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The supplement details the proofs in the paper. The structure of the Supplement is outlined as
follows:

e Section Kl reviews the basic properties of multivariate locally stationary processes by

observing two lemmas: Lemmas K1 and 2.

e Section B2 summarizes the asymptotic distribution of the functionals of the pre-periodogram

matrix from the multivariate locally stationary process.

e Section K3 provides proofs of main results in Section 3 in the paper.

S1 Multivariate locally stationary processes

In Section K1, we review the basic properties of multivariate locally station-
ary processes. Let C be a generic constant. For the function [ in (1.1), we

have the following inequality

> 1
2 GG (L)

j=—o0

I(s)’
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which is repetitively used in the proof.
Let Xt(dT) be the dth element of the vector X;r. From (2.2), Xt(‘?
has the expression Xt(dT) = D e a1 A (J )dmeg 75, where Ay 7(j)dm

denotes the (d, m)-element of the coeflicient matrix A; r(j). In view of this

expression, we obtain
Cov(X,%, X%, r)

= Z Z Z At,T(j>amAt+S,T<l>bn COV(GET},EIEZ_)S_I)

j=—00 l=—0c0 m,n=1
0 p
- Z Z At,T(j)amICmnAt—l—s,T(j+8)bn (812)
j=—00 m,n=1
= > (A A2 ()T) . (S1.3)
j=—00

On the other hand, the autovariance function ~y(u, s) at u is

~(u, s) /fu)\exp(l)\s dA-ZAuglCA(ug—i—s). (S1.4)

j=—00
Especially, the (a, b)-element of the matrix - is bounded by

o0

()] <Y supllA(u, ) ool Koo supl A, j + )Tl

j=—o0

C
CZ j+8 Sl(s)’ (S1.5)

]_700

where the second inequality follows from Assumption 1 (i) and the third

inequality follows from (S1).

Remark S1. From (8T3), we can see that for any fixed u € [0, 1] and any
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(a, b)-element of the autovariance matrix, |v(u,0)q| is bounded, i.e.,
|’7(U, O)ab| < C.

Thus, the time-varying spectral densities f(u, A);, (1 < j, k < p) are square-

integrable for any fixed u € [0, 1].

We first evaluate the difference between (813) and (SI4) on discrete

points uy = k/7T in the following.
Lemma S1. Under Assumption 1, we have

< c<1+$>. (S1.6)

Proof. To evaluate (8I-8), we use the expressions (8I2) and (SI4). Note

(a ()
Z‘ Cov (X[’fﬂ/2 s/2],17 X[k+1/2+s/2],T> —Y (U, 8)ab

that
x (@) (b)
‘ COV( [k+1/2—s/2],T° X[k+1/2+s/2],T) = (uk, 8)ab
k=1
T
Z’ Z Z (A[k+1/2 s/2], T( )am’cmnA[k+l/2+s/2] (] + S)bn - A(uk7j)amenA[k+l/2+s/2],T(j + S)bn)
=1 j=—o0om,n=1
T oo D
+ Z’ Z Z (A(uk’j)am’C7’L"A[k+1/2+S/2],T(j + S)bn - A(uk7j)amlcmn14(uk7j + S)bn) .
k=1 j=—oco m,n=1
(SL.7)

Considering the first term in the right hand side, we have

£5

< i i ‘(A[kﬂ/zfs/z],T(]')*A(ukaj))am)mmﬂ A

P

Z (A[k+1/2—s/2],T( DamKmnAfpt1/24s/2),7(F + 8)on — Aluk, J)amKmn Afpt1/24s/21,7(F + 8)bn)
,n=1
P

‘ Z (A[k+1/27s/2],T(j) - A(”mj)) KmnApkt1/2+s/21,0(J + 8)on

am

i
|
3
™
’\_I‘
3

(k+1/24s/2,7(F + 8)on
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oo

Z C}CCA C}cCi
I(j+s) ( N+ s)

<CCxC3, (S1.8)

where the first inequality follows from [Kp.,| < Ci, [Akt1/2+45/2,0(5+5)on| <
Ca/l(j + s) from (2.3), and

Zp: ’( [k+1/2—s/2],T () A(Uk,j))

am

M- 10

<33 [(Aneraamr) = AGE+ 172 5/2/T9) |+ |(AlGr+1/2 = 52/ 5) — M)
k=1m,n=1
<Ca + lC(']A) )

where the second inequality follows from (ii) and (iii) in Assumption 1.

