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In this supplement, we first present the proofs of all the theoretical results in the paper,

along with a number of useful lemmas. We next derive the full conditional distributions of

the model parameters, and present some additional numerical results.

S1. Proofs

S1.1 Proof of Proposition 1

Given τ 21 (v) and τ 22 (v), if π(Y+,i(v), Y−,i(v) | θ) = π (Y+,i(v), Y−,i(v) | θ′), for any i =

1, . . . , n, v ∈ Bm, and since {Y+,i(v), Y−,i(v)} follows a bivariate normal distribution, we

have that µ+,i(v) = µ′
+,i(v), and µ−,i(v) = µ′

−,i(v), i.e., s{ρ(v)}E+,i(v) = s{ρ′(v)}E ′
+,i(v),

and s{−ρ(v)}E−,i(v) = s{−ρ′(v)}E ′
−,i(v), for any i = 1, . . . , n, v ∈ Bm.

Furthermore, we have that,



S1.2 Proof of Theorem 1

0 =
n∑
i=1

[
s{ρ(v)}E+,i(v)− s{ρ′(v)}E ′

+,i(v)
]2

=
n∑
i=1

[
s{ρ(v)}2E+,i(v)

2 − 2s{ρ(v)}s{ρ′(v)}E+,i(v)E
′
+,i(v) + s{ρ′(v)}2E ′

+,i(v)
2
]

= [s{ρ(v)} − s{ρ′(v)}]2
n∑
i=1

E2
+,i(v) + s{ρ′(v)}s{ρ(v)}

n∑
i=1

{E+,i(v)− E ′
+,i(v)}2

+ s{ρ′(v)} [s{ρ(v)} − s{ρ′(v)}]
n∑
i=1

{
E+,i(v)

2 − E ′
+,i(v)

2
}

By Definition (4), we have
∑n

i=1E+,i(v)
2 =

∑n
i=1E

′
+,i(v)

2.

When v ∈ V(ρ) ∪ V(ρ′), we have s{ρ(v)} ≥ 0, s{ρ′(v)} ≥ 0, and at least one of

s{ρ(v)} and s{ρ′(v)} is not equal to 0. Therefore, s{ρ(v)} = s{ρ′(v)}, and E+,i(v) =

E ′
+,i(v), for any i = 1, . . . , n, v ∈ Bm. On the other hand, if v /∈ V(ρ) ∪ V(ρ′), then

s{ρ(v)} = s{ρ′(v)} = 0. Similarly, we have E−,i(v) = E ′
−,i(v) = 0, for any i = 1, . . . , n,

v ∈ Bm.

Since s(·) is a monotonic function, we have ρ(v) = ρ′(v) for all v ∈ Bm. This completes

the proof of Proposition 1. □

S1.2 Proof of Theorem 1

By Lemma S1, we have ρ(v) = Tω{ξ(v)} = H[Rω{ξ(v)}], where H(t) = t2/(t2 + 1)

when ξ(v) > ω, H(t) = −t2/(t2 + 1) when ξ(v) < −ω, and H(t) = 0 otherwise, and

Rω(x) = Gω(x)−Gω(−x) is the hard thresholded function. Therefore, we have that,
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pr (∥ρ− ρ0∥∞ < ε) = pr (∥H[Rω{ξ(v)}]−H[Rω{ξ0(v)}]∥ < ϵ)

≥ pr (∥Rω{ξ(v)} −Rω{ξ0(v)}∥ < ϵ) ,

by the Lipschitz continuity of H(·). Given the assumptions for ρ0(v), we have that ξ(v) is

bounded away from 0 for v /∈ R0. Henceforth,

pr(∥Rω(ξ(v))−Rω(ξ0(v))∥ < ϵ)

≥ pr

(
sup
v/∈R0

|ξ(v)− ξ0(v)| < ϵ, inf
v/∈R0

|ξ(v)| > ω, sup
v∈R0

|ξ(v)| ≤ ω

)
.

(S1)

Without loss of generality, we only consider 0 < ϵ < ω − ω0, where ω0 = infv/∈R0 |ρ(v)|.

Note that for all v /∈ R0, |ξ(v) − ξ0(v)| < ϵ and |ξ0(v)| ≥ ω0, which implies that |ξ(v)| ≥

ω0 − ϵ > ω. Then (S1) is equivalent to

pr(∥ρ(v)− ρ0(v)∥ < ϵ) ≥ pr

(
sup
v/∈R0

|ξ(v)− ξ0(v)| < ϵ, sup
v∈R0

|ξ(v)| ≤ ω

)
.

Let ψl(v) and λl be the normalized eigenfunctions and eigenvalues of the kernel func-

tion κ(·, ·). The KL expansions of ξ(v) and ξ0(v) are ξ(v) =
∑∞

l=1 clψl(v), ξ0(v) =∑∞
l=1 cl0ψl(v).

For v /∈ R0, we have that,

supv/∈R0
|ξ(v)− ξ0(v)| ≤ supv/∈R0

|ξL(v)− ξ0L(v)|+ supv/∈R0
|ξ(v)− ξL(v)|+ supv/∈R0

|ξ0L(v)− ξ0(v)|.
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Since the RKHS of κ(·, ·) is the space of the continuous functions on R, ξ(v) is uniformly

continuous on B\R0 with probability 1. Then by Theorem 3.1.2 of Adler and Taylor (2009),

limL→∞ supv/∈R0
|ξ(v)− ξL(v)| = 0 with probability 1. By the uniform convergence of the

series
∑L

l=1 cl0ψl(v) to ξ0(v) on B\R0, as L → ∞, we have limL→∞ supv/∈R0
|ξ0(v) −

ξ0L(v)| = 0. Then we can find a finite integer L′, such that, for all L > L′, supv/∈R0
|ξ(v) −

ξL(v)| < ϵ/3 with probability 1, and supv/∈R0
|ξ0(v) − ξ0L(v)| < ϵ/3. Since ψl(v), l =

1, . . . , L, are all continuous functions in R, we have max1≤l≤L ∥ψl(v)∥∞ < Mψ,L, for

some constant Mψ,L. When |cl − cl0| < ϵ/(3LMψ,L) for all l = 1, . . . , L, we have

supv/∈R0
|ξL(v)−ξ0L(v)| ≤ ϵ/3. Therefore, |cl−cl0| < ϵ/(3LMψ,L), l = 1, . . . , L, guarantees

that supv/∈R0
|ξ(v)− ξ0(v)| ≤ ϵ with probability one.

For v ∈ R0, we have that,

sup
v∈R0

|ξ(v)| ≤ sup
v∈R0

|ξ(v)− ξL(v)|+ sup
v∈R0

|ξL(v)|.

Similarly, we can find L and Mψ,L, such that |cl| ≤ ω/(2LMψ,L), l = 1, . . . , L, guarantees

that supv∈R0
|ξ(v)| ≤ ω with probability 1.

Then we have that,

pr (∥ρ− ρ0∥∞ < ε) ≥ pr

(
{|cl − cl0| <

ϵ

3LMψ,L

: L = 1, 2, . . . , L when v /∈ R0}

∪ {|cl| ≤
ω

2LMψ,L

: L = 1, 2, . . . , L when v ∈ R0}
)
.

This completes the proof of Theorem 1. □
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S1.3 Proof of Theorem 2

Based on Theorem 1, Lemma S3 shows the positivity of prior neighborhoods. We then

construct sieves for θ(v) as follows:

Θn =

{
ρ ∈ Θρ, E+, E− ∈ ΘE :

∥ρ∥∞ ≤ H
(
m1/(2d)

)
, sup
v∈R1∪R−1

|Dτρ(v)| ≤ m1/(2d), 1 ≤ ∥τ∥1 ≤ α

∥E+,i∥∞ ≤ m1/(2d), sup
v∈R1∪R−1

|DτE+,i(v)| ≤ m1/(2d),

∥E−,i∥∞ ≤ m1/(2d), sup
v∈R1∪R−1

|DτE−,i(v)| ≤ m1/(2d), for i = 1, . . . , n

}
,

(S2)

where α and m are defined in Assumption 3.

We can then find an upper bound for the tail probability, and construct the uniform

consistent tests in Lemmas S4, S5, S6 and S8. These lemmas verify the three key conditions

in Theorem A1 of Choudhuri et al. (2004), which leads to the posterior consistency. That is,

by Lemmas S4, S5, S6 and S8, as n→ ∞, m→ ∞, we have that,

Eθ0 (Ψn) → 0,

sup
θ∈UC

ϵ ∩Θn

Eθ (1−Ψn) ≤ C0 exp (−C1n) ,

pr
(
ΘC
n

)
≤ K exp

(
−bm1/d

)
≤ K exp (−C3n) .

where Uϵ = {θ ∈ Θ : ∥θ − θ0∥1 < ϵ} for any ϵ > 0, and Ψn is the test statistic defined in

(S7). This completes the proof of Theorem 2. □
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S1.4 Proof of Theorem 3

Let R0 = {v : ρ0(v) = 0}, R1 = {v : ρ0(v) > 0}, and R−1 = {v : ρ0(v) < 0}. For any

A ⊂ B and any integer k ≥ 1, define

Fk(A) =

{
ρ ∈ Θρ :

∫
A
|ρ(v)− ρ0(v)| dv <

1

k

}
.

Then Fk+1(A) ⊆ Fk(A) for all k, and Fk(B) ⊆ Fk(A). Consider

Fk (R0) =

{
ρ ∈ Θρ :

∫
R0

|ρ(v)|dv < 1

k

}
.

