
Statistica Sinica: Supplement

Supplementary Material for:

Bayesian Optimization with Pareto-Principled Training for

Economical Hyperparameter Optimization

Yang Yang1, Ke Deng2 and Yu Zhu3

1Nankai University, 2Tsinghua University and 3Purdue University

S1 Proof of Theorem 1

For any x ∈ Xe \ Xc, the joint distribution of (yc(x),yc| ye, ψ̂, b1, b2) is multivariate

truncated normal,

yc(x),yc| ye, ψ̂, b1, b2 ∼ T N n+1(ρ̂y
∗
ec + µ̂δ1n+1,Σδ; ρ̂y∗

ec + b11n+1, ρ̂y
∗
ec + b21n+1),

where y∗
ec = (ye(x),ye)

T , and Σδ = σ̂2
δ

 1 r̂Tδ

r̂δ R̂δ

 is the (n+1)×(n+1) covariance matrix

of y∗
c = (yc(x),yc)

T , with estimated length-scale parameters ϕ̂δ. Next we will show that

the distribution of (yc(x)| yc,ye, ψ̂, b1, b2) is truncated normal.

We consider the general case: suppose w = (w1,w2) is a multivariate truncated

Corresponding authors: Ke Deng, Department of Statistics and Data Science, Tsinghua University, Beijing 100084,

China. E-mail: kdeng@tsinghua.edu.cn. Yu Zhu, Department of Statistics, Purdue University, West Lafayette, IN 47907,

USA. E-mail: yuzhu@purdue.edu.

normal random vector with truncated condition cl ≤ w ≤ cu,

w ∼ T N n1+n2(µ,Σ; cl, cu),

and w1 and w2 are two dependent multivariate truncated normal random vectors with

truncated conditions cl1 ≤ w1 ≤ cu1 and cl2 ≤ w2 ≤ cu2 , respectively,

w1 ∼ T N n1(µ1,Σ11; cl1, c
u
1), w2 ∼ T N n2(µ2,Σ22; cl2, c

u
2),

where µ = (µ1,µ2)
T , Σ =

Σ11 Σ12

Σ21 Σ22

, cl = (cl1, c
l
2)

T , cu = (cu1 , c
u
2)

T and Σ12 =

Cov(w1,w2) = ΣT
21, c

l, cu ∈ Rn1+n2 , cl1, c
u
1 ∈ Rn1 , cl2, c

u
2 ∈ Rn2 . Next we will prove that

the distribution of w1|w2 is a multivariate truncated normal distribution based on the

conclusion from Horrace (2005), and give the analytical form of the density function of

w1|w2 in detail.

The density function of w is given as follows

fw(w,µ,Σ, cl, cu) =
exp{−1

2
(w − µ)TΣ−1(w − µ)}∫ cu

cl
exp{−1

2
(w − µ)TΣ−1(w − µ)}dw

, cl ≤ w ≤ cu. (S1.1)

By rearranging the terms, we can obtain the following results

exp{−1

2
(w − µ)TΣ−1(w − µ)} = g(w2) · exp{−

1

2
(w1 − µ1|2)

TΣ−1
1|2(w1 − µ1|2)},

where µ1|2 = µ1 +Σ12Σ
−1
22 (w2 − µ2), Σ1|2 = Σ11 −Σ12Σ

−1
22 Σ

T
12, and g(w2) is a function

S1. PROOF OF THEOREM 1

relates only to w2. The marginal density functions of w2 can be expressed as

fw2(w,µ,Σ, cl, cu) =

∫ cu1

cl1

fw(w,µ,Σ, cl, cu)dw1, cl2 ≤ w2 ≤ cu2 ,

= g(w2) ·
∫ cu1

cl1

exp{−1

2
(w1 − µ1|2)

TΣ−1
1|2(w1 − µ1|2)}dw1.(S1.2)

Using the Bayes rule, we have

fw1|w2(w,µ,Σ, cl, cu) =
fw(w,µ,Σ, cl, cu)

fw2(w,µ,Σ, cl, cu)

=
exp{−1

2
(w1 − µ1|2)

TΣ−1
1|2(w1 − µ1|2)}∫ cu1

cl1
exp{−1

2
(w1 − µ1|2)

