Supplementary to “Empirical Risk Minimization for
Losses without Variance”



This supplementary is organized as follows. Section [A] gives two Catoni-type influence
functions that satisfy the Holder’s continuity assumption. Section |B|provides three examples
to explain the upper bounds obtained in the main theorems. Additional simulation results
are given in Section [C] All technical proofs are collected from Sections [D] - [Hl Additional
discussions on algorithms are given in Section [I|

A Examples satisfying Holder continuity

The following two special functions have Holder’s continuity.

1. (unbounded case):

log(1 + z + C.|x|'*e) x>0
¢1(x) = 1+e
—log(l —z+ C.|z|'*®) x<0.

2. (bounded case):

— 10g(]_ + AQ -+ C€A§+€) if z S —Ag

—log(1 —z + C.lz|™5) if — Ay <2 <0,
P2(7) = e . (52)
log(1 4 x + C.lz|'™9) if 0 <z <Ay,

log(1+ Ay + C.AT™) if x > Ay

with both |A;|, [As| > ((1+¢)C.)"=.

B Illustrative Examples

The messages from our main theorems are

a Theorem 3 applies to the settings when losses could be unbounded without variance,
but the differences of two loss functions (i.e., | f(X) — f/(X)|) are bounded.

b Theorem 4 can be applied to the settings even if the differences of two loss functions
are unbounded.

In this section, we provide several examples to help readers to understand our theoretical
results.



L, regression. In this setting, we let F = {f,(z,y) = |g(2) —y| : ¢ € G} and assume that
E|g(Z) = Y|"** < v for every g € G. For the maximum distance, since

D(fg, fgr) = sup|lg(2) —yl — |9'(2) —yl| < dw(g,9),

the covering number of F under the distance D is bounded by the covering number of G
under the sup norm. Similarly, for the norm d, with p =1 + ¢, we have

dy(fy, f) = (EIfy(X) = fy(X)P)? < (Elg(2) — ¢'(2)[")"" = d, (9, 9)-

Hence the covering number of F under distance the d, is bounded by the covering number
of G under the same distance. Applying Theorem ?7, we obtain the following result.

Proposition 1. In the L,-regression problem,

log(2/4 2a/e71)/2 [as—1
mj—m" < 6L, (22“6’5&51) + M) + C"log(2/6) (OZTVLE(Q, dso) + an V2.6 (G, dp)>

an

(S3)
with probability 1 — 0 for any n that satisfies the (cv,d) condition and the n-condition for

Oé(g_l)/2 e—1

0= 2L. A (8) + C'log(2/5) (Tm(g, do) +

122(9.dy))

n

with C' = 384C5.log2 and p =1+ <.

Ly regression. In this setting, we let F = {f,(z,y) = (9(2) —y)* : g € G} with dw(g, ')
being bounded and apply Theorem 7?7 with some straightforward calculations to get the next
result.

Proposition 2. In the Ly-regression problem, it holds that with E[|f,|'T] < oo for any



Jq € F.

m;—m" (S4)

< GL.(2C.afy+ 282/,
an

log(8/d
IO [P (At Ry 9] 4 /B0 03, (G, )

l—¢

with probability 1 — 20 for any n > Ny and a universal constant K. (Ny is still a positive

constant satisfying («, ) condition and n-condition and A is a positive constant larger than

diamg, (F)1+9)/2))

Remark S1. The above result applies to the special linear model Y = BTX + € with
E[|e]?1+9)] < co. Compared to the state of art result (Hsu € Sabato, 2016), our result
1s established under an even weaker moment condition, that is, the fourth moment of error

term € does not exist.

Kernel Learning. Consider the following optimization problem,

. (. )
f —argf:gl;}{lef{uﬁknllhlly}’ (S5)

where F = L o ‘H, where L is a deterministic loss function and H is a reproducing kernel
Hilbert space (RKHS) associated with kernel K (x,y). In this section, we assume L o H is
L1, -integrable and takes the form that L(Y — h(X)), loss function L satisfies that |L(Y —
hi(X)) — LY — hao(X))| < C(Y)|hi(X) — ho(X)| for any hy, hy € H where C(Y) is an
square integrable function. Kernel K is assumed to be a Mercer kernel. Moreover, without
loss of generality, we can always assume the true underlying ~A* has a bounded norm, and
particularly we assume ||h*||3, < 1.



Proposition 3. In the kernel regression problem described as above, it holds that

log(2/4)
an
(e-1)/2 e

2
+ KCs, log(2/6)(a3—n%,a([/ oH,D)+

my — m* < 6L.(2°C.av + + )

Noc(LoH, dp))

n

with probability 1 — 26 for any n > Ny and a universal constant K. (Ny is a large constant

satisfying (o, 0) and n-condition.)

Remark S2. By taking H = {h(Z) | 8YZ,,5 € R4} with kernel K(f, f2) = Bi - P,
F={f(X)|(Y —h(Z))* h € H} and influence function ¢(z) = z, then is reduced to

the standard ridge regression

n

1
in = (Vi = 67Z) + AalBI3.
argmin — 3 _(Y; = B Z)° + Xl |1

i=1

Remark S3. In deep learning, the RKHS can be taken as the space spanned by ReLU

functions.

C Additional Simulations

C.1 Regression with Contamination

We next consider a regression problem with contamination, where we in particular assume
that the clean data follows Y; = XiT wy +&;, where &;’s are standard normal random variables.
The data are contaminated in the following fashion. Y; = Y; with probability 1 — 7 and
Y; = (2u; — 1)& with probability 5. Here 5 € (0,1) is the contamination rate and &, u; are
the same as in the previous setting. In this scenario, we fix d = 8 and choose contamination
probability n € {5%, 10%, 20%, 30%, 40%}. The choices of tail parameter, sample size and
w* remain the same as in the simulation section of the main paper. The results of estimation
errors are shown in Figure [S1]
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Figure S1: Comparison between six methods in regression problems under different contam-
ination rates and shape parameters.

C.2 K-means Clustering

We next consider a K-means clustering problem in this section. The data generation is
described as follows,

Y; = W +§&; with ¢; ~ Multinom(1,1, ),

where 7 = (my,...,7mx) such that 0 < m, < 1 and S0 7, = 1. W* = (W;)isadby k
matrix. €, € R? and each of its coordinates follows a symmetrized Pareto random variables
as described before.

For optimization, we postulate the following formulation.

min » min I(Y;, W), (S6)

w ; ke[K]

where W = (W}) is a d by k matrix with Wy being its k-th column. We then perform the
following estimation scheme for each of the six algorithms until the convergence.

e For each cluster k, update Wk(tﬂ) = W,Et) - %g,(:) where gl(f) is obtained via using



ERM-wide (ERM-narrow, Grad-wide, Grad-narrow, Mean or Grad-trim) algorithm.
e For each i, we assign class label ¢; := arg ming (Y}, Wk(tﬂ)).

In this clustering task, we consider three different settings. (i) We fix d = 2, a = 1 and
let K € {2,3,4,5,6}. (ii) We fix d = 4, K = 2 and let a € {0.5,1,1.5,2.5,3.5}. (iii) We
fix d =2, K = 3 and let n € {6%, 10%, 20%, 30%,40%}. The sample size is fixed at 1000
and centers W*’s are randomly generated from the normal distribution with zero mean and
standard deviation equal to 4. The average of estimation errors (|| — W*||3) are provided

in Figure
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Figure S2: Comparison between six methods in k-means clustering problems.

From Figures [ST] - [S2, we can see the ERM based algorithm always achieves lower esti-
mation errors.

