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This supplementary is organized as follows. Section A gives two Catoni-type influence
functions that satisfy the Hölder’s continuity assumption. Section B provides three examples
to explain the upper bounds obtained in the main theorems. Additional simulation results
are given in Section C. All technical proofs are collected from Sections D - H. Additional
discussions on algorithms are given in Section I.

A Examples satisfying Hölder continuity

The following two special functions have Hölder’s continuity.

1. (unbounded case):

ϕ1(x) =

{
log(1 + x+ Cε|x|1+ε) x ≥ 0

− log(1− x+ Cε|x|1+ε) x < 0.
(S1)

2. (bounded case):

ϕ2(x) =


− log(1 + A2 + CεA

1+ε
2 ) if x ≤ −A2

− log(1− x+ Cε|x|1+ε) if − A2 ≤ x ≤ 0,

log(1 + x+ Cε|x|1+ε) if 0 < x ≤ A1,

log(1 + A1 + CεA
1+ε
1 ) if x ≥ A1

(S2)

with both |A1|, |A2| > ((1 + ε)Cε)
− 1

ε .

B Illustrative Examples

The messages from our main theorems are

a Theorem 3 applies to the settings when losses could be unbounded without variance,
but the differences of two loss functions (i.e., |f(X)− f ′(X)|) are bounded.

b Theorem 4 can be applied to the settings even if the differences of two loss functions
are unbounded.

In this section, we provide several examples to help readers to understand our theoretical
results.
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L1 regression. In this setting, we let F = {fg(z, y) = |g(z)− y| : g ∈ G} and assume that
E
∣∣g(Z)− Y |1+ε ≤ v for every g ∈ G. For the maximum distance, since

D(fg, fg′) = sup
z,y

||g(z)− y| − |g′(z)− y|| ≤ d∞(g, g′),

the covering number of F under the distance D is bounded by the covering number of G
under the sup norm. Similarly, for the norm dp with p = 1 + ε, we have

dp(fg, fg′) = (E|fg(X)− fg′(X)|p)1/p ≤ (E|g(z)− g′(z)|p)1/p = dp(g, g
′).

Hence the covering number of F under distance the dp is bounded by the covering number
of G under the same distance. Applying Theorem ??, we obtain the following result.

Proposition 1. In the L1-regression problem,

mf̂ −m∗ ≤ 6Lε

(
22+εCεα

εv +
log(2/δ)

αn

)
+ C ′ log(2/δ)

(2α(ε−1)/2

3n
γ1,ε(G, d∞) +

√
αε−1

n
γ2,ε(G, dp)

)
(S3)

with probability 1− δ for any n that satisfies the (α, δ) condition and the η-condition for

η = 2LεA
′
α(δ) + C ′ log(2/δ)

(2α(ε−1)/2

3n
γ1,ε(G, d∞) +

√
αε−1

n
γ2,ε(G, dp)

)

with C ′ = 384C3ε log 2 and p = 1 + ε.

L2 regression. In this setting, we let F = {fg(z, y) = (g(z) − y)2 : g ∈ G} with d∞(g, g′)
being bounded and apply Theorem ?? with some straightforward calculations to get the next
result.

Proposition 2. In the L2-regression problem, it holds that with E[|fg|1+ε] ≤ ∞ for any
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fg ∈ F .

mf̂ −m∗ (S4)

≤ 6Lε(2
εCεα

εv +
log(2/δ)

αn
)

+KC3ε

√
log(8/δ)

nα1−ε
(∆1+ε + E[|Y |1+ε] +

√
8v/nδ)1/(1+ε)γ2,ε(G, d∞)

with probability 1 − 2δ for any n ≥ N0 and a universal constant K. (N0 is still a positive

constant satisfying (α, δ) condition and η-condition and ∆ is a positive constant larger than

diamdp(F)(1+ε)/2.)

Remark S1. The above result applies to the special linear model Y = βTX + ϵ with

E[|ϵ|2(1+ε)] < ∞. Compared to the state of art result (Hsu & Sabato, 2016), our result

is established under an even weaker moment condition, that is, the fourth moment of error

term ϵ does not exist.

Kernel Learning. Consider the following optimization problem,

f̂ = arg min
f=L◦h∈F

{
µ̂f + λn∥h∥2H

}
, (S5)

where F = L ◦ H, where L is a deterministic loss function and H is a reproducing kernel
Hilbert space (RKHS) associated with kernel K(x, y). In this section, we assume L ◦ H is
L1+ε-integrable and takes the form that L(Y − h(X)), loss function L satisfies that |L(Y −
h1(X)) − L(Y − h2(X))| ≤ C(Y )|h1(X) − h2(X)| for any h1, h2 ∈ H where C(Y ) is an
square integrable function. Kernel K is assumed to be a Mercer kernel. Moreover, without
loss of generality, we can always assume the true underlying h∗ has a bounded norm, and
particularly we assume ∥h∗∥2H ≤ 1.
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Proposition 3. In the kernel regression problem described as above, it holds that

mf̂ −m∗ ≤ 6Lε(2
εCεα

εv +
log(2/δ)

αn
+ λn)

+KC3ε log(2/δ)(
2α(ε−1)/2

3n
γ1,ε(L ◦ H, D) +

√
αε−1

n
γ2,ε(L ◦ H, dp))

with probability 1− 2δ for any n ≥ N0 and a universal constant K. (N0 is a large constant

satisfying (α, δ) and η-condition.)

Remark S2. By taking H = {h(Z) | βTZ, , β ∈ Rd} with kernel K(f1, f2) = β1 · β2,

F = {f(X)|(Y − h(Z))2;h ∈ H} and influence function ϕ(x) = x, then (S5) is reduced to

the standard ridge regression

argmin
β

1

n

n∑
i=1

(Yi − βTZi)
2 + λn∥β∥22.

Remark S3. In deep learning, the RKHS can be taken as the space spanned by ReLU

functions.

C Additional Simulations

C.1 Regression with Contamination

We next consider a regression problem with contamination, where we in particular assume
that the clean data follows Yi = XT

i w∗+ξi, where ξi’s are standard normal random variables.
The data are contaminated in the following fashion. Ỹi = Yi with probability 1 − η and
Ỹi = (2ui − 1)ξ̃i with probability η. Here η ∈ (0, 1) is the contamination rate and ξ̃i, ui are
the same as in the previous setting. In this scenario, we fix d = 8 and choose contamination
probability η ∈ {5%, 10%, 20%, 30%, 40%}. The choices of tail parameter, sample size and
w∗ remain the same as in the simulation section of the main paper. The results of estimation
errors are shown in Figure S1.
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Figure S1: Comparison between six methods in regression problems under different contam-
ination rates and shape parameters.

C.2 K-means Clustering

We next consider a K-means clustering problem in this section. The data generation is
described as follows,

Yi = W ∗
ci
+ ξi with ci ∼ Multinom(1, 1,π),

where π = (π1, . . . , πK) such that 0 < πk < 1 and
∑K

k=1 πk = 1. W ∗ = (W ∗
k ) is a d by k

matrix. ξi ∈ Rd and each of its coordinates follows a symmetrized Pareto random variables
as described before.

For optimization, we postulate the following formulation.

min
W

∑
i

min
k∈[K]

l(Yi,Wk), (S6)

where W = (Wk) is a d by k matrix with Wk being its k-th column. We then perform the
following estimation scheme for each of the six algorithms until the convergence.

• For each cluster k, update W
(t+1)
k = W

(t)
k − γtg

(t)
k where g

(t)
k is obtained via using
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ERM-wide (ERM-narrow, Grad-wide, Grad-narrow, Mean or Grad-trim) algorithm.

• For each i, we assign class label ci := argmink l(Yi,W
(t+1)
k ).

In this clustering task, we consider three different settings. (i) We fix d = 2, a = 1 and
let K ∈ {2, 3, 4, 5, 6}. (ii) We fix d = 4, K = 2 and let a ∈ {0.5, 1, 1.5, 2.5, 3.5}. (iii) We
fix d = 2, K = 3 and let η ∈ {5%, 10%, 20%, 30%, 40%}. The sample size is fixed at 1000
and centers W ∗’s are randomly generated from the normal distribution with zero mean and
standard deviation equal to 4. The average of estimation errors (∥Ŵ −W ∗∥2) are provided
in Figure S2.
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Figure S2: Comparison between six methods in k-means clustering problems.

From Figures S1 - S2, we can see the ERM based algorithm always achieves lower esti-
mation errors.

C.3 Comparison with Additional Algorithms

There exist quite a few robust estimation methods in the literature. In this study, we consider
comparing the proposed algorithm with the loss truncation-based algorithm (Y. Xu et al.,
2020) (denoted as algXu), robust coordinate gradient descent method (Merad & Gäıffas,
2023) (denoted s algCD), and adaptive Huber estimator (Sun, Zhou, & Fan, 2020) (denoted
as algada).

The regression setting is specified as follows,

Yi = XT
i w∗ + ξi,
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where ξi’s are noise terms. Three types of noises are considered.

1 (Symmetrized Pareto) ξi = (2ui− 1)ξ̃i with ξ̃i ∼i.i.d. Fpareto(x) and ui = Bernoulli(0.5),
Fpareto(x) = 1− 1

x1+a and p is the shape parameter.

2 (Mixture of Pareto) ξi = ξ̃
(1)
i − b · ξ̃(2)i with ξ̃

(1)
i being the Pareto random variable

with shape parameter p and ξ̃
(2)
i being the other Pareto random variable with shape

parameter p+ u with u ∼ Unif [0, 1]. The constant b is chosen to satisfy E[ξi] = 0.

3 (Pareto and Log-normal) ξi = ξ̃
(1)
i − b · ξ̃(2)i with ξ̃

(1)
i being the Pareto random variable

with shape parameter p and ξ̃
(2)
i being the log-normal random variable with µ = 2, σ =

2. The constant b is also chosen to satisfy E[ξi] = 0.

In Algorithm algXu, we choose the truncation loss as ϕ(x) = log(1+x+x2/2). In Algorithm
algCD, we choose the robust gradient estimator as the median of mean. In Algorithm algada,
we choose λ = 0 since we here consider a non-sparse regression problem. The sample size
is chosen to be 5000. The true parameter w∗ is d-dimensional (d ∈ {5, 10, 20, 40, 80}) and
its entries are randomly chosen from {−2, 2}. Each case is replicated for 50 times and the
average results are given in Figure S3.

