Statistica Sinica

Supplementary Materials of
Bayesian Inference of Spatially Varying Correlations

via the Thresholded Correlation Gaussian Process
Moyan Li!, Lexin Li? and Jian Kang®

YUniversity of Michigan, Ann Arbor and *University of California, Berkeley

In this supplement, we first present the proofs of all the theoretical results in the paper,
along with a number of useful lemmas. We next derive the full conditional distributions of

the model parameters, and present some additional numerical results.

S1. Proofs

S1.1 Proof of Proposition 1

Given 7£(v) and 735 (v), if 7(Y,:(v),Y_,;(v) | 0) = 7 (Y, (v),Y_;(v) | ), for any i =
1,...,n,v € B, and since {Y; ;(v),Y_ ;(v)} follows a bivariate normal distribution, we
have that 1. :(v) =y (0), and ji_i(v) = 1 (0), i s{p(0)} By a(0) = s/ (0) L, (1)
and s{—p(v)} E_;(v) = s{—p'(v)} £ ;(v),foranyi=1,...,n,v € B,

Furthermore, we have that,



S1.2  Proof of Theorem 1

n

0= 3" (o) E1i(0) — st 1, )

=D [s{p()YEwi(v) = 25{p(0)}s{p/(0)} E1a(v) B 1(0) + s {0 (0) P ELi(0)7]

i=1

= [s{p(v)} = s{p'(v Z EY () + s{p'(v)}s{p(v)} Z{EH(U) - B (v)}

+ {0/ ()} [s{p(v)} = s{p' ()N D { Era(v)® = Eli(0)°}

i=1

By Definition (4), we have > " | Ey;(v)* = Y7 | E', ;(v)*

When v € V(p) U V(p'), we have s{p(v)} > 0, s{p’(v)} > 0, and at least one of
s{p(v)} and s{p'(v)} is not equal to 0. Therefore, s{p(v)} = s{p'(v)}, and E, ;(v) =
E' ;(v), forany i = 1,...,n, v € By. On the other hand, if v ¢ V(p) U V(p'), then
s{p(v)} = s{p'(v)} = 0. Similarly, we have £_;(v) = E’ ;(v) =0, forany i = 1,...,n,
v € B,,.

Since s(-) is a monotonic function, we have p(v) = p/(v) forall v € B,,. This completes

the proof of Proposition 1. [

S1.2 Proof of Theorem 1

By Lemma [S1] we have p(v) = T, {¢(v)} = H[R,{&(v)}], where H(t) = t2/(t> + 1)
when £(v) > w, H(t) = —t?/(t> + 1) when £(v) < —w, and H(t) = 0 otherwise, and

R,(z) = G,(x) — G, (—x) is the hard thresholded function. Therefore, we have that,



S1.2  Proof of Theorem 1

pr(llp = rolle <€) = pr([[H[RAE(v)}] — H[RAS (o)} <€)

> pr([[Bu{€(0)} = Ru{éo()} <€),

by the Lipschitz continuity of H(-). Given the assumptions for py(v), we have that {(v) is

bounded away from O for v ¢ Ry. Henceforth,

pr([[Bo(€(v)) = Ro(&o()]| <€)
(S

ZW(wpwm—&wn<a£gmwn>Mammwn3w)

U$R0 vER

Without loss of generality, we only consider 0 < € < w — wy, Where wy = inf ¢, |p(v)].

Note that for all v ¢ Ry,

E(v) — &(v)| < eand |(v)| > wo, which implies that |{(v)]| >

wo — € > w. Then (S1) is equivalent to

pmww—mwM<azm(wpmw—@wﬂ<awmaMSw)

U¢R0 vERY

Let ¢;(v) and \; be the normalized eigenfunctions and eigenvalues of the kernel func-
tion (-,-). The KL expansions of {(v) and &y(v) are {(v) = > 2, aqi(v), &(v) =

> ey ot (v).

For v ¢ Ry, we have that,

SUD,gr, [§(0) = &0(0)] < SUPygr, [§1(v) = EL(V)] + 5uD,gr, [§(V) = €L(0)] + suDygr, [E1(v) = So(v)]-



S1.2  Proof of Theorem 1

Since the RKHS of «(+, -) is the space of the continuous functions on R, {(v) is uniformly
continuous on B\ R, with probability 1. Then by Theorem 3.1.2 of | Adler and Taylor (2009),
limyz o0 SUPy¢R, [§(v) — €2(v)| = 0 with probability 1. By the uniform convergence of the
series S, ciothi(v) to &(v) on B\Rg, as L — oo, we have limy,_,o SUDy¢R, [§0(V) —
£7(v)| = 0. Then we can find a finite integer L', such that, for all L > L', sup gz, |£(v) —
£(v)| < €/3 with probability 1, and sup,¢r, [£o(v) — £2(v)| < €/3. Since ¢y(v),l =

1,...,L, are all continuous functions in R, we have max;<;<y, |[¢1(v)|,, < My, for

some constant My ;. When |¢; — ¢o| < €/(3LMy) forall I = 1,...,L, we have
SUD, g, [€2(v)—E2 (v)| < €/3. Therefore, [c;—cio| < €/(3LMy, 1), 1 =1,..., L, guarantees
that sup,¢z, [£(v) — &(v)| < e with probability one.

For v € R, we have that,

sup [§(v)] < sup [§(v) = &L(v)] + sup |£L(v)].

vERQ vERY VERQ

Similarly, we can find L and My, 1, such that |¢;| < w/(2LMy 1), 1 =1,..., L, guarantees
that sup,c, |£(v)| < w with probability 1.

Then we have that,

€

SLMy,

pr(llp — pollee <€) > pr ({|cl —cpl < L=1,2,...,Lwhenv ¢ Ry}

U {lal <

L=12...,L )
TR 2., whenv€R0}>

This completes the proof of Theorem 1. []



S1.3  Proof of Theorem 2

S1.3 Proof of Theorem 2

Based on Theorem 1, Lemma [S3| shows the positivity of prior neighborhoods. We then

construct sieves for f(v) as follows:

O, :{p €0, F ,F_ cOg:

Iplloe < H (m"CD), sup |D7p(v)| <m"ED 1< |y <
VERIUR 1

(82)

|Eiilloo <mYCD sup  |DTE,(v)] < mY/@D,
VERIUR 1

||E*,l||oo S ml/(Qd)u sup |DTE*,’L'<U)‘ S ml/(2d)7 fori = 17 cee 7n}7
VERIUR 1

where o and m are defined in Assumption 3.
We can then find an upper bound for the tail probability, and construct the uniform
consistent tests in Lemmas[S4] [S5] [S6|and [S8] These lemmas verify the three key conditions

in Theorem A1 of Choudhuri et al.| (2004}, which leads to the posterior consistency. That is,

by Lemmas [S4} [S5] [S6] and [S§] as n — oo, m — oo, we have that,

Eq, (¥,,) — 0,

sup Ey(1—-T,) < Cyexp(—Cin),
0eUCNO,

pr(05) < Kexp (—bml/d) < Kexp (—Csn) .

where U, = {6 € © : |6 — 6|, < €} for any € > 0, and V¥, is the test statistic defined in

(S7). This completes the proof of Theorem 2. []



S1.4 Proof of Theorem 3

S1.4 Proof of Theorem 3

Let Rp = {v:po(v) =0}, Ry = {v:po(v) >0}, and R_y = {v: po(v) < 0}. For any

A C B and any integer k > 1, define

fk(A)—{pe@p:A!p(v)—po(v)|dv<%}.

Then Fpy1(A) C Fi(A) for all k, and Fi(B) C Fi(A). Consider

Fi (Ro) = {p co,: [ |pw)ldv < %}

Ro

Define U? = {p € ©, : ||p — poll, < €}. By Theorem 2 and the fact that U, = Fy(B), we
have

pr{Fk (Ro) | Yy, Y} > pr (Uf/k | Y+,Y_> — 1, as n — oo.