C.3 Comparison with Additional Algorithms

There exist quite a few robust estimation methods in the literature. In this study, we consider
comparing the proposed algorithm with the loss truncation-based algorithm (Y. Xu et al.|
2020) (denoted as algx,), robust coordinate gradient descent method (Merad & Gaiffas,
2023) (denoted s algcp), and adaptive Huber estimator (Sun, Zhou, & Fan| 2020) (denoted

as alGada)-
The regression setting is specified as follows,



where &;’s are noise terms. Three types of noises are considered.

1 (Symmetrized Pareto) & = (2u; — 1)5, with f, ~iid Fpareto(x) and u; = Bernoulli(0.5),

Foareto(z) =1 — # and p is the shape parameter.

2 (Mixture of Pareto) & = fi(l) —b- éi(z) with 51) being the Pareto random variable
with shape parameter p and 5§2) being the other Pareto random variable with shape

parameter p + u with u ~ Unif[0,1]. The constant b is chosen to satisfy E[¢;] = 0.

3 (Pareto and Log-normal) & = £§1) —b- §§2) with él) being the Pareto random variable
with shape parameter p and 552) being the log-normal random variable with y = 2,0 =

2. The constant b is also chosen to satisfy E[¢;] = 0.

In Algorithm algx,, we choose the truncation loss as ¢(z) = log(1+z+2%/2). In Algorithm
algcp, we choose the robust gradient estimator as the median of mean. In Algorithm alg,q4q,
we choose A = 0 since we here consider a non-sparse regression problem. The sample size
is chosen to be 5000. The true parameter w* is d-dimensional (d € {5, 10,20,40,80}) and
its entries are randomly chosen from {—2,2}. Each case is replicated for 50 times and the
average results are given in Figure [S3|

By Figure [S3] we observe that our method achieves the smallest estimation error in all
six cases, while Algorithm alg,q4,, which is originally designed for sparse regression problems,
has the largest estimation error. Different types of noises do not have too much impact on
the estimation results.
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Figure S3: Comparisons with three robust estimation methods under regression problems
with non-symmetric noises.

C.4 Time Comparison with algcp

Moreover, we report the computational time comparisons between the proposed double-



weighted algorithm and coordinate gradient descent method algcp for the regression task
described in Section with the first noise type (i.e. symmetric Pareto noise) in Figure[S4]
For both methods, the termination criterion is |w*" —w®|, < 107*. (For the other two
noise types, the results are similar and hence we omit them here.)
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Figure S4: Box-plots of computational times (unit: second) of two methods.

From Figure we can see that the computational time of the proposed double-weighted
algorithm is smaller and more consistent than the coordinate gradient descent method as d
gets larger. This suggests that our method could be more useful in a large-scale optimization
problem.

C.5 Regression with Multi-dimensional Complex Function

In this study, we consider a regression problem for a more complex function by using Pytorch
platform. The setting is the same as that in Section 7?7 of the main paper except that the
underlying function is six-dimensional, that is,

3
f(x) = 2 exp{z1/2 + x93 — Vx5 + 5} — cos{0.01 + |24 — 225 + 3z¢|},



with z = (21, ...,x6). We fit the data with a two-layer ReLU network with 512 hidden units.
The results are plotted in Figure [S5]

As we can see from Figure [S5] the proposed method and the trimmed method give the
similar prediction errors, which are larger than e~! and are quite way from zero. This phe-
nomenon suggests that the prediction error is largely caused by approximation bias instead
of stochastic variability. In other words, the curse of dimensionality is a more severe problem
than the heavy-tailness of the data.

6D-case
~ o Ol Method
\'\. —— DW
- - \"o. Trim
TSl Van
Tro.2_|-o- Clip
B o4 o d_
e ~ o
L <
N
I
o
T T T T T
1.2 1.4 1.6 1.8 2
Y

Figure S5: Prediction Error. The values are reported under log-scale.
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D Proof of Results in Section 77

The following lemma gives the range of C. in the influence function ¢.

Lemma S1. A function ¢ satisfying (?77) exists if and only if C. > (ﬁ) ’ (ﬁ> °

Remark S4. Empirically, we find that smaller C. leads to more robust results. Therefore,
1+¢e l—e

throughout the paper, we can always treat C. = (ﬁ) ’ (15;€> * . Whene = 1, we recover

the coefficient in |Catona (2012), namely Cy = 1/2. (Here the standard convention 0° := 1
applies.)
Proof of Lemma A necessary and sufficient condition for the existence of a function
satisfying (?7) is given by

(1—z+Ca'™)(1+a+Ca'™)>1, V>0
After rearrangement, this reduces to

20 1+ + Cfo(HE) > 22 Vx>0,

which is equivalent to the condition

C?2% 4202 > 1, Vo >0. (S7)

The minimum of the expression in the left hand side over x > 0 is achieved at

(5
T\ Ce ’

and substituting this value in and solving for C. produces the desired result. m

To prove Theorem ?7?, if suffices to prove the following Theorem [S1| which is the extended
version of Theorem 77.



We introduce the (h, «, d)-condition,

Cpa®(1—h)° <1/2;

_ log(2/9) £ 1
h € 1+€C < 1A (———M
@Gt _1—|—5( )((1—|—8)Cp)
log(2
h=*Cpav + Cpa®(1 — h) ™ + # <1

11

(S8)
Ve, (S9)

(S10)

hold. In fact, the condition is very mild since that - are easy to be satisfied when
n is large and « is small with any fixed h and §. Here h is a tuning parameter in (0, 1) and
it appears since “a + bx + c|z|P = 0”-type equation does not admit a closed form solution
and we need to find an approximation to it. In the main paper, we simply treat h = % for

reader convenience.

Theorem S1. Let {X;}, be i.i.d random variables with mean u and E|X; — p|'™ < v.

Let o € (0,1), € € (0,1) and h € (0,1). Assume that (h, «, 0)-condition holds, then we have

the Catoni’s M-estimator pi. satisfies

log(2/9)

i — 1l < 20h*Cea®v +
an

)

_1
€

with probability 1 — &. Especially, we take o = <M> T , it holds

nCev

~ 1 —e rlog(2/0)\ 1=
e — p| < 4(Cv) T i (%) =

Proof of Theorem As in [Catoni| (2012)), define

(0) =30 (a(xi- ).

(S11)

(S12)

and note that r,(0) is non-increasing in # € R. Using the upper bound on the influence
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function in (?7?),

E[exp(rnw))]

(B[ex (o(atx —0)])

< (E[1 +alX) —0) + Cal*| X, — 9|1+€D”

(1 + Oz(,u _ 0) + C€&1+EE‘X1 . 6|1+6)n.

We will use a convexity upper bound as follows. For any a,b > 0 and 0 < h < 1,

1+e __ E o L I+e
(a+b) _<hh+(1 h)l_h>
a\ 1+e b 1+e al—l-e bl—i—e
<h(= —h)(—) = :
<h(z) +0-n(=7) = hy (CB)
Therefore, for any 0 < h < 1,
E|X; — 0" < h E|X; — p|" + (1 — h)~%|u — 0. (S13)

This leads to worse constants than in (Catoni (2012), and is the price to pay for the general-
ization. Using the above bound, we obtain

E{exp(rn((?))} < (1 +alp—0) +h=Ca v+ Coa (1 — h) ™| — 9|1+€)”

< exp (an(,u —0) +nh™*C.a'™ v + nC.a'(1 — h) % |u — 9|1+5>.