Also, it holds that

oo

T
Z‘ Z Z ( Uk, ] am’CmnAk+l/2+s/2]T( +S)bn7A(ukv.j)am’CmnA(uk7j+S)bn)

k=1 j=—oco m,n=1

T

‘ Z A uk,])am’Cmn (A[k+1/2+9/2 (,7 + 5) A(uk7j + 5))

j=—o0 k=1 m,n=1

= 5D S i KT

j=—o00 k=1m,n=1

izzWMm

—o0 k=1m,n=1

Mg

bn

[Konnl

(Awsrjzrarm (G +9) = Ak +1/2+/2/T,j +5)) |

[Krnl

(Al +1/2+ 5/2)/T,5 + 5) = Alun,j +5))

bn

oo e}

> CKCA+ ; C;’ESA ;|\A([k+1/2+s/2]/T,j+8)—A(UkaJ'JrS)Hoo

= 10
—~  COxC5
<CORCA+ 3. GG + )
1
<CC;COA( @) (SL.9)

where the last inequality follows from (SI). Combining (8171), (SIR)

and (8T9), we obtain the desired result. O
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Generally, higher-order cumulants of the locally stationary process { X; r}
can be approximated by those of the stationary process {X*(u)} for u =
t/T under Assumption 1 in a similar manner as the autocovariance. To
discuss higher-order cumulants, we introduce the notation X (u;s), which
means the observation X (s), s € Z, of the stationary process X*(u).

Let Yay,...a,(0; 11, ..., t4—1) be the joint cumulant function of order g,

ie.,
Val,...,aq (U7 t17 s 7tq—1)
= cum{ X ) (u; t4t,), X (u; t+ty), - -, X (us t4t, 1), X (u; 1)}

To discriminate this notation from the autocovariance function, we do not
use 7 in boldface, although it is an extension of the autocovariance function

to higher-orders.

Lemma S2. Under Assumption 1, we have
Z X(az) . X(aqfl) X( )) ( . t t )
cum (X k+t1 T N ity T kttg1, T Nk T )" Var,.ae\Uks U1, - -+ Tg—1

l(m+t;) 1
<CZ<Z 1 m+t)jL H l(m+tj))’

m=—00 = J= 1 Jj=1

where C'is a generic constant and t; = 0.

Remark S2. Lemma K1 is a special case of Lemma 82 when ¢ = 2.

Proof. Under Assumption 1, there exists a constant C!") such that all cumu-

lants of order r are all bounded by (l(T), since all cumulants can be written
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in terms of polynomials of moments. Now, it holds that

(ag—1) (aq)
‘CuIn(Xlij—lt)l,TV Xli(ft)z,TV cee Xk+qtq11,T7 Xk?% ) — Yai,..aq (Uks 1,y tg—1)
o] p
< ‘ Z Z (Ak+t1,T(jl)u1m1 "'Ak,T(jq)aqmq 7A(uk7j1)a1m1 "'A(ukvjq)aqmq>
J1seesjg=—00M1,..., mg=1
(m1) (m2) (mq)
xcum (ek+i1—]'1 ’ ek+?2 —j27 " 76k_;q
_ [eS] P
< Ce(q) z Z ‘Ak+t1,T(jq + tl)a1m1 "Ak,T(jq)aqmq A(ukvjq + tl)a1m1 'A(ukvjq)aqmq
Jg=—o00omy,..., mg=1
o0
< Ce(q> Z | Ak+t,,7(Gg +t1)aimy "‘Ak,T(jq)aqmq — A(uk, Jg +t1)army Akt 7(dg + t2)aqmq "'Ak,T(jq)aqu [loo
jq:7°°

+||A(Ukvjq + tl)alﬂn Ak+t2,T(jq + t2)a27ﬂz o 'Ak,T(jq)aqmq - A(“kvjq + tl)aﬂm A(“k:jq + t2)'12m2 e Ak,T(jq)aqmq ||oo

+||A(Ukvjq + tl)alml o 'Ak,T(jq)aqmq - A(“k’jq + tl)aﬂm e 'A(“k:jq)aqmq Iloo

Note that, for 1 <7 < g — 1, we have

T
ZHAk-i-ti,T(jq + ti) - A(“’kvjq + ti)”oo

k=1
T
< 3 (MG + 1) = At g +16) oo + Ak, g + 1) = Alun, g + 1) o)
k=1
Ca
< Cat 7=
l(jq + tz)