In addition,

{p(v) =0, forallv € Ry} = {/ lp(v)|dv = O} = ﬂ Fi (Ro) -
Ro k=1
By the monotonic continuity of the probability measure, we have,

pri{p(v) =0, forallv € Ry | Yy, Y_} = klim pri{Fe(Ro) | Y1, Y_} =1, asn — oo.
—00



S1.4 Proof of Theorem 3

For any vy € R, and any integer k > 1, there exists dp > 0, such that |p (vy) — p (vo)| <
1/2k, for any vy € B (v, ) = {v: ||[v1 —wvol|; < do}. As Ry is an open set, there exists

91 > 0, such that B (vg, d1) € Ry. Let § = min {01, } > 0, we have that,

1
{p(vo) > — % for all vy € Rl}

1
/ p(v)dv > / po(v)dv — —, for all vy € Rl}
B(vo,6) B(vo,6) 2k

Therefore,
pr{p(vo) > —1/k, forallvg € Ry | Yy, Y_} > pr (uf/zk ] Y+,Y7> —1,
as n — o0. By the monotonic continuity of the probability measure, we have that,
pr{p(v) >0, forallv € Ry | Yy, Y_} = limy_,o0 pr {p(vo) > —%, for all vy € R | Y+,Y,} — 1,

as n — oo. Similarly, we can obtain that pr {p(v) < 0, forallv e R_; | Yy, Y -} - 1,n —

oo. This completes the proof of Theorem 3. []



S1.5 Proof of Proposition 2

S1.5 Proof of Proposition 2

We prove this proposition by sorting all the thresholding values, and derive the unnormalized
density on each interval, respectively. We then obtain the full conditional density function
of A by normalizing the function on each interval as the density function.

Wesort (Ly,...,Lp, U, ..., Uk)in ascending order, which leads to P+ K +1 intervals,
and denoted them as Iy, I5,...,Ip k1. For each interval [;, 7 = 1,..., P + K + 1, the
full conditional distribution of # is proportional to exp(—Di@2 — E;0 — F;). We initialize
D; = E; = F;, = 0, then loop throughp = 1,...,Pand k = 1,..., K to update D;, E;
and F;. More specifically, if I; C [L,,+0o0), we update D; = D; + a1y, E; = E; + ag,
and F; = F;, + asp. If I; C (—o0,Uy), we update D; = D; + by, E; = E; + by, and

F; = F; 4 bs,.. We consider three specific cases.

* If at least one of {a1p,...,a1p, b1k, ..., b1k} is not equal to 0, then D; # 0, for any
1=1,..., P+ K+ 1. Therefore, when # € I;, the full conditional distribution of € is
N{-E;/(2D;),—1/(2D;)}. Incorporating the normalizing constant }/; for each in-

terval, which is independent of 6, the full conditional distribution of 6 is the mixture of

truncated normal distributions, Y"1 *** M, TruncatedNormal;, { —E; /(2D;), —1/(2D;)}.

e Ifaj, = byy = 0, forany p = 1,...,Pand k = 1,..., K, and at least one of
{agp, ..., az2p,bok, ..., b} is not equal to 0, then D; = 0 and E; # 0, for any

1=1,..., P+ K+ 1. Therefore, when # € I;, the full conditional distribution of  is



the exponential distribution Exp(E;). Incorporating the normalizing constant M, the

full conditional distribution of 6 is Zf:KH M; - Exponential . (Ej).

e Ifa;p, = bipy = agp = by = 0, forany p = 1,...,Pand k = 1,..., K, and at
least one of {asp, ..., asp, bk, ..., b3k} is not equal to 0, then D; = E; = 0, and at
least one of F; # 0, forany ¢ = 1,..., P + K + 1. Therefore, when 6 € I, the
full conditional distribution of 6 is proportional to the uniform distribution on I; =
[t14, ug;). Incorporating the normalizing constant M;, the full conditional distribution

of 0is ST My - Uluag, usy).

This completes the proof of Proposition 2. []

S2. Additional Lemmas

Lemma S1 Rewrite p(v) = T,{{(v);72(v), 72(v)} in Equation 2.6). Then T,(-) is a

piecewise Lipschitz continuous function for any w.

Proof: From Equation (2.0)), it is straightforward to verify that p(v) can be written as

p(v) = Corr{Y1,(v), Ya,:(v)}
G2 {€(v)} — G2 {—€(v)}
[G2{&(0)} + G2{—£(0)} + 72(0)]? [G2{e (W)} + G2{—€(v)} + 12(v)]'/?
sgn{€(v)} R2{€(v)}
[R2{&(v)} +72(0)]"/? [R2{E(v)} + 72(v)] /2

where R, (z) = G, (x) — G, (—z). Without loss of generality, suppose 77 (v) and 73 (v) are



both equal to one. Then T,,(x) = H{R,(z)}, where H(t) = t*/(t* + 1) when £(v) > w,
H(t) = —t*/(t* + 1) when £(v) < —w, and H (t) = 0 otherwise. Since H (t) is continuous
and |H'(t)| < 1/(2w), H(t) is Lipschitz continuous. As R, (z) is the hard thresholding
function, which is piecewise Lipschitz continuous function, 7,,(z) = H{R,(z)} is also a

piecewise Lipschitz continuous function. This completes the proof of Lemma []

Lemma S2 Given p(v) = T,{{(v);E(v), 5(v)} in (6), there exist a piecewise Lipschitz

continuous function s(-), such that G,{£(v)} = s{p(v); 7(v), 72 (v)}.

Proof': Itis straightforward to show that G, {¢(v)} = s {p(v); TE(v), T4(v)}, and G {—¢(v)} =
s{—p);T2(v), 73 (v)}, where s(x;t,,ts) is as given in (7). Therefore, s(-) is a piecewise

Lipschitz continuous function. This completes the proof of Lemma []

Lemma S3 Let 11, ;(-; 0) denote the density function of Z,,; = (Y4 ;,Y_ ;). Define A, ;(+; 00, 0)
= 1Og 7"-n,i('; 0) - log ﬂ-n,i('; 00);
Kn’i(eg, 9) = E90 {Anﬂ (Zn,u ‘90, 0)}, and Vn,i (60, 9) = Vary, {An,z<Zn,z; 90, 9)} There ex-

ists a set O with I1(O) > 0, such that, for any € > 0,

liminf IT

n—oo

{9 eO,nt ZKM (6p,0) < e}] > 0andn? ZVW (60,0) — 0 forf € O.

i=1 i=1
Proof: The density function is of the form,

P 1 o | Wi(v)
Mn.i(Zn,i5 0) Z 21u?(v){1 — r2(v)}1/2 P { 2{1 —r2(v)}u*(v) ]’

’UGBm




where Wi(v) = {Yoi(v) = pei(0)} + {Y_i(0) — pi(0)}® + 2r(0{Yei(v)p—s(v) +
Y_i()psi(0)}r(v) = {78 (v) =75 (0)} /{7 (v) + 73 (v) }, and w?(v) = {7 (v) + 73 (v) } /4

Therefore, we have,

Ani (Zn,i300,0) = logII(Z,, 5, 0) — log II(Z,, 43 00)

-2 [_2{1 - TQEU)}UZ(U)] [Mi’i(v) = 150 (0) + 25 (v) = (V)

veEB,,
+2Y5 i (0){p+,1,0(0) — prri(0) } 4 2Y2 i (0){p—i0(v) — p—i(v) }(v)

+2rYq () {p—i(v) — p—i0(v)} +2rY_ ;i (0){p4,i(v) — N+,i,o(v)}],

Ko.i (00,0) =By {Mn.i (Zn.i560,0)}
= Z (_2{1 - ﬂzv)}u?(v) [{MJr,i('U) — a0 ()Y + {p—i(v) = p_io(v)}?

vEB,

+ 27 (V) pg i 0 (V) =i (V) + 20 (V) p— i 0 (V) g i (V)
= 20(0)a4,5.0(0)— 0 (0) = 2 ()i s0(0)as,i0(0)])-