By Figure S3, we observe that our method achieves the smallest estimation error in all
six cases, while Algorithm algada, which is originally designed for sparse regression problems,
has the largest estimation error. Different types of noises do not have too much impact on
the estimation results.
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Figure S3: Comparisons with three robust estimation methods under regression problems
with non-symmetric noises.

C.4 Time Comparison with algCD

Moreover, we report the computational time comparisons between the proposed double-
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weighted algorithm and coordinate gradient descent method algCD for the regression task
described in Section C.3 with the first noise type (i.e. symmetric Pareto noise) in Figure S4.
For both methods, the termination criterion is |w(t+1) − w(t)|∞ ≤ 10−4. (For the other two
noise types, the results are similar and hence we omit them here.)
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Figure S4: Box-plots of computational times (unit: second) of two methods.

From Figure S4, we can see that the computational time of the proposed double-weighted
algorithm is smaller and more consistent than the coordinate gradient descent method as d
gets larger. This suggests that our method could be more useful in a large-scale optimization
problem.

C.5 Regression with Multi-dimensional Complex Function

In this study, we consider a regression problem for a more complex function by using Pytorch
platform. The setting is the same as that in Section ?? of the main paper except that the
underlying function is six-dimensional, that is,

f(x) =
3

2
exp{x1/2 + x2 −

√
x3 + 5} − cos{0.01 + |x4 − 2x5 + 3x6|},
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with x = (x1, ..., x6). We fit the data with a two-layer ReLU network with 512 hidden units.
The results are plotted in Figure S5.

As we can see from Figure S5, the proposed method and the trimmed method give the
similar prediction errors, which are larger than e−1 and are quite way from zero. This phe-
nomenon suggests that the prediction error is largely caused by approximation bias instead
of stochastic variability. In other words, the curse of dimensionality is a more severe problem
than the heavy-tailness of the data.
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Figure S5: Prediction Error. The values are reported under log-scale.
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D Proof of Results in Section ??

The following lemma gives the range of Cε in the influence function ϕ.

Lemma S1. A function ϕ satisfying (??) exists if and only if Cε ≥
(

ε
1+ε

) 1+ε
2
(

1−ε
ε

) 1−ε
2
.

Remark S4. Empirically, we find that smaller Cε leads to more robust results. Therefore,

throughout the paper, we can always treat Cε =
(

ε
1+ε

) 1+ε
2
(

1−ε
ε

) 1−ε
2
. When ε = 1, we recover

the coefficient in Catoni (2012), namely C1 = 1/2. (Here the standard convention 00 := 1

applies.)

Proof of Lemma S1. A necessary and sufficient condition for the existence of a function
satisfying (??) is given by

(1− x+ Cεx
1+ε)(1 + x+ Cεx

1+ε) ≥ 1, ∀ x ≥ 0.

After rearrangement, this reduces to

2Cεx
1+ε + C2

εx
2(1+ε) ≥ x2, ∀ x ≥ 0,

which is equivalent to the condition

C2
εx

2ε + 2Cεx
ε−1 > 1, ∀ x > 0. (S7)

The minimum of the expression in the left hand side over x > 0 is achieved at

x∗ =
(1− ε

Cεε

) 1
1+ε

,

and substituting this value in (S7) and solving for Cε produces the desired result.

To prove Theorem ??, if suffices to prove the following Theorem S1 which is the extended
version of Theorem ??.
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We introduce the (h, α, δ)-condition,

Cpα
ε(1− h)−ε <1/2; (S8)

h−εα1+εCpv +
log(2/δ)

n
≤ ε

1 + ε
(1− h)(

1

(1 + ε)Cp

)1/ε; (S9)

h−εCpα
εv + Cpα

ε(1− h)−ε +
log(2/δ)

αn
<1 (S10)

hold. In fact, the condition is very mild since that (S8) - (S10) are easy to be satisfied when
n is large and α is small with any fixed h and δ. Here h is a tuning parameter in (0, 1) and
it appears since “a + bx + c|x|p = 0”-type equation does not admit a closed form solution
and we need to find an approximation to it. In the main paper, we simply treat h = 1

2
for

reader convenience.

Theorem S1. Let {Xi}ni=1 be i.i.d random variables with mean µ and E|X1 − µ|1+ε ≤ v.

Let δ ∈ (0, 1), ε ∈ (0, 1) and h ∈ (0, 1). Assume that (h, α, δ)-condition holds, then we have

the Catoni’s M-estimator µ̃c satisfies

|µ̃c − µ| ≤ 2(h−εCεα
εv +

log(2/δ)

αn
) (S11)

with probability 1− δ. Especially, we take α =
(

log(2/δ)
nCεv

) 1
1+ε

h
ε

1+ε , it holds

|µ̃c − µ| ≤ 4(Cεv)
1

1+εh
−ε
1+ε

( log(2/δ)
n

) ε
1+ε

. (S12)

Proof of Theorem S1. As in Catoni (2012), define

rn(θ) =
n∑

i=1

ϕ
(
α(Xi − θ)

)
,

and note that rn(θ) is non-increasing in θ ∈ R. Using the upper bound on the influence
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function in (??),

E
[
exp(rn(θ))

]
=
(
E
[
exp

(
ϕ
(
α(X1 − θ)

)])n
≤
(
E
[
1 + α(X1 − θ) + Cεα

1+ε|X1 − θ|1+ε
])n

=
(
1 + α(µ− θ) + Cεα

1+εE|X1 − θ|1+ε
)n

.

We will use a convexity upper bound as follows. For any a, b ≥ 0 and 0 < h < 1,

(a+ b)1+ε =
(
h
a

h
+ (1− h)

b

1− h

)1+ε

≤ h
(a
h

)1+ε

+ (1− h)
( b

1− h

)1+ε

=
a1+ε

hε
+

b1+ε

(1− h)ε
. (CB)

Therefore, for any 0 < h < 1,

E|X1 − θ|1+ε ≤ h−εE|X1 − µ|1+ε + (1− h)−ε|µ− θ|1+ε. (S13)

This leads to worse constants than in Catoni (2012), and is the price to pay for the general-
ization. Using the above bound, we obtain

E
[
exp(rn(θ))

]
≤
(
1 + α(µ− θ) + h−εCεα

1+εv + Cεα
1+ε(1− h)−ε|µ− θ|1+ε

)n
≤ exp

(
αn(µ− θ) + nh−εCεα

1+εv + nCεα
1+ε(1− h)−ε|µ− θ|1+ε

)
.

Similarly, using the lower bound on the influence function in (??), we obtain by symmetric
arguments

E
[
exp(−rn(θ))

]
≤ exp

(
− αn(µ− θ) + nh−εCεα

1+εv + nCεα
1+ε(1− h)−ε|µ− θ|1+ε

)
.

Let δ ∈ (0, 1). As in Catoni (2012), we define

B+(θ) = (µ− θ) + h−εCεα
εv + Cεα

ε(1− h)−ε|µ− θ|1+ε +
log(2/δ)

αn
,

B−(θ) = (µ− θ)− h−εCεα
εv − Cεα

ε(1− h)−ε|µ− θ|1+ε − log(2/δ)

αn
.
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By the exponential Markov inequality, we have

P
{
rn(θ) ≥ nαB+(θ)

}
≤

E
[
exp(rn(θ))

]
exp(αnB+(θ))

≤ δ/2,

P
{
rn(θ) ≤ nαB−(θ)

}
≤

E
[
exp(−rn(θ))

]
exp(−αnB−(θ))

≤ δ/2. (S14)

Note that the function B+ is a strictly convex function of θ and B+(θ) → ∞ as |θ| → ∞.
Therefore, B+ has a unique minimum on R, which is achieved at

θ∗ = µ+
1− h

α

( 1

(1 + ε)Cε

) 1
ε
,

so that

min
θ∈R

B+(θ) = B+(θ∗) = h−εαεCεv −
ε

1 + ε

1− h

α

( 1

(1 + ε)Cε

) 1
ε
+

log(2/δ)

αn
.

Suppose that this minimum is non-positive, i.e.

h−εα1+εCεv +
log(2/δ)

n
≤ ε

1 + ε
(1− h)

( 1

(1 + ε)Cε

) 1
ε
. (S15)

Then the equation
B+(θ) = 0

has a real root, and, if the inequality is strict, it has two real roots. Since B+(µ) > 0 and
θ∗ > µ, the roots are larger than µ. Letting z = µ− θ, the equation

B̂+(z) = z + h−εCεα
εv + Cεα

ε(1− h)−ε|z|1+ε +
log(2/δ)

αn
,

has a root z+ = µ− θ+(α) in [−1, 0) using (S10). This is because B̂+(0) > 0 and B̂+(−1) =

h−εCεα
εv +Cεα

ε(1− h)−ε + log(2/δ)
αn

− 1 < 0. Additionally, since |z|1+ε < −z for z ∈ (−1, 0),
we have that

B̂+(z) ≤ z + h−εCεα
εv − Cεα

ε(1− h)−εz +
log(2/δ)

αn
. (S16)



14

We let z+,0 := −h−εCεαεv+
log(2/δ)

αn

1−Cεαε(1−h)−ε and get B̂+(z+,0) < 0 from (S16). Therefore, it holds

µ− θ+(α) > z+,0 = −h−εCεαεv+
log(2/δ)

αn

1−Cεαε(1−h)−ε . Further using (S8), we have

µ− θ+(α) := z+ ≥ −2(h−εCεα
εv +

log(2/δ)

αn
).

By the monotonicity of the root, we know µ̃c ≤ θ+(α). Thus, it holds

µ− µ̃c := z+ ≥ −2(h−εCεα
εv +

log(2/δ)

αn
).

Symmetric arguments establish the bounds in the other direction. Finally, by the spe-

cial choice that α =
(

log(2/δ)
nCεv

) 1
1+ε

h
ε

1+ε , it is straightforward to compute that |µ̃c − µc| ≤

4(Cεv)
1

1+εh
−ε
1+ε

(
log(2/δ)

n

) ε
1+ε

.