Thus, it holds

T
Z‘cum(X,g‘rt)hT, X,g‘ft)%T, - Xé‘ft;lzlj, X,ﬁ?;))—val,...,al(uk; trseeestg-1)
k=1
>, [ 1, + 1) 1 1
<COCy 3 Y e - -

: - — ; : + :
ja=—o00 \li=1 (]q) H?:i l(]q + tj) l(]q) H?;i l(]q + tj) H}Z-:i l(]q + tj)

We obtain the conclusion if we replace j, with m and set ¢, = 0. Il
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S2 Asymptotic distribution

In Section B2, we consider the asymptotic distribution of the empirical
spectral process for multivariate locally stationary processes.

We first impose the following assumptions on the matrix-valued func-
tions ¢, which is to be considered later. Let V5(-) be the total variation of
bivariate functions, i.e.,

V) = sup{ 1 M) = s ) = s ) + e N

k=1

O0<up<- - <u, <1L,0< A< - <A\, <m; m,nEN}.

Let ¥ be a class of square-integrable functions, where the Lo-norm on

1 € VU is defined as

1 T
19112, :/0 |1 (u, \)[> dX du < oo.

The class V¥ is considered for the elements of the matrix ¢.
For any class ® := {¢ € RP*P;¢,; € W iori,j=1,...,p}, let 7o 1v,

TTV,005 TTV,TV a0d Too o be

Too, TV 1= Too, v (®) = sup max  sup V(¢i;(u,")), 7Trv,eo :=T1v,00(®) =sup max sup V(¢i;(-,N)),

ped 1<1,3<P ue[0,1] $eP 1SHLISP \e[0,7]

v,y = Trv,Tv(®) = sup max Va(¢ij), Too,00 1= Too,c0(®) = sSUp max  sup [¢;l.
ped 1<i,7<p ped 1<6,7<p 4e[0,1]
A€0,n]

Assumption S1. Let ® be a class of p X p matriz-valued continuous func-

tions ¢(u,-) on [—m, | such that for any ¢ € ®, it holds that (i) ¢(u,-) =
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¢*(u,-) for any fivzed u € [0,1]; and (ii) Too TV, TTV.00, TTV,TV 0N Too 0o GTE

all finite.

For any function ¢ € U, let ¥ be

br(u, \) = %w (%A) (52.10)

where b := by — 0asT — 00. Let U1 denotes the function class constituted
by Y7, i.e.,

Uy = {r(u, \) = %w (%A) b€ Lo}, (S2.11)

Assumption S2. For any ¢ € W, let ¥(-,\) be a positive, symmetric
function of bounded variation such that ¥(-, \) has a compact support on

~1,1].

Let o (u) and < (u) be

T ™
() = (150 = %Z/ V(1 — 1 N (g, Ao A, (S2.12)
k=1Y"T

T us

(W) = (U0 ap = %2/ Yr(u — ug, A) f(ug, N)ap dA. (52.13)
k=1Y"T

The empirical spectral process &7 (u)qp 18

Er(W)ay = Er(us )y = /Ty (r(u; ) — or(u; W)ab' (52.14)

We use the first expression in (8212), (S213) and (8ZT4) when there is no

confusion with .
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S2.1 Preliminary Computations
Let ¢ be ¢(u, k) = |7 _b(u, A) exp(—ikA) dA.

Lemma S3. Let Br be a sequence of positive numbers such that 7 — 0 as

T — oo. Suppose
T
limsup [r Z sup|v(u, —s)| < 0. (52.15)

T—o00 T U

Then, it holds that
| Bt (w)ay — or(u)as| = O(T~ b7 B7).

Remark S3. The condition

o0

Z sgph/;(u, —s)| < o0 (52.16)

S=—00

satisfies (8213). However, if ¢(u, -) is only a function of bounded variation,

then ¢ may not satisfy the condition (82Z16). Under (S2T3), we see that

T

> supld(u, —s)| = O(B;"),

s=—T *

which we use in the following evaluations.

