn;log(npasn)/n}'/>
j=1 i=1
1A (5 — w2 }] — 1. (S2.49)

Also note that for all j < h,,s,,,
(i — ) (0 Z FF) (i — w)

={ A3 ;= wy)Y B(FF){A2 (i — wy)}—

(A5 (b — wy) Y{E(FF) —leF'}{AW( = w;)}

> Nin (B (FLE)) A2 (i — ;)13 = [In -1ZF FiF) oo | A3 (i — wy) 3

>ol| Agye (1 — w))[3 — ||n*12FF’ FiF) ool Agge (0 — w;)II3,

for some universal constant co > 0, where the last inequality is by (A3.3). To-

gether with Lemma 2, (S2.46), and (A5.4), it can be deduced that

hnsn

P ﬂ { (a —wj)/(”_leiﬂl) j—w;) > 27 CQ”A1/2 —w;)[3}] =
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Together with (S2.49) yields

hnSn

P {142 (b — w)lla < 1265 Ka{pnjlog(npnsy) /n}'?}] — 1

7=1

(S2.50)

which further implies that

P[ max Ay (i — w;)lls < 12¢5" Ko{pn log(npas,) /n}'/?] — 1.

j<hnsn

This completes the proof of part 2). By combining (S2.50) with (S2.46), it can

be deduced that

hnsn

ﬂ{mm 5 —w)h < 48¢5 K> {p2, log(npas,) /n}/2}] —

which further implies that

P[ max [y (i — wj)|ly < 48c5 " Ko{p}, log(npns,) /n}' ] — 1.

J<hnsn

This completes the proof of part 3). [

Next, we state Lemma 7 as follows.

Lemma 7. Under conditions (Al)—(A5) and (B1)—(B5), we have
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1) There is a universal constant c; > 0 that with probability tending to 1:

n

max |n~ 1/22(521— ]

I<hnsn —
1=

<cin”Y2p,{log(np,s,) }*'? exp{cign log"*(ngns,) +

1/2,, —6+1/2

an qnSn, exp{CIQH 10g1/2 (nqnsn)}+

—1/18 1/2(] {log(npnsn)}l/Q eXp{CIQn 1Og1/2(nqn8”)}+

ISP )
A X2 g, {log(nppsn) } /% exp{eign 10gY 2 (ngnsn) }+

A VY2012 o0 (np,5,) 12 exp{eign log? (ngnsn) ).

2) There is a universal constant co > 0 that with probability tending to 1:

n

max n ! Z(S’” — S5)?

I<hnsn
i=1
§cgqis;25+l {log(npnsn)} exp{caqn logl/2 (ngnsn) }+
oA g, {log(npns,) } exp{cagn log"? (ngns,) }+

con” on log2(n){log(npnsn)} exp{caqn logl/Q(nqnsn)}.

3) There is a universal constant cs > O that with probability tending to 1:

Jmax n- 2 < eslog?(n) exp{csqn log"*(ngns,) .



S2. AUXILIARY LEMMAS AND PROOFS

Proof. First of all, it follows from triangle inequality that

n

max |n~ 1/22(&1— ]

I<hnps

<AL+ Ag + A+ Ay + As + Ag + A7 + Ag, (S82.51)

where

A =n"Y? max |(w; — wy) E Fieq,

I<hnsn
1/2
Ay ax | Z 0 — Ea)el,
Ag =n lg}llaX ‘ Z wlF Ezl {b’ ao + Z Z 97,]]677]]6 — b Oéo -+ Z Z@ijnjk
o 7j=1 k=1 j=1 k=1
Ay = n—l/ZIE}LaX |(w; — wy) Z Ei{V (ag + Z Z@wknjk v (ap + Z Z 0ijk55) }
nSn 7=1 k=1 j=1 k=1
As=n" lg}llax |Z il — ll {b’ (o + ZZ@WW — b (v + ZZ@Uk%k
nSn  “ j=1 k=1 j=1 k=1

Ag=n""/? max\ZwlF E){V (6o + Elm, + Flingg) — V(a0 + Efmw,, + Flmg )},

I<hnsn

Az =n~"? max | (i — w)’ Z E{V (6o + By, + Fjig) — V(oo + B, + Fimug) H,

I<hnsn —
i=

Ag=n" l%ﬁ?‘z it — E){ (60 + Ejm, + Flipg) = V(00 + Eim, + Flmwg) }-
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To bound A, note that

n
Ay =n? max |{]\;{3(wl —w)}n? Z Fe;|
I<hpsn n i—1

n
<n'/2||n~ Z Fi€i|| oo - max ||A%2(7f01 —wy)h
— I<hpsn "

<cin™?p, {log(npnsy) }*'? exp{eig, log'*(ngnsn) }, (S2.52)

for some universal constant ¢; > 0, with probability tending to 1, where the
first inequality is by Holder’s inequality, and the last inequality follows from

Lemma 3 and Lemma 6. To bound As, note that

Ay < PAVPATYZ — Il - [In7) Gl
i=1

< con Y {log(npnsn) }¥'? exp{cagn log"?(ngusn)}, (S2.53)

for some universal constant c; > 0, with probability tending to 1, where the

last inequality is based on Lemma 2 and Lemma 3. To bound Ags, recall that
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07 = o + 350 Dty Oijenye and 6; = ao + 3057 37 Ojrnr. we have

Ay =n~Y? max IZ (wj F; — Eq){V'(6:) — V' (67) }]

l<hn5n —
dn dn
/! *
ZLI}L&X | E wlF Ezl E E Q’ijn]k b 5 +t E E szkn]k
nSn
; 7=1 k=s,+1 7=1 k=s,+1

={ max n” Z(wzF Eu)*}'2 {ZZ Z Oijnnyn)*} /2

=1 j=1 k=sp+1
11 [ Cx
-max |b"(67 +t; E E - Oikjie)|
i<n
=1 k=sp+1

—5+1/2

<egn'Pqns, % exp{csgn log!? (ngasa)}, (S2.54)

for some universal constant c3 > 0, with probability tending to 1, where the

second equality holds from (S2.35), and the last inequality is based on (S2.36),

Lemma 2, Lemma 3, and (A2.1). To bound A4, note that

nSn

s (= YRS 3 G 1.3 3 )

j=1 k=sp+1 J=1 k=sp+1

<{max (i —w ZFF’ =) 300 S O

=1 j=1 k=sp+1

- max [B (67 + Z Z 0,51k, (S2.55)

J=1 k=sp+1

— 1 l / *
Ay =n" lmaX (b, — wy) ;F{b —V(0)}]

—n L2

A

where the second equality is based on (S2.35). For the term max;<p, s, (W, —
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wl)/<n71 Z?:1 Fz‘FiI)(ﬁ}l - wl), note that

max (W — w;) (n™*! Z FiF)) (o — wy)

I<hnsn

< max ||n~ ZFF (i = ) |oe - max HAHC (i — wy) ||z

I<hnsn P

<n”tpn log(npnsy), (S2.56)

with probability tending to 1, where the last inequality holds from Lemma 6. By

combining (S2.56), (S2.36), Lemma 3 with (S2.55), we have

Ay < cap)®qns, " {log(nppsn) }'? exp{cagn log'(ngnsn)},  (S2.57)

for some universal constant ¢, > 0, with probability tending to 1. To bound As,

note that

Ay = max |Z il — zl HO'(6:) = 0'(67)}

I<hnsn
qdn [e%e}
lg}% |Z it — u)(z Z O (07 + 1 D Oujamye)|
J=1 k=sp+1 7=1 k=sp+1
n dn
ST SV 3) 3 DR SRS LIMTIRS 3 SR O
- i=1 j=1 k=sp+1 7=1 k=s,+1