TΣ−1
1|2(w1 − µ1|2)}dw1

, cl1 ≤ w1 ≤ cu1 ,

(S1.3)

which is the density function of the multivariate truncated normal random vector

w1|w2 ∼ T N n1(µ1|2,Σ1|2; cl1, c
u
1). (S1.4)

Applying the results in (S1.4) to (yc(x)| yc,ye, ψ̂, b1, b2), the results in Theorem 1 can be

obtained. The mean and variance of (yc(x)| yc,ye, ψ̂, b1, b2) in Theorem 1 can be directly

derived by applying the results of the truncated normal random variable provided by

Johnson et al. (1994).

S2 Some Settings and Results of the Experiments

S2.1 Synthetic Black-Box Functions in Section 5.1

The Currin exponential example is defined as

yc(x) =
[
1− exp

(
− 1

2x2

)]2300x3
1 + 1900x2

1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20
, x ∈ [0, 1]2,

ye(x) =
1

4
yc
(
x1 + 0.05, x2 + 0.05

)
+

1

4
yc
(
x1 + 0.05,max(0, x2 − 0.05)

)
+
1

4
yc
(
x1 − 0.05, x2 + 0.05

)
+

1

4
yc
(
x1 − 0.05,max(0, x2 − 0.05)

)
.

The Park example is defined as

yc(x) =
x1

2

[√
1 + (x2 + x2

3)x4/x2
1 − 1

]
+ (x1 + 3x4) exp[1 + sin(x3)],

ye(x) = [1 + sin(x1)/10]yc(x)− 2x1 + x2
2 + x2

3 + 0.5, x ∈ [0, 1]4.

The Rosenbrock example is defined as

yc(x) =
d−1∑
i=1

100
(
xi+1 − x2

i

)2
+ (1− xi)

2,

ye(x) =
d−1∑
i=1

50
(
xi+1 − x2

i

)2
+ (2 + xi)

2 −
d∑

i=1

0.5xi, x ∈ [−2, 2]10.

Since we have known the explicit expressions of yc(x) and ye(x) in advance for the

Currin exponential example, Park example and Rosenbrock example, (b1, b2) can be de-

termined precisely. We set (b1, b2) = (−1, 0.05) for the Currin exponential example,

(b1, b2) = (−1.5, 3.5) for the Park example and (b1, b2) = (−154, 10) for the Rosenbrock

example in the TGP-BOPT algorithm. For all of the three ML tasks in Sections 5.2-5.4,

S2. SOME SETTINGS AND RESULTS OF THE EXPERIMENTS

we have prior knowledge that CT loss is often not large than ET loss, and that both ET

loss and CT loss are bounded: 0 ≤ yc(x) ≤ ye(x) ≤ 1. Since ye(x) and yc(x) are at the

same scale, we can roughly assume ρ is around 1, and then (b1, b2) can be set as (−1, 0)

for the TGP-BOPT algorithm. We have also tried simply fixing ρ = 1, and the results

are similar to the previous case where ρ is estimated.

S2.2 Hyperparameters for the FFCNs and CNNs Models

The hyperparameters for the feed-forward neural networks (Section 5.3) and the convo-

lutional neural networks (Section 5.4) are shown in Table 1 and Table 2, respectively. In

Table 2, we consider two different types of optimizer, which are Adam (Kingma and Ba,

2015) and Stochastic Gradient Descent (SGD) (Bottou, 2012), respectively.

Table 1: Hyperparameters for the feed-forward neural networks and their ranges.

Hyperparameter Range Log-transform

hidden layers {1, 2, 3} no

neurons per layer [22, 26] yes

batch size [23, 28] yes

initial learning rate [10−6, 10−2] yes

exponential decay factor [0.5, 1] no

dropout rate [0, 0.5] no

Table 2: Hyperparameters for the convolutional neural network and their ranges.