Proof. From (3.16), we have

1 (@ (b) :
Ir(u, A)ap = o Z X1 240y2,0 X 41 j2-172) 70 EXP(—1AL).
C1<[uT+1/2+£/2)<T

(S2.17)
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In expression (82-17), ¢ depends on u, but it can be naturally extended to
=
_ (a) (b) :
Ir(u, N)ap = o Z Xt 12402 17X (w141 /2—/2,7 XP(— 1AL, (S2.18)
=1-T
if we let X, 7 =0 forany m <0orm > 1T + 1.
We shall use this expression (§8218) in the following proof. By Parseval’s

identity, it holds that

| Bt (u)ap — "Qf?T(U)ab|

T
1 s
< ‘?;/_ V(= e X) (BT (i, N = f (g, Non) A
T—
- (a) (b)
- ‘ﬁ kzl( _X_: (= i, =) (EX() oy o X 1oy = V(0 =5)un)
+ 3 drlu s ~3)a)|
s|>T
1 T T-1
(a) (b)
< T ‘Z Z (v — ug, —s) ( Cov(X (k+1/2+5/2],T" X[k+l/2—5/2]7T) =, _S)ab> ’
k=1 s=1-T

T
2 Z‘ Z ﬁT(u — Uk, _S>7(uk7 _S)ab
k=1 |s|>T

= Bi+ By, (say).

By Lemma K1, it holds that

T-1 T
1 - 1 a b
By < % Z sup|e(u, _3)“f Z COV(X[(kll/2+5/2]7T7 X[(kll/zfs/g]j) — (U, —8)ab
s=1-T " k=1
T-1

C - 1
b T ZTSIipW(w —s)| (1 + @)

= O(T'b;'B71).
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Further, noting (8T3), we have

—sup 3 [, ~ )] [y, —5)a

- 2mb
T T

C C
brBr l;ﬂ I(s)

= O(T"b;' 67",

By

IN

since {1(5)'}.en is a convergent series, and |l(s)| > T for |s| > T. There-
{(7) " e g )

fore, we obtain the assertion. Il

Next, we evaluate the higher-order cumulants of {r(u). We first clarify
the bias between those of the time-varying process { X;r} and those of the
approximate stationary process {X(u,t)}, and then evaluate the higher

order cumulants of the stationary process.

Lemma S4. Let By be a sequence of positive numbers such that Sy — 0
as T — oo. Suppose M (- X), ..., YD (-, \) are all functions of bounded
variation and satisfy Assumption 82 and
T
limsup Sr Z sup]@@(i)(u, —s)| < o0, fori=1,...,q. (52.19)

T—o0 T U

If by — 0, Thy — co and T~9?B;' — 0 as T — oo, then it holds that

cum(gT(u(l);w(1)>albl’ e ,gT(u(q);w(q))aqbq) _ O(qu/gbleq/z)'
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Especially, when q = 2, we have

lim COV(fT(U(l); (1)>a1b17€T< )¢ )a2b2)
T—o0

’
2 (), ) ( (@A II00) 0) £, N T 0, 0

+ / ( / (0, )@ (0, =A) dv )f( O N s £ (@D, N), o dA

o[ (] e —A2>d)%Ml@(u(“ulm,—A2>dA1dA2>,

(S2.20)

where 7 is the fourth-order spectral density of the process.

Remark S4. The sequence fr is used to alleviate the divergence of the
harmonic series. There exists a sequence 37 such that 85" = O(InT) (See
Remark 83 below for details). For this sequence, the condition 7'~ 2B -

0 always holds true for ¢ > 2.

Proof. Using the expression (821IR), we have @77 (u)q, as

T T-1
1 ; () (®)
A (u)ap = ﬁ Yr(u — up, _S>X[kz+1/2+s/2],TX[k+1/2—s/2],T’
=1 s=1-T
(52.21)
which is a linear combination of X[kll Jo4s/2)T X[(IS)H Jo—s/2).T" We apply

Lemma 52 to compute the higher order cumulants. Actually, it holds that

cum <§T(u(1); ¢(1))alb17 ) gT(u(Q); ¢(q))aqbq)

a ) (b1) a ) (b2) (aq) (b
= Cum( ZX’%IT H11 s ZXH;T R; o T ZX a qu sq,T )
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1 a1) (b (a0) - (ba)
- > cum<X§1}%X§;jshT,...,XKZ?TXM{ T)

K1,...,Kq

where for brevity, we let
R1 = [k'1+1/2—|—81/2], Ro = [k2+1/2+82/2], ceey /iq = [kq+1/2+5q/2]

To compute higher order cumulants, we have to consider all indecomposable

partitions of the following table (See Brillingey ([981), Theorem 2.3.2):