Similarly, using the lower bound on the influence function in (??), we obtain by symmetric
arguments

E[exp(—rn(ﬁ))} < exp ( —an(p —0) +nh~*C.a'**v + nCoa (1 — h)™%|u — 9|1+€>_
Let 6 € (0,1). As in |Catoni| (2012)), we define

Bi(6) = (1 —6) + h™*Cea®v + Cea® (1 — h) | — 6]'** + —logfyi/(s),

log(2
B_(6) = (1 — 0) — h™"Ceatv — Coa™(1 — h)~%|p — 0"+ — %
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By the exponential Markov inequality, we have

]P’{rn(e) > naB+(9)} <

P{rn(H) < naB_(Q)} < }) <5/2. (S14)

Note that the function B, is a strictly convex function of § and By () — oo as |0 — co.
Therefore, B, has a unique minimum on R, which is achieved at

mnr ()

so that

_ _ e e e 1—h 1 :  log(2/6)
min B (0) = By(0.) = h™*a*Cov — ——— <(1+8)Cg> + B

Suppose that this minimum is non-positive, i.e.

1
€

T 1og<j/6) <0 —h)(m) | (S15)

Then the equation
B(0) =0

has a real root, and, if the inequality is strict, it has two real roots. Since B, (u) > 0 and
0, > u, the roots are larger than . Letting z = u — 6, the equation

B log(2
Bi(z) =z+hC.afv+ C.a®(1 — h)¢|z|'** + log(2/9) /5),
an

has aroot z; = pu—0,(a) i
h=¢C.afv + C.af(1 — h)~®

we have that

[—1,0) using . This is because B (0) > 0 and B, (—1) =
log(2/6) —1<0. Add1t10nally7 since |2|'T¢ < —z for z € (—1,0),

log(2/0)
an

m
+

Bi(2) < z+ h*C.a®v — Coo”(1 — )z + (516)



—e afv log(2/6) ~
We let 2, = _hl—cciaear—h?ﬁs and get By(z;p0) < 0 from (S16])).
—& asv log(2/9) .
p—0.(a) > z10= —hliccfsag(i%fg . Further using (S§), we have
log(2/6
p—0. () =2z > —=2(h°C.a’v + %).

By the monotonicity of the root, we know i, < 6, («). Thus, it holds

- log(2/0
= fie =24 > —2(h™°C.av + M)
an

14

Therefore, it holds

Symmetric arguments establish the bounds in the other direction. Finally, by the spe-

I
log(2/6)

cial choice that a = (—) " hTE, it is straightforward to compute that [f. — | <

nCev
£

4(CLv) T BT (M)T _

n

E Proof of Results in Section 77

Proof of Theorem ?7. According to Theorem 77, we know

]P)(Laf — mf] Z Q(QECECYEU + w)) S i

an | F|

for any fixed f. Therefore, we have

P(sup lfip —mg| > 2(2°Ceav + log(2|71/9)
fer an
. log(2|.F1/9)
< _ 13 € _CoN\NTIm W7
< ZP(\W my| > 2(2°Ceafv + ="
feF
J
< |Fl= =0.
| !’]_-|

Finally, by (??), we arrive at that

o < A2 4 2D
an

)

(S17)

(S18)
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holds with probability at least 1 — 9. m

The following lemma shows the existence of the Lipschitz constant for the default choice
of influence function ¢. Therefore, the requirement of ¢ being Lipschitz continuous is not
stringent.

Lemma S2. Consider influence function ¢(x) = sign(x)log(1 + |z| + C.|z|'™). Then it is

a Lipschitz function with a Lipschitz constant L. not exceeding max{(1+ (1 +¢)C.),1+¢}.

Proof of Lemma We can easily compute the derivative of ¢(x) for x # 0. That is,

, 1+ (1+¢)Czff
_ S19
¢'(@) 1+ |z| + Celz|tte’ (519)

so |¢(x)] < 1+eif || >1and |¢/(z)] <1+ (1+¢)C. if 0 < |z| < 1, showing the claimed
Lipschitz property. m

Before proving Lemma ?? and Lemma ?7, we need to introduce two approximate func-
tions,

Bf(u,m) = (my—p)+Cpa®(1 =) "|my — plf + h™*Cpa‘v 41,
By (u,m) = (mp—p) = Cpa®(1 = h)"[my — pl’ — h™*Cpav —n,

and let
1E(n) = my+ 20 °Chpatv + 2, uy (1) =my — 2h°Cyatv — 2.

We additionally introduce the extended n-condition,
Coaf(1 — h)=2°(h*Cpafv + 2n)P~ ! < 1, (520)

where h € (0,1). It reduces to the n-condition given in the main paper by taking h = 1/2.
Under (?7), it is easy to check that both Bf(,u, n) =0 and B (u,n) = 0 have at least one

solution. Furthermore, it can be seen that u}“(n) is the upper bound of the smallest root of
B;{(,u, n) and () is the lower bound of the largest root of By (u,n).

Proof of Lemma ??. To prove Lemma ??, we need the following Lemma [S3|- Lemma [S4]
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Lemma S3. For any fized f € F and p € R, it holds
By (1,0) < (1) < B} (1,0), (s21)
and, therefore, my — 2h=Cpav < ip < my + 2h™“Cpa‘v. In particular,
B (1, 0) < 7p(p) < B (1, 0).
For any p and n such that ff(,u) <, if extended n-condition holds, then
mp < p+ 20 Cpa‘v + 2n. (522)

Lemma S4. Let g = mg- + Ay (6). Then on the event,

Q- (6) = {w: g — myp-| < Aa(6)},

the following inequalities hold:

(i) 74(uo) <07 (ii) Fp-(o) < 0; (i) —p-(tto) < 2LAq(d).

Thanks to above lemmas, we can see that, with probability at least 1 — 29, it holds

Tipo) < 7p(po) + 7y (po) — 7« (pto) + [T (10) — 75 (po) — T« (pt0) + 7 (o) |
< P (po) + Ty (po) — 7y (N0)+§gg\ff(ﬂo)—ff(uo)—ff*(uo)Jrff*(uo)!
< P(po) + 7y (o) — 75+ (o) + Q(po, )
< 0+0+2LA(6)+ Q(po,0)

(S23)

[
[\
h
S
Q
=

9
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where the first inequality in (523)) follows from the triangle inequality, the third inequality
in ((S23)) follows from the definition of quantile function ) where we define the 1 — § quantile
of sup ez [Xy(p) — Xy ()| by Q(u,6), i-e., the minimum possible ¢ satisfying that

P(sup [ X;(p) = Xy ()] < ¢) 21 =0,
feF

The fourth inequality in (523)) is according to Lemma that ff(uo) <0, 7+ (o) < 0 and
—7 (o) < 2L.A,(0). By choosing h = 1/2, this completes the proof of lemma. m

Proof of Lemma [S3] We write Y = a(f(X) — x) and use the fact that ¢(z) < log(1 +
x + C.|x[1*¢). Then

exp{ary(n)} < exp{E[log(1+Y + C:[Y["*)]}
< EQ+Y +C Y|,
= L+a(ms—p) + CE[Ja(f(X) —ms +my — )]
< 14almp—p)+hCa' v+ Coat(1 — h) % |jmy — p|'*e
< explaB} (1.0)} (s24)

where we use the convexity upper bound as follows,

al—i—s bl—i—s

bl+€< .
(a0 s =+ gy

Therefore, we have 7¢(p1) < Bf (u,0) held for any f € F. Recall that fi; satisfies 7(u) = 0,
therefore fiy < ,u;F(O) < mys+2h~°C.av. The other side of inequality is similar.

If 7¢(1) < m, then Bff(,u,O) < n which is equivalent to B;(u, n) < 0. Note that 7(u)
is a non-increasing function, p is then above the largest solution to BJ} (u,m) = 0. Thus,

,uj; (n) < w which implies m j < A+ 2h7°Cpav + 2n. This concludes the proof. =
Proof of Lemma ﬂ. For (i.), on 24+(0) and by the definition of f. we have
fip < fipe <mpe+ Aa(6) = po.