<[IAYVPATY — 1| -, max - ZGZ}”Q {ZZ Z o

=1 j=1 k=s,+1
'I?S%X|b"(5f+tiz Z Oijnin)|

j=1 k=sn+1

§C5Qn37:6+1/2{log<npn5n)}l/2 eXp{C5Qn 10g1/2 (nQnSn>}7 (8258)

for some universal constant c; > 0, with probability tending to 1, where the sec-
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ond equality is by (S2.35), and the last inequality is based on (S2.36), Lemma 2,

Lemma 3, and (A2.1). It follows from mean value theorem that

V' (G + Eimp, + Fiye ) — V(o + Ejmp, + Finye)
=b"(07 + ti(Go — ) + LF (e — e ) - { (60 — o) + F; (e — e ) }
(52.59)

for some ¢; € [0, 1]. In addition, we have

max " (67 + ti(Go — o) + tiF] (s, — e

}

< exp{max|[0] +ti(co — ao) + 1 F (g, — sz
< exp(max |67]) - exp{|ao — ao| + max max |Gal - [|AY*(5 = )|}

<cg exp{csqn logl/Q(nqnsn)}, (S2.60)

for some universal constant c¢g > 0, with probability tending to 1, where the first
inequality is by (A1), and the last inequality is based on Lemma 2, Lemma 3,
and Theorem 1. Moreover, we have that for every i < n,

[6"(67 + ti(do — ao) + L F; (e, — maeg)) — 0" (67)]

< exp(3max |07]) - exp(3|do — aol) - exp{3 max [ F (i — 1)

b (G0 — ao) + F (g — )

< exp(3max [67]) - exp(3lao — aol) - exp{3max max |Gl - [|A"*(i — )]}

|(Go — a0) + F (e — nmas)

Y

where the first inequality is by (Al). Together with Lemma 2, Lemma 3, and
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Theorem 1, it can be deduced that there is a universal constant ¢; > 0 such that

POy {[67(6; + ti(Go — o) + LiF] (e — mae)) — 0" (07)] <

cr exp{crqn log"? (ngnsn) H(do — o) + F/ (e — e )| }] — 1. (S2.61)

To bound Ag, note that

Ng=mn""? max | Z wiF, = Eg)b" (67 + Fi(do — ao) + & (g, — 1 )){ (G0 — @) + F (g, — 1)}

< + (2, (52.62)

where the first equality is by (52.59), and

=% max \Z wiF; — Bt (55){(0 — o) + F(ig — ez},

hnsn

QQ max | Z F Ezl b”((sl* + {Z(do — Oé()) + {zFZ/(lez — 7’/’;.[%)) — b”(éz*)}

I<hnsn

{(ao — a0) + F{ (e — naae) 3.

To bound 2;, note that

n

Q1 <n'? max 7Y (5) (wi' B = Ea)b"(57)lso{ld0 — aol + [AY2( — )11}

I<hpsn Y

n

<csn'/? maxd"(5;) - max o D (E) (! F = Eg)llee - {ld0 — aol + [[AY2(5 = )11}
= SNndn i—1
<cen2 explmae |57]) - max S (5) (/' Fy = Bl - {160 — ol + [AY2G) = )2}

SNnSn -
=1

<cohnn 15} 2 g, {log(npnsa) }? exp{coqn log"* (nqnsn)}, (52.63)
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for some universal constants cg,c9 > 0, with probability tending to 1, where
the second inequality is by (A2), the third inequality is by (A1), and the last

inequality is due to Lemma 2, Lemma 3, and Theorem 1. To bound (25, note that

0, <cn/ 2 exp{crqn log 2(ngpsy) } max Zn Y Fy — Ez-l|{(d0 — o) + F (e — 7]7.[%)}2

hnsn 4

<2¢,n'/? exp{crqn logl/Q(nqnsn)} ( max max |w;F; — E@l|)

I<hpsn, t<n
{(&0 — a0)® + (Mwe — Me )’ Z FiF)) (e — e ) }s (52.64)
=1

with probability tending to 1, where the first inequality is by (S2.61). To bound

the term (fpss, — 1)’ (n ™" 320 FiF) (s, — g ), mote that

(Mg, — nug )’ ZFF T, — Mug,)

=1

={ A (s — g} {n~ ZFF' E(ELF)) A (e, — s ) 1+

=1
{Ayc (e — nae )} E(FlF'){AHc (e — e )}
max(E(FE)) - [[AV2 (7 = )13+ |In! Zﬁ’iﬁ{ — B(FYE))||oo - [IAY2 (7 — m)|}

<cio\igun V0, (S2.65)

for some universal constants c;y > 0, with probability tending to 1, where the
last inequality is based on (A3.3), Lemma 2, and Theorem 1. By combining

(§2.65), Lemma 2, Theorem 1 with (S2.64), it can be deduced that

Qy < et 2078, {log(npnsn )}/ exp{ciign log?(ngusn)},  (S2.66)
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for some universal constants ¢;; > 0, with probability tending to 1. By combin-

ing (52.66), (S2.63) with (S2.62), it can be deduced that

Ag <ciodan” Y851 2q, fog(npnsn) } /2 exp{ciagn log"? (ngns,) }+

012)\2717/18%{log(npnsn)}1/2 exp{ciaqy logl/Q(nqnsn)}, (S2.67)

for some universal constants c;2 > 0, with probability tending to 1. To bound

A~, note that

2 max (i —wy) Y FY (6] + Lo — an) + BF (g, — ms)){ (do — o) + FY (e — g ) }|

I<hnsn —
1=

<2n!/* max [V (87 + Ti(Go — o) + GF (s, — )| - { max (@ — wi)' (™' Yy FiF) (g — i)}

I<hpsn
{60 — @0)? + (g, — z)’ Z FiF)) (g, — g ) }°
=1
<cis\,n /18 1/2 1/2<[10g(monsn)}1/2 exp{ci3qy 10g1/2(nqnsn)}, (S2.68)

for some universal constants c;3 > 0, with probability tending to 1, where the

first equality is by (S2.59), and the last inequality is based on (S2.56), (S2.60),
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(S§2.65), and Theorem 1. To bound Ag, note that

Ag = max | Z it — E)b' (67 + Li(Go — o) + L) (e — e ) { (G0 — o) + F (agg, — maes ) }|

I<hpsn

§2nl/2||/\1/2[\_1/2 — 1| - max 6707 + ti(do — ao) + L (g, — mweg))| - (max ™ Z G2 V2