E Proof of Results in Section ??

Proof of Theorem ??. According to Theorem ??, we know

P
(
|µ̂f −mf | ≥ 2(2εCεα

εv +
log(2|F|/δ)

αn
)

)
≤ δ

|F|
(S17)

for any fixed f . Therefore, we have

P
(
sup
f∈F

|µ̂f −mf | ≥ 2(2εCεα
εv +

log(2|F|/δ)
αn

)

)
≤

∑
f∈F

P
(
|µ̂f −mf | ≥ 2(2εCεα

εv +
log(2|F|/δ)

αn
)

)
≤ |F| δ

|F|
= δ. (S18)

Finally, by (??), we arrive at that

mf̂ −m∗ ≤ 4(2εCεα
εv +

log(2|F|/δ)
αn

)
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holds with probability at least 1− δ.

The following lemma shows the existence of the Lipschitz constant for the default choice
of influence function ϕ. Therefore, the requirement of ϕ being Lipschitz continuous is not
stringent.

Lemma S2. Consider influence function ϕ(x) = sign(x) log(1 + |x| + Cε|x|1+ε). Then it is

a Lipschitz function with a Lipschitz constant Lε not exceeding max{(1 + (1 + ε)Cε), 1 + ε}.

Proof of Lemma S2. We can easily compute the derivative of ϕ(x) for x ̸= 0. That is,

ϕ′(x) =
1 + (1 + ε)Cε|x|ε

1 + |x|+ Cε|x|1+ε
, (S19)

so |ϕ′(x)| ≤ 1 + ε if |x| ≥ 1 and |ϕ′(x)| ≤ 1 + (1 + ε)Cε if 0 < |x| < 1, showing the claimed
Lipschitz property.

Before proving Lemma ?? and Lemma ??, we need to introduce two approximate func-
tions,

B+
f (µ, η) = (mf − µ) + Cpα

ε(1− h)−ε|mf − µ|p + h−εCpα
εv + η,

B−
f (µ, η) = (mf − µ)− Cpα

ε(1− h)−ε|mf − µ|p − h−εCpα
εv − η,

and let
µ+
f (η) = mf + 2h−εCpα

εv + 2η, µ−
f (η) = mf − 2h−εCpα

εv − 2η.

We additionally introduce the extended η-condition,

Cpα
ε(1− h)−ε2p(h−εCpα

εv + 2η)p−1 < 1, (S20)

where h ∈ (0, 1). It reduces to the η-condition given in the main paper by taking h = 1/2.
Under (??), it is easy to check that both B+

f (µ, η) = 0 and B−
f (µ, η) = 0 have at least one

solution. Furthermore, it can be seen that µ+
f (η) is the upper bound of the smallest root of

B+
f (µ, η) and µ−

f (η) is the lower bound of the largest root of B−
f (µ, η).

Proof of Lemma ??. To prove Lemma ??, we need the following Lemma S3 - Lemma S4.
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Lemma S3. For any fixed f ∈ F and µ ∈ R, it holds

B−
f (µ, 0) ≤ r̄f (µ) ≤ B+

f (µ, 0), (S21)

and, therefore, mf − 2h−ϵCpα
ϵv ≤ µ̄f ≤ mf + 2h−ϵCpα

ϵv. In particular,

B−
f̂
(µ, 0) ≤ r̄f̂ (µ) ≤ B+

f̂
(µ, 0).

For any µ and η such that r̄f̂ (µ) < η, if extended η-condition (S20) holds, then

mf̂ ≤ µ+ 2h−ϵCpα
ϵv + 2η. (S22)

Lemma S4. Let µ0 = mf∗ + Aα(δ). Then on the event,

Ωf∗(δ) := {ω : |µ̂f∗ −mf∗| ≤ Aα(δ)},

the following inequalities hold:

(i.) r̂f̂ (µ0) ≤ 0; (ii.) r̄f∗(µ0) ≤ 0; (iii.) −r̂f∗(µ0) ≤ 2LεAα(δ).

Thanks to above lemmas, we can see that, with probability at least 1− 2δ, it holds

r̄f̂ (µ0) ≤ r̂f̂ (µ0) + r̄f∗(µ0)− r̂f∗(µ0) + |r̄f̂ (µ0)− r̂f̂ (µ0)− r̄f∗(µ0) + r̂f∗(µ0)|
≤ r̂f̂ (µ0) + r̄f∗(µ0)− r̂f∗(µ0) + sup

f∈F
|r̄f̂ (µ0)− r̂f̂ (µ0)− r̄f∗(µ0) + r̂f∗(µ0)|

≤ r̂f̂ (µ0) + r̄f∗(µ0)− r̂f∗(µ0) +Q(µ0, δ)

≤ 0 + 0 + 2LεAα(δ) +Q(µ0, δ)

= 2LεAα(δ) +Q(µ0, δ), (S23)
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where the first inequality in (S23) follows from the triangle inequality, the third inequality
in (S23) follows from the definition of quantile function Q where we define the 1− δ quantile
of supf∈F |Xf (µ)−Xf∗(µ)| by Q(µ, δ), i.e., the minimum possible q satisfying that

P(sup
f∈F

|Xf (µ)−Xf∗(µ)| ≤ q) ≥ 1− δ.

The fourth inequality in (S23) is according to Lemma S4 that r̂f̂ (µ0) ≤ 0, r̄f∗(µ0) ≤ 0 and
−r̂f∗(µ0) ≤ 2LεAα(δ). By choosing h = 1/2, this completes the proof of lemma.

Proof of Lemma S3. We write Y = α(f(X) − µ) and use the fact that ϕ(x) ≤ log(1 +
x+ Cε|x|1+ε). Then

exp{αr̄f (µ)} ≤ exp{E[log(1 + Y + Cε|Y |1+ε)]}
≤ E[1 + Y + Cε|Y |1+ε],

= 1 + α(mf − µ) + CεE[|α(f(X)−mf +mf − µ)|1+ε]

≤ 1 + α(mf − µ) + h−εCεα
1+ϵv + Cεα

1+ε(1− h)−ε|mf − µ|1+ε

≤ exp{αB+
f (µ, 0)}, (S24)

where we use the convexity upper bound as follows,

(a+ b)1+ε ≤ a1+ε

hε
+

b1+ε

(1− h)ε
.

Therefore, we have r̄f (µ) ≤ B+
f (µ, 0) held for any f ∈ F . Recall that µ̄f satisfies r̄f (µ) = 0,

therefore µ̄f ≤ µ+
f (0) ≤ mf + 2h−εCεα

εv. The other side of inequality is similar.

If r̄f̂ (µ) ≤ η, then B−
f̂
(µ, 0) ≤ η which is equivalent to B−

f̂
(µ, η) ≤ 0. Note that r̄f̂ (µ)

is a non-increasing function, µ is then above the largest solution to B−
f̂
(µ, η) = 0. Thus,

µ−
f̂
(η) ≤ µ which implies mf̂ ≤ µ+ 2h−εCpα

εv + 2η. This concludes the proof.

Proof of Lemma S4. For (i.), on Ωf∗(δ) and by the definition of f̂ , we have

µ̂f̂ ≤ µ̂f∗ ≤ mf∗ + Aα(δ) = µ0.

Since r̂f̂ is a non-increasing function of µ, r̂f̂ (µ0) ≤ r̂f̂ (µf̂ ) = 0.
For (ii.), by Lemma S3, µ̄f∗ ≤ mf∗ + 2h−εCεα

εv ≤ mf∗ +Aα(δ) = µ0. Again by the fact
that r̄f∗ is a non-increasing function, we have r̄f∗(µ0) ≤ r̄f∗(µ̄f∗) = 0.
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For (iii.), by Lemma S2, we can get

|r̂f∗(µ0)| = |r̂f∗(µ̂f∗)− r̂f∗(µ0)| ≤ Lε|µ̂f∗ − µ0|
≤ Lε(|µ̂f∗ −mf∗|+ |mf∗ − µ0|)
≤ 2LεAα(δ). (S25)

This implies −r̂f∗(µ0) ≤ 2LεAα(δ).
Proof of Lemma ??. The result is the special case of Lemma S3 by taking µ = µ0 and
h = 1/2.

F Proof of Results in Section ??

Proof of Lemma ??. We let en(T ) := inf{ϵ : N(T, d, ϵ/2) ≤ Nn} with Nn = 22
n
. We can

construct a partition A∗
n such that |A∗

n| ≤ 22
n
and ∆(A) ≤ en(T ) for any A ∈ A∗

n.
By the definition of en(T ), we know that en+1(T ) ≤ en(T ) and for any ϵ < en(T ), it holds

N(T, d, ϵ/2) > Nn, i.e., N(T, d, ϵ/2) ≥ 1 +Nn. So we have

(log(1 +Nn))
1/β((en(T ))

(1+ε)/2 − (en+1(T ))
(1+ε)/2)

= (log(1 +Nn−1))
1/β

∫ en(T )

en+1(T )

(1 + ε)

2
ϵ(ε−1)/2dϵ

≤ (1 + ε)

2

∫ en(T )

en+1(T )

ϵ(ε−1)/2(log(N(T, d, ϵ/2)))1/βdϵ. (S26)

Note that log(1 +Nn) ≥ 2n log 2 for any n ≥ 0, we sum over n and get

(log 2)1/β
∑
n

2(n)/β((en(T ))
(1+ε)/2−(en+1(T ))

(1+ε)/2) ≤ (1 + ε)

2

∫ e0(T )

0

ϵ(ε−1)/2(log(N(T, d, ϵ/2)))1/βdϵ.

Furthermore,

∑
n

2(n)/β((en(T ))
(1+ε)/2 − (en+1(T ))

(1+ε)/2)

=
∑
n≥0

2(n)/β(en(T ))
(1+ε)/2 −

∑
n≥1

2(n−1)/β(en(T ))
(1+ε)/2

≥ (1− 2−1/β)
∑
n≥0

2n/β(en(T ))
(1+ε)/2. (S27)
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Therefore, we have that

∑
n≥0

2n/β(en(T ))
(1+ε)/2 ≤ 1

(log 2)1/β(1− 2−1/β)

1 + ε

2

∫ e0(T )

0

ϵ(ε−1)/2(log(N(T, d, ϵ/2)))1/βdϵ

≤ Cβ,ε

∫ ∞

0

ϵ(ε−1)/2(log(N(T, d, ϵ/2)))1/βdϵ.