Since 7' is a non-increasing function of i, #¢(po) < 74(pp) = 0.
For (ii.), by Lemma fpr < mgs +2h7°C.av < myps + Ay (9) = po. Again by the fact
that 7¢« is a non-increasing function, we have 7« (po) < Fp«(fig) = 0.
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For (iii.), by Lemma [S2] we can get

[7pe (o)l = |7 (fige) = Ppe(pa0)| < Lelfige — pol
< L(lfap — myp=| + [mype — pol)
< 2L.A46). (825)

This implies —7 ¢+ (uo) < 2L An(0). =
Proof of Lemma ??7. The result is the special case of Lemma [S3| by taking p = pp and
h=1/2. m

F Proof of Results in Section 77

Proof of Lemma ??. We let e,(T) := inf{e : N(T,d,¢/2) < N, } with N,, = 2*". We can
construct a partition A such that |A%| < 22" and A(A) < e,(T) for any A € A?.

By the definition of e, (T"), we know that e,41(7") < e,(7T") and for any € < ¢, (7T, it holds
N(T,d,e/2) > N,, ie., N(T,d,e/2) > 1+ N,. So we have

(log(1 + Nn))l/ﬂ((en(T))(1+6)/2 - (€n+1<T))(1+8)/2)

en(T) 1
= (log(1+ anl))l/ﬁ / (I+¢) (E=D/2 g,
ent1(T) 2

1 en(T)
< 1) [ oV (T, e/2)) e (826)
en+1(T)

Note that log(1 + NV,,) > 2"log2 for any n > 0, we sum over n and get

(1+¢)
2

(log 2)1/5 Z2(")/5((en(T))(1+a)/2_(en+1(T))(l-i-e)/?) < /eo(T) (e-1) /2(10g( (T, d, 6/2)))1/5(16.

Furthermore,

> 2 ((en(D) 2 — (ensn (T)4H972)

_ ZQ(n)/B(en 1+€ Zzn 1/5 )(1+s)/2

n>0 n>1

> (1= 2718) 3 2 e, (1) 192, (s27)

n>0
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Therefore, we have that

2271/6(6 (T))(1+€)/2 < 1 1+€/60(T) 6(5—1)/2(10g(N(T d 6/2)))1/5(16
" = (log2)/A(1—2718) 2 J, Y

n>0

< Cpe / eEV2(log(N(T, d, e/2))) P de.
0

Finally, by the definition of v3.(7T’, d), we have

8, e(T d)
sup Z 2n/ﬂ 1+6)/2

teT n>0

ZQn/ﬂ sup t)))(1+a)/2

n>0 teT

Z 2“/5 (1+€ /2

n>0

Cs.e /O " e D2(log(N(T, d, e/2)))"Pde. (S28)

IN

IN

IN

IN

This completes the proof. m

Proof of Theorem ?77?.
By recalling

X(n) =+ S p(alf(X) — ) — ~E[6(a(7(X) — w)]} (529)
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Using Holder property of ¢, we have

Varl-p(al f(X,) ~ 1) ~ ~EI8(a(f(X) — w))] ~ (-d(a(f'(X:) - w) — ~Elp(a(f'(X) - w)])]
= o Varlp(a(f(X0) — 1) ~ Elg(alf(X)  p))] ~ (9(a(f'(X:) — w) ~ Elplalf'(X) — m)])]
< SE(G(alf(X) 1) — ola(f'(X) — u))
< SeRja(s(x) - PP
= S, (530

‘E[cb(a(f(X) _ )] - Elpla(f/(X) - u))]‘

< E{olalf() - 1) - lals () - )|
< CuBlla(f(X) ~ /(X))
S CSsap/z(D(fa f/))p/Q. (SBl)
Thus we obtain
~H(a(F(X) — ) — ~Elplalf(X) = )] ~ (=6l (X) = ) ~ ~Elp(alf'(X) - w))
< Zopa (i, f)7" (532)

Then we can apply Bernstein inequality to get

P(n| Xy (1) — Xp ()] > nt)

2t2

n
nC3.ardy(f, f')/a? + 2Cs.ar/>~1(D(f, f’))p/%t/?))}

nt?

2 SR ar 2, ') + 205 (D, F)3)

(933)

We then recall the following lemma, which is Lemma 2.2.10 from [Van Der Vaart and Wellner
(1996)).
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Lemma S5. Let a,b > 0, assume that the random variables satisfy,

.T2

X;| > <2 —
BX| > 2) < 2exp{— 57—

}

for any x > 0. Then

| max Xy, < 48(alog(l+m) + Vby/log(1 +m)).

We write X; = | X, (1) — Xy (1)]. Then Lemma |S5| gives us that

2—1 —
| max Xilly, < 48C; (M/ (Do) log(1 +m) + | & apl2 log(1+m)) (S34)
1<i<m 91— P 3n m o pm )

where D, := max; D(f;, f/) and d,,,, := max; d,(fi, f!).
We now derive a bound on @(u, ). Consider an admissible sequence (B,,) such that for
all f e F,

Z2n AD )(1+5 /2 < 2715(‘/—_- D)

n>0

and an admissible sequence (C,,) such that for all f € F,

322 (A, (Cul ) < 29, (F, dy).

n>0

Now we define an admissible sequence by intersecting the elements of (B,,_1) and (C,_1): set
Ao = {F} and set
A, ={BNC:BeB,yand C €C,_1}.

Define a sequence of finite sets Fo = {f} C F; C --- C F such that F,, contains a single
point in each set of A,,. For any f’ € F, denote by m,(f’) the unique elements of F, in
A,(f"). Then by continuity of ¢,

o0

Xf'( - Z 7Tk+1(f’ XWk(f’)(:“)) <83’5)

k=0
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a.s. Using the fact that || - ||, is a norm and (S34]) we have

[I'sup [Xp(p) = X (10)]llo,
fleF

S g H f’Ig-%c}i1 |X7rk+1(f’)(u) — Xﬂk(f/)(/jjﬂu(bl

/2—1 .
1500 37 (20 (QoBulr )P g+ 2 ) +

k

aPb—2

IN

(A, (ClF)P2log(1 1 22’“1))

n

2aP/2-1 , ek ar—2 / 20k /2
< 19210g(2)0352( (Ap(Bi(f")P*2" + (A, (Cr(f1)))7/2 />
- 3n n
zap/Q—l p—2
< 38410g(2)038 3n ’71,5(I7D)+ n 72,5(]:’ dp) ) (836>

where we have use the fact that log(1 + 22"") < 4log(2)2.
Since

X <[ X1l log(2/6)

with probability at least 1 — ¢ for any sub-exponential random variable X, we conclude that

207/ ap—2
]P’(?ug\Xf(,u)—Xf*(uﬂ < 38410g(2)Cse ™ T.e(F, D)+ - Y2.e(F,dy))log(2/0) > > 1-6.
€

In particular,

2ap/271 p—2

71’5(.;, D) +

3n n

Q(,LL, 5) < 384 10g(2)035 lOg(Q/(S) ( /72,6(‘F7 dp)) <S37>

for every pu.
We put together (?7), (S37)) and the obvious observation

E[W — EW|P < 2PE|W P

valid for any random variable W with a finite pth moment with p = 1 +¢. This gives us the
desired result. m

Proof of Theorem 77?.
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To prove Theorem ??, we further define the following distance dx x(f, g) = (O (Zi(f)—
Z:(9))*)'/? to quantify the difference between any two functions f and g, where Z;(f) :=

Lo(a(f(X;) — p) — =d(a(f(X]) — p)) for any fixed f.

By calculations, we can derive that

dx,x (f,9)

n 1/2
= (nzlag > (9(a(f(Xi) = ) = o(a(f(X]) = 1)) = Halg(Xi) — w)) + dlalg(X;) — u)))2)

< L (0@l - ) - salox) - )P
FO3 (Gl FXD) — 1) — Blalg(XD) — ) )1/2)
- nl/zigla /2 ( Z | f(X. X2+ Z | f(X £)|p)1/2)
with p=1+c¢.