Givenany ¢ > 0,let O(¢) = {0 : ||6 — Oo||o < C}, with

19~ 0l = s {lo= gl e 15~ B solls oo s = B ol f

and V(p) = {v : p(v) # 0}, V(po) = {v : po(v) # 0}, then, for any v € O((),

i, 4 (0) = i+ 0(0)] < [s{p(v)} Eyi(v) = 5{po(v)} Ei 4 0(v)]

<[E4i(v) (s{p(v)} = s{po(0) D] + [s{po(v)} (E1i(v) = Ei1.0(v))] < KiC,

where the last inequality is due to the compactness and convexity of B,,, and



Ki=  max  {E.i(),s{po()}}.

veV(p)UV(po)
Similarly, we have |u; —(v) — p;— 0(v)] < Ks(, for any v, where

Ky = max E_;(v),s{—po(v)}}.
2 UGV(p)UV(po){ (), s{=po(v)}}

Therefore, we have that,

Z 2{1 —T2 }u2 (Zmz-&- Ui,+,0(71)|2

veV(p)UV(po)

+ Z |i,— (v) — i — o (v)]?

n

Z Kn,i(ev 00) <

i=1

+ 2r(v)M Z |5, (0) = pi,— 0 (0) + 20 (V)M Y |pti 4 (0) = pi+0(0)] )

i=1

5 i 70 r?%v)}u?(w (nETC* + K¢ + 2ir(v)| Mn(K) + K2)()

vEV(p)UV(p0)
< An¢? + Bnc,
where
M = max i 4,000) 1,
ey nax {M+ 0(v), 1_i0(v)}
1
A = (KI+K3}) >

2{1 = r2(v)}u?(v)’

[ (v)]
2{1 —r*(v)ju?(v)

veV(p)UV(po)

B = M(Ki+K) Y
vEV(p)UV(p0)




Henceforth, for any € > 0, we obtain that,

lim inf IT

n—o0

{9 c O,n*IZKM (90,0) < E}] > 0.

=1

Similarly, we have that,

1 2 2
Vi (00,0) = Z ) (=20 a2 (0) {pgi(v) = pio ()} + {p—i(v) = p—io(v)}

veV(p)UV(po

+H{r?(v) = 3r(0) Huri () — prio (W) Hu—i(v) = p—io(@)}]

1
|Vn,i (00,0)| < Z {1 — 7"2(11)}142(11) (KfCQ 4 K22C2 + |7‘3(v) _ 37‘(1})|K1K2§2) < C@»
vEV(p)UV(po)
where
3 _
C=(Ki+K3}) > 1 LK Y [ (v) = 3r(v)]

{1 =7r*(v)}u*(v) {1 =r2(v)}u(v)

vEV(p)UV(p0) vEV(p)UV(p0)

Henceforth, we obtain that,

1 n
2
<nC(¢ andﬁg Vin (60,0) — 0,as n — oo.

i=1

Z Vn,i (907 9)
=1

This completes the proof of Lemma L]

Given the sieves we construct in Equation (S2), we next derive an upper bound for the

tail probability, and construct the uniform consistent tests in Lemmas [S4] [S5] [S6| and [S§]

Lemma S4 Suppose p ~ TCGP(wy, k) with wy > 0, the kernel function k satisfies As-

sumption 2, and E. ;, E_; ~ GP(0,1), fori =1,...,n. Then there exist constants K and



b, such that pr (0) < K exp(—Cjn).

Proof: Following the same notation as that in the proof of Lemma we have p(v) =
TA¢(v)} = H[R,{{(v)}]. Let Ry = {v: p(v) > 0}, and R_; = {v : p(v) < 0}. We have
R,{{(v)} =&(v) > wwhenv € Ry, and R,{{(v)} = {(v) < —w whenv € R_;. Then

pr(@S)Spr{ sup  |H(¢(v)] > H (m””)} (83)

VERIUR_1

+ Z pr{ sup |DTH(&(w))| > ml/zd}

rgfriga  (PERIRA

+Zpr{ sup |E4 ] >m1/2d}+2pr{ sup |E_ | >m1/2d}
i=1

VERIUR 1 i— VERIUR 4

+ i Z p'r{ sup |DTEy,| > ml/zd}

i=lri1g|rfi<a  \(VERIUR

> pr{ sup |DTE_77;|>m1/2d}. (S4)

i=lrig|rlisa  (PERURA

Since H (t) is a monotonic function,

pr{ sup IH(f(v))I>H(m1/2d)}§pr{ sup £(v)|>m1/2d}

VER1UR 1 VERIUR 1
< Kjexp (—blml/d) + K_iexp (—b_lml/d) ,
where the existence of K1, K_1, by, b_; in the second inequality is ensured by Theorem 5 of

Ghosal and Roy/| (2006).



We next consider the second term in (S3)). Since |H'(t)| < 1 and |H"(z)| < 2, we have,

Z pr { sup |DTH({(v) —w)| > ml/Qd}

1<t <a VERIUR 4

<pr{ sup |D7E(w)| >m1/2d}+pr{ sup [2- D7E(v)] >m1/2d}
VERIUR_1

VERIUR_1
< Z K, exp (beml/d> .

T:0<||7||1 <

Denote the sum of the last four terms in (S3)) as Sg. By Theorem 5 of |Ghosal and Roy
(2006) again, there exist K, bg, ,Kg_, bg_, Kg, and bg_, such that

Sg < Kg, exp(—bE+m1/d) + Kg_ exp(—bE_ml/d) + Z Kpg_exp (—bETml/d) .

7:0<]||7]|1 <«

Taking K = K.y + K1y + Kg, + Kp_ + 2 ocrj<a Kr + 2ro<)rj<a K&.» and

b = min {bfl, bl, bE'+7 bE_ R minlg‘ﬂga bT, minlg‘ﬂga bEr }, we have,

pr (@5) < Kexp (—bml/d) < Kexp(—Csn).
This completes the proof of Lemma
Lemma S5 Suppose Assumption 1 holds. The hypothesis testing problem,

Hy : p(v) = po(v), Exi(v) = Ex,o(v),

Hy 2 p(v)

i=1,....,n,veEV(p)UV(po),

p1(v), Eii(v) = Ei;q(v),



is equivalent to the hypothesis testing problem,

HE)k : :u:tﬂ'(v) = :u:l:,i,()(v)v i=1,... N, U E V<p1) U V(p0)7

Hf : M:t,i(v) = H:I:,i,l(v)a

where V(p1) = {v : p1(v) # 0} and V(pg) = {v : po(v) # 0}.
Proof: For any k € {0, 1}, it is straightforward to see that if H; holds, then H; also holds.
We show that, if H}; holds, then H}, also holds. For any v € B,,,

0="> [s{p(0)} E+.i(v) = s{pn(v)} Es i (v)]”

<M§

=1

Mz

[s{p(v)}*E4.i(v)* = 25{p(v) }s{pk ()} B i1 (V) B i1 (v) + s{pr(0)}* By s.0(v)?]

i=1

= [s{p(0)} — s{( ZEM )+ (o) bs{p0)} D B (o) = Br(0))

+s{po(0)} [s{p(v)} = s{po ()N D {E4i(v)* = Exin(v)*},
=1
By Definition 4, we have Y " | B, ;(v)? = >0 | Eyi0(v)* = >0 Fti1(v)?. When
v e V(p1)UV(po), s{po(v)} >0, s{p1(v)} > 0, and at least one of s{py(v)} and s{p;(v)}

is not equal to 0,

s{p(v)} —s{pr(v)} =0, E.;(v)—E;;x(v)=0, i=1,...,n

Similarly, we have that E_;(v) — E_,; x(v) = 0 forany v € V(p1) UV(po), i = 1,...,n.
Since s(-) is a monotonic function, p(v) = pi(v) for any v € B,,, which ccompletes the

proof of Lemma ]



Lemma S6 For the hypothesis testing problem,

Ho : pti(v) = paio(vy),  i=1,...,n, v; € V(p1) UV(po), 5 =1,...,m,

Hy:pgi(vy) = pain(vy)),

construct the testing statistic, V,, =V, +V_, — U, ,U_, where

Vin = max, {I <i 0+(v;) (Yei(vj) = peio(vg)) > 2 (%) ;+21d) } :

7777 j=1

d1i(vy) = 20{pri1(vj) > paio(vy)} — 1, v0/2 < v < 1/2, and vy, d, Cy are as defined
in Assumption 3. Write jv = {p; +(v;)}, and p, = {pi+1(v;)} for k = 0,1. Then, for
any €y > 0, there exist constants Cy, Cy and i, € {1, ... ,n}, such that, for any p, and pg
satisfying that S0 1.1 (03) — p s o(03)] > meo, or S I a(v) — pi-o0g)| >
meo, and i satisfying that || — |l < €0/4, we have B, (¥,) < Cyexp(—2n®") and

E,.(¥,) < Cyexp(—Cin).