Finally, by the definition of γβ,ε(T, d), we have

γβ,ε(T, d)

≤ sup
t∈T

∑
n≥0

2n/β(∆(A∗
n(t)))

(1+ε)/2

≤
∑
n≥0

2n/β sup
t∈T

(∆(A∗
n(t)))

(1+ε)/2

≤
∑
n≥0

2n/β(en(T ))
(1+ε)/2

≤ Cβ,ε

∫ ∞

0

ϵ(ε−1)/2(log(N(T, d, ϵ/2)))1/βdϵ. (S28)

This completes the proof.

Proof of Theorem ??.
By recalling

Xf (µ) =
1

n

n∑
i=1

[
1

α
ϕ(α(f(Xi)− µ))− 1

α
E[ϕ(α(f(Xi)− µ))]], (S29)

we then know

n(Xf (µ)−Xf ′(µ))

=
n∑

i=1

[ 1
α
ϕ(α(f(Xi)− µ))− 1

α
E[ϕ(α(f(X)− µ))]− (

1

α
ϕ(α(f ′(Xi)− µ))− 1

α
E[ϕ(α(f ′(X)− µ))])

]
.
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Using Hölder property of ϕ, we have

Var[
1

α
ϕ(α(f(Xi)− µ))− 1

α
E[ϕ(α(f(X)− µ))]− (

1

α
ϕ(α(f ′(Xi)− µ))− 1

α
E[ϕ(α(f ′(X)− µ))])]

=
1

α2
Var[ϕ(α(f(Xi)− µ))− E[ϕ(α(f(X)− µ))]− (ϕ(α(f ′(Xi)− µ))− E[ϕ(α(f ′(X)− µ))])]

≤ 1

α2
E[(ϕ(α(f(Xi)− µ))− ϕ(α(f ′(Xi)− µ)))2]

≤ C2
3ε

α2
E[|α(f(Xi)− f ′(Xi))|p]

=
C2

3εα
p

α2
(dp(f, f

′))p, (S30)

where dp(f, f
′) := (E[|f(X)− f ′(X)|p])1/p with p = 1 + ε. Additionally, we have

∣∣∣∣E[ϕ(α(f(X)− µ))]− E[ϕ(α(f ′(X)− µ))]

∣∣∣∣
≤ E[

∣∣∣∣ϕ(α(f(X)− µ))− ϕ(α(f ′(X)− µ))

∣∣∣∣]
≤ C3εE[|α(f(Xi)− f ′(Xi))|p/2]
≤ C3εα

p/2(D(f, f ′))p/2. (S31)

Thus we obtain

∣∣∣∣ 1αϕ(α(f(Xi)− µ))− 1

α
E[ϕ(α(f(X)− µ))]− (

1

α
ϕ(α(f ′(Xi)− µ))− 1

α
E[ϕ(α(f ′(X)− µ))])

∣∣∣∣
≤ 2

α
C3εα

p/2(D(f, f ′))p/2. (S32)

Then we can apply Bernstein inequality to get

P(n|Xf (µ)−Xf ′(µ)| > nt)

≤ 2 exp{− n2t2

2(nC2
3εα

pdpp(f, f ′)/α2 + 2C3εαp/2−1(D(f, f ′))p/2nt/3)
}

= 2 exp{− nt2

2(C2
3εα

p−2dpp(f, f ′) + 2C3εαp/2−1(D(f, f ′))p/2t/3)
}. (S33)

We then recall the following lemma, which is Lemma 2.2.10 from Van Der Vaart and Wellner
(1996).
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Lemma S5. Let a, b > 0, assume that the random variables satisfy,

P(|Xi| > x) ≤ 2 exp{−1

2

x2

b+ ax
}

for any x > 0. Then

∥ max
1≤i≤m

Xi∥ϕ1 ≤ 48(a log(1 +m) +
√
b
√

log(1 +m)).

We write X̃i = |Xfi(µ)−Xf
′
i
(µ)|. Then Lemma S5 gives us that

∥ max
1≤i≤m

X̃i∥ϕ1 ≤ 48C3p

(
2αp/2−1

3n
(Dm)

p/2 log(1 +m) +

√
αp−2

n
dp/2p,m

√
log(1 +m)

)
, (S34)

where Dm := maxi D(fi, f
′
i) and dp,m := maxi dp(fi, f

′
i).

We now derive a bound on Q(µ, δ). Consider an admissible sequence (Bn) such that for
all f ∈ F , ∑

n≥0

2n(∆D(Bn(f)))
(1+ε)/2 ≤ 2γ1,ε(F , D)

and an admissible sequence (Cn) such that for all f ∈ F ,

∑
n≥0

2n/2(∆dp(Cn(f)))
(1+ε)/2 ≤ 2γ2,ε(F , dp).

Now we define an admissible sequence by intersecting the elements of (Bn−1) and (Cn−1): set
A0 = {F} and set

An = {B ∩ C : B ∈ Bn−1 and C ∈ Cn−1}.

Define a sequence of finite sets F0 = {f} ⊂ F1 ⊂ · · · ⊂ F such that Fn contains a single
point in each set of An. For any f ′ ∈ F , denote by πn(f

′) the unique elements of Fn in
An(f

′). Then by continuity of ϕ,

Xf ′(µ)−Xf (µ) =
∞∑
k=0

(Xπk+1(f ′)(µ)−Xπk(f ′)(µ)) (S35)
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a.s. Using the fact that ∥ · ∥ϕ1 is a norm and (S34) we have

∥ sup
f ′∈F

|Xf (µ)−Xf ′(µ)|∥ϕ1

≤
∞∑
k=0

∥ max
f ′∈Fk+1

|Xπk+1(f ′)(µ) −Xπk(f ′)(µ)|∥ϕ1

≤ 48C3ε

∑
k

(
2αp/2−1

3n
(∆D(Bk(f

′)))p/2 log(1 + 22
k+1

) +

√
αp−2

n
(∆dp(Ck(f

′)))p/2
√
log(1 + 22k+1)

)

≤ 192 log(2)C3ε

∑
k

(
2αp/2−1

3n
(∆D(Bk(f

′)))p/22k +

√
αp−2

n
(∆dp(Ck(f

′)))p/22k/2
)

≤ 384 log(2)C3ε

(
2αp/2−1

3n
γ1,ε(F , D) +

√
αp−2

n
γ2,ε(F , dp)

)
, (S36)

where we have use the fact that log(1 + 22
k+1

) ≤ 4 log(2)2k.
Since

X ≤ ∥X∥ϕ1 log(2/δ)

with probability at least 1− δ for any sub-exponential random variable X, we conclude that

P
(
sup
f∈F

|Xf (µ)−Xf∗(µ)| ≤ 384 log(2)C3ε

(
2αp/2−1

3n
γ1,ε(F , D) +

√
αp−2

n
γ2,ε(F , dp)) log(2/δ)

))
≥ 1−δ.

In particular,

Q(µ, δ) ≤ 384 log(2)C3ε log(2/δ)

(
2αp/2−1

3n
γ1,ε(F , D) +

√
αp−2

n
γ2,ε(F , dp)

)
(S37)

for every µ.
We put together (??), (S37) and the obvious observation

E|W − EW |p ≤ 2pE|W |p

valid for any random variable W with a finite pth moment with p = 1+ ε. This gives us the
desired result.

Proof of Theorem ??.
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To prove Theorem ??, we further define the following distance dX,X′(f, g) = (
∑n

i=1(Zi(f)−
Zi(g))

2)1/2 to quantify the difference between any two functions f and g, where Zi(f) :=
1
nα
ϕ(α(f(Xi)− µ))− 1

nα
ϕ(α(f(X ′

i)− µ)) for any fixed f .
By calculations, we can derive that

dX,X′(f, g)

=

(
1

n2α2

n∑
i=1

(ϕ(α(f(Xi)− µ))− ϕ(α(f(X ′
i)− µ))− ϕ(α(g(Xi)− µ)) + ϕ(α(g(X ′

i)− µ)))2
)1/2

≤ 1

nα

(
(

n∑
i=1

(ϕ(α(f(Xi)− µ))− ϕ(α(g(Xi)− µ)))2)1/2

+(
n∑

i=1

(ϕ(α(f(X ′
i)− µ))− ϕ(α(g(X ′

i)− µ)))2)1/2
)

≤ C3ε

nα1−p/2

(
(

n∑
i=1

|f(Xi)− g(Xi)|p)1/2 + (
n∑

i=1

|f(X ′
i)− g(X ′

i)|p)1/2
)

=
C3ε

n1/2α1−p/2

(
(
1

n

n∑
i=1

|f(Xi)− g(Xi)|p)1/2 + (
1

n

n∑
i=1

|f(X ′
i)− g(X ′

i)|p)1/2
)

(S38)

with p = 1 + ε.

Next, we provide a lemma that characterizes the relationship between distances and
γ-functionals.

Lemma S6. For any distances d and d1, d2 satisfying that d(t, t′) ≤ a(d1(t, t
′)(1+ε)/2 +

d2(t, t
′)(1+ε)/2), we have

γ2(T, d) ≤ a23/2(γ2,ε(T, d1) + γ2,ε(T, d2)).

Proof of Lemma S6. By the definition of γ-functional, we can find an admissible sequence
(Bn) such that for all t ∈ T ,

∑
n≥0

2n/2(∆d1(Bn(t)))
(1+ε)/2 ≤ 2γ2,ε(T, d1)
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and an admissible sequence (Cn) such that for all t ∈ T ,

∑
n≥0

2n/2(∆d2(Cn(t)))
(1+ε)/2 ≤ 2γ2,ε(T, d2).

Similarly, we could construct an admissible sequence by intersecting the elements in (Bn−1)
and (Cn−1): set A0 = T and set

An = {B ∩ C : B ∈ Bn−1 and C ∈ Cn−1}.

Again An is increasing and has at most 22
n
sets.