Next, we provide a lemma that characterizes the relationship between distances and
~-functionals.

Lemma S6. For any distances d and dy, dy satisfying that d(t,t'") < a(di(t,t")0+9)/2 ¢

do(t,t)149)/2) " we have

V2 (T7 d) < CL23/2 ('72,5 (Ta dl) + V2,e (Tv d2))

Proof of Lemma[S6] By the definition of y-functional, we can find an admissible sequence
(B,,) such that for all t € T,

3" 2V2(Ay, (B, (1)) 2 < 295 (T, dy)

n>0
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and an admissible sequence (C,) such that for all t € T,

D 2D, (Cut) I < 292 (T, dy).

n>0

Similarly, we could construct an admissible sequence by intersecting the elements in (B,,_1)
and (C,_1): set Ag =T and set

A, ={BnNnC:Be€B,yand C €C,_1}.

Again A, is increasing and has at most 22" sets.
By definition of (7, d), we have

vo(T,d) < supZZ"/2A (An(t))

teT *
< supZ 2'a((Aa (Aa(O)M 4 (Aa, (Au(0) )

teT >0

(by the relationship between d, d, ds.)

< sup D 2%a( A, (Bua ()19 4 (A (Coa (1)) 972)

teT n>0
< a2 sup Y 202 (Ay (bya () 4 (A, (Coa (1)) 2

teT £33
< CL21/2 Sup Z 9(n— 1)/2(Ad (B (t)))(1+e)/2 + sup Z 2(n71)/2<Ad2 (Cn_1<t)))(1+e)/2)
teT 15y teT 4535

< a2 (72 (T, dy) + 72.(T, dy)). (539)

[ |
Therefore, according to inequality (S38)) and Lemma we arrive at

C
< G2 —(120(F dx ) + 725(F, dxr ), (S40)

72(f ) dX,X') \/—

where dy,(f,9) == (13, |f(X;) — g(X;)|P)/? with p =1+ €.
Moreover, for any fixed f, we also introduce a symmetrized random variable Z(f) :=
Yor€Zi(f), where ¢’s are independent Rademacher random variables. By Hoeffding’s
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inequality, we have

t2

P (12) = Z(9)] > 1) < 2exp{—g—ss

}, (S41)

where P, y denotes the probability with respect to the Rademacher variables only.
According to equation (11) in |Brownlees, Joly, and Lugosi (2015)), we know that

Eteor {exp{xsumzez ) — Z()

feF i1
< 2exp{NL2(F, dy x)?/4}. (542)

Next we can compute the high probability bound of sup;c» [Z(F) — Z(f*)|. Specifically,
it holds

P(sup |Z(F) = Z(f*)| > 1)
fer

< P(;ug Z(f) = Z(f) >t | 1o (F.dxp) < Ts, 72 (F.dxrp) < Ts) + 2P(10.(F,dx,.) > Ts)
(S
< Exx[Eq,., en>[exp{xiug| > a(Zi(f) = Zi(f)H e (Frdxp) < Tsyae(Fodyiy) < T4
&S =

cexp{—At} + /4

2 \272
26Xp{86(#112 At} + Z (543)

IN

We optimize over A and it gives A = 16“5‘;%. Then the right hand side of (S43|) becomes
3eHer s

exp{— 3553052 rz} +6/4. By letting t = v/32Cs. L.T5+/1og(8/8)n~/2a~(1=P/2)  we obtain that

P<?‘2.I;|Z(f) —Z(f) >1) <d/2.

A standard symmetrization inequality of tail probabilities of empirical process guarantees
that

P(sup [ X¢(p) — Xp- ()| > 2t) < 2P(sup|Z(f) — Z(f*)| > 1)
feF feF

as long as, for any f € F, it holds P(|X () — Xy (1) > t) < 3.
Recall that Xy(pu) — Xp«(p) is a mean-zero random variable. Then by Chebyshev’s
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inequality, we know that

Var(X;(p) — Xp-(1))
t2

(T

1
< -
—  na?rt? 2

(S44)

Therefore, P(|X ;()— X (11)] > t) < 4 holds for any f when t > v/2(diamg, (F))?/*n=1/2a~0-#/2),
Furthermore, without loss of generality, we can assume Cs3.L. > 1. Note that 0 <
§ < 1. Thus y/log(8/5) > 1/4 and v/32L.I'sy/log(8/5) > /2 - diamg, (F) provided that

s > (diamg, (F))?/%. Therefore, we have that

log(8/9
P(sup X7 (1) — Xpe ()] > V3o LTy | 25/ p)) <
fer no

when I's > (diamg, (F))?/2. Similarly, we have

p(sup 1X4() = Xp- ()] > V3ICs. Lo(cliamg, (F)/2 [ BEL) 5>) <5

feF na?-?

when I's < (diamg, (F))?/2. To sum up, we have

Q (1o, 0) < v/32C5. L. max{T, (diamdp(]:))p/g} M (545)

na2-r

By above inequality, (??) and p = 1 + ¢, it concludes the proof of Theorem 7?7. m



27

G Proof of Results in Section

Proof of Proposition
It is straightforward to see that

(9(Z) = Y3)? = (¢ (Z) = Vi)* < doolg,9") (Vi — 9(Zi)| +|Y: = ¢'(Z)]).  (S46)

Thus

n

n 1/p 1/p
1 1
dxp(fg, o) < do(9,9') (5 >y - g(Z-)\”) + (5 >y — g’(Zi)|p> ,
=1

i=1

with p = 1 + . By Chebyshev’s inequality, it holds that

1 n
- SO <E[Y] + v/8v/nd
=1

with probability at most §/8. Choosing A to be upper bound of d(g,¢’) for any g,¢ € G,
we then have

1/
dx(f.f) < 25D (g, ) (A7 + EYP] + VBo/nd)

holds with probability at least 1 — §/8. By definition, it is easy to see that 72 .(G,d;) <
c72.(G, dy) for any distances dy, dy satisfying d; < cdy. Then, we know that

T5 < T5(A) = 2" PP (AP L B[V ] + /802 /n6) P - 75 (G, dos).

By choosing A large enough, it holds T's(A) > A > diamg, (F)?/?. =

Proof of Proposition

By representer theorem, the optimizer of has the form, h(z) = Yo aK(x,x).
Therefore, solving requires handling with an n by n matrix, which is computationally
expensive in most cases. In the following, we prove a stronger version. We consider a smaller
Hilbert space H, instead of H.
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Note that the kernel K is a Mercer kernel which admits the approximation

K(z,y) = Z Ajp(vg, 2)p(vj, ).

We define a smaller RKHS space

s
Hs ={h(z) : h(z) = ZQ@(%@% ¢; € R},
where v;,7 = 1,...,5 are S features with S < n. Then we practically solve the following

estimator,

fu =arg _ min v+ AallBl, ) (847)

heLoHs

Let m* := minferon, my. Given vy,...,vg and recalling the fact that vz ,(L o Hs,d) <
vsp(F,d) for any 3, distance d and sub-space H,, we apply Theorem ?? or Theorem ??
(simply modifying the proof by setting A, () = 2°C.av + % + A\, + err) and obtain

stronger result,

log(2/0
my, —m" < 6L(2°C.a’v + % + A+ err) + 201 34, (9) (548)

holds with probability 1 — §. Here err is an approximation error which will be explain later
in this section and

(e=1)/2 =

2
Qua(9) = K - Caclog(2/)(=5—mo(LoH., D)+

n 7275([/ oM, dp))-

Remark S5. We can obtain the upper bounds of v1.(L o Hs, D), va.(L o Hs,dy)) by com-
puting the covering number N(L o Hs, D,€/2) and N(L o Hs,dy, €/2) in specific cases. For
example, suppose loss function L is ci-Lipschitz continuous with respect to argument h(z).