Define Uρ
ϵ = {ρ ∈ Θρ : ∥ρ− ρ0∥1 < ϵ}. By Theorem 2 and the fact that Uρ

1/k = Fk(B), we

have

pr {Fk (R0) | Y+, Y−} ≥ pr
(
Uρ
1/k | Y+, Y−

)
→ 1, as n→ ∞.

In addition,

{ρ(v) = 0, for all v ∈ R0} =

{∫
R0

|ρ(v)|dv = 0

}
=

∞⋂
k=1

Fk (R0) .

By the monotonic continuity of the probability measure, we have,

pr
{
ρ(v) = 0, for all v ∈ R0 | Y+, Y−

}
= lim

k→∞
pr
{
Fk (R0) | Y+, Y−

}
= 1, as n→ ∞.
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For any v0 ∈ R1 and any integer k ≥ 1, there exists δ0 > 0, such that |ρ (v1)− ρ (v0)| <

1/2k, for any v1 ∈ B (v0, δ0) = {v : ∥v1 − v0∥1 < δ0}. As R1 is an open set, there exists

δ1 > 0, such that B (v0, δ1) ⊆ R1. Let δ = min {δ1, δ0} > 0, we have that,{
ρ (v0) > −1

k
, for all v0 ∈ R1

}
⊇
{
ρ (v0) > ρ (v1)−

1

2k
and ρ (v1) > − 1

2k
, for some v1 ∈ B (v0, δ) , for all v0 ∈ R1

}
⊇
{∫

B(v0,δ)
ρ(v)dv > − 1

2k
, for all v0 ∈ R1

}
⊇
{∫

B(v0,δ)
ρ(v)dv >

∫
B(v0,δ)

ρ0(v)dv −
1

2k
, for all v0 ∈ R1

}
⊇ F2k [B (v0, δ)] ⊇ Uρ

1/2k.

Therefore,

pr {ρ (v0) > −1/k, for all v0 ∈ R1 | Y+, Y−} ≥ pr
(
Uρ
1/2k | Y+, Y−

)
→ 1,

as n→ ∞. By the monotonic continuity of the probability measure, we have that,

pr {ρ(v) > 0, for all v ∈ R1 | Y+, Y−} = limk→∞ pr
{
ρ (v0) > − 1

k
, for all v0 ∈ R1 | Y+, Y−

}
→ 1,

as n→ ∞. Similarly, we can obtain that pr {ρ(v) < 0, for all v ∈ R−1 | Y+, Y−} → 1, n→

∞. This completes the proof of Theorem 3. □
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S1.5 Proof of Proposition 2

We prove this proposition by sorting all the thresholding values, and derive the unnormalized

density on each interval, respectively. We then obtain the full conditional density function

of θ by normalizing the function on each interval as the density function.

We sort (L1, . . . , LP , U1, . . . , UK) in ascending order, which leads to P+K+1 intervals,

and denoted them as I1, I2, . . . , IP+K+1. For each interval Ii, i = 1, . . . , P + K + 1, the

full conditional distribution of θ is proportional to exp(−Diθ
2 − Eiθ − Fi). We initialize

Di = Ei = Fi = 0, then loop through p = 1, . . . , P and k = 1, . . . , K to update Di, Ei

and Fi. More specifically, if Ii ⊂ [Lp,+∞), we update Di = Di + a1p, Ei = Ei + a2p,

and Fi = Fi + a3p. If Ii ⊂ (−∞, Uk], we update Di = Di + b1k, Ei = Ei + b2k, and

Fi = Fi + b3k. We consider three specific cases.

• If at least one of {a1p, . . . , a1P , b1k, . . . , b1K} is not equal to 0, then Di ̸= 0, for any

i = 1, . . . , P +K +1. Therefore, when θ ∈ Ii, the full conditional distribution of θ is

N{−Ei/(2Di),−1/(2Di)}. Incorporating the normalizing constant Mi for each in-

terval, which is independent of θ, the full conditional distribution of θ is the mixture of

truncated normal distributions,
∑P+K+1

i=1 Mi·TruncatedNormalIi{−Ei/(2Di),−1/(2Di)}.

• If a1p = b1k = 0, for any p = 1, . . . , P and k = 1, . . . , K, and at least one of

{a2p, . . . , a2P , b2k, . . . , b2K} is not equal to 0, then Di = 0 and Ei ̸= 0, for any

i = 1, . . . , P +K +1. Therefore, when θ ∈ Ii, the full conditional distribution of θ is



the exponential distribution Exp(Ei). Incorporating the normalizing constant Mi, the

full conditional distribution of θ is
∑P+K+1

i=1 Mi · ExponentialIi(Ei).

• If a1p = b1k = a2p = b2k = 0, for any p = 1, . . . , P and k = 1, . . . , K, and at

least one of {a3p, . . . , a3P , b3k, . . . , b3K} is not equal to 0, then Di = Ei = 0, and at

least one of Fi ̸= 0, for any i = 1, . . . , P + K + 1. Therefore, when θ ∈ Ii, the

full conditional distribution of θ is proportional to the uniform distribution on Ii =

[u1i, u2i]. Incorporating the normalizing constant Mi, the full conditional distribution

of θ is
∑P+K+1

i=1 Mi · U(u1i, u2i).

This completes the proof of Proposition 2. □

S2. Additional Lemmas

Lemma S1 Rewrite ρ(v) = Tω{ξ(v); τ 21 (v), τ 22 (v)} in Equation (2.6). Then Tω(·) is a

piecewise Lipschitz continuous function for any ω.

Proof : From Equation (2.6), it is straightforward to verify that ρ(v) can be written as

ρ(v) = Corr{Y1,i(v), Y2,i(v)}

=
G2
ω{ξ(v)} −G2

ω{−ξ(v)}
[G2

ω{ξ(v)}+G2
ω{−ξ(v)}+ τ21 (v)]

1/2
[G2

ω{ξ(v)}+G2
ω{−ξ(v)}+ τ22 (v)]

1/2

=
sgn{ξ(v)}R2

ω{ξ(v)}
[R2
ω{ξ(v)}+ τ21 (v)]

1/2
[R2
ω{ξ(v)}+ τ22 (v)]

1/2
,

where Rω(x) = Gω(x)−Gω(−x). Without loss of generality, suppose τ 21 (v) and τ 22 (v) are



both equal to one. Then Tω(x) = H{Rω(x)}, where H(t) = t2/(t2 + 1) when ξ(v) > ω,

H(t) = −t2/(t2 + 1) when ξ(v) < −ω, and H(t) = 0 otherwise. Since H(t) is continuous

and |H ′(t)| ≤ 1/(2ω), H(t) is Lipschitz continuous. As Rω(x) is the hard thresholding

function, which is piecewise Lipschitz continuous function, Tω(x) = H{Rω(x)} is also a

piecewise Lipschitz continuous function. This completes the proof of Lemma S1. □

Lemma S2 Given ρ(v) = Tω{ξ(v); τ 21 (v), τ 22 (v)} in (6), there exist a piecewise Lipschitz

continuous function s(·), such that Gω{ξ(v)} = s{ρ(v); τ 21 (v), τ 22 (v)}.

Proof : It is straightforward to show thatGω{ξ(v)} = s {ρ(v); τ 21 (v), τ 22 (v)}, andGω{−ξ(v)} =

s {−ρ(v); τ 21 (v), τ 22 (v)}, where s(x; t1, t2) is as given in (7). Therefore, s(·) is a piecewise

Lipschitz continuous function. This completes the proof of Lemma S2. □

Lemma S3 Let Πn,i(·; θ) denote the density function ofZn,i = (Y+,i, Y−,i). Define Λn,i(·; θ0, θ)

= log πn,i(·; θ)− log πn,i(·; θ0),

Kn,i(θ0, θ) = Eθ0 {Λn,i (Zn,i; θ0, θ)}, and Vn,i (θ0, θ) = varθ0 {Λn,i(Zn,i; θ0, θ)}. There ex-

ists a set O with Π(O) > 0, such that, for any ϵ > 0,

lim inf
n→∞

Π

[{
θ ∈ O,n−1

n∑
i=1

Kn,i (θ0, θ) < ϵ

}]
> 0 and n−2

n∑
i=1

Vn,i (θ0, θ) → 0 for θ ∈ O.

Proof : The density function is of the form,

Πn,i(Zn,i; θ) =
∑
v∈Bm

1

2πu2(v){1− r2(v)}1/2
· exp

[
− Wi(v)

2{1− r2(v)}u2(v)

]
,



where Wi(v) = {Y+,i(v) − µ+,i(v)}2 + {Y−,i(v) − µ−,i(v)}2 + 2r(v){Y+,i(v)µ−,i(v) +

Y−,i(v)µ+,i(v)}, r(v) = {τ 21 (v)− τ 22 (v)}/{τ 21 (v)+ τ 22 (v)}, and u2(v) = {τ 21 (v)+ τ 22 (v)}/4.