By definition of γ2(T, d), we have

γ2(T, d) ≤ sup
t∈T

∑
n≥0

2n/2∆(An(t))

≤ sup
t∈T

∑
n≥0

2n/2a((∆d1(An(t)))
(1+ε)/2 + (∆d1(An(t)))

(1+ε)/2)

(by the relationship between d, d1, d2.)

≤ sup
t∈T

∑
n≥0

2n/2a(∆d1(Bn−1(t)))
(1+ε)/2 + (∆d2(Cn−1(t)))

(1+ε)/2)

≤ a21/2 sup
t∈T

∑
n≥0

2(n−1)/2(∆d1(bn−1(t)))
(1+ε)/2 + (∆d2(Cn−1(t)))

(1+ε)/2)

≤ a21/2
(
sup
t∈T

∑
n≥0

2(n−1)/2(∆d1(Bn−1(t)))
(1+ε)/2 + sup

t∈T

∑
n≥0

2(n−1)/2(∆d2(Cn−1(t)))
(1+ε)/2

)
≤ a23/2(γ2,ε(T, d1) + γ2,ε(T, d2)). (S39)

Therefore, according to inequality (S38) and Lemma S6, we arrive at

γ2(F , dX,X′) ≤ C3p2
3/2

√
nα1−p/2

(γ2,p(F , dX,p) + γ2,p(F , dX′,p)), (S40)

where dX,p(f, g) := ( 1
n

∑
i |f(Xi)− g(Xi)|p)1/p with p = 1 + ε.

Moreover, for any fixed f , we also introduce a symmetrized random variable Z(f) :=∑n
i=1 ϵiZi(f), where ϵi’s are independent Rademacher random variables. By Hoeffding’s
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inequality, we have

Pϵ1,...,ϵn(|Z(f)− Z(g)| > t) ≤ 2 exp{− t2

2dX,X′(f, g)2
}, (S41)

where P(ϵ1,...,ϵn) denotes the probability with respect to the Rademacher variables only.
According to equation (11) in Brownlees, Joly, and Lugosi (2015), we know that

E(ϵ1,...,ϵn)

[
exp{λ sup

f∈F
|

n∑
i=1

ϵi[Zi(f)− Zi(f
∗)]|}

]
≤ 2 exp{λ2L2

εγ2(F , dX,X′)2/4}. (S42)

Next we can compute the high probability bound of supf∈F |Z(F )−Z(f ∗)|. Specifically,
it holds

P(sup
f∈F

|Z(F )− Z(f ∗)| > t)

≤ P(sup
f∈F

|Z(f)− Z(f ∗)| > t | γ2,ε(F , dX,p) ≤ Γδ, γ2,ε(F , dX′,p) ≤ Γδ) + 2P(γ2,ε(F , dX,ε) > Γδ)

≤ EX,X′ [E(ϵ1,...,ϵn)[exp{λ sup
f∈F

|
n∑

i=1

ϵi(Zi(f)− Zi(f
∗))|}]|γ2,ε(F , dX,p) ≤ Γδ, γ2,ε(F , dX′,p) ≤ Γδ]

· exp{−λt}+ δ/4

≤ 2 exp{8C
2
3ελ

2L2
ε

nα2−p
Γ2
δ − λt}+ δ

4
. (S43)

We optimize over λ and it gives λ = tnα2−p

16C2
3εL

2
εΓ

2
δ
. Then the right hand side of (S43) becomes

exp{− t2nα2−p

32L2
εC

2
3εΓ

2
δ
}+ δ/4. By letting t =

√
32C3εLεΓδ

√
log(8/δ)n−1/2α−(1−p/2), we obtain that

P(sup
f∈F

|Z(f)− Z(f ∗)| > t) ≤ δ/2.

A standard symmetrization inequality of tail probabilities of empirical process guarantees
that

P(sup
f∈F

|Xf (µ)−Xf∗(µ)| > 2t) ≤ 2P(sup
f∈F

|Z(f)− Z(f ∗)| > t)

as long as, for any f ∈ F , it holds P(|Xf (µ)−Xf∗(µ)| > t) < 1
2
.

Recall that Xf (µ) − Xf∗(µ) is a mean-zero random variable. Then by Chebyshev’s
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inequality, we know that

Var(Xf (µ)−Xf∗(µ))

t2
≤ (dp(f, f

∗))p

nα2−pt2
<

1

2
. (S44)

Therefore, P(|Xf (µ)−Xf∗(µ)| > t) < 1
2
holds for any f when t >

√
2(diamdp(F))p/2n−1/2α−(1−p/2).

Furthermore, without loss of generality, we can assume C3εLε > 1. Note that 0 <
δ < 1. Thus

√
log(8/δ) > 1/4 and

√
32LεΓδ

√
log(8/δ) ≥

√
2 · diamdp(F) provided that

Γδ > (diamdp(F))p/2. Therefore, we have that

P
(
sup
f∈F

|Xf (µ)−Xf∗(µ)| >
√
32C3εLεΓδ

√
log(8/δ)

nα2−p

)
≤ δ

when Γδ > (diamdp(F))p/2. Similarly, we have

P
(
sup
f∈F

|Xf (µ)−Xf∗(µ)| >
√
32C3εLε(diamdp(F))p/2

√
log(8/δ)

nα2−p

)
≤ δ

when Γδ ≤ (diamdp(F))p/2. To sum up, we have

Q(µ0, δ) ≤
√
32C3εLε max{Γδ, (diamdp(F))p/2}

√
log(8/δ)

nα2−p
. (S45)

By above inequality, (??) and p = 1 + ε, it concludes the proof of Theorem ??.
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G Proof of Results in Section B

Proof of Proposition 2.
It is straightforward to see that

|(g(Zi)− Yi)
2 − (g′(Zi)− Yi)

2 ≤ d∞(g, g′)
(
|Yi − g(Zi)|+ |Yi − g′(Zi)|

)
. (S46)

Thus

dX,p(fg, fg′) ≤ d∞(g, g′)

( 1

n

n∑
i=1

|Yi − g(Zi)|p
)1/p

+

(
1

n

n∑
i=1

|Yi − g′(Zi)|p
)1/p

 ,

with p = 1 + ε. By Chebyshev’s inequality, it holds that

1

n

n∑
i=1

|Yi|p ≤ E[|Y |p] +
√
8v/nδ

with probability at most δ/8. Choosing ∆ to be upper bound of d∞(g, g′) for any g, g′ ∈ G,
we then have

dX(f, f
′) ≤ 21+(2−p)/pd∞(g, g′)

(
∆p + E[|Y |p] +

√
8v/nδ

)1/p
holds with probability at least 1 − δ/8. By definition, it is easy to see that γ2,ε(G, d1) ≤
cγ2,ε(G, d2) for any distances d1, d2 satisfying d1 ≤ cd2. Then, we know that

Γδ ≤ Γδ(∆) := 21+(2−p)/p(∆p + E[|Y |p] +
√

8σ2/nδ)1/p · γ2,ε(G, d∞).

By choosing ∆ large enough, it holds Γδ(∆) ≥ ∆ ≥ diamdp(F)p/2.

Proof of Proposition 3.
By representer theorem, the optimizer of (S5) has the form, ĥ(x) =

∑n
i=1 ciK(xi, x).

Therefore, solving (S5) requires handling with an n by n matrix, which is computationally
expensive in most cases. In the following, we prove a stronger version. We consider a smaller
Hilbert space Hs instead of H.
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Note that the kernel K is a Mercer kernel which admits the approximation

K(x, y) =
∞∑
j=1

λjφ(vj, x)φ(vj, y).

We define a smaller RKHS space

Hs = {h(x) : h(x) =
S∑
i=s

ciφ(vi, x), ci ∈ R},

where vi, i = 1, . . . , S are S features with S ≪ n. Then we practically solve the following
estimator,

f̂Hs = arg min
f=L◦h∈L◦Hs

{µ̂f + λn∥h∥2Hs
}. (S47)

Let m̃∗ := minf∈L◦Hs mf . Given v1, . . . , vS and recalling the fact that γβ,p(L ◦ Hs, d) ≤
γβ,p(F , d) for any β, distance d and sub-space Hs, we apply Theorem ?? or Theorem ??

(simply modifying the proof by setting Aα(δ) = 2εCεα
εv + log(2/δ)

αn
+ λn + err) and obtain

stronger result,

mf̂Hs
− m̃∗ ≤ 6Lε(2

εCεα
εv +

log(2/δ)

αn
+ λn + err) + 2Q1,Hs(δ) (S48)

holds with probability 1− δ. Here err is an approximation error which will be explain later
in this section and

Q1,Hs(δ) = K · C3ε log(2/δ)(
2α(ε−1)/2

3n
γ1,ε(L ◦ Hs, D) +

√
αε−1

n
γ2,ε(L ◦ Hs, dp)).

Remark S5. We can obtain the upper bounds of γ1,ε(L ◦ Hs, D), γ2,ε(L ◦ Hs, dp)) by com-

puting the covering number N(L ◦ Hs, D, ϵ/2) and N(L ◦ Hs, dp, ϵ/2) in specific cases. For

example, suppose loss function L is c1-Lipschitz continuous with respect to argument h(x).

Then N(L ◦Hs, D, ϵ/2) ≤ N(Hs, D, ϵ/2c1) and N(L ◦Hs, dp, ϵ/2) ≤ N(Hs, dp, ϵ/2c1). Write
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C = {(c1, . . . , cs) : ci ∈ [−b, b]} and assume eigen-functions satisfy maxi supx φ(vi, x) ≤

B and maxi E[|φ(vi, X)|p]1/p ≤ B. We know N(Hs, D, ϵ/2c1) ≤ N(C, ℓ1, ϵ/2c1B) and

N(Hs, dp, ϵ/2c1) ≤ N(C, ℓp, ϵ/2c1BS(p−1)/p). Finally, it is know that N(C, ℓ1, ϵ/2c1B) =

O
(
(S
ϵ
)S
)
and N(C, ℓp, ϵ/2c1BS(p−1)/p) = O

(
(
√
S
ϵ
)S
)
. Upper bounds of γ1,ε(L◦Hs, D), γ2,ε(L◦

Hs, dp) is then obtained from Lemma ??.