Hyperparameter Range Log-transform

hidden layers {1, 2, 3, 4, 5} no

filters per layer [23, 26] yes

fully connected neurons of last hidden layer [23, 28] yes

batch size [23, 28] yes

initial learning rate [10−6, 10−2] yes

dropout rate [0, 0.5] no

optimizer {Adam, SGD} no

momentum in SGD [0, 1] no

In Tables 1-2, these hyperparameters are discrete: the number of hidden layers xn layer,

number of neurons per layer xn neuron, batch size xbs, filters per layer xn filter, and choice

of optimizer xoptimizer. In our experiments, xn layer is an integer variable, taking values

from the set An layer = {1, 2, 3} or An layer = {1, 2, 3, 4, 5}. Due to the relatively limited

number of possible values for xn layer, we directly model the integer variable xn layer in

its original space during the model fitting stage, and optimize the acquisition functions

to determine the next hyperparameter configuration by exhaustively enumerating all pos-

sible values in An layer during the exploration stage. The hyperparameter xoptimizer is a

categorical variable taking values from {Adam, SGD}. We encode xoptimizer as an integer

variable, assigning Adam and SGD to integers 0 and 1, respectively. Following a similar

logic as with xn layer, xoptimizer can be optimized. However, for the integer variables like

S2. SOME SETTINGS AND RESULTS OF THE EXPERIMENTS

the number of neurons per layer xn neuron, batch size xbs, and filters per layer xn filter,

which can take any integer value within a wide range like [22, 28], exhaustive enumeration

during the exploration stage becomes laborious. Therefore, we apply a log-transformation

to xn neuron, xbs, and xn filter, treating them as continuous variables when applying our

methods to generate the candidates in the log-transformed space. We then back-transform

those candidates to the nearest integers for use as hyperparameters during the training of

FFNNs or CNNs.

S2.3 Definitions of ET runs and CT runs

To implement BOPT-HPO, we follow the strategies in Prechelt (2012) to define ET runs

and CT runs for further optimization in Sections 5.2-5.4. Let Pe be the maximal number

of iterations of an ET run, κe the length of training iteration strips, and pe the threshold

of measurement improvement in each ET run, respectively. If the model training pro-

cedure under one configuration reaches the maximal number of iterations Pe, or has the

measurement improvement less than pe in κe successive iterations, we would early stop

the training process and refer to it as an ET run. Replacing (Pe, κe, pe) with (Pc, κc, ec), a

set of more aggressive thresholds, rules to claim a CT run can be established in the same

way. In practice, those thresholds are specified based on computational resources and the

accuracy of the measurement required in the task.

To optimizing the support vector machines in Section 5.2, we recorded the validation

error of one configuration x during the training process under the setting (Pe, κe, pe) =

(50, 5, 0.01) and (Pc, κc, pc) = (500, 5, 0) as the ET run and CT run, respectively. For

the fully connected networks in Section 5.3, since there are a larger number of model

parameters to be updated during the training process, training a neural network like

a FFNN is more expensive than training a SVM. We reduce the maximal number of

iterations and set (Pe, κe, pe) = (5, 3, 0.002) for ET runs and (Pc, κc, pc) = (40, 3, 0) for CT

runs in this experiment. For the convolutional neural network in Section 5.4, The ET runs

and CT runs are defined by the thresholds (Pe, κe, pe) = (5, 3, 0.001) and (Pc, κc, pc) =

(50, 3, 0), respectively.

S2.4 Running Time of ET Runs and CT Runs in BOPT-HPO

In practice, the overall running time of BOPT-HPO denoted as Tall is composed of three

components: time of the ET runs TET on configuration set Xe, time of the CT runs TCT

on configuration set Xc, and time of building the surrogate model Tmodel. Given the same

hyperparameter configuration, an CT run always starts from the end of an ET run, so the

running time of an CT run is the sum of the running time of the ET stage and the running

time of the remaining stage. We denote T∆CT as the time of CT runs minus the time of

ET runs on Xc. In other words, we have Tall = TET + T∆CT + Tmodel for BOPT-HPO. For

single-fidelity BO-based HPO methods with only CT runs, however, we have TET = 0 and

Tall = TCT + Tmodel. Here, we further investigate into the effectiveness of BOPT-HPO in

S2. SOME SETTINGS AND RESULTS OF THE EXPERIMENTS

terms of the running time in different levels of training stages.