I<pnsn
{0 = @0)? + (g, — nug)' ZFF/ Mg, — )}
=1
§014>\ n —1/18 1/2{10g(npn5n)}1/2 eXp{CMQn 10g1/2(nQnSn)}7 (8269)

for some universal constants ¢4 > 0, with probability tending to 1, where the
first equality is by (S2.59), and the last inequality is based on (S2.39), (S2.60),
(S§2.65), Lemma 2 and Theorem 1. By combining (S2.69), (S2.68), (S2.67),
(S2.58), (82.57), (S2.54), (S2.53), (S2.52) with (S2.51), it can be concluded that

there exists a universal constant c¢;5 > 0 such that

n
—1/22 S —
<hosn In - (S

Scl5n_1/2pn{1Og<npn5n)}3/2 eXp{CISQn 10g1/2 (n(JnSn)}+

1/2,, —0+1/2

1512 q, 572 exp{eisgn log' 2 (ngnsn) }

“1861/20 Nog(npesa) }2 exp{cisgn 1og"? (ngnsn) }+

Cl5>\ n
015/\$Ln7/18%t{10g(npn3n)}1/2 eXp{CI5Qn 10g1/2 (n%tsn)}"i_

cisAan VB 20 2 Nog (s, ) 2 exp{eis g log!? (ngnsa) Y,

with probability tending to 1, which completes the proof of part 1). To show part
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2), it follows from triangle inequality that

n

max n” "y (Sy—S5)?
I<hpsn —
1=

SAT+ A+ A3+ A} + A5 + Af + A7+ Ag, (S2.70)

Al = max n ! Z{(z&l —wy) Fe; )2,

I<hpsn

n

A} = max n! Z{(Ezl — Eil)‘fi}Qa

I<hnsn

i=1
n B Pn o0 Pn Sn

A = lg}g}g{ﬂ n! Z[(w;Fz — Eq){b (a0 + Z Z Oijenin) — b (a0 + Z Z Oijknin) 3]
i=1 jfl k=1 jfl k=1

Al = lgllz%?s{n nt Z[(wl —wy) ' F{V (ag + Z Z Oijrnin) — V' (o + Z Z 0ijknji) H

j=1 k=1 J=1 k=1
Al = max nt Z[( 0 — Ea) {0 (o + Zl ; Oikmji) — b (o0 + Zl ; Oijxnin) }]
J J=1 k=

Ay = max n~ Y [(wiF; — Eg){V'(qo + Gi) — V(a0 + Gim)}?,
i=1

A7 = max =ty [(dy —wr) Fi{V (6o + Gi) — V(e + Gin) ),
i=1

A; = max n~ ") [(Ey — Eg){b/(ao + Gin) — V(a0 + Gin)}]*.

i=1

To bound A7, note that

, 2. o — w ) (n-! () —
AT <(maxe|)” - max (i —wp)'(n ZEE)(W w)

nSn

Sclﬁn_lpn 10g2 (n){log(npnsn)} eXp{Cl6Qn 10g1/2 (nQnSn)}a (S271)
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for some universal constant c;¢ > 0, with probability tending to 1, where the last

inequality is based on Lemma 3 and (S2.56). To bound A}, note that

n

* A2A-L/2 72 . nee -1 2
Ay <[[ATEA I - (max|ei])™- (_max n~" 1 Eq)
1=

<cim~Hog?(n){log(npnsn)} exp{cirgn log"*(ngns,)}, (52.72)

for some universal constant ¢;; > 0, with probability tending to 1, where the last

inequality is based on Lemma 2, Lemma 3, and (S2.39). To bound A, note that

Af = max - Z (w{Fs — Ea) (B(5) — B3}

<hnsn
dn dn [e.9)
o S B 3 5 ) (35 )
7=1 k=sp+1 7=1 k=snp+1

dn

<{max|b" (07 +t; Z Z Oiixnin)| 12 - (max max |w]F; — Ey|)?

<hnsn t<n
7=1 k=s,+1

_12(2”: > Oiwni)’

i=1 j=1 k=sp+1

§618qis;25+1{log(npnsn)} expq{cisqn log1/2(nqnsn)}, (S2.73)

for some universal constant c;g > 0, with probability tending to 1, where the

second equality is by (S2.35), and the last inequality is based on Lemma 2,
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Lemma 3, and (S2.36). To bound A%, note that

n

As=max n Y [( —w) F{V(6) — (5}

I<hnsn
1=1
dn e}
R Z{ CEMTTORES S SR TIE) Sl SR
7=1 k=sp+1 7=1 k=sp,+1
S{T?<6}1X|b"(5f+tiz Z Qz‘jkﬁjkﬂ}z'{n_lZ(Z Z Oiginin)?}
- 7=1 k=sp+1 =1 j=1 k=s,+1

(max [|Gilo)® - max ||A &ty — wy)I3
i<n I<hnps

<619TL 1piq721 n26+1{10g(npn3n)} eXP{C19Qn IOg (n(Jnsn)}v (8274)

for some universal constant c;9 > 0, with probability tending to 1, where the
second equality is by (S2.35), and the last inequality is based on Lemma 2,

Lemma 3, Lemma 6, and (S2.36). To bound A, note that

n

Aj = max 0ty [(Ey — Ea){V'(6:) —b(67)})?

lghnsn
=1
n 5 Adn dn
= max nt Z{(Ezl Ea)b" (65 +t; Z Z Oijrnik) - Z Z Oininn) Y
i=1 7=1 k=s,+1 7=1 k=sp+1
dn o0 n dn [e%e]
<{max [b"(57 Y > O An D 00 Y bena)’}
- =1 k=s,+1 i=1 j=1 k=s,+1
(max [|Gilloo)” - IAYZATY — 1|2
SCQOTL qn n25+1{10g(npn3n)} eXp{C2OQn IOg/ (n(ZnSn)}7 (8275)

for some universal constant coy > 0, with probability tending to 1, where the

second equality is by (S2.35), and the last inequality is based on Lemma 2,
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Lemma 3, and (S2.36). To bound A}, first note that it follows from mean value

theorem that for any : < n
V(6o + Gin) — V(o + Gin)
=b"(07 + (o — o) + £ Gi(7 —m)) - {(Go — o) + Gi(h —m)},  (52.76)
for some ¢! € [0, 1]. In addition, we have

max [b"(07 + £ (&0 — ao) + £ Gi() — )|
<exp{max|[0; +1; (o — ao) + 5 G;(7 — )|}
< exp(max |671) - exp{|ao — ao| + max max |Gal - [|AY*(5 = )|}

<co eXp{Can 10g1/2(n(1n8n)}; (S2.77)

for some universal constant co; > 0, with probability tending to 1, where the first
inequality is by (Al), and the last inequality is based on Lemma 2, Lemma 3,

and Theorem 1. To bound A, note that

Ay = max 0=ty [(wiF; — Ea)b" (67 +; (Go — ao) + FG;(7 — ) - {(Go — ao) + Gi(7) — )}

nSn N
i=1

<9{max V(6 + 1 (G0 — ) + G107 — )|} (max maxwfF, — Byl
{(@0 = a0)* + (7 = n)'(n™" Y GG — )}, (52.78)
i=1
where the first equality is by (S2.76). Similar reasoning as (S2.65) leads to

(h=n)(n"" Y GG (7 —n) < eaaXligan™/?, (S2.79)
=1
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for some universal constant co2 > 0, with probability tending to 1. By combining

(82.77), (82.79), Lemma 2, Theorem 1 with (S2.78), we have

AZ S 623n_1/9)\iqn{10g(npn3n)} exp{023Qn 10g1/2(nqn5n)}7 (8280)

for some universal constant co3 > 0, with probability tending to 1. To bound AZ,

note that

n
-1

[(’1171 - wl)/Fz'b”((S; + Z?Z'Q(OACO - 040) + fng(ﬁ - 77)) ) {(540 - Oéo) + G;(ﬁ - 77)}]2