Then N(LoHs, D,e/2) < N(Hs,D,€e/2¢1) and N(LoHs,dy, €/2) < N(Hs,dy, €/2¢1). Write
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C = {(c1,...,¢5) : ¢; € [=b,b]} and assume eigen-functions satisfy max;sup, ¢(v;,x) <
B and max; E[|p(vs, X)|P]'? < B. We know N(H,, D,¢/2¢;) < N(C,t,¢e/2c.B) and
N(Hs,dy,€/2¢1) < N(C,L,,¢/2¢; BSP=V/P). Finally, it is know that N(C,{y,¢/2c,B) =
O((2)5) and N(C, €, ¢/2c, BSP-D/P) = O((¥2)S). Upper bounds of 11.(LoHs, D), (Lo

Hs,dy) is then obtained from Lemma ?7.

Then problem is reduced to understanding the difference m* — m*. By the definition, we
know

~ % * ~

m*—m* =m" —my +my —m" < my —m* =:err (549)

for any fo € L o H,. We need to find a suitable fy = L o hg such that ms — m* is as small
as possible (i.e., approximating L o h* as close as possible). By definition of my, we have

myg, —m" = E[L(Y = ho(X))] = E[L(Y — h™(X))]

E|C(Y)(ho(X) —

VE[C*(Y)]VE[(ho(X) — h*(X))?]

CVE[(ho(X) — h*(X))2]. (550)

VAN VAN VAN

by adjusting constant C. The last inequality uses the assumption that C(Y') is square
integrable.

Since K is a Mercer kernel which satisfies K(z,y) = > -, )\ngz( Yei(y) with {p;(-)} are
orthonormal bases in Ly(X), A; are non-increasing. Then we know K (z,y) = Zle i, 0 ()0, (y).
In addition, h* can be decomposed as h* = Zz Laipi(x) satisfying that Y 2 (a7)?/A < 1.
To this end, we deliberately choose hy(z) = Z =107, P i ().

[ho() = h*(2) ]|z, = \//Iho(ﬂf)—h*(w)IQdﬂf
S

< Vi (S51)
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where ig = argmin{i : 7 is not in iy,...,ig}. The last inequality (S51]) uses the fact that

[eS) S [eS) 00

D @) = Do) = () < Ao/ M) < Mo (Do (@)P/A) < A

Therefore, with (S50f), we have

err = my, —m” < Cy/ A,

and plug this back into (S48) to conclude the analysis of excess risk, myf, —m". Finally,
note that err = 0 when H, = H. This completes the proof. m
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H Proof of Results in Section 77

Proof of Theorem ?7. The proof consists of two main steps.
Step 1. Our goal here is to obtain the uniform concentration bounds of differences between
gradients ¢(¥’s and their expectations.

To begin with, we consider the j-th coordinate of the gradient. We let r, ,(0) =
LS AV fu(Xy)[5] —0)) and we let 0., be the solution to r,,,(0) = 0. We then consider
the following two cases, where Case 1 is the special case of Case 2.

Case 1. It holds |V fu, (X)[j] = V fu, (X)[7]] < Rl|Jwy —wsl| for any X. (That is, Assumption
A1 is replaced by bounded Lipschitz condition.)

Case 2. 1t holds |V fu, (X)[j] = V fu,(X)[J]| < Rp|lwy —ws|| for any || X|| < B. (Assumption
Al)

In the first case, we show that the smoothness of the loss function implies a Lipschitz
property of the estimator (He & Shaoj, [1996; [Holland & Tkedal, [2019)).

To see this, by Lipschitz assumption, we observe that

% > 00V fuy (X0)[j] = Blluwn — s — 6)
< Tn,ﬂ)z(é)

< = 3" (T fu (XLj] + Rlur = wal] — ), (852)

Since ¢(-—0) is non-increasing, then f,, is no greater than the solution to o AV fun (X)) 5]+
R|lwy —ws|| —0)) = 0 and is no smaller than Y | ¢(a(V fo,, (X;)[j] — Rljwi — we]| — 6)) = 0.

It is also easy to see that 6, + R|jw; — wy|s are the solutions to Y27 ¢(a(V fu, (X;) £
R||wy — ws|| — 0)) = 0, respectively. Therefore, we have

Oy, — Rllwy — wa| < bu, < Oy + Rlwy — wy].
In other words,
[0y = Ou| < Rfwr — ws. (553)

This leads to the desired Lipschitz property.

For the second case, it might be hard to directly get the similar Lipschitz property like
(SH3]). But fortunately, we can find a good proxy estimator that enjoys this property and
the proxy is not far away from the true estimator.
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We define Xi,n be the truncation version of X; at level n, that is,

Xiy = Xilix;|<B, (Sh4)

where B, is defined in Remark ??. According to Theorem 4 of [Chung and Lu| (2006), we
know that

)\2

P(]i : Xip # Xi| >0+ 2) < exp{—m

. (S55)

By taking n = 2nn, we have
P(8]i : Xiy # Xi| > 3nn) <6, (S56)

whenever n > W. In other words, with probability at least 1 — 9, there are at most 3nn

Xm’s differ from the original X;’s. We define the event Eyuoq = {£] : Xim # X;| < 3nn}.
Moreover, we are able to define 7,4, (0) = == 3" d(a(V f,(X Xiy) —0)) and let 6, ¢ be

the solution to 7, ., ,(0) = ¢ for any fixed (. Next, we study the difference between O, ¢ and

O, n.0- Without loss of generality, we assume ¢ > 0 and it is easy to see that anc < 0, 7,0
by the fact that ¢ is non-increasing.

By assumption Al and the optimality of w*, we can obtain that, for any w in the
parameter space and || X|| < B 1, it holds

’vfw(X)’ = |Vfw(X)[]] - vfw*(X)[]H < RB%Hw - w*H < RB%Dwa

where D,, is the diameter of parameter space. Let event Egna. = {#{i : || Xi]| > B%} >

n/4}. By Hoeffding inequality, we know event Egnan. happens with probability at least
1 —exp{—n/4} > 1 — ¢ for sufficiently large n > 4log(1/J).
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On event Egpan z, it is not hard to get that

me,o
¢ = - / 7o (0)d6
0

w,n,¢
_ 1y / (o (V fu(Xin)i] = 0)) 1o
na =1 éwm,c 60

1 1 éw,'r],O
> == 1do q57
= 12 /éw (S57)

1, 4 R
- glew’nvo - ewﬂ?(" (S58)

Here (S57) uses the fact that acp(a(Vf%(ng)—e)) > 2o under the requirement that o(Rp, +

2
1)D,, < z, and the assumption ¢/'(z) > % for |z| < .
Therefore, by (S58]), we have

Owmc > Ouwmo — 8¢ (S59)

for any w and ¢ > 0 on event Egpan . Similarly, it holds

By the assumptions on ¢, on event £,,,q, we have

N
w
3
D
~
Q

(S61)

held for any w and 6, where A := sup, |¢(z)| (A is finite since ¢'(x) = 0 when || > Tey).
As a result,

. 6An _ 6An
Tn,w,n(e) - T S rn,w(e> S Tn,w,n(‘g) + T;



34

Again, by the fact that r, () is non-increasing, we have

0001 < 00y <0, oan. (S62)

Together with (ShH9)) - (S60) by taking ¢ = 6An/«, we arrive at

R ‘6A
j 8-6An

w,n,0

8-6An

S éw S éw,n,o + (863)

«

We view 6, .0 as the proxy of 0., at level 7. says that the difference between the

proxy and 9 is no more than % on event Egood N Esma” 2. As long as we could choose 71

sufficiently small, the proxy O, m,0 is very close to O,p.
Following the proof in Case 1, we can straightforwardly get

0110 = O ol < R, lwr — ws| (564)

for any wy,ws. In other words, Lipschitz continuity property holds for the proxy
estimators.