Figure 1 shows the boxplots of running time ratio between a CT run and the corre-

sponding ET run under different hyperparameter configurations for three ML models in

Sections 5.2-5.4. From the figure, we can see that the computation time of implementing

a CT run in those experiments is about 3 times larger than that of implementing an ET

run. Such a fact perfectly matches the Pareto principle, and suggests that it is reasonable

to specify a relative small s, i.e., the number of ET runs per CT run, in the BOPT-HPO

algorithm. A wide range of experiments suggest that setting s = 2 or 3 usually leads to

satisfactory results.

Figure 1: The boxplots of time ratio between each CT run and ET run in three ML tasks.

The proposed BOPT-HPO combines GP and TGP as the surrogate model, so we use

the results of GP-BO (GP is the surrogate model) as the baseline to further compare

their efficiency. We take the best validation error achieved by GP-BO as the benchmark,

and record the average running time of GP-BO and BOPT-HPO when reaching the same

average validation error with five replicates in Table 3. We have experimentally found

that the running time of building the surrogate model in GP-BO and BOPT-HPO is

negligible compared to the running time of ET runs and CT runs in those ML tasks. By

utilizing only 20%-30% of the overall running time for ET runs, BOPT-HPO achieves

a reduction of approximately 34% in the running time of CT runs and improves the

overall computation efficiency by 20% to 25% compared to GP-BO, when reaching the

same best validation errors. Aggregating the results in Figures 5-7, if we allocate more

computational resources, BOPT-HPO continues to improve the validation errors, while

the validation errors of GP-BO remain almost unchanged.

Table 3: Running time (in seconds) of GP-BO and BOPT-HPO in three experiments.

GP-BO BOPT-HPO

Experiment Best error TCT Tmodel Tall TET T∆CT Tmodel Tall

SVM 0.0153 31,204 393 31,507 7,369 16,552 381 24,302

FFNN 0.0323 39,387 763 40,150 9,083 22,918 899 32,900

CNN 0.28 36,673 662 37,335 8,207 19,248 845 28,300

S2.5 Area Under the Error-Cost Curve

The Area Under the Receiver Operating Characteristic Curve (ROC-AUC), is a metric

commonly used to evaluate the performance of classification models in machine learning

BIBLIOGRAPHY

(Hand, 2009). It quantifies the model’s ability to distinguish between positive and negative

instances. Given the comparable performance of DGP-BOPT and TGP-BOPT in our

experiments, it is challenging to determine which method is superior. Therefore, drawing

inspiration from the ROC-AUC, we introduce the concept of the Area Under the Error-

Cost Curve (EC-AUC) in our work to provide a more precise evaluation of the performance

of DGP-BOPT and TGP-BOPT. In all experiments, the EC-AUC is approximated using

the trapezoidal rule, and the results are presented in Table 4.

Table 4: The EC-AUC of DGP-BOPT and TGP-BOPT in all experiments.

Currin Park Rosenbrock SVM FFNN CNN

DGP-BOPT 10.842 34.293 79.443 1034.659 1137.409 13715.513

TGP-BOPT 9.938 33.260 78.032 1035.200 1137.362 13695.850

Bibliography

Bottou, L. (2012). Stochastic gradient descent tricks. In Neural Networks: Tricks of the

Trade, pp. 421–436.

Hand, D. J. (2009). Measuring classifier performance: a coherent alternative to the area

under the roc curve. Machine Learning 77 (1), 103–123.

Horrace, W. C. (2005). Some results on the multivariate truncated normal distribution.

Journal of Multivariate Analysis 94 (1), 209–221.

Johnson, N. L., S. Kotz, and N. Balakrishnan (1994). Continuous univariate distributions,

Volume 1. Wiley .

Kingma, D. P. and J. L. Ba (2015). Adam: A method for stochastic optimization. In The

International Conference on Learning Representations.

Prechelt, L. (2012). Early stopping-But when? In Neural Networks: Tricks of the Trade,

pp. 53–67. Springer.

	Proof of Theorem 1
	Some Settings and Results of the Experiments
	Synthetic Black-Box Functions in Section 5.1
	Hyperparameters for the FFCNs and CNNs Models
	Definitions of ET runs and CT runs
	Running Time of ET Runs and CT Runs in BOPT-HPO
	Area Under the Error-Cost Curve