AZ = max n
[<hnsn —
1=

<2{max |V (57 +1; (G0 — o) + F G0 — )|} - max |Az2 (0 —w)]} - (max | Giloo)?

i<n I<hpsn

(@0 — a0’ + () =) (0™ Y GG ~
i=1
<eaun™ N2 g} {log(npnsn) }* exp{casgn log'* (ngusn)}, (S2.81)

for some universal constant co4 > 0, with probability tending to 1, where the first
equality is by (S2.76), and the last inequality is based on Lemma 2, Lemma 6,

Theorem 1, (S2.79), and (S2.77). To bound A}, note that

A§ = ax n 12 — 11 W' (07 + (o — ) + ;G — 1)) - {(do — ) +Gé(ﬁ—77)}]2

hnsn

<2{m<aX " (67 + 17 (G — ) + L Gi(7 — )|} - |AYVPA2 =12, - (max 1Gilloo)*
{(Go — a0)* + (—n) (0" Y GiG})(h -
1=1

<cgsn~ 10/9)\2qn{10g(npnsn)} exp{casqy log (nqnsn)}, (S2.82)

for some universal constant cy5 > 0, with probability tending to 1, where the first
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equality is by (S2.76), and the last inequality is based on Lemma 2, Theorem 1,

(S2.79), and (S2.77). By combining (S2.82), (S2.81), (S2.80), (S2.75), (S2.74),

(S2.73), (S2.72), (S2.71) with (S2.70), we have

n

-1 Q *) 2
max n (Sa—S})
I<hpsn —

1=

<caea s, 2 {log(npnsa) } exp{casdn 10g"* (ngnsn) +
CQGAin_l/QQR{log(npner} exp{CQGQn IOgI/Q(TLQRSn>}+

casn ™" pn log?(n){log(npnsn)} exp{casgn log"/? (ngusn)},

(52.83)

for some universal constant cos > 0, with probability tending to 1. This com-

pletes the proof of part 2). To show part 3), first note that

n n n
1

max n- S2< max n 'Y (Sy—S;)?+ max n 'Yy S

I<hnps I<hnps I<hnps

To bound max<p, s, n~ ' >+, Si?, note that

n

max n- S = max n_ Z(wéFl — Ey)?€
lShnsn l<hn3n i—1
n
<(max &) max 'Y (w)F; — Ey)?
i<n I<hpSn =

<corlog?(n) exp{carqn log"?(ngnsn)},

(S2.84)

(S2.85)

for some universal constant co; > 0, with probability tending to 1, where the last

inequality is based on Lemma 2, Lemma 3, (A2.1), and (A4.1). By combining

(S2.85) and (S2.83) with (S2.84), the assertion in part 3) holds apparently. [
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S3 Proofs of Main Theorems

Proof of Theorem 1. First note that with some abuse of notation, we write (1*, o))
as the true version of some estimator (7, o), and denotes the differences v =
n —n* and » = A'Y?y. Based on the first order necessary condition of the
optimization theory, any local minima (7, &) of Q,(n, ap) from (2.5) in the
main article must satisfy (7, &o) € {(n, a0) : (V,Ln(n, a0) + V, Py, (n),v) <
0, VaoLn(n,a0) = 0, |nl1 + |a|] < B,}. Hence, to show Theorem 1,
it suffices to justify that any estimator (1, ag) € {(n,a0) : (V,Ln(n, a0) +
VoPr,.(n),v) <0, Voo Ln(n,a0) =0, [|n]|i+ |ao| < By} satisfies parts 1)-2)
of Theorem 1. Therefore, we start the proof with an arbitrary estimator (7, «)

satisfying

(1, a0) € {(n, a0) (VyLn(n, a0) + Vy Py, (n),v) <0,

VaoLn(n,a0) = 0, [|n]ly + |ao| < By} (S3.86)
In addition, it can be verified that

<VLn(777 Oéo) - VLn(n*v O‘S)v (V/7 Qo — O‘S)/>

n Pn Sn Pn Sn
=71 D Wloot 3D Buene) = Vleg + DD Ougr)} - (G + o0 — ap))
i=1 j=1 k=1 j=1 k=1

n Pn Sn
—n1 Z b (af + Z Z Oijiny + i Gl + (a0 — a)
=1

j=1 k=1

AG7+ (a0 — o)}, (S3.87)
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for some ¢ € [0, 1], where the last equality holds from mean value theorem.
Similar reasoning as (the proof of) Corollary 2 in Loh and Wainwright (2015)

yields that there exist constants ¢y, co > 0 such that with probability tending to

1:

<VLn(777 aO) - VLn(n*’ O‘S)? (l/v Qo — O'/6>I>
> {||7]]3 + (a0 — af)*} — co{log(npnsn) /n}'? - (| 7]l + oo — aj])

P13+ (00— a2 W P13+ (o ) <1 (S388)

It follows from the arithmetic mean-geometric mean inequality that

ca{log(npusa) /n}" - (7]l + lao — ag]) - {17113 + (a0 — ag)*}?

<27 chey {log(npnsn) /n} (171 + o — og])* + 27 er {713 + (a0 — ag)*}-

Together with (S3.88) yields that with probability tending to 1:

(VLn(n,a0) — VL, (7", ag), (Vlv Qo — O‘S)/>
>27 e {75 4 (0 — ap)*} — 27 ey H{log(npnsn) /n} (171l + lao — ag])?,

V1715 + (o — af)* < 1. (S3.89)
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Together with Lemma 8 in Loh and Wainwright (2015) yields that with proba-

bility tending to 1:

(VL,(n,a0) — VLn(n*a3), (Va0 — af))
>27 ey {||7]I3 + (o0 — o)*}? = {log(npnsa)/n} (7]l + o — ag]),

V715 + (i — af)* > 1. (S3.90)

Denoting the function P, ,,(1) = Py, (1) + 27 un="%% 378" [|©;n;]3, it then
follows from condition (B5) that Py, ,(n) is convex in 1, which entails that

Py, (") = Py, u(n) > —(V Py, .(n), (V, a0 — a)’). This further implies

- <VP>\n (77>7 (Vlv Qo — OZS)/>

Pn
<27 0N 1©;(n; = )13 + Pa () = Pa,(n). (S3.91)

j=1

Next, we start to show that P{||7||3 + (ag — a)* < 1} — 1. It follows from
(S3.90) and (S3.86) that conditional on the event {||7||3 + (g — ) > 1}, we

have

(=V Py, (1) = VL (", ap), (v, a0 — )’y = 27 er{[|7])5 + (a0 — )"}

— {log(npus,) /n} (7] + lao — ag)), (83.92)



S3. PROOFS OF MAIN THEOREMS

with probability tending to 1. To bound the term |(V L,,(n*, of), (v, ap — o5))’)

)

note that

(VLn (17, 0g), (V' a0 — ag)')]

n Pn Sn

=" {Yi=Vag+ )Y i) HGw + (a0 — ap)}|
i=1 =1 k=1

n 5 Pn Sn

<Y S GAY =V (g + DD Oieni) Hise - 1701+
i=1 j=1 k=1
n Pn Sn

Y Y=V (ag+ )Y Gini) H - lao — af

i=1 Jj=1 k=1

<c3]gns, T2 + {log® (nppsa) /n}?) exp{caqn log"/* (ngnsn) }

(17l + o = agl), (83.93)

for some universal constants c3 > 0, with probability tending to 1, where the last

inequality holds from Lemma 3. To bound the term [(V Py, (), (v, a0 — o5)')|»
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note that