Therefore, we have,

Λn,i (Zn,i; θ0, θ) = logΠ(Zn,i; θ)− log Π(Zn,i; θ0)

=
∑
v∈Bm

[
− 1

2{1− r2(v)}u2(v)

] [
µ2
+,i(v)− µ2

+,i,0(v) + µ2
−,i(v)− µ2

+,i,0(v)

+ 2Y+,i(v){µ+,i,0(v)− µ+,i(v)}+ 2Y−,i(v){µ−,i,0(v)− µ−,i(v)}(v)

+ 2rY+,i(v){µ−,i(v)− µ−,i,0(v)}+ 2rY−,i(v){µ+,i(v)− µ+,i,0(v)}
]
,

Kn,i (θ0, θ) = Eθ0 {Λn,i (Zn,i; θ0, θ)}

=
∑
v∈Bm

(
− 1

2{1− r2(v)}u2(v)

[
{µ+,i(v)− µ+,i,0(v)}2 + {µ−,i(v)− µ−,i,0(v)}2

+ 2r(v)µ+,i,0(v)µ−,i(v) + 2r(v)µ−,i,0(v)µ+,i(v)

− 2r(v)µ+,i,0(v)µ−,i,0(v)− 2r(v)µ−,i,0(v)µ+,i,0(v)
])
.

Given any ζ > 0, let O(ζ) = {θ : ∥θ − θ0∥∞ < ζ}, with

∥θ − θ0∥∞ = max
v∈V(ρ)∪V(ρ0)

{
∥ρ− ρ0∥∞, max

1≤i≤n
∥E−,i − E−,i,0∥∞, max

1≤i≤n
∥E+,i − E+,i,0∥∞

}
,

and V(ρ) = {v : ρ(v) ̸= 0}, V(ρ0) = {v : ρ0(v) ̸= 0}, then, for any v ∈ O(ζ),

|µi,+(v)− µi,+,0(v)| ≤ |s{ρ(v)}E+,i(v)− s{ρ0(v)}Ei,+,0(v)|

≤ |E+,i(v) (s{ρ(v)} − s{ρ0(v)})|+ |s{ρ0(v)} (E+,i(v)− Ei,+,0(v))| ≤ K1ζ,

where the last inequality is due to the compactness and convexity of Bm, and



K1 = max
v∈V(ρ)∪V(ρ0)

{E+,i(v), s{ρ0(v)}} .

Similarly, we have |µi,−(v)− µi,−,0(v)| ≤ K2ζ , for any v, where

K2 = max
v∈V(ρ)∪V(ρ0)

{E−,i(v), s{−ρ0(v)}} .

Therefore, we have that,∣∣∣∣∣
n∑
i=1

Kn,i(θ, θ0)

∣∣∣∣∣ ≤ ∑
v∈V(ρ)∪V(ρ0)

1

2 {1− r2(v)}u2(v)

( n∑
i=1

|µi,+(v)− µi,+,0(v)|2

+

n∑
i=1

|µi,−(v)− µi,−,0(v)|2

+ 2r(v)M

n∑
i=1

|µi,−(v)− µi,−,0(v)|+ 2r(v)M

n∑
i=1

|µi,+(v)− µi,+,0(v)|
)

≤
∑

v∈V(ρ)∪V(ρ0)

1

2{1− r2(v)}u2(v)
(
nK2

1ζ
2 + nK2

2ζ
2 + 2|r(v)|Mn(K1 +K2)ζ

)
≤ Anζ2 +Bnζ,

where

M = max
v∈V(ρ)∪V0(ρ0),∀i

{µ+,i,0(v), µ−,i,0(v)},

A = (K2
1 +K2

2)
∑

v∈V(ρ)∪V(ρ0)

1

2{1− r2(v)}u2(v)
,

B = M(K1 +K2)
∑

v∈V(ρ)∪V(ρ0)

|r(v)|
2{1− r2(v)}u2(v)

.



Henceforth, for any ϵ > 0, we obtain that,

lim inf
n→∞

Π

[{
θ ∈ O, n−1

n∑
i=1

Kn,i (θ0, θ) < ϵ

}]
> 0.

Similarly, we have that,

Vn,i (θ0, θ) =
∑

v∈V(ρ)∪V(ρ0)

1

{1− r2(v)}u2(v)
[
{µ+,i(v)− µ+,i,0(v)}2 + {µ−,i(v)− µ−,i,0(v)}2

+{r3(v)− 3r(v)}{µ+,i(v)− µ+,i,0(v)}{µ−,i(v)− µ−,i,0(v)}
]
,

|Vn,i (θ0, θ) | ≤
∑

v∈V(ρ)∪V(ρ0)

1

{1− r2(v)}u2(v)
(
K2

1ζ
2 +K2

2ζ
2 + |r3(v)− 3r(v)|K1K2ζ

2
)
≤ Cζ2,

where

C = (K2
1 +K2

2)
∑

v∈V(ρ)∪V(ρ0)

1

{1− r2(v)}u2(v)
+K1K2

∑
v∈V(ρ)∪V(ρ0)

|r3(v)− 3r(v)|
{1− r2(v)}u2(v)

.

Henceforth, we obtain that,

∣∣∣∣∣
n∑
i=1

Vn,i (θ0, θ)

∣∣∣∣∣ ≤ nCζ2 and
1

n2

n∑
i=1

Vi,n (θ0, θ) → 0, as n→ ∞.

This completes the proof of Lemma S3. □

Given the sieves we construct in Equation (S2), we next derive an upper bound for the

tail probability, and construct the uniform consistent tests in Lemmas S4, S5, S6 and S8.

Lemma S4 Suppose ρ ∼ TCGP(ω0, κ) with ω0 > 0, the kernel function κ satisfies As-

sumption 2, and E+,i, E−,i ∼ GP(0, I), for i = 1, . . . , n. Then there exist constants K and



b, such that pr
(
ΘC
n

)
≤ K exp(−C3n).

Proof : Following the same notation as that in the proof of Lemma S1, we have ρ(v) =

Tω{ξ(v)} = H[Rω{ξ(v)}]. Let R1 = {v : ρ(v) > 0}, and R−1 = {v : ρ(v) < 0}. We have

Rω{ξ(v)} = ξ(v) > ω when v ∈ R1, and Rω{ξ(v)} = ξ(v) < −ω when v ∈ R−1. Then

pr
(
ΘCn
)
≤ pr

{
sup

v∈R1∪R−1

|H(ξ(v))| > H
(
m1/2d

)}
(S3)

+
∑

τ :1≤∥τ∥1≤α

pr

{
sup

v∈R1∪R−1

|DτH(ξ(v))| > m1/2d

}

+

n∑
i=1

pr

{
sup

v∈R1∪R−1

|E+,i| > m1/2d

}
+

n∑
i=1

pr

{
sup

v∈R1∪R−1

|E−,i| > m1/2d

}

+

n∑
i=1

∑
τ :1≤∥τ∥1≤α

pr

{
sup

v∈R1∪R−1

|DτE+,i| > m1/2d

}

+

n∑
i=1

∑
τ :1≤∥τ∥1≤α

pr

{
sup

v∈R1∪R−1

|DτE−,i| > m1/2d

}
. (S4)

Since H(t) is a monotonic function,

pr

{
sup

v∈R1∪R−1

|H(ξ(v))| > H(m1/2d)

}
≤ pr

{
sup

v∈R1∪R−1

|ξ(v)| > m1/2d

}

≤ K1 exp
(
−b1m1/d

)
+K−1 exp

(
−b−1m

1/d
)
,

where the existence of K1, K−1, b1, b−1 in the second inequality is ensured by Theorem 5 of

Ghosal and Roy (2006).



We next consider the second term in (S3). Since |H ′(t)| ≤ 1 and |H ′′(x)| ≤ 2, we have,

∑
τ :1≤∥τ∥1≤α

pr

{
sup

v∈R1∪R−1

|DτH(ξ(v)− ω)| > m1/2d

}

≤ pr

{
sup

v∈R1∪R−1

|Dτξ(v)| > m1/2d

}
+ pr

{
sup

v∈R1∪R−1

|2 ·Dτξ(v)| > m1/2d

}

≤
∑

τ :0<∥τ∥1≤α

Kτ exp
(
−bτm1/d

)
.

Denote the sum of the last four terms in (S3) as SE . By Theorem 5 of Ghosal and Roy

(2006) again, there exist KE+ , bE+ ,KE− , bE− , KEτ and bEτ , such that

SE ≤ KE+
exp(−bE+

m1/d) +KE− exp(−bE−m
1/d) +

∑
τ :0<∥τ∥1≤α

KEτ
exp

(
−bEτ

m1/d
)
.

Taking K = K−1 + K1 + KE+ + KE− +
∑

τ :0<∥τ∥≤αKτ +
∑

τ :0<∥τ∥≤αKEτ , and

b = min
{
b−1, b1, bE+ , bE− ,min1≤|τ |≤α bτ ,min1≤|τ |≤α bEτ

}
, we have,

pr
(
ΘC
n

)
≤ K exp

(
−bm1/d

)
≤ K exp (−C3n) .

This completes the proof of Lemma S4. □

Lemma S5 Suppose Assumption 1 holds. The hypothesis testing problem,

H0 : ρ(v) = ρ0(v), E±,i(v) = E±,i,0(v), i = 1, . . . , n, v ∈ V(ρ1) ∪ V(ρ0),

H1 : ρ(v) = ρ1(v), E±,i(v) = E±,i,1(v),



is equivalent to the hypothesis testing problem,

H∗
0 : µ±,i(v) = µ±,i,0(v), i = 1, . . . , n, v ∈ V(ρ1) ∪ V(ρ0),

H∗
1 : µ±,i(v) = µ±,i,1(v),

where V(ρ1) = {v : ρ1(v) ̸= 0} and V(ρ0) = {v : ρ0(v) ̸= 0}.

Proof : For any k ∈ {0, 1}, it is straightforward to see that if Hk holds, then H∗
k also holds.