Then problem is reduced to understanding the difference m̃∗ −m∗. By the definition, we
know

m̃∗ −m∗ = m̃∗ −mf0 +mf0 −m∗ ≤ mf0 −m∗ =: err (S49)

for any f0 ∈ L ◦ Hs. We need to find a suitable f0 = L ◦ h0 such that mf0 −m∗ is as small
as possible (i.e., approximating L ◦ h∗ as close as possible). By definition of mf , we have

mf0 −m∗ = E[L(Y − h0(X))]− E[L(Y − h∗(X))]

≤ E|C(Y )(h0(X)− h∗(X))|
≤

√
E[C2(Y )]

√
E[(h0(X)− h∗(X))2]

≤ C
√

E[(h0(X)− h∗(X))2]. (S50)

by adjusting constant C. The last inequality uses the assumption that C(Y ) is square
integrable.

Since K is a Mercer kernel which satisfies K(x, y) =
∑∞

i=1 λiφi(x)φi(y) with {φi(·)} are

orthonormal bases in L2(X), λi are non-increasing. Then we know K̂(x, y) =
∑S

j=1 λijφij(x)φij(y).

In addition, h∗ can be decomposed as h∗ =
∑∞

i=1 a
∗
iφi(x) satisfying that

∑∞
i=1(a

∗
i )

2/λi ≤ 1.

To this end, we deliberately choose h0(x) =
∑S

j=1 a
∗
ij
φij(x).

∥h0(x)− h∗(x)∥L2 =

√∫
|h0(x)− h∗(x)|2dx

≤

√√√√ ∞∑
i=1

(a∗i )
2 −

S∑
j=1

(a∗ij)
2

≤
√
λi0 , (S51)
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where i0 = argmin{i : i is not in i1, . . . , iS}. The last inequality (S51) uses the fact that

∞∑
i=1

(a∗i )
2 −

S∑
j=1

(a∗ij)
2 =

∞∑
i=i0

(a∗i )
2 ≤ λi0(

∞∑
i=i0

(a∗i )
2/λi) ≤ λi0

( ∞∑
j=1

(a∗j)
2/λj

)
≤ λi0 .

Therefore, with (S50), we have

err = mf0 −m∗ ≤ C
√

λi0

and plug this back into (S48) to conclude the analysis of excess risk, mf̃Hs
− m∗. Finally,

note that err = 0 when Hs = H. This completes the proof.
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H Proof of Results in Section ??

Proof of Theorem ??. The proof consists of two main steps.
Step 1. Our goal here is to obtain the uniform concentration bounds of differences between
gradients g(t)’s and their expectations.

To begin with, we consider the j-th coordinate of the gradient. We let rn,w(θ) =
1
nα

∑n
i=1 ϕ(α(∇fw(Xi)[j]−θ)) and we let θ̂w be the solution to rn,w(θ) = 0. We then consider

the following two cases, where Case 1 is the special case of Case 2.
Case 1. It holds |∇fw1(X)[j]−∇fw2(X)[j]| ≤ R∥w1−w2∥ for any X. (That is, Assumption
A1 is replaced by bounded Lipschitz condition.)
Case 2. It holds |∇fw1(X)[j]−∇fw2(X)[j]| ≤ RB∥w1−w2∥ for any ∥X∥ ≤ B. (Assumption
A1.)

In the first case, we show that the smoothness of the loss function implies a Lipschitz
property of the estimator (He & Shao, 1996; Holland & Ikeda, 2019).

To see this, by Lipschitz assumption, we observe that

1

nα

n∑
i=1

ϕ(α(∇fw1(Xi)[j]−R∥w1 − w2∥ − θ))

≤ rn,w2(θ)

≤ 1

nα

n∑
i=1

ϕ(α(∇fw1(Xi)[j] +R∥w1 − w2∥ − θ)). (S52)

Since ϕ(·−θ) is non-increasing, then θ̂w2 is no greater than the solution to
∑n

i=1 ϕ(α(∇fw1(Xi)[j]+
R∥w1−w2∥− θ)) = 0 and is no smaller than

∑n
i=1 ϕ(α(∇fw1(Xi)[j]−R∥w1−w2∥− θ)) = 0.

It is also easy to see that θ̂w1 ± R∥w1 − w2∥s are the solutions to
∑n

i=1 ϕ(α(∇fw1(Xi) ±
R∥w1 − w2∥ − θ)) = 0, respectively. Therefore, we have

θ̂w1 −R∥w1 − w2∥ ≤ θ̂w2 ≤ θ̂w1 +R∥w1 − w2∥.

In other words,

|θ̂w1 − θ̂w2| ≤ R∥w1 − w2∥. (S53)

This leads to the desired Lipschitz property.
For the second case, it might be hard to directly get the similar Lipschitz property like

(S53). But fortunately, we can find a good proxy estimator that enjoys this property and
the proxy is not far away from the true estimator.



32

We define X̃i,η be the truncation version of Xi at level η, that is,

X̃i,η = Xi1|Xi|≤Bη , (S54)

where Bη is defined in Remark ??. According to Theorem 4 of Chung and Lu (2006), we
know that

P(♯|i : X̃i,η ̸= Xi| ≥ nη + λ) ≤ exp{− λ2

2(nη + λ/3)
}. (S55)

By taking η = 2nη, we have

P(♯|i : X̃i,η ̸= Xi| ≥ 3nη) ≤ δ, (S56)

whenever η ≥ log(1/δ)
n

. In other words, with probability at least 1− δ, there are at most 3nη

X̃i,η’s differ from the original Xi’s. We define the event Egood := {♯|i : X̃i,η ̸= Xi| ≤ 3nη}.
Moreover, we are able to define r̃n,w,η(θ) =

1
nα

∑n
i=1 ϕ(α(∇fw(X̃i,η)− θ)) and let θ̂w,η,ζ be

the solution to r̃n,w,η(θ) = ζ for any fixed ζ. Next, we study the difference between θ̂w,η,ζ and

θ̂w,η,0. Without loss of generality, we assume ζ > 0 and it is easy to see that θ̂w,η,ζ ≤ θ̂w,η,0

by the fact that ϕ is non-increasing.
By assumption A1 and the optimality of w∗, we can obtain that, for any w in the

parameter space and ∥X∥ ≤ B 1
2
, it holds

|∇fw(X)| = |∇fw(X)[j]−∇fw∗(X)[j]| ≤ RB 1
2

∥w − w∗∥ ≤ RB 1
2

Dw,

where Dw is the diameter of parameter space. Let event Esmall,x = {#{i : ∥Xi∥ ≥ B 1
2
} ≥

n/4}. By Hoeffding inequality, we know event Esmall,x happens with probability at least
1− exp{−n/4} ≥ 1− δ for sufficiently large n ≥ 4 log(1/δ).
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On event Esmall,x, it is not hard to get that

ζ = −
∫ θ̂w,η,0

θ̂w,η,ζ

r̃′n,w,η(θ)dθ

= − 1

nα

n∑
i=1

∫ θ̂w,η,0

θ̂w,η,ζ

∂ϕ(α(∇fw(X̃i,η)[j]− θ))

∂θ
dθ

≥ 1

4
· 1
2

∫ θ̂w,η,0

θ̂w,η,ζ

1dθ (S57)

=
1

8
|θ̂w,η,0 − θ̂w,η,ζ |. (S58)

Here (S57) uses the fact that
∂ϕ(α(∇fw(X̃i,η)−θ))

∂θ
≥ 1

2
α under the requirement that α(RB 1

2

+

1)Dw ≤ xc and the assumption ϕ′(x) ≥ 1
2
for |x| ≤ xc.

Therefore, by (S58), we have

θw,η,ζ ≥ θ̂w,η,0 − 8ζ (S59)

for any w and ζ > 0 on event Esmall,x. Similarly, it holds

θw,η,−ζ ≤ θ̂w,η,0 + 8ζ. (S60)

By the assumptions on ϕ, on event Egood, we have

|rn,w(θ)− r̃n,w,η(θ)|

= | 1
nα

n∑
i=1

ϕ(α(∇fw(Xi)[j]− θ))− 1

nα

n∑
i=1

ϕ(α(∇fw(X̃i,η)[j]− θ))|

= | 1
nα

∑
i:Xi ̸=X̃i,η

ϕ(α(∇fw(Xi)[j]− θ))− ϕ(α(∇fw(X̃i,η)[j]− θ))|

≤ 3η · 2A/α (S61)

held for any w and θ, where A := supx |ϕ(x)| (A is finite since ϕ′(x) ≡ 0 when |x| ≥ xcut).
As a result,

r̃n,w,η(θ)−
6Aη

α
≤ rn,w(θ) ≤ r̃n,w,η(θ) +

6Aη

α
,
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Again, by the fact that rn,w(θ) is non-increasing, we have

θ̂w,η, 6Aη
α

≤ θ̂w ≤ θ̂w,η,− 6Aη
α
. (S62)

Together with (S59) - (S60) by taking ζ = 6Aη/α, we arrive at

θ̂w,η,0 −
8 · 6Aη

α
≤ θ̂w ≤ θ̂w,η,0 +

8 · 6Aη
α

. (S63)

We view θ̂w,η,0 as the proxy of θ̂w at level η. (S63) says that the difference between the

proxy and θ̂w is no more than 48Aη
α

on event Egood ∩ Esmall,x. As long as we could choose η

sufficiently small, the proxy θ̂w,η,0 is very close to θ̂w.
Following the proof in Case 1, we can straightforwardly get

|θ̂w1,η,0 − θ̂w2,η,0| ≤ RBη∥w1 − w2∥ (S64)

for any w1, w2. In other words, Lipschitz continuity property (S53) holds for the proxy
estimators.