(VP (), (Vs a0 = ag)')|

Pn
=1 o\, (2 PN10mill2) n 2 1©msl15  (©m5)©5(ny — )

Pn
<n =N o, (n P 10mil2) |- 11657 — 77l
p7L

<ean™PX D 11651 — )2

j*l

e 1”82 (71640, — )+
( - 77]) {n_l@’@ E( —1@/@ )}(~] . 17]]*)} 1/2

<cshan{|In 7! Z GG} — E(GG)IL + IIE(G G

=1

<cgAan V7|1, (S3.94)

for some universal constants ¢y, c5, cg > 0, with probability tending to 1, where
the second inequality follows from Lemma 1, and the last inequality is based on

(A2.1) and Lemma 2. By combining (S3.93) and (S3.94) with (S3.92), it can be



S3. PROOFS OF MAIN THEOREMS

deduced that conditional on the event {||7||5 + (ap — af)? > 1}, we have
{I1Z[13 + (a0 — ag)*}72
<[erAan ™V 4 70,5797 exp{crgn 1og" * (ngnsn) }+
cr{log?(npasn) /n}'/? exp{crgalog™?(ngusn)}] - (171 + a0 — ag))
<[esAan Y1 + cogns O T2 exp{esqn log"? (ngns,) Y+
cs{1log(npnsy) /n}? exp{csgn log"*(ngnsn)}] - Bn

<1

Y

for some universal constants c7, cg > 0, with probability tending to 1, where the
second inequality is based on the fact that ||7/||; + oo — | < ||v]|1+|ao—af| S

B,,, and the last inequality holds from (A4) and (AS5). This further entails that
P75 + (a0 — ag)? <1} — 1. (S3.95)
Together with (S3.89) yields that with probability tending to 1:
(VLn(n, o) = VLu(n", 05), (v, a0 — ag)')
>eo{[[713 + (a0 — 05)*} — cro{log(npnsa) /n} ([I7[| + e — ag])?,

for some universal constants cg, c1g > 0. Together with (S3.86) yields that with

probability tending to 1:
<_VP>\n (77) - VLn(n*v OzE;), (’/7 Qo — aé),>

>eo{ |73 + (a0 — 05)*} = cro{log(npnsa) /m} ([I7[| + e — ag])*.
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Based on the above discussion, we have that with probability tending to 1:

col 17113 + (a0 — ag)*} — cro{log(npusn) /n} (711 + a0 — ag])?

§<—VP,\H(77) - VLn(n*7 CYS), (V/’ o — aé)l)

Pn
<27 N N0, (m; = )3+ Pa.(n) = Pa.(n) + (=VLa(n", 03), (v, a0 — 03)')

j=1
-1/9 ~112 *\2 *
<cun” |75 + (a0 — ag)"} + P, () — Py (n)+
€11 [QTLS;(S—H/Q + {10g2 (npnsn)/n}l/Q] eXp{CUQn 10g1/2 (nqnsn)}

(7]l + lao = ag)), (53.96)

for some universal constant c;; > 0, where the second inequality follows from
(S3.91), and the last inequality holds from Lemma 4 and (S3.93). Some rear-

rangement of (S3.96) leads to

0 <(cy — ean™ ") {PII3 + (a0 — )}
<en1[gns, " + {log® (nppsn) /n}'?] exp{ciign log"? (ngnsa) } (|71 + oo — o)
+ cro{log(npnsn) /n} (7]l + o — ag])? + Pa, (%) — Pa,(n)
<cra[gns, TP + {log (nppsn) /n}'?] exp{ciagn log"? (ngnsa) (|71 + oo — o)

+ P, (n") — P, (n), (83.97)

for some universal constant c;o > 0, with probability tending to 1, where the

last inequality is based on the fact that ||7||; + |y — | < B, It then follows

from (S3.97) that conditional on the event {|ay — off| > 2cq lclg[qns;Ml/ =
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{log® (npnsn)/n} /% exp{ciagn log"/?(ng,s.)} }, we have

0 <(27 g — ettn ™ ){|17]3 + (a0 — )}
<c19[gns, T + {log® (npasn) /n}'/?) exp{ciagn log"? (ngnsn) | 7|4

+ P, (n") — Py, (n),

with probability tending to 1. Together with Lemma 4 and (AS5.2), it can be de-

duced that conditional on the event { |ag—agj| > 2¢5 ' c1a[gnsn’ >+ {log? (npys,)/n}"/?]
exp{c12qn 10g"/*(ngnsn)} }, we have 0 < [|7[|3+(co—a)? S Pr, () — Pa, (),

with probability tending to 1. Together with part 4) of Lemma 1 yields that con-

ditional on the event {|ay — a| > 2¢5 ' c12 [qns;(prl/2 + {log®(npps,) /n}'/?]

expq{ciaqy logl/2 (nqnsn)}}, we have

17]13 + (00 — og)*

LD 000 =)l = Y 0O (n — m)ll2},  (S3.98)

JEA JEAS

with probability tending to 1. On one hand, (S3.98) implies that conditional on

the event { |cp—agj| > 2¢y 1z [qnsgaﬂ/z—k{logQ(npnsn)/n}1/2] exp{ciaqy 10g1/2(nqnsn)}},
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we have

17113 + (a0 — 0)* S An > 0210 (n; — 15)l2
JEA,

_ . 1/2
S A0 1100 — )3}

JEAR

S A g2 o]

< a7 )5+ (a0 — o)},

with probability tending to 1, where the second last inequality holds from part

1) of Lemma 4. This further entails that conditional on the event {|a0 —aj| >

2¢5 c1a[qnsn % + {log? (npnsn) /n} 2] exp{ciagy log'/?(ngy5,)} }, we have

{1713 + (ap — )} < Aan~ 182, (S3.99)

with probability tending to 1. On the other hand, (S3.98) also implies that con-
ditional on the event {|ag — afj| > 2051012[qnsfl‘sﬂ/2 + {log?(npps,) /n}'?]

exp{ci2qy logl/z(nqnsn)}}, we have

S 0m =)l < > 19501 = 1), (S3.100)

JEAS, JEAR
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with probability tending to 1. Therefore, conditional on the event {|a0 —af| >

209_1012[%8;6“/2 + {log®(npnsn) /n}'?) exp{ciagn 10g1/2(nqnsn)}}, we have

Pn
17l S 7282 105 (n — )l S 2 D 1105(n; — )2
j=1

JEAR

SnT 2 2q P 1100 — )3

JEAR

S22 5]y < Aust/2qun 18, (S3.101)

with probability tending to 1, where the first inequality holds from part 2) of
Lemma 4, the second inequality is based on (S3.100), the fourth inequality fol-
lows from part 1) of Lemma 4, and the last inequality is due to (S3.99). More-
over, it can be verified that

<V77Ln(77, 040) -V Ln<77*7 040)7 V>

Pn Sn

ot Z{b' 00t 303 ) — Voo + 303 )} - (G)

j=1 k=1 j=1 k=1
=n" Zb// &0+Zzemk77]k+tGV> (G;’;)Q’
7=1 k=1

for some #; € [0, 1], where the last equality is by mean value theorem. Similar
reasoning as (the proof of) Corollary 2 in Loh and Wainwright (2015) yields that

there exist constants c3, c14 > 0 such that with probability tending to 1:

<V77Ln (na aO) - VnLn(n*v 010), V)

>ens|| ][5 — cra{log(npnsa) /oy P17l Y Pl < 1.0 (S3.102)
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It follows from the arithmetic mean-geometric mean inequality that
1 1/2 ~ ~
caf{log(npnsn)/n} " |[7]1[|7]]2
<27 cy3 {log(npnsn) /P T + 27 ess |75

Together with (S3.102), (S3.95), and (S3.86) yields that with probability tending

to 1:
(=Vy Py, (n) = VyLn(n*, a0), v)
>27 e |7l — 27 elyerg {log(npasn) /n} 7)1 (53.103)

To bound the term [(V, L, (7%, o), )|,

[(VaLn(n", a0), v)

Pn  Sn
n”! Z{Y —b(e5+ DY b}y (Gio)l+
=1 k=1
Z{b’ D ) WITARIIITES 9) SR L)
j=1 k=1 j=1 k=1
_\nflz{Y -V a0+229wk77]k Giv)|+
=1 k=1
In~ Z(Oéo — ag)b"( O‘o+zzemk7bk+t ag)) - (éiﬂ)‘
=1 k=1
<|ln7t Z Gi{Yi =V (o + Z > Oini) Hioo - 1701+
i=1 j=1 k=1
n B Pn  Sn R
In ™'Y (a0 = ag)Gab"(ag + D > e + T (a0 — ag))lloo - 17111,
i=1 j=1 k=1

(S3.104)
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for some ¢ € [0, 1], where the first equality holds from mean value theorem. To

bound the term [[n=" Y7 | (a0 — af)Gib" (o + D20, 0 ey, + t (o —

a5))||00» note that

n Pn  Sn
In™" > (a0 — ag)Gab" (a5 + D Y igpnic + 15 (a0 — af)) o
i=1 j=1 k=1
n Pn  Sn
<leo = agl - {max n™ Y GIM - max|¥'(ag+ 3 Y Ouge + (a0 = o))
z:l F;nk:in
<lao —ag| - {max n™t } GRY - expmaxag + 3 Y Oujery + (a0 — ag)l)
i=1 ) j=1 k=1 .
<law — af | exp(lao — o) - { max n~! Zl G}’ - exp(max|ag + Zl ; Ougimjil)
- Pl
<erslag — ag| exp(|ag — ag) exp{ci5qy 10g1/2(nqnsn)}, (S3.105)

for some universal constants c;5 > 0, with probability tending to 1, where the
second inequality is based on (A1), and the last inequality follows from (S2.39)
and Lemma 3. Based on (53.105), it can be deduced that conditional on the event

{loo—ap| < 265" cralgnsn”*+{log? (npusa) /n}V/?] exp{eingn log(ngusa) }

we have
n B Pn Sn _
|n Z(ao — o) G (af + Z Z O + 1 (a0 — ) loo
i=1 j=1 k=1

SClG[qn8;6+l/2 + {log2(npnsn)/n}1/2] expq{ci6qn logl/Q(nqnsn)}, (S3.106)

for some universal constants c;4 > 0, with probability tending to 1. By combin-

ing (S3.106) and Lemma 3 with (S3.104), it can be deduced that conditional on
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5+1/2

the event { |ap—a| < 2¢5 ' c12(gnsn +{log®(npps,) /n}'?) exp{ciaqn logl/Q(nqnsn)}},

we have

(Vo Ln (1%, o), 1)

<e17(gns;, % + {log? (npas,) /n} %] exp{eirgn log"? (ngnsn)} - |71,

(S3.107)

for some universal constants ¢;7; > 0, with probability tending to 1. By combin-
ing (S3.107) and (S3.91) with (S3.103), it can be deduced that conditional on the

5+1/2

event {|ap—ag| < 2¢5 ' c1a[gnsn’ P+ {log? (npnsn) /n}? exp{ciaqn log"? (ng,sn)} }

we have

27 e || 215 — 27 ¢y {log(npn sy ) /| 7|13
<c17(gns, T + {log® (npasn) /n}'/?) exp{cirgn log"? (ngysn)} - 7]+

- —10/9Z||@ — )3 + P (7%) — Py, (n),

with probability tending to 1. Together with Lemma 4, (AS.2) and the fac-
t that |[7|; < B, it can be deduced that conditional on the event {|ap —
af| < 2051012[%3;6“/2 +{log?(npnsn ) /n}?] exp{ciagn logl/z(nqnsn)}}, we
have 0 < [|7]|3 < P, (n*) — Py, (n), with probability tending to 1. Togeth-

er with part 4) of Lemma 1 yields that conditional on the event {\oco —af| <
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—5+1/2

25 c12[qnsn + {log?(npns,)/n}"?] exp{ciagn log"/*(ngns,)} }, we have

1205 S Aud D 0721050 — 1)l = Y 0710;(n; — 1) le

JEA, JEAS

(S3.108)

with probability tending to 1. On one hand, (S3.108) implies that conditional on

5+1/2

the event { |ap—ay| < 2¢5 ' c12(gnsn +{log?(npps,)/n}?) exp{ciaqn logl/z(nqnsn)}},

we have

_ * 1/2
1203 S A D 052105005 — 0))lle S M”22 S 1050y — n) 12}

JEA, JEAR

S A 272,

with probability tending to 1, where the last inequality holds from part 1) of
Lemma 4. This further entails that conditional on the event {|ag — o] <

5+1/2

2y c12[qnsn + {log?(npns,)/n}"?] exp{ciag, log"/*(ngns,)} }, we have

17]]2 S Aun™18gY2, (S3.109)

with probability tending to 1. On the other hand, (S3.108) also implies that
conditional on the event {|ag — a| < 2¢5 " cia[gnsn "2 4 Nog®(nppsa) /n )]

expq{ciaqy logl/2 (nqnsn)}}, we have

S 05 =)l < S 105(m = n)les (S3.110)

JEAS JEAR
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with probability tending to 1. Therefore, conditional on the event {|a0 —af| <

209_1012[%8;6“/2 + {log®(npnsn) /n}?) exp{ciagn 10g1/2(nqnsn)}}, we have

P
17l S~ 282> 105 (n — )2 S 2 D 105(m; — )2
j=1

JEAR

RO S CHOTEE S F

JEAR

< 52202 S Ay 2qun ™, (S3.111)

n

with probability tending to 1, where the first inequality holds from part 2) of
Lemma 4, the second inequality is based on (S3.110), the fourth inequality fol-

lows from part 1) of Lemma 4, and the last inequality is due to (S3.109). It fol-

lows from (A5.2) that conditional on the event { lag—a| < 2c5tcia[gnsn o0+1/2
{log®(npnsn)/n}"?] exp{ciaqn logl/Q(nqnsn)}}, we have
lag — ag| = o(A,n~ Y1812, (S3.112)

Based on (S3.112), (S3.111), (S3.109), (S3.101), and (S3.99), it can be deduced

that
P([[7]l2 S Angy/*n~1%) — 1,
P(lag — ag| < )\nqu/zn_l/lg) — 1,

P71l S Ausy*qan 1) = 1,

which completes the proof of Theorem 1. [
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Proof of Theorem 2. Recall the four quantities

n

T(B”‘bz) - n_1/2 Z Sia Te - n_1/2 Z eigia
i=1

i=1
n n

x _ —1/2 * x . —1/2 *

T =n"Y E ST, Tr=n"Y g e:S;,
i—1 i=1

where S = (w'F; — E;)¢;. Note that {S? : i < n} are centered independent

random vectors such that

n

min n 'Yy E(S;?) = min n Y E{(wiF;, — Eq)’¢} > ¢1, (S3.113)

I<hnsn
- =1 - =1
for some universal constant ¢c; > 0, where the last inequality is based on (A2.4).