Proof: To bound the type I error, we have E,, (V,,) < E, (V,,) +E,,(V_,). By Assump-

v/d

tion 3, we have (m/Cj)”’“ > n”. By the definition of ¥, we have that,

d fah
m
Epo () < pr (Z 51t (0) (Vo (0) — s 0(0)} > 2 <C) )

j=1

=pr (\/gidﬂ*(%){ﬂ,i* (vj) = B v 0(vs)} > 2 (gz) 2)

B m\ y é(2n”) 1 exp(—2n?")
_1—<1><2<CO> ><1—c1>(2n)< TR -




1 _2 2v
Similarly, we have that E,, (¥_,,) < exp(—2n*")

2427 nv

. Therefore,

1 exp(—2n%)
E, (¥, < .
Mo( ) — \/ﬂ nv

To bound the type II error, we have that,

E, [l — ¥,] <min{E, (1—¥,,),E,(1-¥_,)}.

As such, we only need to show that at least one of the type II error probabilities for ¥,
and W_,, is exponentially small. Suppose > ", 111 i, 0(v;) — ft4.4.1(v;)] > mep. Since

2 i i (v) = i ()] < meo /4, we have,

E#(l - \I/Jrn)

m m %_*_ﬁ
< | e i ()~ ot} > 2 ()

j=1

= pr \/gi;(sﬂ () {V4i(05) = aio(vs)} < 2 <g))d>

= (D 0 0) = )} D B () (s 03) b (0)

Jj=1

+ \/gzéJr,i* (i) {pti1(vj) — pgio(vy)} < 2(m/CO)V/d)

1/2d

Co & Coeom y
spr (\/ WT?z D 04 ()Y i(0)) = pg ()} < % — Coecom™** +2(m/Cy) /d) :
j=1

Since v < 1/2, there exists N > Ny, such that, for all n > N, (m/Cy)"/? < Com!/?¢y /4.



By Assumption 3, this further implies that,
Co & Coeom /24
E,(1— W) < pr (\/ 3D 0 ()Y (0) = i (0)} < —”4)
j=1

C060m1/2d 60711/2 4 TLE%
<Pl ——— | <D | — < —— .
= ( 4 = 1 )= e@m) 2 P\ 32

Taking Cy = max {271(27) /2, 4¢; " (27)"1/2} and C; = €2/32 completes the proof

of Lemma [

Lemma S7 Suppose Assumption 1, 2 and 3 hold. For any € > 0, there exist N, i and ¢y > 0,
such that, foralln > N and all 9 € ©,, that |0 — 0o||, > &, we have Y 7" |1+ (v;) — peio (v5)] >

€.

Proof: We first note that,

10-60li= 3 o) = o)+ max 3 |Bi(w) - Briolo)]

vEV(P)W(p) 7 veV(p)UV(po) (S5)

+ max Z |E_i(v) — E_ ; o(v)]

.....

n
veV(p)UV(po)

Since ||# — 6y]|, > €, at lease one of the three terms in (S3)) is greater than €/3. Without loss

of generality, suppose max > |Eyi(v) — ELi0(v)| p > €/3. Then there exist
=l vV (p) 0V (po)

i,suchthat > |E.i(v) — E4 i0(v)| > €/3. Therefore,
veV(p)UV(po)

i (v5) = peio ()] = Y [s{p(v;)} By i (v) = s{po(v;)} By i0(v)]

Jj=1

NE

<.
Il
—

-

Is{p(vj))} {E+,i(v) — Eqio(v)} + Eyio(v) [s{p(vj)} — s{po(v;)}]| (S6)

<.
Il
—

m

[s{p(o) 1 E1i(v5) = Byio(w)| = Y 1By i0(v)] Is(p(v;) = s(po(v;))]

j=1

-

<
Il
—



By Definition 3, there exists C, > 0, such that |s{p(v;)}| > C, whenv; € V(p)UV(po). By
the compactness of V(p)UV(py), there exists C, such that max |Eyi0(v;)] |s(p(vy)) — s(po(v;))]
‘]:

..... m

< C. Therefore,

S b () = i (1)) > Cyme/3 = mC
j=1
Taking ¢y = C,e/3 — C completes the proof of Lemma []

Lemma S8 Forany ¢ > 0and vy < v < % there exist N, Cy, C and Cy, such that, for all
n> Nand 0 € ©,, if |6 — 6||1 > €, a test function V,, can be constructed satisfying that
Eg, (V,,) < Chexp (—Con*) and Ey (1 — ¥,,) < Cyexp (—Cin), where vy is as defined in

Assumption 3.

Proof: Let N, be the t covering number of ©,, in the supremum norm. Let 6%, ..., 6" € O,
satisfy that, for each § € ©,, there exist at least one [ such that H@ — (9l||OO < t. For any
0 € ©,,, define

U, = max ¥, (6,6'), (S7)

1<I<Ny

where ¥, (00, 9’) is the test statistic constructed in Lemma |S6| for the hypothesis testing
problem Hy : 6 = 6y versus Hy : 0 = 0. If || — 6||, > €*, then for #' satisfying that

|0 —0'||, <t < e/2, we have ||¢' — 6o||, > ¢*/2. By Lemma there exist N, and

I
mo|
€ > 0, such that ) 7" |1l (vj) = ps i (v;)| > em. By Lemma we can choose ¢,

such that

Eg, {\Iln (00, 01)} < Cpexp (—2n2”) , and [Ey {1 -, (90, 01)} < Coexp (—Cin).



Furthermore, we have,

N
Eg, (V) < Z v, (60, «91) < CyNgexp (—2712”) = Cyexp (log N; — 2n2”)
=1

< Chexp {Cnl/(%‘)t_d/a - 2n2”} < Chexp (Cn”ot_d/o‘ — 2712”)

= Cyexp {— (2 — C’n”o_2”t_d/°‘) n2”} )

When Ct=%* < 2, Eg, (V,,) < Coexp{— (2 — Ct=¥*)n?*}. When Ct~%* > 2, since
vo—2v < 0, there exists N7, such that, for all n > Ny, Cn*~2¢t=%/* < 1, Then Ey, (V,,) <

Cp exp {—n?"}. In addition,

]E9 (1 — \Ifn) = Eg |: min {1 — \I/n (eo,el)}] < Eg [{1 — \IJn (60,91)}] < Co exp (—Cln)

1<I<N,

Taking Co = (2 — Ct=¥*) I (Ct=¥* < 2)+I (Ct=¥* > 2) > 0,and N = max { N}, Nj }

completes the proof of Lemma []

S3. Derivations of Posterior Computation

S3.1 Full conditional distribution

We first summarize in Algorithm [ST|the general procedure of deriving the full conditional
distribution of € using Proposition 2. The main steps are to first rewrite the density of
6 in the form of (15), where {L,}"" |, {U.H<,, {f,(0)}_,, {he(8)}), are the input to

p:l’ p:l’