We show that, if H∗
k holds, then Hk also holds. For any v ∈ Bm,

0 =

n∑
i=1

[s{ρ(v)}E+,i(v)− s{ρk(v)}E+,i,k(v)]
2

=

n∑
i=1

[
s{ρ(v)}2E+,i(v)

2 − 2s{ρ(v)}s{ρk(v)}E+,i,1(v)E+,i,k(v) + s{ρk(v)}2E+,i,0(v)
2
]

= [s{ρ(v)} − s{ρ0(v)}]2
n∑
i=1

E2
+,i,k(v) + s{ρk(v)}s{ρ(v)}

n∑
i=1

{E+,i(v)− E+,i,k(v)}2

+ s{ρ0(v)} [s{ρ(v)} − s{ρ0(v)}]
n∑
i=1

{
E+,i(v)

2 − E+,i,k(v)
2
}
,

By Definition 4, we have
∑n

i=1E+,i(v)
2 =

∑n
i=1E+,i,0(v)

2 =
∑n

i=1E+,i,1(v)
2. When

v ∈ V(ρ1)∪V(ρ0), s{ρ0(v)} ≥ 0, s{ρ1(v)} ≥ 0, and at least one of s{ρ0(v)} and s{ρ1(v)}

is not equal to 0,

s{ρ(v)} − s{ρk(v)} = 0, E+,i(v)− E+,i,k(v) = 0, i = 1, . . . , n.

Similarly, we have that E−,i(v) − E−,i,k(v) = 0 for any v ∈ V(ρ1) ∪ V(ρ0), i = 1, . . . , n.

Since s(·) is a monotonic function, ρ(v) = ρk(v) for any v ∈ Bm, which ccompletes the

proof of Lemma S5. □



Lemma S6 For the hypothesis testing problem,

H0 : µ±,i(vj) = µ±,i,0(vj), i = 1, . . . , n, vj ∈ V(ρ1) ∪ V(ρ0), j = 1, . . . ,m,

H1 : µ±,i(vj) = µ±,i,1(vj),

construct the testing statistic, Ψn = Ψ+n +Ψ−n −Ψ+nΨ−n, where

Ψ±n = max
i=1,...,n

{
I

(
m∑
j=1

δ±,i(vj)(Y±,i(vj)− µ±,i,0(vj)) > 2

(
m

C0

) ν
d
+ 1

2d

)}
,

δ±,i(vj) = 2I{µ±,i,1(vj) ≥ µ±,i,0(vj)} − 1, ν0/2 < ν < 1/2, and ν0, d, C0 are as defined

in Assumption 3. Write µ = {µi,±(vj)}, and µk = {µi,±,k(vj)} for k = 0, 1. Then, for

any ϵ0 > 0, there exist constants C0, C1 and i∗ ∈ {1, . . . , n}, such that, for any µ1 and µ0

satisfying that
∑m

j=1 |µ+,i∗,1(vj)− µ+,i∗,0(vj)| > mϵ0, or
∑m

j=1 |µ−,i∗,1(vj)− µ−,i∗,0(vj)| >

mϵ0, and µ satisfying that ∥µ − µ1∥∞ < ϵ0/4, we have Eµ0(Ψn) < C0 exp(−2n2ν) and

Eµ(Ψn) < C0 exp(−C1n).

Proof : To bound the type I error, we have Eµ0(Ψn) ≤ Eµ0(Ψ+n) +Eµ0(Ψ−n). By Assump-

tion 3, we have (m/C0)
ν/d ≥ nν . By the definition of Ψ+n, we have that,

Eµ0
(Ψ+n) ≤ pr

 m∑
j=1

δ+,i∗(vj){Y+,i∗(vj)− µ+,i∗,0(vj)} > 2

(
m

C0

) ν
d+ 1

2d


= pr

√C0

md

m∑
j=1

δ+,i∗(vj){Y+,i∗(vj)− µ+,i∗,0(vj)} > 2

(
m

C0

) ν
d


= 1− Φ

(
2

(
m

C0

) ν
d

)
≤ 1− Φ (2nν) ≤ ϕ(2nν)

2nν
=

1

2
√
2π

exp(−2n2ν)

nν
.



Similarly, we have that Eµ0(Ψ−n) ≤
1

2
√
2π

exp(−2n2ν)

nν
. Therefore,

Eµ0(Ψn) ≤
1√
2π

exp(−2n2ν)

nν
.

To bound the type II error, we have that,

Eµ [1−Ψn] ≤ min {Eµ (1−Ψ+n) ,Eµ (1−Ψ−n)} .

As such, we only need to show that at least one of the type II error probabilities for Ψ+n

and Ψ−n is exponentially small. Suppose
∑m

j=1 |µ+,i∗,0(vj) − µ+,i∗,1(vj)| > mϵ0. Since∑m
j=1 |µ+,i∗(vj)− µ+,i∗,1(vj)| < mϵ0/4, we have,

Eµ(1−Ψ+n)

≤ pr

 m∑
j=1

δ+,i∗(vj){Y+,i∗(vj)− µi∗,+,0(vj)} > 2

(
m

C0

) ν
d+ 1

2d


= pr

√C0

md

m∑
j=1

δ+,i∗(vj){Y+,i(vj)− µ+,i,0(vj)} ≤ 2

(
m

C0

) ν
d


= pr

√C0

md

m∑
j=1

δ+,i∗(vj){Y+,i(vj)− µ+,i(vj)}+
√
C0

md

m∑
j=1

δ+,i∗(vj){µ+,i(vj)− µ+,i,1(vj)}

+

√
C0

md

m∑
j=1

δ+,i∗(vj){µ+,i,1(vj)− µ+,i,0(vj)} < 2(m/C0)
ν/d


≤ pr

√C0

md

m∑
j=1

δ+,i∗(vj){Y+,i(vj)− µ+,i(vj)} ≤ C0ϵ0m
1/2d

4
− C0ϵ0m

1/2d + 2(m/C0)
ν/d

 .

Since ν < 1/2, there exists N > N0, such that, for all n ≥ N , (m/C0)
ν/d < C0m

1/2dϵ0/4.



By Assumption 3, this further implies that,

Eµ(1−Ψ+n) ≤ pr

√C0

md

m∑
j=1

δ+,i∗(vj){Y+,i∗(vj)− µ+,i∗(vj)} ≤ −C0ϵ0m
1/2d

4


≤ Φ

(
−C0ϵ0m

1/2d

4

)
≤ Φ

(
−ϵ0n

1/2

4

)
≤ 4

ϵ0(2πn)1/2
exp

(
−nϵ

2
0

32

)
.

Taking C0 = max
{
2−1(2π)−1/2, 4ϵ−1

0 (2π)−1/2
}

and C1 = ϵ20/32 completes the proof

of Lemma S6. □

Lemma S7 Suppose Assumption 1, 2 and 3 hold. For any ϵ > 0, there existN , i and ϵ0 > 0,

such that, for all n ≥ N and all θ ∈ Θn that ∥θ − θ0∥1 > ε, we have
∑m

j=1 |µ±,i (vj)− µ±,i,0 (vj)| >

ϵ0m.

Proof : We first note that,

∥θ − θ0∥1 =
∑

v∈V(ρ)∪V(ρ0)

|ρ(v)− ρ0(v)|+ max
i=1,...,n

∑
v∈V(ρ)∪V(ρ0)

|E+,i(v)− E+,i,0(v)|

+ max
i=1,...,n

∑
v∈V(ρ)∪V(ρ0)

|E−,i(v)− E−,i,0(v)|
(S5)

Since ∥θ − θ0∥1 > ϵ, at lease one of the three terms in (S5) is greater than ϵ/3. Without loss

of generality, suppose max
i=1,...,n

{ ∑
v∈V(ρ)∪V(ρ0)

|E+,i(v)− E+,i,0(v)|

}
> ϵ/3. Then there exist

i, such that
∑

v∈V(ρ)∪V(ρ0)
|E+,i(v)− E+,i,0(v)| > ϵ/3. Therefore,

m∑
j=1

|µ±,i (vj)− µ±,i,0 (vj)| =
m∑
j=1

|s{ρ(vj)}E+,i(v)− s{ρ0(vj)}E+,i,0(v)|

=

m∑
j=1

|s{ρ(vj)} {E+,i(v)− E+,i,0(v)}+ E+,i,0(v) [s{ρ(vj)} − s{ρ0(vj)}]|

>

m∑
j=1

|s{ρ(vj)}| |E+,i(vj)− E+,i,0(vj)| −
m∑
j=1

|E+,i,0(vj)| |s(ρ(vj))− s(ρ0(vj))|

(S6)



By Definition 3, there exists Cρ > 0, such that |s{ρ(vj)}| > Cρ when vj ∈ V(ρ)∪V(ρ0). By

the compactness of V(ρ)∪V(ρ0), there existsC, such that max
j=1,...,m

|E+,i,0(vj)| |s(ρ(vj))− s(ρ0(vj))|

< C. Therefore,
m∑
j=1

|µ+,i (vj)− µ+,i,0 (vj)| > Cρmϵ/3−mC

Taking ϵ0 = Cρϵ/3− C completes the proof of Lemma S7. □

Lemma S8 For any ϵ⋆ > 0 and ν0 < ν < 1
2
, there exist N,C0, C1 and C2, such that, for all

n > N and θ ∈ Θn, if ∥θ − θ0∥1 > ϵ⋆, a test function Ψn can be constructed satisfying that

Eθ0 (Ψn) ≤ C0 exp (−C2n
2ν) and Eθ (1−Ψn) ≤ C0 exp (−C1n), where ν0 is as defined in

Assumption 3.