X(al) X(bl)

k1, T k1—s1,T

X(a2) X(b2)

ko, T “Nko—s3,T
X\ X
In view of Lemma 52 with some tedious computation, all indecomposable
partitions can be approximated by those cumulants of the stationary process
with a bias of lower order for a fixed ¢ > 2.
We give a representative example of a partition below. The other par-
titions can be evaluated in the same manner. Without loss of generality,

let ¢ be odd. Suppose we evaluate the following cumulant:

1 a
i Z cum (X,g??%, Xéj?%) cum (X(b2) X(bB) > .o cum (Xéqi?%) X(bl) )

Tq Ko—S9,1" k3—s3, T Kk1—s1,1
K1yeenshig

If we replace variables ks, ..., kg With 7y := Ko — K1, ..., T, '= Kqg — K1, then
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we have

1 a a
T Z cum <X,ilf%, Xéli)mT)

K1,72,---,Tq

K1+72—82,T" Kk1+73—s83,T H1+Tq,T7 k1—s1,T

cun1<X(b2) x ) ) "-cum(X(a") x > (S2.22)
Applying Lemma 82, (§8222) can be approximated by

T
1
Ta Z Z ¥ (Uiys T2)aran Y (Wiy s T3 — 83 = Ta 52 bty == Y (Uisys —S1 = Tg)aghs -

K1=1 T2, ,Tq

(S2.23)
More precisely, the absolute bias between (8222) and (8223) is bounded

by
q
T—q;@(l + ﬁ)

Returning back to the expression (82211), we see that the full expression of

the absolute bias is bounded by

T-1

1 a -
— sup|v ) (u, —s;)|

s1,,8g=1-T i=1 *

1 Qa,
x’ﬁ Z Cum(X,g(f%,Xé?i)mT)cum(X(ba) x (b3) )--~cum<X( ) xb) )

K1+T2—892,1" k1+73—s3,T K1+74, T K1—s1,1
K1,T2,...,Tq

T
1
_ﬁ Z Z 7(”/@1 ) 7—2>a1a27(u517T3_33_7—2+52)b2b3 e 7(”/{17 _Sl_Tq)aqbl

K1=1 T2, ,7q

= O(T ;" 57").

In summary, all cumulants of order ¢ for <7 can be approximated by those

of the stationary process with a bias of order O(T~%,?/5,%). Thus, the bias
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in those cumulants for & is O(T~92b7%?879). Furthermore, it holds that

cum (&7 (u®; W) 4, -+, Er (WD @), ) = O(Tlfq/Qb;*Q/2>, ($2.24)

since (M (-, A), ..., Y@ (-, \) are all functions of bounded variation. There-
fore, the bias is asymptotically negligible. A representative example of
(8224) is shown below.

Let us consider the case ¢ = 2 for &7. Note that ¢ is even now. We

have three terms of the type (8Z23) | i.e.,

(i) the approximation for cum(X(af%, X o0 )cum(XéZQ%, X (b2) ):

K1 Kk1—s1,T ko—s2,T

T
bT 7 7 (2
TZ Z wé})(u(l)_uﬁ1’Sl)wg‘)(u(z)_uﬁn82)7(u51?7_2)a1a27(ufi17TZ—S?+81)b152;

k1=1 51,82,T2

(S2.25)

(ii) the approximation for Cum(X(af%, x ) )cum(X(bl) X,EZQ%)

K1 Ko—s2,T K1—81,1"

T
by ) )
T Z Z wé})(u(l)_uﬁl’ 81)¢§?) (u@)_um? 52)7('“#%1’ 7_2_52)1111727(“/@17 7_2+81)b1a2§

k1=1 51,82,72

(S2.26)

(iii) the approximation for Cum(X(af%, x®) o x(e) X,g;l)T)

K1 Ko—s82,1" K1—S1,1"

T
bT 7(1 (2
T Z Z wéﬂ)(u(l)_ulﬂa 81) é“)(u@)_ufil) 32)’7a1a2b1b2 (ufﬂ; —81, T2, 7—2_82)'

rk1=1 51,82,T2

(S2.27)

We first explain the term (8225). By repeated application of the Par-

seval equality (see, e.g., the proof of Lemma 2.2 in Hosoya and Taniguchi
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(T982) for details) and by Lemma P5.1 in Brillinger (I981), the term (822H)

is equivalent to

1 T
2by / / G (O =1, N (@ — 11, X) (11, N aran F (11 Ny, AN it O(T
0 —7

Under Assumption 82, if u(M # u® we have

/ / ) (D =, NP () = 1, 0) f (4, Ny F (1, Ny, AN due = 0(b7),

since the supports of ¥ and @ are compact. Thus, the term (82=3)

converges to

2m6(u, ) [ ([ 00 IO ) £ (0, N F ), I
(S2.28)
where § is a delta function such that d(a,b) = 1 if a = b, and 0 otherwise.