Note that our goal is to study sup,, [0, —E[V f., (X)[j]]], it is sufficient to study sup,,. N 10—
E[V f,(X)[j]]|l, where N is an e-net over the parameter space. To see this, we take any w
in the parameter space and let w’ € N, with |[Jw — w'|| < e. Therefore, it holds

0 — E[V fu(X

j Mol
S yewi _E[vfw/(XM]m
o~ EV 1, ()] — (s — B[V £ (X)L
< N — E[V fur (X)]| + 00 — Gw/| + Ly|lw —w'|| (by Assumption A2)
< |éw’ - ]E[vfw (X)[J]H + |éw - éw,n,0| + |éw,n0 Aw 770| + |éw’ﬂ7,0 - éw’l + Lf”w - w,” (use pl"OXY)
. A ~ 48 A
< (B — BV fur ()] + Bun — ol + 2 ol 4 Lyl — ]| (by (553))
N 48 An
< Jur ~ BV (X[ +2- 2 4 (R, +Lf>||w W' (by (553))
< Vw — B[V (X)) +2- % + (Rp, + Ly)e (by property of L),

As a result, we have that

s — BLY Fu(X)[j1] < sup [ — BT Fu(X)[) + 2 + (R, + Ly)e. (66)

’wee
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In particular, we can take € = ¢y := % and the above inequality becomes
. 4 . , 192An
sup |0, — E[V [ (X)[J]]| < Sup 0w = E[V fu(X)I]]] + —— (S67)
w we. €0

By the basic property of covering number for compact subsets of Eculidean space, we know

3D,
260

(Dw<RB77 -+ Lf)Oé)d
64An '

el < ()1

By (2.10), we know X
P(10w — E[V fu (X)[j]]| 2 Aa(0")) < '

Dy (]‘?,B77 -‘rLf)Oc
64An

for any ¢’. By taking ¢’ = ¢/ (d( )d>, we have

P( sup |0, —E[V fur (X)[]]]] 2 Aa(8")) < 6/d

wGNeO

by the union bound. Together with (S66|), we have that

192An
(6%

P({sup |0 — E[V fur (X)[5]]] < Aa(d') + } N Eyood N Esman) > 1 — 26 — 6/d. (S68)

Note the requirement that % < Ay(d), the term % can be absorbed into A,(¢") by
multiplying a constant 2. Thus we obtain

P(sup [0y — B[V fur (X)[f]]] < 244(8")) = 1—20 = 4/d. (S69)

Therefore, we complete the first step.

Step 2. We prove the convergence of Algorithm ?? under two scenarios, (1) F' is differentiable
and Lg-Lipschitz continuous, (2) F is k strongly-convex and L ;-Lipschitz continuous.
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For the first scenario, by the Lipschitz continuity, we have

L
F(w™) — F(w®) < VF(w®)(w™) —w®) + —2f JwE) — 4w ® ||
L 2
= —nVF?)g® + =L g0

= —%VF(w(t))(VF(w(t)) + Q(t)) + LfT%QHVF(w(t)) + C(t)||2
Ul V@) + 1 VdAa (@) [VF (O] + Ly (IVEF (@ )]* + d(Aa(8))*)(S70)

IA

where ¢() = g®) — VF(w®) and, by applying (S69) for each j € [d], it is easy to see that
1CD]| < VdA4(6) holds with probability at least 1 — 3§ for any ¢ with A,(8) := 2A4,(5").
By direct calculation, we can find that

2
. . — 7L
VA A () |V F(w®)|| + Ly2d(Aa(5))? < %HVF(w‘”)HZ

when v, < % and |[VF(w®)| > v/dA,(8). Together with (S70), we know

2
1=k b
F(w™) — F(w) < —tthIIVF(w(“)II2 < —1—8%||VF(UJ(“)II2 (S71)

holds with probability at least 1—34. Define Ty, to be the smallest ¢ such that |[VF(w®)|| <
VdAL(5). Therefore,

F(w(Tstop)) _ F(w(o))

Tstopfl
— Z F(w(t“))—F(w(t))
t=0
T@topil 5
< >l VE@)P (by 7))
t=0
< _158%(1(;1&(5))2 (by the definition of Ty,,) (S72)

By re-organizing (S72)) and recalling the definition that F'(w) = my, and the optimality
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of f* that mg <my ., then we know
w'* stop

Tstop

w(O) —my-)
Z Ve < A.(0))? (573)

holds with probability at least 1 —34§. This complete the proof by using the assumption that

Ye =7
In the second scenario, we can compute that

) = 0| = [l 29 — w7

< e =% V@) = w[| + %l VE(w®) = g9 (S74)

The first term of (S74) can be handled via standard method in Nesterov| (2003). It then

follows that
2k Ly

) ., *%||2
Tl |

lw® = % VE(w") = w||* < (1~

For the second term, by the same logic, it is bounded via v with statistical error ¢ :=
VA, (0).

Therefore, we have

t t

lw®* —w|| < Hat l® =+ ¢ T ao)s (S75)

s=0 s=0 s'=s+1

where a; = /1 — QZfLLf and [[%,_,,, = 1. Especially, if 3, = v and we let a = /1 — Q,JfLL;,
we have
1— at+1
™ = w| < @ w® — w4+ ¢y (S76)
Finally, it is bounded that 1= “ L <y /(1= 1 - %) which concludes the proof. m

Proof of Theorem 77.
We do Taylor expansion for

n

D A fuwen (Xi) = p) (S77)

i=1
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and (S77) becomes

Z (o fu (Xi) = 1Y) + @l fuesn (X3) = fuo (X3) + (Y = )
Z ¢ w(t) + Z (b w(t> ﬂ(t)))a<fw<t+1>(Xi) - fw(t) (Xl) + ([j’(t) - M)) +

O3 0% (fyon (%)~ Futo (X0 + G — ). (578)

Therefore, let 1 be the solution to (S77) = 0. It satisfies

— (t
Iu(t—l—l) — &ZZ QZZE,( ( (w(t)(t()( ) ) - ﬂ A(t) + Z V) (t+1) fu;(t) (Xz>>
>0 0 (fuern (X5) — fw<t> (X3) + (ﬂ(t) — ptt))?

Ol oS, e f 0 (X0) — i)

). (S79)

By recalling the update that
t+1 = ,u )+ Z Vi (e (Xs) = fum (X5)),

we could compute the difference, err{{ T := [t — pt+D)]

Y

(t+1) A1) _ Z o(a(fum(X;) — A(t))) ZZ Oé?(fw<t+1)(X) — fom (X)) + (ﬂ(t) _ u(t“)))?
S a2¢<&m<>—wwf0( 03, a0 (X0) — )

vV v
term1 termso

(S80)

We next prove that (i) term; is O (err,g) +err&)2); (ii) termy is O,(a+aP™1), where p = 1+¢.