Proof : Let Nt be the t covering number of Θn in the supremum norm. Let θ1, . . . , θNt ∈ Θn

satisfy that, for each θ ∈ Θn, there exist at least one l such that
∥∥θ − θl

∥∥
∞ < t. For any

θ ∈ Θn, define

Ψn = max
1≤l≤Nt

Ψn

(
θ0, θ

l
)
, (S7)

where Ψn

(
θ0, θ

l
)

is the test statistic constructed in Lemma S6 for the hypothesis testing

problem H0 : θ = θ0 versus H1 : θ = θl. If ∥θ − θ0∥1 > ϵ⋆, then for θl satisfying that∥∥θ − θl
∥∥
1
< t ≤ ϵ⋆/2, we have

∥∥θl − θ0
∥∥
1
> ϵ⋆/2. By Lemma S7, there exist N∗

0 , i and

ϵ > 0, such that
∑m

j=1

∣∣µl+,i (vj)− µ+,i,0 (vj)
∣∣ > ϵm. By Lemma S6, we can choose ϵ0,

such that

Eθ0
{
Ψn
(
θ0, θ

l
)}

≤ C0 exp
(
−2n2ν

)
, and Eθ

{
1−Ψn

(
θ0, θ

l
)}

≤ C0 exp (−C1n) .



Furthermore, we have,

Eθ0 (Ψn) ≤
Nt∑
l=1

Ψn

(
θ0, θ

l
)
≤ C0Nt exp

(
−2n2ν

)
= C0 exp

(
logNt − 2n2ν

)
≤ C0 exp

{
Cn1/(2α)t−d/α − 2n2ν

}
≤ C0 exp

(
Cnν0t−d/α − 2n2ν

)
= C0 exp

{
−
(
2− Cnν0−2νt−d/α

)
n2ν
}
.

When Ct−d/α < 2, Eθ0 (Ψn) ≤ C0 exp
{
−
(
2− Ct−d/α

)
n2ν
}

. When Ct−d/α ≥ 2, since

ν0−2ν < 0, there existsN⋆
1 , such that, for all n > N∗

1 , Cnν0−2νt−d/α < 1. Then Eθ0 (Ψn) ≤

C0 exp {−n2ν}. In addition,

Eθ (1−Ψn) = Eθ
[

min
1≤l≤Nt

{
1−Ψn

(
θ0, θ

l
)}]

≤ Eθ
[{
1−Ψn

(
θ0, θ

l
)}]

≤ C0 exp (−C1n)

TakingC2 =
(
2− Ct−d/α

)
I
(
Ct−d/α < 2

)
+I
(
Ct−d/α ≥ 2

)
> 0, andN = max {N∗

1 , N
∗
0}

completes the proof of Lemma S8. □

S3. Derivations of Posterior Computation

S3.1 Full conditional distribution

We first summarize in Algorithm S1 the general procedure of deriving the full conditional

distribution of θ using Proposition 2. The main steps are to first rewrite the density of

θ in the form of (15), where {Lp}Pp=1, {Uk}Kk=1, {fp(θ)}Pp=1, {hk(θ)}Kk=1 are the input to

Algorithm S1. We then sort (L1, . . . , LP , U1, . . . , UK) in ascending order, which leads to



S3.2 Full conditional distribution of cl

Algorithm S1. Full conditional distribution of θ
Input: {Lp}Pp=1, {Uk}Kk=1, {fp(θ)}Pp=1, {hk(θ)}Kk=1.
Output: the full conditional distribution of θ.
Sort (L1, . . . , LP , U1, . . . , UK) in ascending order, which leads to P +K + 1
intervals, denoted as I1, I2, . . . , IP+K+1.
for interval Ii, i = 1, . . . , P +K + 1 do

Initialize Di = Ei = Fi = 0
for p = 1, . . . , P , k = 1, . . . , K do

if Ii ⊂ [Lp,+∞) then
Di = Di + a1p, Ei = Ei + a2p, Fi = Fi + a3p.

if Ii ⊂ (−∞, Uk] then
Di = Di + b1k, Ei = Ei + b2k, Fi = Fi + b3k.

end
Write Hi(θ) = Diθ

2 + Eiθ + Fi.
end
if there exists i, such that Di ̸= 0 then

the full conditional distribution of θ is a mixture of truncated normal
distributions.

if Di = 0 for all i, and there exists i, such that Ei ̸= 0 then
the full conditional distribution of θ is a mixture of truncated exponential
distributions.

if Di = Ei = 0 for all i, and there exists i, such that Fi ̸= 0 then
the full conditional distribution of θ is a mixture of uniform distributions.

P + K + 1 intervals. We next loop through all the intervals, and update the coefficient

of Hi(θ). Finally, after obtaining the unnormalized conditional density function of θ on

each interval, we derive the full conditional density of θ by incorporating the corresponding

normalizing constants.

S3.2 Full conditional distribution of cl

Without loss of generality, we only consider c1 in the following discussion. By model (9)

and the Karhunen-Loève expansion, we have



S3.2 Full conditional distribution of cl

µ±,i(v) = Gω {±ξ(v)}E±,i(v), ξ(v) =
∑L

l=1 clψl(v),

and E±,i(v) =
∑L

l=1 ei,l,±ψl(v). Given Y+, Y−, Θ̃\c1 , the full conditional density of c1 is,

π(c1 | Y+, Y−, Θ̃\c1) ∝ exp

(
−
∑
v∈Bm

∑n
i=1Wi(v)

K(v)

)
· exp

(
− c21
2λl

)
, (S8)

where Wi(v) = {Y+,i(v)− µ+,i(v)}2 + {Y−,i(v)− µ−,i(v)}2 +

2r(v){Y+,i(v)µ−,i(v) + Y−,i(v)µ+,i(v)}, and K(v) = 2{1− r2(v)}u2(v),

with r(v) = {τ 21 (v) − τ 22 (v)}/{τ 21 (v) + τ 22 (v)} and u2(v) = {τ 21 (v) + τ 22 (v)}/4. Write

T±(v) = {±λ1 −
∑L

l=2 clψl(v)}/{ψ1(v)}. According to the sign of ψ1(v), we have two

different representations of
∑n

i=1Wi(v).

When ψ1(v) > 0,

n∑
i=1

Wi(v) = {A+(v)c
2
1 +B+(v)c1 + C+(v)}I{c1 > T+(v)}

+ {A−(v)c
2
1 +B−(v)c1 + C−(v)}I{c1 < T−(v)}.

When ψ1(v) < 0,

n∑
i=1

Wi(v) = {A+(v)c
2
1 +B+(v)c1 + C+(v)}I{c1 < T+(v)}

+ {A−(v)c
2
1 +B−(v)c1 + C−(v)}I{c1 > T−(v)}.



S3.2 Full conditional distribution of cl

Algorithm S2. Full conditional distribution of cl
Input: P = K = m, where m is the number of spatial locations,

Lp =

{
T+(vj) if ψl(vj) > 0
T−(vj) if ψl(vj) < 0

, Uk =
{
T−(vj) if ψl(vj) > 0
T+(vj) if ψl(vj) < 0

,

fp(θ) =

{
g+(cl; vj) if ψl(vj) > 0
g−(cl; vj) if ψl(vj) < 0

, hk(θ) =
{
g−(cl; vj) if ψl(vj) > 0
g+(cl; vj) if ψl(vj) < 0

.

Output: the full conditional distribution of cl.
Follow the procedure in Algorithm S1.

where A±(v), B±(v), C±(v) are all functions of Θ̃\c1 , and are of the form,

A±(v) =

{
n∑
i=1

E±,,i(v)
2

}
· ψ2

1(v),

B±(v) = 2ψ1(v)

[{
L∑
l=2

clψ1(v)

}{
n∑
i=1

E±,i(v)
2

}

∓
n∑
i=1

{Y±,i(v) · E±,i(v)} ∓ r(v)

n∑
i=1

{Y∓,i(v) · E±,i(v)}

]
,

C±(v) =

{
L∑
l=2

clψ1(v)

}2{ n∑
i=1

E±,i(v)
2 ∓

2 ·
∑n
i=1 Y±,i(v)E±,i(v)∑L
l=2 clψ1(v)

±
2r(v)

∑n
i=1 Y∓,i(v)E±,i(v)∑L
l=2 clψ1(v)

}
.

Therefore, given Y+, Y−, Θ̃\c1 and the eigenfunctions {ψ1(vj)}mj=1 evaluated on Bm,

π(c1 | Y+, Y−, Θ̃\c1) ∝ exp

 m∑
j=1

ψ1(vj)>0

[g+(c1; vj)I{c1 > T+(vj)}+ g−(c1; vj)I{c1 < T−(vj)}]

+

m∑
j=1

ψ1(vj)<0

[g+(c1; vj)I{c1 < T+(vj)}+ g−(c1; vj)I{c1 > T−(vj)}]

 ,

where

g±(c1; vj) =

{
−A±(vj)

K(vj)
− 1

2λ21

}
c21 +

B±(vj)

K(vj)
c1 +

C±(vj)

K(vj)
.

By Proposition 1, the full conditional distribution of c1 is a mixture of truncated normal



S3.3 Full conditional distribution of ω

distributions. We summarize the procedure of obtaining this distribution in Algorithm S2.