Next, we proceed the proof by discussing two cases as follows.

Case one: Assume we have
¢;| X; ~ sub-Gaussian(o*?{1 + var(¢;| X;)}), (S3.114)
for all ¢ < n under (A2.3). It then follows that
*|X; ~ sub-Gaussian(o*?(w] F; — Ey)*{1 + var(e;| X;)}), (S3.115)

foralli <mnand! < hy,s,, where S}, = (w F; — Eil)q. Based on Lemma 2 and

Lemma 3, there exists a universal constant ¢, > 0 such that
P(D,) — 1, (S3.116)

where the event D, = {{Xi};‘zl © Max;<, max;<p, s, 0 (W) F; — Eil)Q{l +
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var(e;| X;)} < eoflog(np,s,)} exp{caq, log1/2(nqnsn)}}. Thus, we have

[ﬂ” 10 "5”{ ~ sub-Gaussian(co{log(np,s,)} exp{caqn logl/Q(nqnsn)})H

> Z P, npmem{ S ~ sub-Gaussian(c{log(np,s,)}
{Xi}_ €D,

exp{cagnlog"*(ngnsn) ) H{X | - PUXHL)

= Z Pl npmen{S5]X; ~ sub-Gaussian(ca{log(np,s,)}

{Xi},€Dn
exp{cagy log!? (ngsn) ) P X ] - PUXGHY)

= > PUX}L) = P(Dy),

{Xi}iL1€Dn

where the second equality holds from (S3.115) and the definition of D,,. Togeth-

er with (S3.116) yields that
P, npen{S; ~ sub-Gaussian(v,) }] — 1, (S3.117)

where v,, = co{log(np,s,)} exp{caqy 10g1/2(nqnsn)}. Based on (A4.1), it can
be verified that
v2{log(npns,)}’/n — 0. (S3.118)
By combining (S3.113), (S3.117), (S3.118) with part 2) of Lemma 5, we have
lim sup |P(T* € A) — P.(T} € A)| =0, (S3.119)
N0 g ARe
where the set A®¢ is defined in Lemma 5. Since || 7(82,)—T*||oo = |2 320, (Si—

S¥) |0, it follows from Lemma 7 that there exists a universal constant c3 > 0
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such that

P(|T(B1,) = T*llow = fa) = 0, (S3.120)

where

}3/2

fn =csn™ Y2 p {log(npnsn) }*/? exp{csgn log"? (ngns,) }+

—5+1/2

csn' 2 gns, "2 exp{cagn log' ' (ngnsn) }+

—1/18 1/2q {log(npnsn)}l/Q exp{C3C]n 1ogl/2(nqn8n)}+

C3ARM
cshon™ g, {log(npasa)}* exp{csgn log"?(ngnsn) }+

cshan Y 201 2 fog (np,s,) 12 exp{esgn logt? (ngnsn) }-

To bound || T, — T7*||s. note that for any ¢ > 0,

n

P.(|T. = Tl > ) = Po( max [ " e;(Sy — Sj)| > 1)

I<hnsn
i=1

hnsn
<ZP In~ 1/2262 u—Su)l=1)

hnsn
SQZeXp —{2n~ 12 il — }ie

=1
<2pnSp €XP [ {2 max n- Z il — tQ],

hnsn

where the first inequality is by union bound inequality, and the second inequality

is based on Hoeffding inequality. Plugging ¢ = {2max;<p, s, n"" Z?:l(gil —
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52)2}1/210g'/?(np,s,) into the above inequality yields

n

Pe<||Te - Te*”oo > {QZmaX n! Z(Sz - ;)2}1/2 10g1/2(npnsn))

<hnsn i—1
1=

<on~!' > 0.

Together with Lemma 7, there exists a universal constant ¢, > 0 such that

Pe(HTe - Te*Hoo > gn) 5 0,

where

gn :C4Qn87_15+1/2{10g<npn3n)} eXp{C4Qn 10g1/2<n%13n)}+
cidnn” gy {log(npnsn) } exp{cagn log!* (ngnsn) }+

c4n_1/2p3/2 log(n){log(np,sn)} exp{cagn log!/? (ngnsn)}-
Together with (S3.120), there exists a universal constant c; > 0 such that

P(IT(B1,) = T*lloo = an) =0,

P.|T. = T loo > an) 20, (S3.121)
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where

an =csn~ 2 p,{log(np,s,) }*'? exp{csqn log'/*(ngnsn) }+
csn™ 2 p)/? log(n){log(npnsn)} exp{esan log"* (ngnsn) }+

csn2qys, T2 exp{esqn log"? (g sn) }+

csAan” Y8512, Nog(npns,) } /2 exp{csqn log"? (ngnsn) }+

csAan V8 2012 Nog (s, ) 12 exp{esgn logt? (ngnsn )} +
cshan” g, * {log(npus,)} exp{esaa log"? (ngus,)

csAon™ g, {log(npysn) }'/? exp{esgn log!/? (ngns, )}
Under (A4.3), (AS5.1) and (A5.4), we have
a2{1 +log(h,s,) — loga,} — 0. (S3.122)

By combining (S3.113), (S3.117), (S3.118), (S3.119), (S3.121), (S3.122) with

part 2) of Lemma 5, it can be concluded that

lim sup ‘P(T(ﬂq{n) € A)—P(T, € A)l

n—oo Ac ARe

= lim sup |P(|T(Bn, )| <) — P.(| 2]l < )] =0, (S3.123)

n—oo tZO
under case one that is specified by (S3.114).

Case two: Assume we have

€| X; ~ sub-Exponential (c*?{1 + var(¢;| X;)}), (S3.124)
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for all ¢ < n under (A2.3). It then follows that
*|X; ~ sub-Exponential (o*?|w] F; — Ey|{1 4 var(¢;| X;)}), (S3.125)

foralli <mand! < h,s,, where S}; = (w, F; — Eﬂ)ei. Based on Lemma 2 and

Lemma 3, there exists a universal constant cg > 0 such that
P(D;) — 1, (S3.126)

where the event D = {{X;}, : maxi<, maxicp,, o 2|wjF; — Egl{l +

var(e;| X;)} < co{log(npnsa)}'/? exp{csqn log'/*(ngns,)} }. Thus, we have

Pl npzen{ S5 ~ sub-Exponential (s {log(np,s,)}'/* exp{csq, log'?(ngns,)}) }H

> Z Pk, mpmee{Ss * ~ sub-Exponential(c¢{log(np,s,) />
{XiHo, €Dy

exp{coqn log"*(ngnsn) ) X o | - PUXGYL,)

= Z Pl npmen{Sh ~ sub-Exponential (cg{log(np,s,)}*/2
(X}, eD;

exp{ Con log (1Gn5n) }|{X b } - P{Xi}y)

= ) PUX}L)=P(D;),

(X}, €Dy

where the second equality holds from (S3.125) and the definition of D; . Togeth-

er with (S3.126) yields that

PNy, ﬂh”S"{ ~ sub-Exponential(u,,) }| — 1, (S3.127)
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where u, = cg{log(npns,)}/? exp{ceqn 10g"?*(ngns,)}. Based on (A4.1), it

can be verified that
u® {log(np,s,)}°/n — 0. (S3.128)

By combining (S3.113), (S3.127), (S3.128), (S3.121), (S3.122) with part 1) of

Lemma 5, it can be concluded that

lim sup |P(T(Bu,) € A) — P.(T, € A)

n—oo AEARE

= lim sup |P(|T(Bp, )l < ) = Pe(|[Te]loe < )] =0, (53.129)

n—oo t>0
under case two that is specified by (S3.124).