Note that our goal is to study supw |θ̂w−E[∇fw(X)[j]]|, it is sufficient to study supw∈Nϵ
|θ̂w−

E[∇fw(X)[j]]|, where Nϵ is an ϵ-net over the parameter space. To see this, we take any w
in the parameter space and let w′ ∈ Nϵ with ∥w − w′∥ ≤ ϵ. Therefore, it holds

|θ̂w − E[∇fw(X)[j]]|
≤ |θ̂w′ − E[∇fw′(X)[j]]|

+|θ̂w − E[∇fw(X)[j]]− (θ̂w′ − E[∇fw′(X)[j]])|
≤ |θ̂w′ − E[∇fw′(X)]|+ |θ̂w − θ̂w′ |+ Lf∥w − w′∥ (by Assumption A2)

≤ |θ̂w′ − E[∇fw′(X)[j]]|+ |θ̂w − θ̂w,η,0|+ |θ̂w,η,0 − θ̂w′,η,0|+ |θ̂w′,η,0 − θ̂w′|+ Lf∥w − w′∥ (use proxy)

≤ |θ̂w′ − E[∇fw′(X)[j]]|+ |θ̂w,η,0 − θ̂w′,η,0|+ 2 · 48Aη
α

+ Lf∥w − w′∥ (by (S63))

≤ |θ̂w′ − E[∇fw′(X)[j]]|+ 2 · 48Aη
α

+ (RBη + Lf )∥w − w′∥ (by (S64))

≤ |θ̂w′ − E[∇fw′(X)[j]]|+ 2 · 48Aη
α

+ (RBη + Lf )ϵ (by property of Nϵ). (S65)

As a result, we have that

sup
w

|θ̂w − E[∇fw(X)[j]]| ≤ sup
w∈Nϵ

|θ̂w − E[∇fw(X)[j]]|+ 96Aη

α
++(RBη + Lf )ϵ. (S66)
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In particular, we can take ϵ = ϵ0 :=
96Aη

(RBη+Lf )α
and the above inequality becomes

sup
w

|θ̂w − E[∇fw(X)[j]]| ≤ sup
w∈Nϵ0

|θ̂w − E[∇fw(X)[j]]|+ 192Aη

α
. (S67)

By the basic property of covering number for compact subsets of Eculidean space, we know

|Nϵ0| ≤ (
3Dw

2ϵ0
)d = (

Dw(RBη + Lf )α

64Aη
)d.

By (2.10), we know
P(|θ̂w′ − E[∇fw′(X)[j]]| ≥ Aα(δ

′)) ≤ δ′

for any δ′. By taking δ′ = δ/
(
d(

Dw(RBη+Lf )α

64Aη
)d
)
, we have

P( sup
w∈Nϵ0

|θ̂w′ − E[∇fw′(X)[j]]| ≥ Aα(δ
′)) ≤ δ/d

by the union bound. Together with (S66), we have that

P({sup
w

|θ̂w′ − E[∇fw′(X)[j]]| ≤ Aα(δ
′) +

192Aη

α
} ∩ Egood ∩ Esmall,x) ≥ 1− 2δ − δ/d. (S68)

Note the requirement that 192Aη
α

≤ Aα(δ
′), the term 192Aη

α
can be absorbed into Aα(δ

′) by
multiplying a constant 2. Thus we obtain

P(sup
w

|θ̂w′ − E[∇fw′(X)[j]]| ≤ 2Aα(δ
′)) ≥ 1− 2δ − δ/d. (S69)

Therefore, we complete the first step.

Step 2. We prove the convergence of Algorithm ?? under two scenarios, (1) F is differentiable
and Lf -Lipschitz continuous, (2) F is κ strongly-convex and Lf -Lipschitz continuous.
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For the first scenario, by the Lipschitz continuity, we have

F (w(t+1))− F (w(t)) ≤ ∇F (w(t))(w(t+1) − w(t)) +
Lf

2
∥w(t+1) − w(t)∥2

= −γt∇F (w(t))g(t) +
Lfγ

2
t

2
∥g(t)∥2

= −γt∇F (w(t))(∇F (w(t)) + ζ(t)) +
Lfγ

2
t

2
∥∇F (w(t)) + ζ(t)∥2

≤ −γt∥∇F (w(t))∥2 + γt
√
dĀα(δ)∥∇F (w(t))∥+ Lfγ

2
t (∥∇F (w(t))∥2 + d(Āα(δ))

2),(S70)

where ζ(t) := g(t) − ∇F (w(t)) and, by applying (S69) for each j ∈ [d], it is easy to see that
∥ζ(t)∥ ≤

√
dĀα(δ) holds with probability at least 1− 3δ for any t with Āα(δ) := 2Aα(δ

′).
By direct calculation, we can find that

γt
√
dĀα(δ)∥∇F (w(t))∥+ Lγ2

t d(Āα(δ))
2 ≤ γt − γ2

tLf

2
∥∇F (w(t))∥2

when γt ≤ 4
9Lf

and ∥∇F (w(t))∥ ≥
√
dĀα(δ). Together with (S70), we know

F (w(t+1))− F (w(t)) ≤ −γt − γ2
tLf

2
∥∇F (w(t))∥2 ≤ − 5

18
γt∥∇F (w(t))∥2 (S71)

holds with probability at least 1−3δ. Define Tstop to be the smallest t such that ∥∇F (w(t))∥ ≤√
dĀα(δ). Therefore,

F (w(Tstop))− F (w(0))

=

Tstop−1∑
t=0

F (w(t+1))− F (w(t))

≤
Tstop−1∑

t=0

− 5

18
γt∥∇F (w(t))∥2 (by (S71))

≤ − 5

18
γtd(Āα(δ))

2 (by the definition of Tstop) (S72)

By re-organizing (S72) and recalling the definition that F (w) = mfw and the optimality
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of f ∗ that mf∗ ≤ mf
w
(Tstop)

, then we know

Tstop∑
t=1

γt ≤
18(mf

w(0)
−mf∗)

5d(Āα(δ))2
(S73)

holds with probability at least 1−3δ. This complete the proof by using the assumption that
γt ≡ γ.

In the second scenario, we can compute that

∥w(t+1) − w∗∥ = ∥w(t) − γtg
(t) − w∗∥

≤ ∥∥w(t) − γt∇F (w(t))− w∗∥∥+ γt∥∇F (w(t))− g(t)∥. (S74)

The first term of (S74) can be handled via standard method in Nesterov (2003). It then
follows that

∥w(t) − γt∇F (w(t))− w∗∥2 ≤ (1− 2γtκLf

κ+ Lf

)∥w(t) − w∗∥2.

For the second term, by the same logic, it is bounded via γtζ with statistical error ζ :=√
dĀα(δ).
Therefore, we have

∥w(t+1) − w∗∥ ≤ (
t∏

s=0

at)∥w0 − w∗∥+ ζ(
t∑

s=0

γs

t∏
s′=s+1

as), (S75)

where at =
√

1− 2γtκLf

κ+Lf
and

∏t
s′=t+1 ≡ 1. Especially, if γt ≡ γ and we let a ≡

√
1− 2γκLf

κ+Lf
,

we have

∥w(t+1) − w∗∥ ≤ at+1∥w0 − w∗∥+ ζγ
1− at+1

1− a
. (S76)

Finally, it is bounded that 1−at+1

1−a
≤ γ/(1−

√
1− 2γκLf

κ+Lf
) which concludes the proof.

Proof of Theorem ??.
We do Taylor expansion for

n∑
i=1

ϕ(α(fw(t+1)(Xi)− µ)) (S77)
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and (S77) becomes

n∑
i=1

ϕ(α(fw(t)(Xi)− µ̂(t)) + α(fw(t+1)(Xi)− fw(t)(Xi) + (µ̂(t) − µ)))

=
n∑

i=1

ϕ(α(fw(t)(Xi)− µ̂(t))) +
n∑

i=1

ϕ′(α(fw(t)(Xi)− µ̂(t)))α(fw(t+1)(Xi)− fw(t)(Xi) + (µ̂(t) − µ)) +

+O(
n∑

i=1

α2(fw(t+1)(Xi)− fw(t)(Xi) + (µ̂(t) − µ))2). (S78)

Therefore, let µ(t+1) be the solution to (S77) = 0. It satisfies

µ(t+1) =

∑
i ϕ(α(fw(t)(Xi)− µ̂(t)))

α
∑

i ϕ
′(α(fw(t)(Xi)− µ̂(t)))

+ µ̂(t) +
∑
i

ν
(t)
i (fw(t+1)(Xi)− fw(t)(Xi))

+O(

∑
i α

2(fw(t+1)(Xi)− fw(t)(Xi) + (µ̂(t) − µ(t+1)))2

α
∑

i ϕ
′(α(fw(t)(Xi)− µ̂(t)))

). (S79)

By recalling the update that

µ̂(t+1) = µ̂(t) +
∑
i

ν
(t)
i (fw(t+1)(Xi)− fw(t)(Xi)),

we could compute the difference, err
(t+1)
µ := |µ(t+1) − µ̂(t+1)|,

µ(t+1) − µ̂(t+1) =

∑
i ϕ(α(fw(t)(Xi)− µ̂(t)))

α
∑

i ϕ
′(α(fw(t)(Xi)− µ̂(t)))︸ ︷︷ ︸

term1

+O(

∑
i α

2(fw(t+1)(Xi)− fw(t)(Xi) + (µ̂(t) − µ(t+1)))2

α
∑

i ϕ
′(α(fw(t)(Xi)− µ̂(t)))

)︸ ︷︷ ︸
term2

.

(S80)

We next prove that (i) term1 is Op(err
(t)
µ +err

(t)2
µ ); (ii) term2 is Op(α+αp−1), where p = 1+ε.