Similarly, the term (8228) converges to

27T5(U(1), u(z)) /W (/OO ¢(1) (U, )\)Tﬂ@) (Ua _)\) dU) f(u(l)7 )‘)albzf(u(l)a )\)bla2 dA.

(52.29)

The term (§221) converges to

lb;l).

20 (u // / WO (v, X))@ (v, —/\g)dv)%mblbz( )i A1, Az, —Aa) dA; ds,

(52.30)
by repeated application of the Parseval equality. Combining all terms

(8228), (82229) and (8230), we obtain the results of Lemma 4. O
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S2.2 Asymptotic Normality

Here, we show the asymptotic normality of the empirical spectral process
¢r(v) in (8214). To this goal, we adopt the idea in Dahlhans and Polonik
(2009) to use the Gaussian kernel as the mollifier with the property of being
rapidly decreasing. Let G' be the Gaussian kernel, that is,

G(x) = \/12_7T exp(—%ﬁ) ,

and G the mollifier

Gola) = 56(5).

with # := 67 — 0 as T' — oo. From the convolution theorem, the Fourier

coefficients 17 of ¢*T := 1) x G4 are
O (k) = Plu, k)Ga(k), ke (S2.31)
Remark S5. The remarkable feature of this manipulation is that

> sup [ (u, k)| <Y sup [db(u, k)],

kez, UEl0,1] kez, UE0,1]

since for any fixed k € 7Z,

N —ﬁQkQ
Gs(k)| = ‘eXp( 5 )) <1.
In addition, the following result holds.
Z sup |7 (u, k)| = O<ln(5}l)>. (52.32)

ke u€el0,1]
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If we take By as By = T—% for any k > 1, then we have

sup [ (u. k)| = O(In 7).

kel u€e0,1]

Proof of Remark [53. For any 1 < 1,7 < p, let ¢ := ¢;; € ¥ as in Assump-

tion K. Note that ¢ (u, -) is a continuous function of bounded variation.

(i) Let k # 0. From Jordan decomposition theorem, there exists a signed

measure g, such that

. u —3EN) —
1/}(%,{;):/ exp( —lik) 1

—T

gy (u, dA),

which leads to

. C CTo
sup |(u, k)| < = sup V(¥(u, ) < —=1V
wel0 1] K] weo.) |k|

(ii) Let k= 0.

sup [$/(u,0)] <27 sup  sup W(u, A) < 2T oo

u€(0,1] u€[0,1] Ae[—m,7]

Combing (8233) and (8234 with the relation (82231), we obtain

(S2.33)

(S2.34)

sup |07 (u, k)| < C(l + io: % exp<_52k2)> = O(ln(ﬁ_1)>.

u€l(0,1] 1 2

Thus, the equation (82232) is shown.

Next result shows that the asymptotic normality of &7 (uy)ap for & > 1.



S52. ASYMPTOTIC DISTRIBUTION

Theorem S1. Suppose Assumptions 1 and S hold. Let by — 0 and Tby —

00, as T — oo. For any q, and vV, ... u? € [0,1], it holds that

(fT(u(l); 7wb(1)>a1b17 e ?fT(u(q); w(q))aqbq)—r i> N(Oa (V}k)j,kzl,...q)7 as T — 0,

where Vi, 1s
Ve = 27T5(u(j), u(k)) </7r </oo @D(j) (v, N &) (v, \) dv)f(u(j), )\)ajakf(u(j)7 )\)bjbk d\
/ / D9 (0, N ® (o, A)dv)f( D N)ayty N, dA

[ AT =R )0 <J'>;A1,A2,—A2>dA1dAz>,

where 7 is the fourth-order spectral density of the process.