S3.3 Full conditional distribution of ω

Recall that the prior of ω is the uniform distribution on [aω, bω]. Then we have,

π(ω | Y+, Y−, Θ̃\ω) ∝ exp

{
−
∑
v∈Bm

∑n
i=1Wi(v)

K(v)

}
· 1

bω − aω
I(aω ≤ ω ≤ bω), (S9)

where Wi(v) is defined as in (S8). Then,

n∑
i=1

Wi(v) = Q+(v)I{ω < ξ(v)}+Q−(v)I{ω < −ξ(v)},

where

Q±(v) =ξ(v)
2

{
n∑
i=1

E±,i(v)
2

}
∓ 2ξ(v)

{
n∑
i=1

Y±,i(v)E±,i(v)

}

± 2r(v)ξ(v)

{
n∑
i=1

Y∓,i(v)E±,i(v)

}
.

Algorithm S3. Full conditional distribution of ω
Input: P = 0, K = 2m,

Uk =

{
ξ(vj), if aω < ξ(vj) < bω
−ξ(vj) if aω < −ξ(vj) < bω

, hk(θ) =
{
C+(vj), if Uk = ξ(vj)
C−(vj) if Uk = −ξ(vj)

.

Output: the full conditional distribution of ω Follow the procedure in Algorithm
S1

Therefore, given Y+, Y−, Θ̃\ω and the eigenfunctionsψl(vj), j = 1, . . . ,m, l = 1, . . . , L,
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evaluated on Bm, we have,

π(ω | Y+, Y−, Θ̃\ω)

∝ exp

 m∑
j=1

aω<ξ(vj)<bω

C+(vj)I{ω < ξ(vj)}+
m∑
j=1

aω<−ξ(vj)<bω

C−(vj)I{ω < −ξ(vj)}

 ,

where C±(vj) = −Q±(vj)

K(vj)
− log(bω − aω), and we only consider those ξ(vj) and −ξ(vj)

that are between aω and bω.

By Proposition 1, the full conditional distribution of ω is a mixture of uniform distribu-

tions. We summarize the procedure of obtaining this distribution in Algorithm S3.

S3.4 Full conditional distribution of ei,l±

Since ei,l,+ only exist in µ+,i(v), we can rewrite µ+,i(v) as µ+,i(v) = a+,i(v)+b+,i(v), where

a+,i(v) = Gω

{∑L
l=1 clψl(v)

}
ei,l,+ψl(v) = Cl,+(v)·ei,l,+, and b+,i(v) = Gω

{∑L
l=1 clψl(v)

}
∑

l′ ̸=l ei,l′,+ψl′(v). Note that b+,i(v) does not depend on ei,l,+. Henceforth, we have that,

{Y+,i(v)− µ+,i(v)}2 =

Y 2
+,i(v) + a2+,i(v) + b2+,i(v) + 2a+,i(v)b+,i(v)− 2Y+,i(v)a+,i(v)− 2Y+,i(v)b+,i(v),

{Y+,i(v)− µ+,i(v)}{Y−,i(v)− µ−,i(v)} =

Y+,i(v){Y−,i(v)− µ−,i(v)} − a+,i(v){Y−,i(v)− µ−,i(v)} − b+,i(v){Y−,i(v)− µ−,i(v)}.
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Ignoring the terms {Y−,i(v)− µ−,i(v)}2 that do not contain ei,l,+, we have,

π(ei,l+ | Y+, Y−, Θ̃\ei,l+)

∝
∏
v∈Bm

exp

(
−
a2+,i(v) + 2a+,i(v)[b+,i(v)− Y+,i(v)− r(v){Y−,i(v)− µ−,i(v)}]

2{1− r2(v)}u2(v)

)

· exp

(
−
e2i,l,+
2λl

)

∝ exp

[
−1

2

{ei,l,+ −Mi,l,+}2

V 2
i,l,+

]
.

where the mean and the variance are

Mi,l,± =
∑
v∈Bm

[
{λlmi,l,±(v)}/{λl + σ2

i,l,±(v)}
]
,

V 2
i,l,± =

∑
v∈Bm

[
λlσ

2
i,l,±(v)/{λl + σ2

i,l,±(v)}
]
,

withmi,l,±(v) = − [{Y±,i(v)− b±,i(v)} − r(v) · {Y±,i(v)− µ±,i(v)}] /Cl,±(v), and σ2
i,l,±(v)

= {1− r2(v)}u2(v)/C2
l,±(v). Therefore, ei,l± follows a normal distribution, i.e.,

ei,l± | Y+, Y−, Θ̃\ei,l± ∼ N(Mi,l,±, V
2
i,l,±).
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S3.5 Full conditional distribution of τ 21 (v) and τ 22 (v)

For a given v0 ∈ Bm, we have,

π
{
τ21 (v0) | Y+, Y−, Θ̃\τ2

1 (v0)

}
∝

n∏
i=1

1√
τ21

· exp
[
−1

2

(
1

τ21
+

1

τ22

){
Ỹ+,i(v0)

2 + Ỹ−,i(v0)
2 − 2

τ21 − τ22
τ21 + τ22

Ỹ+,i(v0)Ỹ−,i(v0)

}]

· Γ−1
τ2
1
(aτ , bτ )

∝
{

1

τ21 (v0)

}n
2

exp

[
− 1

2τ21 (v0)

n∑
i=1

{Y+,i(v0)− µ+,i(v0) + Y−,i(v0)− µ−,i(v0)}2
]

where Ỹ±,i(v0) = Y±,i(v0)− µ±,i(v0). Therefore, we have,

τ 21 (v0) | Y+, Y−, Θ̃\τ21 (v0) ∼ IG

(
aτ +

n

2
,

∑n
i=1{Ỹ+,i(v0) + Ỹ−,i(v0)}2

2
+ nbτ

)
.

Similarly, we have,

τ 22 (v0) | Y+, Y−, Θ̃\τ22 (v0) ∼ IG

aτ + n

2
,

∑n
i=1

{
Ỹ+,i(v0)− Ỹ−,i(v0)

}2

2
+ nbτ

 .

S3.6 Derivation of hybrid mini-batch MCMC

We derive the acceptance ratio in the hybrid mini-batch MCMC. Let Y = {Y1i(v), Y2i(v),

i = 1, . . . , n, v ∈ Bm}, Yms = {Y1i(v), Y2i(v), i = 1, . . . , n, v ∈ Bms , }, and Θ̃ = {θ, Θ̃\θ},

where ms < m, and henceforth Bms ⊂ Bm. In the Gibbs sampler, we use the full condi-

tional distribution P (θ|Y, Θ̃\θ) as the proposal function, with the acceptance ratio equal to

1. In the hybrid mini-batch MCMC, we use P (θ|Yms , Θ̃\θ) as the proposal function, and the
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acceptance ratio becomes,

ϕ(θ′, θ) = min

{
1,
P (Y |θ′, Θ̃\θ)

P (Y |θ, Θ̃\θ)

P (θ|Yms , Θ̃\θ)

P (θ′|Yms , Θ̃\θ)

}

= min

{
1,

∏
v∈Bm

P (Y (v)|θ′, Θ̃\θ)∏
v∈Bm

P (Y (v)|θ, Θ̃\θ)
·
∏

v∈Bms
P (Y (v)|θ, Θ̃\θ)p(θ)∏

v∈Bms
P (Y (v)|θ′, Θ̃\θ)p(θ′)

}

= min

{
1,

∏
v/∈Bms

P (Y (v)|θ′, Θ̃\θ)∏
v/∈Bms

P (Y (v)|θ, Θ̃\θ)

}
.

S3.7 Posterior computation algorithms

We summarize the Gibbs sampling for the TCGP in Algorithm S4, and the hybrid mini-batch

MCMC procedure in Algorithm S5

Algorithm S4. Gibbs sampling for TCGP
Input: the observed imaging data Y = {{Y1,i(v), Y2,i(v)}ni=1, v ∈ Bm},

the kernel function κ(·, ·),
the Karhunen-Loève truncation number L,
the prior hyperparameters aτ , bτ , aω, bω.

Output: the posterior samples of
Θ̃ = {{cl}Ll=1, {ei,l,±}

L,n
l=1,i=1, {τ 21 (v), τ 22 (v)}v∈Bm , ω}.

Initialize Θ̃: sample Θ̃ from the prior distribution.
for t = 1, · · · , T do

parallel sample τ 2k (v) from the inverse Gamma distribution, v ∈ Bm, k = 1, 2.
end
for l = 1, . . . , L do

sample cl from the mixture of truncated normal distributions.
sample ω from the mixture of uniform distributions.
sample ei,l,± from the normal distribution, i = 1, . . . , n.

end
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Algorithm S5. Hybrid mini-batch MCMC for TCGP.
Input: the observed imaging data Y = {{Y1,i(v), Y2,i(v)}ni=1, v ∈ Bm},

the kernel function κ(·, ·),
the Karhunen-Loève truncation number L,

the prior hyperparameters aτ , bτ , aω, bω.

Output: the posterior samples of

Θ̃ = {{cl}Ll=1, {ei,l,±}
L,n
l=1,i=1, {τ 21 (v), τ 22 (v)}v∈Bm , ω}.