We first control the denominator term Y, ¢/ (a( fw (X;) — ) in term;. By the def-
inition of the Catoni’s influence function, it is easy to see that ¢'(0) = 1. Moreover, by
(??) - (?7?), we know that ¢/(x) > 1/2 when |z| < z.. We then define the index set

Z'l(;lge = {i: a(f,m (X)) — a®)| > x.}. Tt can be computed that

P(ja(fuw(Xi) — V)] 2 ) < Ca? (S81)
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for a universal constant C'. By Hoeftfding inequality for binary variables, we have

|I

large

| < aPnlogn (S82)

with probability going to 1 as n goes to infinity. Therefore, by the property that ¢'(x) <1
we have

Y

2 Y alfuo(X) = 1) 2 3 Flalfun(X) - i) 2 20— na’logn). (83)

zEI<t)

large

(\V]

For the numerator term >, ¢(a(f,,0 (Xi) — 1)) in term;, we know

Zd) Fuo (X3) = pY)) = Z¢ Futo (Xi) = i) =0
= j{:¢ (fuo (Xi) = ™)) j{:¢ (fur (Xs) = )

(since ;) is the solution to Z d(a(frpm(Xi) — ) =0)

< 2 ad/(alfuo (X0 - HONE — 3O+ Ona?[ — 4O

= «a Z ¢ ( fuo (X)) = fD))err?) + O(nalerrD?). (S84)

Therefore, the first term can be bounded by,

a2, ¢ (a(fuo (X;) — a9))err)!) + 0<na erry!”)
a >, ¢ (afuw (Xi) — @)
< err —I—O(aerr 2. (S85)

IN

termy

For terms, we define index set Z\) := {1 |f w0 (Xi) = fooo (X)) +(D —pH)| > 2} given
level z. Following the idea of derlvmg (S69), we know sup,, |y — my| = op(l) Thus both
A and g+ are bounded by some constant R with probability gomg to 1. Furthermore,

t+1) t+1)
(LAY (X) — £ () + (0 — p @) ) < p(E[ £ (X)) + B[ £ (X0)[P] + R?) < C for
some universal constant C'. )

Again, by adjusting the constant C'; we can get that

P(| s (X:) = fuo (X)) + (20 — pD)| > ) < C/a? (S86)
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and |Ig(ct)\ < nlogn/zP holds for all fixed x and ¢ with probability going to 1 as n goes to

infinity by using Hoeffding’s inequality.
Then with probability going to 1, the numerator in termsy can be bounded by

Z a2<fw(t+l)(Xi) — fuo (X3) + (,Et(t) _ M(t+1)))2

i¢T®
+ ) @ (e (Xo) = fuo (Xi) + (@ = pl1))?
ierM
< P+ ) 0P (fuwrn (Xo) = fuo (X0) + (60 — p)?
iz
CCc’u,t/a

a2<fw(i+1)(Xz‘) — fuw (Xy) + (ﬂ(t) _ N(t+1)))2

IA IA

o o

=N =N

+ +
M I
™M M

Ql\.')

o

IN

xcut/a
a’n + 2a° / znlogn/axPdx (Fubini theorem)
1

< o®n+ 2a*nlog n(zew/a)? P,

where, by the definition, x,; is the threshold that ¢'(z) = 0 if |z| > zey.
Therefore,

termy < (a’n + 2a’nlog n(xcut/a)2’p)/(%(n — na’logn))

< 5(logn)(a+af™h).

Putting everything together, we have
(t+1) (t) (t)2 -1
err, " <erry) + O(aerr;’?) + 5(logn)(a +a”77).

()2

(S87)

(988)

(389)

(S90)

By the choice of & = O(n~%) for some constant ¢ € (0, 1), aerr,’” is smaller than (logn)(a+

aP~1) for any t < T.,4(0). Thus we have

ert™ < err) + 6(logn) (o + o1

(S91)
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and it arrives at

err ) < 6t(logn)(a + aP™V) (592)

for any t < Tuna(o). This also implies that At = @D 4 Oferr)) = my o +0p(1) +

O(err,(f)) is bounded from above.
Moreover, we compare the difference between weights 7; ¢l 0 (X)—uD)) and v
A O &' (e f,, (1) (Xi)—p(®)) v

That is,

(t) |

|, — v,
| (a(fuo (Xi) —u®)  Fa(fuo (Xi) — i)
2 ¥ (@(fun (Xi) = u®)) 35 ¢ (e fuw (Xi) — 40)
2.

¢'( (fo (X)) =

)
) (Xi) — 1))

< ‘|(Z ¢ (fu (Xi) = aV)) — )¢ (e fuo |
- > (alfpw (Xi) — p®)) - 37, ¢’( (fu (Xi) — ™))
+||( (a(fuor (Xi) = i) = ¢ (a ( w0 (Xi) = D)) - 37 &' (a(fun (X3) —u(t)))ll
> ¢ (a (wm( ) /N ) 2@ ( (wm( Xi) — )
< Cymaerry Zd) M- 29 (@l fuo (Xe) = 1))
+Cyracrry /Zcb (fuw (Xi) — )
< 30¢naerr£)/n, (S93)

where Cyr := maxy:|g<g.,, ¢ ( ) and the last inequality uses the fact that >, ¢'(a(f,m0 (Xi)—

(i) > $(n — na?logn) by (S83]
As a result, by recalling the deﬁnition of gradient ¢, we could get that

|C(t)| = |VU)IELf (t) _g(t)’
< Zm—u“ ||V fur (X))

3C, cerr!
< 3G (X))

i

< BC'aerr/(f), (S94)

elementwisely with probability going to 1, by adjusting the constant C. The last inequality
uses the fact that, with probability going to 1, > . |V, fu(X;)|/n is uniformly upper bounded
from above.
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Finally, we analyze the difference /i of at each time step,

. . . L

X Ly}
= _’thwﬂfw(t)g(t) + TtHg(t)HQ

; ; L% o -
- _%kufw(ﬂ (V“’Mfw(t) + C(t)) + Tt”Vw'ufw(t) + C(t)HQ
_’YtHVwﬂfwm I + ’Ytvaﬂfw(t) 1<) + Lfyf(HVwﬂfw(t) 12+ [|<P)?), (S95)

IN

When [[Vyiy Il > 2||¢® | and 7; < 1/5L, we have

. X 1 X
Ff vy = Bf @ < —Z%vaﬂfw(t) ||2 (896)

Moreover, from (S92) and (S94), we know ||C®|| < vdCa?36t(logn). Since Tyna(o) :=
min{t : [|[Vyfiy || < o}, therefore we have

ﬂfww)
70

Tend(@) S <S97)

as long as

0 > VdCa”36t(logn) (S98)

_ ; 1/3
holds for any t < T,,4(0). In other words, it suffices to have o > (36C’ap\/3(log n)@)
to make (S98|) held. This concludes the proof. m

I More Discussions on Algorithm 77

Remark S6 (Comparison with Truncated Loss-based Methods). By straightforward

calculations, we can find that the truncated loss based method (L. Xu, Yao, Yao, & Zhang,

),trunc ¢/(O‘(fw(t) (X3)))

= Sal,o & O

2025, |Y. Xu et all 2020) is equivalent to assigning weight I/i(t
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sample 1 in the t-th step. Then the following two observations explain why our algorithm is
preferable. (i) Since E[f,(X)] = my, which is usually non-zero, therefore we should assign
larger weights to those samples X;’s with f,,(X;) closer to my, rather than those with f,,(X;)

closer to 0. Therefore, truncated loss based method can lead to a larger bias than ours.

9l f ) (X))
2 (alf ) (Xi)—p

(ii) Consider the weight formula I/,L»(t) (1) 5 by treating p as an additional
tuning parameter. Therefore, the truncated loss based method always fives y = 0 while our

method allows p to be updated adaptively.

Remark S7 (Comparison with Coordinate Descent Methods). In the optimization
literature, coordinate gradient descent (CD) is another popular approach. However, for the
model with a large number of parameters, CD 1is less computationally efficient since each
forward pass (i.e. the computation of loss value) is only used for one parameter update.
Moreover, CD s very uncommon to be implemented in deep learning framework, since it
requires sampling a single parameter coordinate throughout different neural layers in each

update.
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