Proof. First we show that var <§T(u;¢)ab — gT(U;¢*T)ab> — 0, which, in

turn, shows that
Er(w; ) ap — Er(u; " )ap —p 0. (S2.35)
As in Remark BH, let 37 = T~* for any £ > 1. Following this choice, we

have O(Br/br) = o(1). Note that

var <€T(U; V)ap — Er(u; WT)ab)

N
-

T
1 n T xT (a) (b)
=Tbr Var(ﬁ Z {wT u—up, —s) — P (u—up, — )}X[k+1/2+s/2} X[k+1/2—s/2],T
k=1 s=1-T
e 2
(sup Z W u,—S) (u —5)])

00 202 112
<ont Y lexp(=s"57/2) — 1P

52

S§=—00

)
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where the last inequality follows from (8223T)). Since |exp(—s%3%./2) — 1] <
min(1, s>32/2), the order of the last term is O(Sr/br) = o(1). Thus, (S2Z-33)
is shown.

Now, we only have to consider the finite distributions of &p(u;¢*T).
However, from Remark B3, we find that the condition (§2T19) is satisfied
and thus the covariance matrix of &7 (u;1*T) can be expressed in the form

of (8220). Therefore, the proof is completed. O

Finally, remembering the matrix ¢ satisfies Assumption 1, we define

22(u) and oZ2(u) as
sy = Ly [ o= I ) ax
i) i= 73 [ ol m ) N
and let Cr(u) be
Gr(u) = V/Tor Te(ef (u) — o7 (u)). (52.36)

Corollary S1. Suppose Assumptions 1, 81 and [S2 hold. If by = o(1) and

7' =o(T(InT)%), then it holds that

(CT(U(I))> s 7CT(’LL(‘1)))T i) N(O, ( jk)j,kzlw.q), as T — oo,
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where \N/jk 15 given by

Vit = 4nd(u®), u®) (/W Tr(/oo F (v, 1) F (D, N)(v, ) do) dA

s [ %(v,m%(v,Amm(u@;—AI,A2,—A2>dv)dxldAg),

M=

1
2
rtup=1Y T T

(S2.37)

where 7 is the fourth-order spectral density of the process.

Proof. From the definition of (r(u) in (82338), we see that ((u) is a linear
combination of the processes &r(u) in (8214). With a similar computation

to the latter part in Lemma A.3.3. in Hosoya and Taniguchi (T982), we

obtain (52237). O

S3 Proofs

In Section B3, we provide proofs of results in Section 3 in the paper.

S3.1 Proof of Theorem 1

Proof. From equations (3.17) and (3.19), we have

Lr(0,u) — L£(8, ) :{ ! iiK(“_“’“> - 1}/7r Indet fa(\) d>\+Tr<f(u, /\)fgl(A)> dA

br o

+ %z %K(“ ) / ” Ted (£ ) = £, 0)) £ () b

—T
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# 1 3ge (5) [ (1 = )0}

=Ly + Lo+ L3, (say).

Since K is a function of bounded variation, applying Lemma P5.1 in Brillinge

(T98T), it holds that

T 1
1 1 U — U 1 u—v 1
— —K —1= —K dv—-14+0(T
TZbT<bT) /ObT<bT)” +0(T™)

_ /bT K(z)dz — 1+ O(T™Y),
Ui,i;l

which implies that L; = O(T~!), since the kernel K has a compact support.
Under Assumption 2 (i), f is of bounded variation, and again, applying

Lemma P5.1 in Brillinger] (T981), we have

% Z %K<u ;TUk) ('f(uk’ )\) a 'f(U7 /\)>

:/01 iK(“b_T“> (F(v,)) = F(u,A)) do+O(T™Y)

:/LbT K($)(f(u —brz, \) — f(u, )‘)) do +O(T7),

2

B [‘bT ) (_bTxa%f(“’ A) + (bra)? aau Fu, ) + OB )) dz + O(T™Y).

Since K has a compact support and it is symmetric, we have f fooo K (x)de =

0, which implies that

Ly = O(by) + O(T),
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as T' — oo. In summary, we have /TbrL; — 0, and /TbrLs — 0, since
by = o(T~'/%). Finally, we apply Corollary B1 to Ls to show
VTbr (Lr(60,u) — £(6, 1)) S N(0,VE(u)). (S3.38)

In fact, we only have to check Assumptions §1 and §2 for

P(u, ) = K(u)fg ' (N), (53.39)

or equivalently, ¢ (u, \) = K (u) éj()\) for i,7 =1,...,p, which is expressed
in the Einstein notation. From the definition (2.4) of the time-varying
spectral density matrix, fo '(\) is obviously Hermitian. Additionally, As-
sumption BT (ii) is satisfied if both K and f,'(\) are bounded functions of
bounded variation, which follows Assumptions 2 (i) and 3 (iii). Applying

Corollary K1 to (83339), we obtain (S3338). O

S3.2 Proof of Theorem 2
Proof. Note that we have
VT (Lr(8,u) — L(6, 1)) 5 N(0, VE(w)).