Initialize Θ̃: sample Θ̃ from the prior distribution.

for t = 1, · · · , T do
parallel sample τ 2k (v) from the inverse Gamma distribution, for all

v ∈ Bm, k = 1, 2.

random sample ms locations from Bm and form Bms and Yms .
end

for l = 1, · · · , L do

if t mod T0 = 0 then
sample cl from the mixture of truncated normal distributions based on Y .

sample ω from the mixture of uniform distributions based on Y .
else

sample c(t)l from the mixture of truncated normal distributions based on

Yms .

accept c(t)l with probability ϕ(c(t)l , c
(t−1)
l ).

sample ω(t) from the mixture of uniform distributions based on Yms .

accept ω(t) with probability ϕ(ω(t), ω(t−1)).
parallel sample ei,l,± from the normal distribution, i = 1, . . . , n.

end



S4. Additional numerical results

S4.1 2D image simulation

We simulate the data from model (2.1), with the sample size n = 50, and the image res-

olution m = 64 × 64. We simulate the mean µk,i from (2.2) and (2.3), k = 1, 2, with

κ(v, v′) = exp−0.1(v2 + v′2)− 10(v − v′)2, σ2
+(v) = ζ+

∑3
j=1 I(∥v − u+,j∥1 < 0.1),

where u+,1 = (0.3, 0.7), u+,2 = (0.7, 0.7), u+,3 = (0.3, 0.3), and σ2
−(v) = ζ−{I(∥v −

u−,1∥1 < 0.1) + I(∥v − u−,2∥2 < 0.1)}, where u−,1 = (0.5, 0.5), u−,2 = (0.7, 0.3).

Here (ζ+, ζ−) controls the signal strength, and we consider two settings, with (ζ+, ζ−) =

(0.15, 0.25) for a weak signal, and (ζ+, ζ−) = (0.75, 0.85) for a strong signal. We simulate

the noise εk,i from the normal distribution with mean zero and variance τ 2k (v), and simulate

log(τ 2k (v)) from a Gaussian process with mean zero and correlation kernel κ(v, v′), k = 1, 2.
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Figure S1: Results of 2D image simulations. The first row is for a weak signal and the
second row a strong signal. The panels from left to right show the true correlation map, the
significantly positively (red) and negatively (blue) correlated regions selected by different
methods. TCGP represents the proposed Thresholded Correlation Gaussian Process.
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Table S1: Results of 2D image simulations. Reported are the average sensitivity, specificity,
and FDR, with standard error in the parenthesis, based on 100 data replications. Six methods
are compared: the voxel-wise analysis, the region-wise analysis, the integrated method of
Li et al. (2019) with two thresholding values, 0.95 and 0.90, and the proposed Bayesian
method Thresholded Correlation Gaussian Process (TCGP) with the Gibbs sampler and the
hybrid mini-batch MCMC.

Signal Method
Positive Correlation Negative Correlation

Sensitivity Specificity FDR Sensitivity Specificity FDR

Weak Voxel-wise 0.000 (0.000) 1.000 (0.000) 0.020 (0.010) 0.000 (0.001) 1.000 (0.001) 0.010 (0.001)
Region-wise 0.238 (0.001) 0.953 (0.002) 0.447 (0.002) 0.473 (0.002) 0.956 (0.003) 0.629 (0.004)
Integrated (0.95) 0.612 (0.001) 0.994 (0.000) 0.134 (0.010) 0.844 (0.003) 0.993 (0.000) 0.131 (0.003)
Integrated (0.90) 0.821 (0.001) 0.971 (0.000) 0.341 (0.010) 0.963 (0.003) 0.966 (0.000) 0.398 (0.006)
TCGP (Gibbs) 0.855 (0.003) 0.996 (0.001) 0.057 (0.008) 0.997 (0.002) 0.993 (0.001) 0.108 (0.005)
TCGP (Hybrid) 0.851 (0.006) 0.993 (0.001) 0.092 (0.010) 0.993 (0.002) 0.992 (0.001) 0.126 (0.005)

Strong Voxel-wise 0.062 (0.002) 1.000 (0.000) 0.000 (0.014) 0.091 (0.002) 1.000 (0.000) 0.000 (0.006)
Region-wise 0.741 (0.002) 0.852 (0.003) 0.747 (0.004) 0.479 (0.002) 0.950 (0.002) 0.645 (0.003)
Integrated (0.95) 0.773 (0.001) 0.998 (0.000) 0.036 (0.002) 0.933 (0.002) 0.996 (0.000) 0.067 (0.001)
Integrated (0.90) 0.996 (0.020) 0.959 (0.000) 0.378 (0.017) 0.999 (0.020) 0.953 (0.000) 0.468 (0.001)
TCGP (Gibbs) 0.976 (0.002) 0.999 (0.000) 0.015 (0.004) 1.000 (0.001) 0.999 (0.000) 0.018 (0.001)
TCGP (Hybrid) 0.960 (0.003) 0.997 (0.001) 0.049 (0.005) 0.990 (0.001) 0.999 (0.000) 0.023 (0.002)

Table S1 reports the results averaged over 100 data replications, and Figure S1 visual-

izes the result for one data replication. We see that our proposed method clearly outperforms

the alternative solutions. We observe essentially the same patterns as in the 3D example. In

addition, the proposed Bayesian method is also capable of statistical inference, in that we

can simulate the entire posterior distribution, compute the posterior inclusion probability,

and quantify the uncertainty for the spatially varying correlation. Figure S2 shows the prob-

ability map of the identified positively and negatively correlated regions, which are close to

the truth.

We then vary the sample size n = {30, 50, 100} while fixing the image resolution m =

64×64, or varym = {32×32, 64×64, 100×100} while fixing n = 50. Table S2 reports the
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Figure S2: Results of 2D image simulations. The posterior inclusion probability map of the
positive and negative spatially-varying correlations using the Gibbs sampler and the hybrid
mini-batch MCMC.

results averaged over 100 data replications. We see that our proposed method performs the

best across different values of n and m. Meanwhile, it maintains a competitive performance

even when n is relatively small or when m is relatively large.

S4.2 Additional 3D simulations

We conduct additional simulations for the 3D image example. We fix the sample size n =

904 follow the Human Connectome Project Data and vary the signal to noise ratio with

ζk = 5 for weak signal and ζk = 0.5 for strong signal. Table S3 reports the results averaged

over 100 data replications. We see that the proposed method outperforms other methods

with different signal to noise ratio.
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Table S2: The 2D simulation example with the varying sample size n and the varying image
resolution m. Reported are the average sensitivity, specificity, and FDR, with standard
error in the parenthesis, based on 100 data replications. Six methods are compared: the
voxel-wise analysis, the region-wise analysis, the integrated method of Li et al. (2019) with
two thresholding values, 0.95 and 0.90, and the proposed Bayesian method Thresholded
Correlation Gaussian Process (TCGP) with the Gibbs sampler and the hybrid mini-batch
MCMC.

Method
Positive Correlation Negative Correlation

Sensitivity Specificity FDR Sensitivity Specificity FDR

n = 30 Voxel-wise 0.080(0.002) 1.000(0.000) 0.004(0.003) 0.102(0.002) 1.000(0.000) 0.001(0.002)
Region-wise 0.148(0.005) 0.971(0.002) 0.326(0.003) 0.473(0.006) 0.957(0.003) 0.624(0.003)
Integrated(0.95) 0.518(0.005) 0.992(0.003) 0.199(0.008) 0.781(0.003) 0.993(0.004) 0.146(0.009)
Integrated(0.90) 0.855(0.007) 0.960(0.005) 0.378(0.010) 0.871(0.004) 0.937(0.004) 0.392(0.011)
TCGP (Gibbs) 0.910(0.004) 0.991(0.003) 0.109(0.005) 0.990(0.002) 0.993(0.001) 0.065(0.007)
TCGP (Hybrid) 0.890(0.005) 0.990(0.003) 0.111(0.008) 0.983(0.004) 0.990(0.002) 0.110(0.008)

n = 50 Voxel-wise 0.098(0.002) 1.000(0.000) 0.002(0.001) 0.150(0.002) 1.000(0.000) 0.003(0.001)
Region-wise 0.438(0.004) 0.953(0.005) 0.547(0.010) 0.573(0.003) 0.956(0.001) 0.629(0.010)
Integrated(0.95) 0.659(0.003) 0.995(0.002) 0.130(0.008) 0.899(0.005) 0.997(0.001) 0.110(0.009)
Integrated(0.90) 0.959(0.009) 0.970(0.005) 0.308(0.009) 0.969(0.003) 0.969(0.003) 0.355(0.010)
TCGP (Gibbs) 0.941(0.004) 0.995(0.002) 0.081(0.005) 0.996(0.002) 0.992(0.001) 0.063(0.005)
TCGP (Hybrid) 0.931(0.005) 0.993(0.003) 0.092(0.005) 0.993(0.002) 0.992(0.002) 0.086(0.006)

n = 100 Voxel-wise 0.102(0.004) 1.000(0.001) 0.002(0.003) 0.198(0.001) 1.000(0.000) 0.003(0.001)
Region-wise 0.617(0.010) 0.881(0.003) 0.744(0.004) 0.476(0.005) 0.955(0.002) 0.631(0.010)
Integrated(0.95) 0.714(0.005) 0.998(0.003) 0.099(0.005) 0.898(0.004) 0.997(0.002) 0.099(0.008)
Integrated(0.90) 0.980(0.010) 0.969(0.010) 0.300(0.010) 0.975(0.003) 0.971(0.003) 0.298(0.011)
TCGP (Gibbs) 0.953(0.002) 0.997(0.002) 0.041(0.002) 0.999(0.001) 0.997(0.001) 0.033(0.001)
TCGP (Hybrid) 0.945(0.003) 0.997(0.002) 0.069(0.003) 0.993(0.003) 0.996(0.001) 0.085(0.002)