Finally, the assertion in Theorem 2 holds from (S3.123) and (S3.129). [

Proof of Theorem 3. Given the true 33, , we have

lim ‘Power(ﬂyn) — POwer*(ﬁﬁn”

n—o0
n

= lim |P[|T(Bp,) +n Y (@' Fi = E){ (6o + Eip, + Flims)—

n—00 -
=1

V(o + Fiipg) Hioe < ca(a)] — Pee|

Too+n7 7> (0'F; — Ej):
i=1

{t'(qo + Einp,, + Fiing) — V(o + Fiipg ) Hloo < ca(a)]

< lim sup |P(T(5Hn) € A)—P.(T. € A)‘ =0,

N0 g ARe
where the last equality is by (S3.123) and (S3.129). This completes the proof.

]
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Proof of Theorem 4. First of all, it follows from triangle inequality that

Power™ ()
=Po-[||Tee + 02> (W' F; = E){ (o + By, + Flips,)

=1

— V(G + e ) Hloo > cB()]

n

21 - Pe*[ Te* 00 Z ”n_l/2 Z(I@/F, - Ei){b/(do + Ez{an + Fz/ﬁH%)
i=1
— b (&o + F{ e ) Hloo — ca(a)]. (S3.130)

Moreover, we have that for any ¢ > 0,

n

* [ * > = * _1/2 * A‘ >
Por(|Teslloo > 1) = Pes (max |n Zl e;Sul > t)
hnSn n hnsSn n
<Y Pe(In72) €Syl =) <2 " exp[—{2n7' )~ 87
1=1 i=1 1=1 i=1
<2ppSn exp[—{2lg}13>8<n n! ;Sfl}_ltz], (S3.131)

where the second inequality is by Hoeffding inequality. Plugging ¢ = cp(«) into

(S3.131) yields
cp(a) < {4log(pnsy) - max n”! > SiY
SNhinSn i—1

Together with Lemma 7, there exists a universal constant ¢c; > 0 such that with

probability tending to 1:

cp(a) < ¢ log(n){log(pnsn)}l/2 exp{c1qn 10g1/2(nqnsn)}. (S3.132)
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To bound the term [|[n =2 3" (' Fy — E;){V (6o + Elmp,, + Flijpe ) — U (o +

F/f3¢ ) } || o» note that

n

In™"2 Y (@' F, = E){V (6o + Ein, + Fipg) — (6o + Fipg) oo

i=1

>1I — I, — 115, (S3.133)

where

n

Iy = [0 (W' — ED{V (o + B, + Flips) — V(6o + Flipg ) Hloos
i=1

Iy = "> (i — w) Fi{ (o + Elnpe, + Fiing) — V' (60 + Flig ) }Hloos
i=1

s = [[n "> (E; — E){V' (6o + Ejma, + Fling) — V' (do + Fis) Hiso.

i=1

For 11, it follows from the definition of ,, that with probability tending to 1,
I, > K(pY? + logn){log(npnsn)}/? exp{ K¢, logl/z(nqnsn)}. (S3.134)

Before bounding IIs, first note that it follows from mean value theorem that for

any 1 <n
V(o + Ejm, + Fiipg,) — V(G0 + Fipg)
for some #; € [0, 1]. Similar reasoning as (S2.21) leads to

max 6o + Efiyge + LB, | + max |Elma,| < cagnlog!/?(ngnsy), (S3.136)
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for some universal constant co > 0, with probability tending to 1. Together with

(A1) yields that with probability tending to 1,
max V" (60 + Flfiye + 6:Einn,,)| < exp{cagn logl/z(nqnsn)}. (S3.137)
For I1,, we have

My = max [0~ " (i — wi) Fb" (o + Flipg, + GEm,) - (Eim,)|
=1

I<hnsn
<n'{max 0" (Go + Flig, + EiEimw, )|} - {max | Ejny, |}

{ max (dy — w)'(n™" Y FiF]) iy — wy)}/?
=1

I<hpsn
<caps/*{log(npnsa) }'/? exp{csqn log"* (ngnsn)}, (S3.138)

for some universal constant c3 > 0, with probability tending to 1, where the first
equality is by (S3.135), and the last inequality is based on (S3.136), (S3.137),

and (52.56). For II5, we have

n

I3 = max [n"/*> (Ey — Eq)b(do + Fij + £:Em,) - (B, )|

I<hns

<n'PIAVPATME T - {max b (0 + Fis, + i, )|}

n
{maux| B |} {max n™' > G}

i=1

§C4{10g(npn5n) }1/2 eXp{C4Qn 10g1/2 (nqnsn)}v (83139)

for some universal constant ¢4, > 0, with probability tending to 1, where the first

equality is by (S3.135), and the last inequality is based on (S3.136), (S3.137),
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(S2.39), and Lemma 2. By choosing K > 4(c; + ¢3 + ¢4) in F,, it follows
from (S3.139), (S3.138), (S3.134), (S3.133), and (S3.132) that with probability

tending to 1:

In =72 (@' Fy = E){V (G0 + Efn, + Flipeg) = V(0 + Fing )} loo — ca()

i=1

24_1[{(,071/2 + log n){log(npnsn)}1/2 exp{ K q, logl/z(nqnsn)}. (S3.140)

Plugging t = ||n Y230 (W' F; — E){V (6o + Enm, + Flie) — V(o +

Fiye ) Hloo — cp(e) into (S3.131) yields that with probability tending to 1:

n

Pe{[|Tevlloo = [[n7"2 Y (' Fy = E) {0 (0 + Ejmpe, + Fip) = V(60 + Flipz) Hioo — cp(@)}
i=1
< — -1 G21-1,
<2py, sy exp ( {Zlg}ll%i(nn Zl Si}

n

(In="2> (@' F; = E){V (60 + Bim, + Fiing) — V(G0 + Flig ) Hloo — ca()])-

i=1
(S3.141)

Based on part 3) of Lemma 7, there exists a universal constant c¢5 > 0 such that

with probability tending to 1:

n

1Y 85 < eslog?(n) exp{csgn log"* (ngnsn) }- (S3.142)
=1

max 71
1<hnsn

By choosing K > 4(¢; + ¢34 ¢4+ ¢5) in F,,, it follows from (S3.140), (S3.141),

(S3.142), and (S3.130) that with probability tending to 1:

Power*(By,) >1—2n"".
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This completes the proof. 0
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