We first control the denominator term
∑

i ϕ
′(α(fw(t)(Xi) − µ̂(t))) in term1. By the def-

inition of the Catoni’s influence function, it is easy to see that ϕ′(0) = 1. Moreover, by
(??) - (??), we know that ϕ′(x) ≥ 1/2 when |x| ≤ xc. We then define the index set

I(t)
large := {i : |α(fw(t)(Xi)− µ̂(t))| ≥ xc}. It can be computed that

P(|α(fw(t)(Xi)− µ̂(t))| ≥ xc) ≤ Cαp (S81)
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for a universal constant C. By Hoeffding inequality for binary variables, we have

|I(t)
large| ≤ αpn log n (S82)

with probability going to 1 as n goes to infinity. Therefore, by the property that ϕ′(x) ≤ 1,
we have

n ≥
∑
i

ϕ′(α(fw(t)(Xi)− µ̂(t))) ≥
∑

i∈I(t)
large

ϕ′(α(fw(t)(Xi)− µ̂(t))) ≥ 1

2
(n− nαp log n). (S83)

For the numerator term
∑

i ϕ(α(fw(t)(Xi)− µ̂(t))) in term1, we know

∑
i

ϕ(α(fw(t)(Xi)− µ̂(t))) =
∑
i

ϕ(α(fw(t)(Xi)− µ̂(t)))− 0

=
∑
i

ϕ(α(fw(t)(Xi)− µ̂(t)))−
∑
i

ϕ(α(fw(t)(Xi)− µ(t)))

(since µ(t) is the solution to
∑
i

ϕ(α(fw(t)(Xi)− µ(t))) = 0)

≤
∑
i

αϕ′(α(fw(t)(Xi)− µ̂(t)))|µ̂(t) − µ(t)|+O(nα2|µ̂(t) − µ(t)|2)

= α
∑
i

ϕ′(α(fw(t)(Xi)− µ̂(t)))err(t)µ +O(nα2err(t)2µ ). (S84)

Therefore, the first term can be bounded by,

term1 ≤ α
∑

i ϕ
′(α(fw(t)(Xi)− µ̂(t)))err

(t)
µ +O(nα2err

(t)2
µ )

α
∑

i ϕ
′(α(fw(t)(Xi)− µ̂(t)))

≤ err(t)µ +O(αerr(t)2µ ). (S85)

For term2, we define index set I(t)
x := {i : |fw(t+1)(Xi)−fw(t)(Xi)+(µ̂(t)−µ(t+1))| ≥ x} given

level x. Following the idea of deriving (S69), we know supw |µ̂f −mf | = op(1). Thus both
µ̂(t) and µ(t+1) are bounded by some constant R with probability going to 1. Furthermore,
E[|f (t+1)

w (Xi)− f
(t)
w (Xi) + (µ̂(t) − µ(t+1))|p] ≤ p(E[|f (t+1)

w (Xi)|p] +E[|f (t)
w (Xi)|p] +Rp) ≤ C̃ for

some universal constant C̃.
Again, by adjusting the constant C̃, we can get that

P(|fw(t+1)(Xi)− fw(t)(Xi) + (µ̂(t) − µ(t+1))| ≥ x) ≤ C̃/xp (S86)
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and |I(t)
x | ≤ n log n/xp holds for all fixed x and t with probability going to 1 as n goes to

infinity by using Hoeffding’s inequality.
Then with probability going to 1, the numerator in term2 can be bounded by

∑
i/∈I(t)

1

α2(fw(t+1)(Xi)− fw(t)(Xi) + (µ̂(t) − µ(t+1)))2

+
∑
i∈I(t)

1

α2(fw(t+1)(Xi)− fw(t)(Xi) + (µ̂(t) − µ(t+1)))2

≤ α2|I(t)c
1 |+

∑
i∈I(t)

1

α2(fw(t+1)(Xi)− fw(t)(Xi) + (µ̂(t) − µ))2 (S87)

≤ α2n+

xcut/α∑
k=2

∑
i∈I(t)

k−1−I(t)
k

α2(fw(t+1)(Xi)− fw(t)(Xi) + (µ̂(t) − µ(t+1)))2

≤ α2n+

xcut/α∑
k=2

∑
i∈I(t)

k−1−I(t)
k

α2k2

≤ α2n+ 2α2

∫ xcut/α

1

xn log n/xpdx (Fubini theorem)

≤ α2n+ 2α2n log n(xcut/α)
2−p, (S88)

where, by the definition, xcut is the threshold that ϕ′(x) ≡ 0 if |x| ≥ xcut.
Therefore,

term2 ≤ (α2n+ 2α2n log n(xcut/α)
2−p)/

(α
2
(n− nαp log n)

)
≤ 5(log n)(α + αp−1). (S89)

Putting everything together, we have

err(t+1)
µ ≤ err(t)µ +O(αerr(t)2µ ) + 5(log n)(α + αp−1). (S90)

By the choice of α = O(n−c0) for some constant c0 ∈ (0, 1), αerr
(t)2
µ is smaller than (log n)(α+

αp−1) for any t ≤ Tend(ϱ). Thus we have

err(t+1)
µ ≤ err(t)µ + 6(log n)(α + αp−1) (S91)
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and it arrives at

err(t)µ ≤ 6t(log n)(α + α(p−1)) (S92)

for any t ≤ Tend(ϱ). This also implies that µ̂(t+1) = µ(t+1) + O(err
(t)
µ ) = mf

w(t+1)
+ op(1) +

O(err
(t)
µ ) is bounded from above.

Moreover, we compare the difference between weights ν̃i :=
ϕ′(α(f

w(t) (Xi)−µ(t)))∑
i ϕ

′(α(f
w(t) (Xi)−µ(t)))

and ν
(t)
i .

That is,

|ν̃i − ν
(t)
i |

= | ϕ′(α(fw(t)(Xi)− µ(t)))∑
i ϕ

′(α(fw(t)(Xi)− µ(t)))
− ϕ′(α(fw(t)(Xi)− µ̂(t)))∑

i ϕ
′(α(fw(t)(Xi)− µ̂(t)))

|

≤ ||(
∑

i ϕ
′(α(fw(t)(Xi)− µ̂(t)))−

∑
i ϕ

′(α(fw(t)(Xi)− µ(t))))ϕ′(α(fw(t)(Xi)− µ(t)))|∑
i ϕ

′(α(fw(t)(Xi)− µ(t))) ·
∑

i ϕ
′(α(fw(t)(Xi)− µ̂(t)))

|

+| |(ϕ
′(α(fw(t)(Xi)− µ̂(t)))− ϕ′(α(fw(t)(Xi)− µ(t)))) ·

∑
i ϕ

′(α(fw(t)(Xi)− µ(t)))|∑
i ϕ

′(α(fw(t)(Xi)− µ(t))) ·
∑

i ϕ
′(α(fw(t)(Xi)− µ̂(t)))

|

≤ Cϕ′′nαerr(t)µ /(
∑
i

ϕ′(α(fw(t)(Xi)− µ(t))) ·
∑
i

ϕ′(α(fw(t)(Xi)− µ̂(t))))

+Cϕ′′αerr(t)µ /
∑
i

ϕ′(α(fw(t)(Xi)− µ̂(t)))

≤ 3Cϕ′′αerr(t)µ /n, (S93)

where Cϕ′′ := maxx:|x|≤xcut ϕ
′′(x) and the last inequality uses the fact that

∑
i ϕ

′(α(fw(t)(Xi)−
µ̂(t))) ≥ 1

2
(n− nαp log n) by (S83).

As a result, by recalling the definition of gradient g(t), we could get that

|ζ(t)| := |∇wµ̂f
w(t)

− g(t)|

≤
∑
i

|ν̃i − ν
(t)
i | · |∇wfw(t)(Xi)|

≤
∑
i

3Cϕ′′αerr
(t)
µ

n
|∇wfw(t)(Xi)|

≤ 3C̃αerr(t)µ , (S94)

elementwisely with probability going to 1, by adjusting the constant C̃. The last inequality
uses the fact that, with probability going to 1,

∑
i |∇wfw(Xi)|/n is uniformly upper bounded

from above.
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Finally, we analyze the difference µ̂f of at each time step,

µ̂f
w(t+1)

− µ̂f
w(t)

≤ ∇wµ̂f
w(t)

(w(t+1) − w(t)) +
L

2
∥w(t+1) − w(t)∥2

= −γt∇wµ̂f
w(t)

g(t) +
Lγ2

t

2
∥g(t)∥2

= −γt∇wµ̂f
w(t)

(∇wµ̂f
w(t)

+ ζ(t)) +
Lγ2

t

2
∥∇wµ̂f

w(t)
+ ζ(t)∥2

≤ −γt∥∇wµ̂f
w(t)

∥2 + γt∥∇wµ̂f
w(t)

∥∥ζ(t)∥+ Lγ2
t (∥∇wµ̂f

w(t)
∥2 + ∥ζ(t)∥2), (S95)

When ∥∇wµ̂f
w(t)

∥ ≥ 2∥ζ(t)∥ and γt ≤ 1/5L, we have

µ̂f
w(t+1)

− µ̂f
w(t)

≤ −1

4
γt∥∇wµ̂f

w(t)
∥2. (S96)

Moreover, from (S92) and (S94), we know ∥ζ(t)∥ ≤
√
dC̃αp36t(log n). Since Tend(ϱ) :=

min{t : ∥∇wµ̂f
w(t)

∥ ≤ ϱ}, therefore we have

Tend(ϱ) ≤
µ̂f

w(0)

γϱ2
(S97)

as long as

ϱ ≥
√
dC̃αp36t(log n) (S98)

holds for any t ≤ Tend(ϱ). In other words, it suffices to have ϱ ≥
(
36C̃αp

√
d(log n)

µ̂f
w(0)

γ

)1/3
to make (S98) held. This concludes the proof.

I More Discussions on Algorithm ??

Remark S6 (Comparison with Truncated Loss-based Methods). By straightforward

calculations, we can find that the truncated loss based method (L. Xu, Yao, Yao, & Zhang,

2023; Y. Xu et al., 2020) is equivalent to assigning weight ν
(t),trunc
i =

ϕ′(α(f
w(t) (Xi)))∑

i ϕ
′(α(f

w(t) (Xi)))
to
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sample i in the t-th step. Then the following two observations explain why our algorithm is

preferable. (i) Since E[fw(X)] = mfw which is usually non-zero, therefore we should assign

larger weights to those samples Xi’s with fw(Xi) closer to mfw rather than those with fw(Xi)

closer to 0. Therefore, truncated loss based method can lead to a larger bias than ours.

(ii) Consider the weight formula ν
(t)
i (µ) =

ϕ′(α(f
w(t) (Xi)−µ))∑

i ϕ
′(α(f

w(t) (Xi)−µ))
by treating µ as an additional

tuning parameter. Therefore, the truncated loss based method always fixes µ ≡ 0 while our

method allows µ to be updated adaptively.

Remark S7 (Comparison with Coordinate Descent Methods). In the optimization

literature, coordinate gradient descent (CD) is another popular approach. However, for the

model with a large number of parameters, CD is less computationally efficient since each

forward pass (i.e. the computation of loss value) is only used for one parameter update.

Moreover, CD is very uncommon to be implemented in deep learning framework, since it

requires sampling a single parameter coordinate throughout different neural layers in each

update.
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