Algorithm We then sort (Ly,...,Lp,U,...,Uk) in ascending order, which leads to



S3.2  Full conditional distribution of ¢

Algorithm S1. Full conditional distribution of 6
Input: {L,};" 1, {Uk}r, {£(0) 150, {ha(0) iy
Output: the full conditional distribution of 6.
Sort (L1, ...,Lp,Uy,...,Uk) in ascending order, which leads to P + K + 1
intervals, denoted as 1, I5, ..., Ipyxi1-
for interval I, 1 =1,..., P+ K + 1do
Initialize D; = FE; = F; =0
forp=1,... P k=1,...,Kdo
if I; C [L,,+00) then
‘ Dl-:Di+a1p,Ei:Ei—i—a2p,Fl-:E—i—agp.
if I, C (—OO, Uk] then
| Di = D; + by, B = Ej + by, Fy = F + bsg..

end
end

if there exists i, such that D; # 0 then
the full conditional distribution of 6 is a mixture of truncated normal

distributions.
if D; = 0 for all i, and there exists i, such that E; # 0 then
the full conditional distribution of 6 is a mixture of truncated exponential

distributions.
if D; = E; = 0 for all i, and there exists i, such that F; # 0 then
| the full conditional distribution of @ is a mixture of uniform distributions.

P 4+ K + 1 intervals. We next loop through all the intervals, and update the coefficient
of H;(0). Finally, after obtaining the unnormalized conditional density function of 6 on
each interval, we derive the full conditional density of # by incorporating the corresponding

normalizing constants.

S3.2 Full conditional distribution of ¢;

Without loss of generality, we only consider ¢ in the following discussion. By model (9)

and the Karhunen-Loeve expansion, we have



S3.2  Full conditional distribution of ¢

pai(0) = G {£E(V)} Exi(v), £(v) = S0 at(v),

and £, ;(v) = Zle ei1+Wi(v). Given Yy, Y_, (:)\Cl, the full conditional density of ¢ is,

ZLy i &
(cl | Y+ Yo @\01 O(GXp( Z 1 - €Xp _2_)1\l ) (S8)

VEBm,

where W;(v) = {Y.i(v) — p14(0)} + {V_i(v) — pi(v) 12 +

2r(U{Yii(v)p—i(v) + Y- i(v)p4i(v)}, and K(v) = 2{1 — r2(v) }u(v),

with (1) = {r2(v) — 72(0)}/{r2(0) + 72(0)} and w2(v) = {F2(v) + 72(v)}/4. Write
To(w) = {1 — S5, cn(0)}/{e1 (1)} According to the sign of té;(v), we have two
different representations of > . | W;(v).

When ) (v) > 0,

ZW = {A(v)ei + By (v)er + Ci(v)}H {er > Ty (v)}

+{A_(v)e] + B_(v)e; + C_(v)}{ey < T-(v)}.

Z Wi(v) = {A;(v)c; + By (v)er + Cy ()} {er < Ty (v)}

+ {A_ ()& + B_(v)er + C_(v) {er > T (v)}.



S3.2  Full conditional distribution of ¢

Algorithm S2. Full conditional distribution of ¢;
Input: P = K = m, where m is the number of spatial locations,

I { Ty (v;) if y(vy) >0 U :{ T_(v;) ify(vj) >0

T_(v;) ify(vy) <0’ Ty (v;) ify(vy) <0
£,(0) = { g+(civ5) i dhi(vg) >0 i (0) = { g-(e;v5) it Pi(vy) >0
! g-(cizv;) if(v;) <07 g+(azvy) ifPy(v;) <0
Output: the full conditional distribution of ¢;.
Follow the procedure in Algorithm

where A4 (v), B+ (v), Cx(v) are all functions of ©\,, and are of the form,
= {Z Ei,,i(v)Q} XACH
i=1
L
B (v) = 2¢1(v) HZ ai(v } {Z By i }

=2

¥Z{Yiz cEx ()} Fr() Y {Yei(v) 'Ei,i(v)}] ;

i=1

- 2300 Ve () Exi(v) | 2r() S, V- i<v>Eﬁ<v>}
C.L(v) = ey E 1 2 =1 s 5 + =1 " F, s )
) {lz e } {Z - S, (V) S et (v)

Therefore, given Y., Y_, é\cl and the eigenfunctions {¢ (v;)}72, evaluated on B,,,

r(er | Y1, Y, B0,,) xexp Z lg (exs v) H{er > T (07)} + g—(exs o) H{er < T-(v7)}]

1!’1 J>0

+ > lgrlevpI{er < Tp(vy)} +g-(csv)H{en > T-(0)}] |

where

oy As(y) 1 5 Bi(y) Cy(v))
g+(c13v5) = {—— }cl + (o) c1+ W)

By Proposition 1, the full conditional distribution of ¢; is a mixture of truncated normal
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distributions. We summarize the procedure of obtaining this distribution in Algorithm [S2]

S3.3 Full conditional distribution of w

Recall that the prior of w is the uniform distribution on [a,,, b,]. Then we have,

1
m(w]| Yy, Y., 0\,) ocexp{ Z Lic 1W } I(a, <w < b,), (S9)

vEBm

where W;(v) is defined as in (S8). Then,

ZW () H{w < &(v)} + Q- (v)[{w < =E(v)},

where
Qi(v)zg(vV{ZEi,i( }wg {an )Eyi(v }
+ 2r(v)&(v) {Z Y:F,i(v)Ei,i(u)} .

Algorithm S3. Full conditional distribution of w
Input: P =0, K = 2m,
§(vy),  ifay, <&(v;) < by Cy(v), if Uy = &(v))
U = , hi(0) = . .
“€(vy) ifa, < —£(v;) <b, C_(v) i Up = —&(vy)
Output: the full conditional dlstrlbutlon of w Follow the procedure in Algorithm

Therefore, given Y, ,Y_, (:)\w and the eigenfunctions ¢;(v;),j =1,...,m,l=1,..., L,
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evaluated on 3,,,, we have,

7T<w ‘ Y+7 Y,, é\w)

ccexp | Y ChlopHw <€)+ Y C-(u)l{w < —€(v)}]
aw<$](ij1)<bw aw<—]§z}j)<bw
where Cy (v;) = —% — log(b, — a,,), and we only consider those &(v;) and —&(v;)
J

that are between a,, and b,,.
By Proposition 1, the full conditional distribution of w is a mixture of uniform distribu-

tions. We summarize the procedure of obtaining this distribution in Algorithm [S3]

S3.4 Full conditional distribution of ¢, ;.

Since e;; ; only existin zi; ;(v), we can rewrite 4 ;(v) as py ;(v) = a4 ;(v)+by ;(v), where
asilv) = Gu { S8 atn(v) } g atn(v) = G (v)-ei . and by i(v) = G { Dl entav) }
Yo 2 €+ u (v). Note that b, ;(v) does not depend on e;; .. Henceforth, we have that,
{Yii(v) = pi(0)} =
Y1 i(0) + a2 ;(v) + b3 (0) + 2a4,5(0)bs i (v) = 2Y5 5 (v)ay i (v) = 2Y5 i (0)by i (v),
{Yii(v) = py i) Y= i (0) = p—i(v)} =

Yii({Y=i(v) = p—i(v)} = aq i(0{Y-i(v) = p—i(v)} — by i(V){Y=i(v) — p—i(v)}.
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Ignoring the terms {Y_ ;(v) — p_;(v)}? that do not contain e;; ., we have,

m(eiit | Ya, Yo, Onc,,.)