m = 32× 32 Voxel-wise 0.017(0.001) 1.000(0.000) 0.005(0.001) 0.040(0.002) 1.000(0.000) 0.004(0.002)
Region-wise 0.297(0.005) 0.945(0.005) 0.531(0.010) 0.472(0.003) 0.957(0.002) 0.617(0.010)
Integrated(0.95) 0.620(0.005) 0.989(0.004) 0.138(0.005) 0.852(0.004) 0.989(0.001) 0.198(0.009)
Integrated(0.90) 0.933(0.010) 0.971(0.006) 0.287(0.008) 0.944(0.004) 0.957(0.005) 0.300(0.011)
TCGP (Gibbs) 0.931(0.003) 0.993(0.002) 0.083(0.003) 0.991(0.004) 0.992(0.003) 0.065(0.004)
TCGP (Hybrid) 0.922(0.005) 0.992(0.002) 0.082(0.005) 0.991(0.005) 0.991(0.002) 0.089(0.005)

m = 64× 64 Voxel-wise 0.098(0.002) 1.000(0.000) 0.002(0.001) 0.150(0.002) 1.000(0.000) 0.003(0.001)
Region-wise 0.438(0.004) 0.953(0.005) 0.547(0.010) 0.573(0.003) 0.956(0.001) 0.629(0.010)
Integrated(0.95) 0.659(0.003) 0.995(0.002) 0.130(0.008) 0.899(0.005) 0.997(0.001) 0.110(0.009)
Integrated(0.90) 0.959(0.009) 0.970(0.005) 0.308(0.009) 0.969(0.003) 0.969(0.003) 0.355(0.010)
TCGP (Gibbs) 0.941(0.004) 0.995(0.002) 0.081(0.005) 0.996(0.002) 0.992(0.001) 0.063(0.004)
TCGP (Hybrid) 0.931(0.005) 0.993(0.003) 0.092(0.005) 0.993(0.002) 0.992(0.002) 0.086(0.006)

m = 100× 100 Voxel-wise 0.005(0.001) 1.000(0.000) 0.004(0.002) 0.011(0.001) 1.000(0.000) 0.000(0.001)
Region-wise 0.627(0.002) 0.861(0.003) 0.763(0.005) 0.462(0.002) 0.948(0.002) 0.663(0.008)
Integrated(0.95) 0.843(0.002) 0.998(0.003) 0.039(0.005) 0.952(0.004) 0.997(0.002) 0.052(0.007)
Integrated(0.90) 0.960(0.003) 0.965(0.005) 0.300(0.012) 0.977(0.002) 0.965(0.004) 0.298(0.011)
TCGP (Gibbs) 0.971(0.001) 0.999(0.000) 0.029(0.002) 0.997(0.001) 0.998(0.002) 0.031(0.001)
TCGP (Hybrid) 0.964(0.001) 0.999(0.000) 0.033(0.001) 0.995(0.001) 0.997(0.002) 0.033(0.002)
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Table S3: Simulation results of the 3D image example with the varying signal to noise ratio. Reported
are the average sensitivity, specificity, and FDR, with standard error in the parenthesis, based on 100
data replications. Six methods are compared: the voxel-wise analysis, the region-wise analysis, the
integrated method of Li et al. (2019) with two thresholding values, 0.95 and 0.90, and the proposed
Bayesian method with the Gibbs sampler and the hybrid mini-batch MCMC.

Signal Method
Positive Correlation Negative Correlation

Sensitivity Specificity FDR Sensitivity Specificity FDR

Weak Voxel-wise 0.082 (0.003) 0.999 (0.005) 0.001 (0.006) 0.101 (0.005) 0.998 (0.000) 0.002 (0.003)
Region-wise 0.366 (0.001) 0.865 (0.002) 0.573 (0.011) 0.472 (0.002) 0.892 (0.003) 0.453 (0.004)
Integrated(0.95) 0.487 (0.002) 0.981 (0.001) 0.160 (0.010) 0.582 (0.001) 0.952 (0.005) 0.101 (0.003)
Integrated(0.90) 0.873 (0.008) 0.934 (0.001) 0.230 (0.009) 0.831 (0.004) 0.946 (0.005) 0.270 (0.004)
TCGP (Gibbs) 0.890 (0.005) 0.987 (0.001) 0.070 (0.007) 0.890 (0.002) 0.975 (0.003) 0.075 (0.001)
TCGP (Hybrid) 0.884 (0.002) 0.978 (0.001) 0.078 (0.006) 0.871 (0.004) 0.965 (0.003) 0.089 (0.002)

Strong Voxel-wise 0.220 (0.005) 0.999 (0.002) 0.001 (0.001) 0.237 (0.004) 0.999 (0.000) 0.002 (0.001)
Region-wise 0.641 (0.003) 0.765 (0.001) 0.587 (0.010) 0.627 (0.006) 0.824 (0.005) 0.532 (0.003)
Integrated(0.95) 0.550 (0.005) 0.992 (0.000) 0.066 (0.005) 0.882 (0.005) 0.970 (0.000) 0.101 (0.002)
Integrated(0.90) 0.934 (0.010) 0.974 (0.003) 0.244 (0.007) 0.933 (0.010) 0.955 (0.001) 0.233 (0.003)
TCGP (Gibbs) 0.951 (0.002) 0.997 (0.001) 0.052 (0.003) 0.951 (0.002) 0.991 (0.001) 0.041 (0.002)
TCGP (Hybrid) 0.949 (0.003) 0.995 (0.001) 0.058 (0.004) 0.950 (0.003) 0.989 (0.001) 0.050 (0.001)

S4.3 Sensitivity analysis

In our hybrid mini-batch MCMC, we sample a subset of ms voxels and use the full dataset

after every T0 iterations of using the mini-batch data. We next carry out a sensitivity anal-

ysis to study the effect of ms and T0. Table S4 reports the results averaged over 100 data

replications. We see that the results are relatively stable for different values of ms and T0.

S4.4 Prior specification for the HCP data analysis

In our HCP data analysis, we set the prior for ω as U(aω, bω), and we choose aω and bω

as the 75% quantile and 100% quantile of {|ξ(v)|}v∈B, respectively. The choice of aω is

based on the belief that at most 25% voxels have non-zero correlations. Here we vary



S4.4 Prior specification for the HCP data analysis

Table S4: The sensitivity analysis of the batch size ms and the number of iterations T0 for
the hybrid mini-batch MCMC. Reported are the average sensitivity, specificity, and False
Discorvery Rate (FDR), with standard error in the parenthesis, based on 100 data replica-
tions.

ms T0
Positive Correlation Negative Correlation

Sensitivity Specificity FDR Sensitivity Specificity FDR

m/32 20 0.950(0.003) 1.000(0.001) 0.015(0.003) 0.991(0.002) 0.989(0.003) 0.050(0.005)

m/16 20 0.953(0.003) 0.996(0.001) 0.061(0.002) 0.991(0.003) 0.997(0.001) 0.049(0.005)

m/4 20 0.955(0.002) 0.997(0.001) 0.058(0.002) 0.990(0.001) 0.997(0.001) 0.047(0.003)

m/16 50 0.948(0.003) 0.998(0.001) 0.045(0.002) 0.990(0.002) 0.990(0.003) 0.062(0.003)

m/16 20 0.953(0.003) 0.996(0.001) 0.061(0.002) 0.991(0.003) 0.997(0.001) 0.049(0.005)

m/16 10 0.953(0.001) 0.995(0.001) 0.059(0.003) 0.993(0.002) 0.998(0.001) 0.041(0.004)

aω = {0.73, 0.75, 0.77}, and investigate the corresponding performance of our proposed

method. Table S5 reports the results, which we see that are relatively stable across different

choices of aω.
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Table S5: Prior specification for the Human Connectome Project data under different
choices of aω. Reported are the activation regions containing more than 100 voxels that
are declared having a nonzero correlation.

Lingual-R

aω cluster size Activation center overlap rate mean correlation

0.73 151 (-10.0, -74.5, -4.0) 0.931 0.35

0.75 144 (-10.4, -75.3, -4.5) 1.000 0.35

0.77 140 (-10.6, -75.8, -5.4) 0.905 0.38
Angular-R

aω cluster size cluster center overlap rate mean correlation

0.73 215 (-45.9, -60.1, 45.5) 0.910 0.41

0.75 209 (-46.9, -60.2, 44.7) 1.000 0.43

0.77 200 (-46.0, -59.9, 43.9) 0.911 0.43
Temporal-Mid-L

aω cluster size cluster center overlap rate mean correlation

0.73 110 (62.1, -24.9, 1.3) 0.940 0.42

0.75 104 (63.1, -25.7, 1.4) 1.000 0.41

0.77 99 (62.7, -25.5, 1.3) 0.921 0.43
Precentral-L

aω cluster size cluster center overlap rate mean correlation

0.73 130 (29.1, -23.0, 64.5) 0.930 -0.41

0.75 115 (28.6, -23.1, 65.4) 1.000 -0.44

0.77 107 (28.8, -23.1, 65.8) 0.931 -0.42
Occipital-Inf-R

aω cluster size cluster center overlap rate mean correlation

0.73 130 (-38.1, -81.0, -3.9) 0.910 -0.45

0.75 122 (-38.8, -81.7, -3.2) 1.000 -0.44

0.77 107 (-38.5, -80.0, -4.0) 0.901 -0.43
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