The consequence (3.22) follows, if the following conditions are guaranteed

for the theorem, i.e.,

(i) both L7(6,u) and £(0,u) are convex in @ for each u and continuous

in u for each 6;
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(ii) Bp(u) is the unique minimizer of £(80,u) for each u € [0, 1]

According to (i), the convexity of L7(6,u) and £(8,u) in 8 follows from
Assumption 3 (v-b). Especially, note that L£7(0,u) is a linear combination
of [" Indet fo(\) + Tr (IT(uk, )\)fe_l(/\)>d)\ with nonnegative coefficients,
which implies that L£r(0,u) is convex. The continuity of Lr(6,u) and
L£(6,u) in u follows from Assumption 2, i.e., the continuity of K and f(-, \).
According to (ii), it is assumed in Assumption 3 (v-a). Since @y(u) is the
unique minimizer and fg(\) is twice continuously differentiable with respect

to 6, again, (3.23) follows from Corollary KT. O

S3.3 Proof of Theorem 3

Proof. For simplicity, denote

-1
ng(u)(/\)u = fow) (M1 — 27gow) (N)12 (Ee(umz) gow)(N)21.
Accordingly, GC®™Y(u; ) in (3.24) is simply

L (™ |fo (M
GO (u: 0 :—/ I 1o\l 4y
8 =5 | g7 O]

Note that the domain of the integration is bounded, and under Assump-
tion 4, In|fo)(A)11] is integrable in A for v € [0,1], which implies that
In| 5, (M1l is also integrable.

Now if we show fouy (M) and fg,, (M are continuously differentiable
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with respect to 6, then applying the delta-method to (3.22) leads to the
conclusion. We summarize the parametric expressions used in the causality

measure. Suppose that gg,)(A) admits the decomposition

Gow) (M1 goguy (M2
o) (A) =

go(u)(N21 Go(uy(A)22

With an abuse of notation, under Assumption 4, fg(,), defined on the unit

disk D in the complex plane, can be factorized as
1 *
fg(u)(z) = %Ag(u)(z)Ag(u)(z) , ZE D. (S3.40)
Especially, as shown in Rozanov (I967), it holds that
Yow) = Aow)(0)Ag()(0)". (S3.41)

From Lemmas 2.2 and 2.3 in Hosoya (T991), we have

gow)(M)11 = fow) (M1, gow)(N)12 = Gow)(N)31, (S3.42)

. Jowy (M1
ge(u)O‘)Ql = [—Eg(u)mﬁe@u ]M:| Ag(u)(O)Ae(u)(el)‘)—l )

Sow)(N)21

(93.43)

and
1 - 1 —1
gﬂ(u)(/\)Qz = %Ee(u)QZ = o {Ee(u),m - Ze(u),zlze(u)’llzg(u%u} . (S3.44)

The continuous differentiability of fg(.)(A)11 with respect to € directly

follows from that of fg(,)(A) under Assumption 3 (iv). Note that ig(u)m
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is a continuous function of g, from (8324). Using the expression for
Yo in (8341) and the relation in (§340), the continuous differentiability
of Mg with respect to @ follows from that of fg(,(A). In addition, this
implies the continuous differentiability of gg(.)(A)21 from (83743), which in
turn implies the continuous differentiability of ng(u)()\)11~ This completes

the proof of Theorem 3. O

S3.4 Proof of Theorem 4

Proof. By Theorem 6.8 of Magnus and Neudeckeyj (2007), we have

GC(2_’1)(U; éT) _ GC(Q—’l)(u; 6y) = VGC(Q_”)(U; GO)T(éT(U) _ Bo(u))

~ ~

(6r(u) — Oo(u)) " H(w) (Br(u) — O(w)) + 0p<(0T(u) - eo(u))Q).

Since VGC®7Y(u;6,) = 0 from (3.26), we have

Tbr (GC®D (u; 07) — GCP7Y (u; 6y))

VThr (0r(u) — 0o(u)) H(u)\/Tbr (07 (u) — 6(u)) + op(1).

DO | —

We arrived at the conclusion (3.29) by the continuous mapping theorem. [J

Finally, Theorems 5 and 6 are readily obtained by Theorem 4.
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