_ad,i(0) + 2045(V)[b4i(v) = Vi (v) = r({Y_i(v) — p—i(v)}]
x H SED ( 2{1 — r2(v) }u?(v) >

vEB,

2
€il,
e <_ 2;)

e+ — Mi,l,+}2]

2
2 Vit

X exp [—
where the mean and the variance are

M+ = Z [{)\lmi,l,i@)}/{)\l +‘7i2,l,i('0)}} ;

UGBm

VLQZ:I: = Z [/\lo-z?,l,:t<v)/{/\l+0—i2,l,:t(v)}}7

VEBm,

withm;; 1 (v) = — [{YVii(v) = bei(v)} —r(v) - {Yai(v) — pai(v)}] /Cre(v), and Uzg,l,i(v)

= {1 —r*(v)}u*(v)/C}L(v). Therefore, ¢; - follows a normal distribution, i.e.,

€il+ | Y+7 Y—7 é\emi ~ N(Miald:? V?l,:l:)'

)



S3.5 Full conditional distribution of 77 (v) and 73 (v)

S3.5 Full conditional distribution of 77(v) and 73 (v)

For a given vy € B,,, we have,

T {le(vo) | Yo, Y-, é\‘1'12(1)0)}

ol 11 1) s . 2 TR TR .
O<H exp =5 | 5 + =5 ) ¢ Y4.i(v0)” + Y- i(vo) —QﬁYJr,i(Uo)Y—,i(Uo)

1 T3

i (vo)

1 )2 1 &
o {2} exp [_W ; {Yii(vo) = pti(vo) + Y- i(vo) — M,z'(UO)}Q]

where ?i,i(vo) =Y, i(vo) — p4 ;(vo). Therefore, we have,

n T Vealw) + Vi) | )
2’ e

(o) | Yi, Yo, O\ 200 ~ 1G (aT + 5

Similarly, we have,

7-22 (UO) | Y—‘rv Y—> (:)\7'22(110) 9 9

S3.6 Derivation of hybrid mini-batch MCMC

We derive the acceptance ratio in the hybrid mini-batch MCMC. Let Y = {Y3;(v), Yai(v),
i=1,...,n0 € By}, Vi, = {Vii(v),Yai(v),i = 1,...,n,0 € By, },and © = {6,045},
where m, < m, and henceforth B,,, C B,,. In the Gibbs sampler, we use the full condi-
tional distribution P(0|Y, (:)\9) as the proposal function, with the acceptance ratio equal to

1. In the hybrid mini-batch MCMC, we use P(0|Y,,., (:)\9) as the proposal function, and the
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acceptance ratio becomes,

~—

(0',0) = min{l7 P(Y|9’,§)\9 P(0|Yms’(:?\9)}
P(Y0,0\9) P(0'|Y,,,,0\0)
- {1 Mocs, P10 0v)  les,, P @0 O0)p(®) }
Thes, PO@)10.640) L, PO (0)|6.000)p(#)
- {1 [Lgs,, PIY I, Ov) }
lgs,, PO(0)16,64) |

~—

S3.7 Posterior computation algorithms

We summarize the Gibbs sampling for the TCGP in Algorithm[S4] and the hybrid mini-batch

MCMC procedure in Algorithm

Algorithm S4. Gibbs sampling for TCGP
Input: the observed imaging data Y = {{Y1,(v), Y2,:(v)}1_1,v € Bn.},
the kernel function x(-, -),
the Karhunen-Loéve truncation number L,
the prior hyperparameters a, b., a, b,
Output: the posterior samples of
6 = {{a}y. feans J 0 o AT (0), T3(0) Yot W)
Initialize ©: sample © from the prior distribution.
fort=1,---,Tdo
| parallel sample 72(v) from the inverse Gamma distribution, v € B,,, k = 1, 2.
end

fori=1,...,Ldo
sample ¢; from the mixture of truncated normal distributions.

sample w from the mixture of uniform distributions.
sample e;; + from the normal distribution, = 1, ..., n.
end
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Algorithm SS. Hybrid mini-batch MCMC for TCGP.

Input: the observed imaging data Y = {{Y1;(v), Y2, (v)}Iy,v € By},
the kernel function (-, -),
the Karhunen-Loéve truncation number L,
the prior hyperparameters a., b,, a,, b,,.
Output: the posterior samples of
6 = {{a}r fens } 0 oo {2 (0), T3(0) Yot W)
Initialize O: sample O from the prior distribution.
fort=1,---,Tdo
parallel sample 772(v) from the inverse Gamma distribution, for all
veDB, k=12
random sample m; locations from B,, and form 5,,,, and Y,,,..

end
for(=1,---,Ldo

if ¢ mod Ty = 0 then

sample ¢; from the mixture of truncated normal distributions based on Y.
sample w from the mixture of uniform distributions based on Y.

else

sample cl(t) from the mixture of truncated normal distributions based on

Y.
accept cl(t) with probability ¢( Cl(t)’ Cl(t—1)>.

sample w(® from the mixture of uniform distributions based on Y.

accept w®) with probability ¢(w®, w=1),
parallel sample e;; + from the normal distribution, 7 = 1,...,n.

end




S4. Additional numerical results

S4.1 2D image simulation

We simulate the data from model (2.1]), with the sample size n = 50, and the image res-
olution m = 64 x 64. We simulate the mean yy; from 2.2) and 2.3), £ = 1,2, with
k(v,v") = exp—0.1(v* +v?) = 10(v — V)2, 03 (v) = (4 Z?Zl I(Jlv — us 4l < 0.1),
where u;; = (0.3,0.7), uy» = (0.7,0.7), uy 3 = (0.3,0.3), and o2 (v) = (_{I(|jv —
u_qli < 0.1) + I(JJv — u_zll2 < 0.1)}, where u_; = (0.5,0.5), u_o = (0.7,0.3).
Here ((y,(_) controls the signal strength, and we consider two settings, with ({y,(_) =
(0.15,0.25) for a weak signal, and ((,(-) = (0.75,0.85) for a strong signal. We simulate
the noise ¢, ; from the normal distribution with mean zero and variance 72(v), and simulate

log(72(v)) from a Gaussian process with mean zero and correlation kernel x(v,v'), k = 1, 2.

True Correlation  Voxel-wise Region-wise Integrated(0.90) Integrated(0.95) TCGP (Gibbs) TCGP (Hybrid)

g * P | » * e | o @
@ . i & e &
: B o® |  2e | 0oe o0
H L I AN NE SREE SE AR SR
% T Eﬂ L £ = i
§ ¢ | o & o ¢ S0 iy

Figure S1: Results of 2D image simulations. The first row is for a weak signal and the
second row a strong signal. The panels from left to right show the true correlation map, the
significantly positively (red) and negatively (blue) correlated regions selected by different
methods. TCGP represents the proposed Thresholded Correlation Gaussian Process.



S4.1 2D image simulation

Table S1: Results of 2D image simulations. Reported are the average sensitivity, specificity,
and FDR, with standard error in the parenthesis, based on 100 data replications. Six methods
are compared: the voxel-wise analysis, the region-wise analysis, the integrated method of
Li et al.|(2019) with two thresholding values, 0.95 and 0.90, and the proposed Bayesian
method Thresholded Correlation Gaussian Process (TCGP) with the Gibbs sampler and the
hybrid mini-batch MCMC.

Sienal Method Positive Correlation Negative Correlation
g Sensitivity Specificity FDR Sensitivity Specificity FDR
Weak  Voxel-wise 0.000 (0.000) 1.000 (0.000) 0.020 (0.010) 0.000 (0.001) 1.000 (0.001) 0.010 (0.001)

Region-wise 0.238 (0.001)  0.953 (0.002) 0.447 (0.002) 0.473 (0.002) 0.956 (0.003) 0.629 (0.004)
Integrated (0.95) 0.612 (0.001) 0.994 (0.000) 0.134 (0.010) 0.844 (0.003) 0.993 (0.000) 0.131 (0.003)
Integrated (0.90) 0.821 (0.001) 0.971 (0.000) 0.341 (0.010) 0.963 (0.003) 0.966 (0.000) 0.398 (0.006)
TCGP (Gibbs)  0.855 (0.003) 0.996 (0.001) 0.057 (0.008) 0.997 (0.002) 0.993 (0.001) 0.108 (0.005)
TCGP (Hybrid)  0.851 (0.006) 0.993 (0.001) 0.092 (0.010) 0.993 (0.002) 0.992 (0.001) 0.126 (0.005)

Strong  Voxel-wise 0.062 (0.002)  1.000 (0.000) 0.000 (0.014) 0.091 (0.002) 1.000 (0.000) 0.000 (0.006)
Region-wise 0.741 (0.002) 0.852 (0.003) 0.747 (0.004) 0.479 (0.002) 0.950 (0.002) 0.645 (0.003)
Integrated (0.95) 0.773 (0.001) 0.998 (0.000) 0.036 (0.002) 0.933 (0.002) 0.996 (0.000) 0.067 (0.001)
Integrated (0.90) 0.996 (0.020) 0.959 (0.000) 0.378 (0.017) 0.999 (0.020) 0.953 (0.000) 0.468 (0.001)
TCGP (Gibbs)  0.976 (0.002) 0.999 (0.000) 0.015 (0.004) 1.000 (0.001) 0.999 (0.000) 0.018 (0.001)
TCGP (Hybrid) ~ 0.960 (0.003) 0.997 (0.001) 0.049 (0.005) 0.990 (0.001) 0.999 (0.000) 0.023 (0.002)

Table [ST| reports the results averaged over 100 data replications, and Figure [ST| visual-
izes the result for one data replication. We see that our proposed method clearly outperforms
the alternative solutions. We observe essentially the same patterns as in the 3D example. In
addition, the proposed Bayesian method is also capable of statistical inference, in that we
can simulate the entire posterior distribution, compute the posterior inclusion probability,
and quantify the uncertainty for the spatially varying correlation. Figure[S2]shows the prob-
ability map of the identified positively and negatively correlated regions, which are close to
the truth.

We then vary the sample size n = {30, 50, 100} while fixing the image resolution m =

64 x 64, or vary m = {32 x 32,64 x 64, 100 x 100} while fixing n = 50. Tablereports the
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Gibbs-Positive Gibbs-Negative Hybrid-Positive Hybrid-Negative

Weak signal

Strong signal

Figure S2: Results of 2D image simulations. The posterior inclusion probability map of the
positive and negative spatially-varying correlations using the Gibbs sampler and the hybrid
mini-batch MCMC.

results averaged over 100 data replications. We see that our proposed method performs the
best across different values of n and m. Meanwhile, it maintains a competitive performance

even when n is relatively small or when m is relatively large.

S4.2 Additional 3D simulations

We conduct additional simulations for the 3D image example. We fix the sample size n =
904 follow the Human Connectome Project Data and vary the signal to noise ratio with
(r = 5 for weak signal and ¢, = 0.5 for strong signal. Table [S3|reports the results averaged
over 100 data replications. We see that the proposed method outperforms other methods

with different signal to noise ratio.
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Table S2: The 2D simulation example with the varying sample size n and the varying image
resolution m. Reported are the average sensitivity, specificity, and FDR, with standard
error in the parenthesis, based on 100 data replications. Six methods are compared: the
voxel-wise analysis, the region-wise analysis, the integrated method of |L1 et al.[(2019) with
two thresholding values, 0.95 and 0.90, and the proposed Bayesian method Thresholded
Correlation Gaussian Process (TCGP) with the Gibbs sampler and the hybrid mini-batch

MCMC.

Method

Positive Correlation

Sensitivity

Specificity

FDR

Negative Correlation

Sensitivity

Specificity

FDR

n =30

Voxel-wise
Region-wise
Integrated(0.95)
Integrated(0.90)
TCGP (Gibbs)
TCGP (Hybrid)

0.080(0.002)
0.148(0.005)
0.518(0.005)
0.855(0.007)
0.910(0.004)
0.890(0.005)

1.000(0.000)
0.971(0.002)
0.992(0.003)
0.960(0.005)
0.991(0.003)
0.990(0.003)

0.004(0.003)
0.326(0.003)
0.199(0.008)
0.378(0.010)
0.109(0.005)
0.111(0.008)

0.102(0.002)
0.473(0.006)
0.781(0.003)
0.871(0.004)
0.990(0.002)
0.983(0.004)

1.000(0.000)
0.957(0.003)
0.993(0.004)
0.937(0.004)
0.993(0.001)
0.990(0.002)

0.001(0.002)
0.624(0.003)
0.146(0.009)
0.392(0.011)
0.065(0.007)
0.110(0.008)

n =50

Voxel-wise
Region-wise
Integrated(0.95)
Integrated(0.90)
TCGP (Gibbs)
TCGP (Hybrid)

0.098(0.002)
0.438(0.004)
0.659(0.003)
0.959(0.009)
0.941(0.004)
0.931(0.005)

1.000(0.000)
0.953(0.005)
0.995(0.002)
0.970(0.005)
0.995(0.002)
0.993(0.003)

0.002(0.001)
0.547(0.010)
0.130(0.008)
0.308(0.009)
0.081(0.005)
0.092(0.005)

0.150(0.002)
0.573(0.003)
0.899(0.005)
0.969(0.003)
0.996(0.002)
0.993(0.002)

1.000(0.000)
0.956(0.001)
0.997(0.001)
0.969(0.003)
0.992(0.001)
0.992(0.002)

0.003(0.001)
0.629(0.010)
0.110(0.009)
0.355(0.010)
0.063(0.005)
0.086(0.006)

n = 100

Voxel-wise
Region-wise
Integrated(0.95)
Integrated(0.90)
TCGP (Gibbs)
TCGP (Hybrid)

0.102(0.004)
0.617(0.010)
0.714(0.005)
0.980(0.010)
0.953(0.002)
0.945(0.003)

1.000(0.001)
0.881(0.003)
0.998(0.003)
0.969(0.010)
0.997(0.002)
0.997(0.002)

0.002(0.003)
0.744(0.004)
0.099(0.005)
0.300(0.010)
0.041(0.002)
0.069(0.003)

0.198(0.001)
0.476(0.005)
0.898(0.004)
0.975(0.003)
0.999(0.001)
0.993(0.003)

1.000(0.000)
0.955(0.002)
0.997(0.002)
0.971(0.003)
0.997(0.001)
0.996(0.001)

0.003(0.001)
0.631(0.010)
0.099(0.008)
0.298(0.011)
0.033(0.001)
0.085(0.002)

m =32 x 32

Voxel-wise
Region-wise
Integrated(0.95)
Integrated(0.90)
TCGP (Gibbs)
TCGP (Hybrid)

0.017(0.001)
0.297(0.005)
0.620(0.005)
0.933(0.010)
0.931(0.003)
0.922(0.005)

1.000(0.000)
0.945(0.005)
0.989(0.004)
0.971(0.006)
0.993(0.002)
0.992(0.002)

0.005(0.001)
0.531(0.010)
0.138(0.005)
0.287(0.008)
0.083(0.003)
0.082(0.005)

0.040(0.002)
0.472(0.003)
0.852(0.004)
0.944(0.004)
0.991(0.004)
0.991(0.005)

1.000(0.000)
0.957(0.002)
0.989(0.001)
0.957(0.005)
0.992(0.003)
0.991(0.002)

0.004(0.002)
0.617(0.010)
0.198(0.009)
0.30000.011)
0.065(0.004)
0.089(0.005)

m = 64 x 64

Voxel-wise
Region-wise
Integrated(0.95)
Integrated(0.90)
TCGP (Gibbs)
TCGP (Hybrid)

0.098(0.002)
0.438(0.004)
0.659(0.003)
0.959(0.009)
0.941(0.004)
0.931(0.005)

1.000(0.000)
0.953(0.005)
0.995(0.002)
0.970(0.005)
0.995(0.002)
0.993(0.003)

0.002(0.001)
0.547(0.010)
0.130(0.008)
0.308(0.009)
0.081(0.005)
0.092(0.005)

0.150(0.002)
0.573(0.003)
0.899(0.005)
0.969(0.003)
0.996(0.002)
0.993(0.002)

1.000(0.000)
0.956(0.001)
0.997(0.001)
0.969(0.003)
0.992(0.001)
0.992(0.002)

0.003(0.001)
0.629(0.010)
0.110(0.009)
0.355(0.010)
0.063(0.004)
0.086(0.006)

m = 100 x 100

Voxel-wise
Region-wise
Integrated(0.95)
Integrated(0.90)
TCGP (Gibbs)
TCGP (Hybrid)

0.005(0.001)
0.627(0.002)
0.843(0.002)
0.960(0.003)
0.971(0.001)
0.964(0.001)

1.000(0.000)
0.861(0.003)
0.998(0.003)
0.965(0.005)
0.999(0.000)
0.999(0.000)

0.004(0.002)
0.763(0.005)
0.039(0.005)
0.300(0.012)
0.029(0.002)
0.033(0.001)

0.011(0.001)
0.462(0.002)
0.952(0.004)
0.977(0.002)
0.997(0.001)
0.995(0.001)

1.000(0.000)
0.948(0.002)
0.997(0.002)
0.965(0.004)
0.998(0.002)
0.997(0.002)

0.000(0.001)
0.663(0.008)
0.052(0.007)
0.298(0.011)
0.031(0.001)
0.033(0.002)




S4.3  Sensitivity analysis

Table S3: Simulation results of the 3D image example with the varying signal to noise ratio. Reported
are the average sensitivity, specificity, and FDR, with standard error in the parenthesis, based on 100
data replications. Six methods are compared: the voxel-wise analysis, the region-wise analysis, the
integrated method of L1 et al.| (2019) with two thresholding values, 0.95 and 0.90, and the proposed
Bayesian method with the Gibbs sampler and the hybrid mini-batch MCMC.

Sional Method Positive Correlation Negative Correlation
£ Sensitivity ~ Specificity FDR Sensitivity ~ Specificity FDR
Weak  Voxel-wise 0.082 (0.003) 0.999 (0.005) 0.001 (0.006) 0.101 (0.005) 0.998 (0.000) 0.002 (0.003)

Region-wise  0.366 (0.001) 0.865 (0.002) 0.573 (0.011) 0.472(0.002) 0.892 (0.003) 0.453 (0.004)
Integrated(0.95) 0.487 (0.002) 0.981 (0.001) 0.160 (0.010) 0.582 (0.001) 0.952 (0.005) 0.101 (0.003)
Integrated(0.90) 0.873 (0.008) 0.934 (0.001) 0.230 (0.009) 0.831 (0.004) 0.946 (0.005) 0.270 (0.004)
TCGP (Gibbs) ~ 0.890 (0.005) 0.987 (0.001) 0.070 (0.007) 0.890 (0.002) 0.975 (0.003) 0.075 (0.001)
TCGP (Hybrid) 0.884 (0.002) 0.978 (0.001) 0.078 (0.006) 0.871 (0.004) 0.965 (0.003) 0.089 (0.002)

Strong  Voxel-wise 0.220 (0.005)  0.999 (0.002) 0.001 (0.001) 0.237 (0.004) 0.999 (0.000) 0.002 (0.001)
Region-wise  0.641 (0.003) 0.765 (0.001) 0.587 (0.010) 0.627 (0.006) 0.824 (0.005) 0.532 (0.003)
Integrated(0.95) 0.550 (0.005) 0.992 (0.000) 0.066 (0.005) 0.882 (0.005) 0.970 (0.000) 0.101 (0.002)
Integrated(0.90) 0.934 (0.010) 0.974 (0.003) 0.244 (0.007) 0.933 (0.010) 0.955 (0.001) 0.233 (0.003)
TCGP (Gibbs) ~ 0.951 (0.002) 0.997 (0.001) 0.052 (0.003) 0.951 (0.002) 0.991 (0.001) 0.041 (0.002)
TCGP (Hybrid) 0.949 (0.003) 0.995 (0.001) 0.058 (0.004) 0.950 (0.003) 0.989 (0.001) 0.050 (0.001)

S4.3 Sensitivity analysis

In our hybrid mini-batch MCMC, we sample a subset of m, voxels and use the full dataset
after every 7 iterations of using the mini-batch data. We next carry out a sensitivity anal-
ysis to study the effect of m, and 7. Table [S4| reports the results averaged over 100 data

replications. We see that the results are relatively stable for different values of mg and 7§.

S4.4 Prior specification for the HCP data analysis

In our HCP data analysis, we set the prior for w as U(ay, b, ), and we choose a,, and b,
as the 75% quantile and 100% quantile of {|¢(v)|},es, respectively. The choice of a,, is

based on the belief that at most 25% voxels have non-zero correlations. Here we vary



S4.4  Prior specification for the HCP data analysis

Table S4: The sensitivity analysis of the batch size m, and the number of iterations 7} for
the hybrid mini-batch MCMC. Reported are the average sensitivity, specificity, and False
Discorvery Rate (FDR), with standard error in the parenthesis, based on 100 data replica-

tions.

ms

Positive Correlation

Sensitivity

Specificity

FDR

Negative Correlation

Sensitivity

Specificity

FDR

m/32

20

0.950(0.003)

1.000(0.001)

0.015(0.003)

0.991(0.002)

0.989(0.003)

0.050(0.005)

m/16

20

0.953(0.003)

0.996(0.001)

0.061(0.002)

0.991(0.003)

0.997(0.001)

0.049(0.005)

m/4

20

0.955(0.002)

0.997(0.001)

0.058(0.002)

0.990(0.001)

0.997(0.001)

0.047(0.003)

m/16

50

0.948(0.003)

0.998(0.001)

0.045(0.002)

0.990(0.002)

0.990(0.003)

0.062(0.003)

m/16

20

0.953(0.003)

0.996(0.001)

0.061(0.002)

0.991(0.003)

0.997(0.001)

0.049(0.005)

m/16

10

0.953(0.001)

0.995(0.001)

0.059(0.003)

0.993(0.002)

0.998(0.001)

0.041(0.004)

a, = {0.73,0.75,0.77}, and investigate the corresponding performance of our proposed
method. Table[S3]reports the results, which we see that are relatively stable across different

choices of a,,.



S4.4  Prior specification for the HCP data analysis

Table S5: Prior specification for the Human Connectome Project data under different
choices of a,. Reported are the activation regions containing more than 100 voxels that
are declared having a nonzero correlation.

Lingual-R
Ay cluster size  Activation center  overlap rate mean correlation
0.73 151 (-10.0, -74.5, -4.0) 0.931 0.35
0.75 144 (-10.4,-75.3,-4.5) 1.000 0.35
0.77 140 (-10.6, -75.8,-5.4) 0.905 0.38
Angular-R
Gy cluster size cluster center overlap rate mean correlation
0.73 215 (-45.9, -60.1, 45.5) 0.910 0.41
0.75 209 (-46.9, -60.2, 44.7) 1.000 0.43
0.77 200 (-46.0, -59.9, 43.9) 0911 0.43
Temporal-Mid-L
Ay cluster size cluster center overlap rate mean correlation
0.73 110 (62.1,-24.9, 1.3) 0.940 0.42
0.75 104 (63.1,-25.7,1.4) 1.000 0.41
0.77 99 (62.7,-25.5, 1.3) 0.921 0.43
Precentral-L
Gy cluster size cluster center overlap rate mean correlation
0.73 130 (29.1, -23.0, 64.5) 0.930 -0.41
0.75 115 (28.6, -23.1, 65.4) 1.000 -0.44
0.77 107 (28.8, -23.1, 65.8) 0.931 -0.42
Occipital-Inf-R
Ay cluster size cluster center overlap rate mean correlation
0.73 130 (-38.1,-81.0, -3.9) 0.910 -0.45
0.75 122 (-38.8,-81.7,-3.2) 1.000 -0.44

0.77 107 (-38.5, -80.0, -4.0) 0.901 -0.43
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