New Feature Screening Methods for Massive

Interval-censored Failure Time Data

Huiqiong Li^a, Zhimiao Cao^a, Jianguo Sun^b and Niansheng Tang^a

^a Yunnan Key Laboratory of Statistical Modeling and Data Analysis,

Yunnan University, Kunming,650091, China

^b Department of Statistics, University of Missouri, Columbia, MO, 65211, U.S.A.

Supplementary Material

The supplementary material includes four sections. Some algorithms are presented in Section S1. Section S2 presents additional results from both simulation and application studies. Some preliminary lemmas are presented in Section S3, and technical proofs for all theorems appeared in the paper are presented in Section S4. The indices of assumptions, theorems in this supplement are the same as those in the main paper.

S1 Related Algorithms

This section introduces three algorithms discussed in the main paper: the Orthogonal Subsampling Algorithm, Simple Average Distance Correlation Screening based on OSS (SDC-OSS), and Jackknife Debiased Average Distance Correlation Screening based on OSS (JDC-OSS).

Algorithm 1 Orthogonal subsampling algorithm

Input: \mathbf{X}, K .

Output: \widetilde{A} .

- Scale the values of each covariate to lie in [-1, 1], and the new design matrix is denoted Z. Set i = 1.
 Find the point Z₁^{*} in Z with the largest Euclidean norm, include it in Z_Ã, and remove it from Z. Let *L* be an (N − 1)-vector with each component corresponding to each remaining data point in Z. Set all components of *L* to be 0.
- 2: for all i = 1, 2, ... do
- 3: For each $\mathbf{z} \in \mathbf{Z}$, add $l(\mathbf{z}|\mathbf{Z}_{\widetilde{A}.}^{i-1})$ to its corresponding component in \mathscr{L} , where

$$L(\mathbf{Z}_{\tilde{A}.}^{i}) = l(\mathbf{Z}_{i}^{*} | \mathbf{Z}_{\tilde{A}.}^{i-1}) + L(\mathbf{Z}_{\tilde{A}.}^{i-1}); \quad l(\mathbf{z} | \mathbf{Z}_{\tilde{A}.}^{i-1}) = \sum_{\mathbf{Z}_{j}^{*} \in \mathbf{Z}_{\tilde{A}.}^{i-1}} \left[p - \frac{\|\mathbf{z}\|^{2}}{2} - \frac{\|\mathbf{Z}_{j}^{*}\|^{2}}{2} + \xi(\mathbf{z}, \mathbf{Z}_{j}^{*}) \right]^{2}.$$

Find ${\bf z}$ with the smallest component in ${\mathscr L}$ and add it to ${\bf Z}_{\widetilde{A}}.$

4: if $N \ge K^2$ then

5:
$$k_i = N/i$$

6: else

7: $k_i = N/i^{r-1}$, where $r = \log(N)/\log(K)$

- 8: end if
- 9: Keep k_i points in **Z** that correspond to the k_i smallest components in \mathscr{L} . Remove **z** which picked out in the last step and the other selected points from **Z**, as well as their corresponding components from \mathscr{L} .
- 10: if $|\tilde{A}| = K$ then
- 11: Stop iteration
- 12: else
- 13: i = i + 1
- 14: **end if**
- 15: end for
- 16: return: The index set of the subsample obtained by OSS is \widetilde{A} .

Algorithm 2 SDC-OSS screening Input: $\mathbf{Y}, \mathbf{X}, n, B, d_0$.

Output: $\widehat{\mathcal{M}}$.

1: The nB subsample was extracted by the OSS algorithm and randomly divided into B segments.

Each segment subsample was denoted as $\mathcal{D}_b, b = 1, \ldots, B$

- 2: for all $j = 1, 2, \ldots, p$ do
- 3: for all $b = 1, \ldots, B$ do
- 4: Construct the statistics $\widehat{dcov_{(b)}^2}(X_j, \mathbf{Y}), \widehat{dcov_{(b)}^2}(X_j, X_j)$ and $\widehat{dcov_{(b)}^2}(\mathbf{Y}, \mathbf{Y})$ based on the samples $\mathbf{X}_{\mathcal{D}_i}, \mathbf{Y}_{\mathcal{D}_i}$

5:
$$\hat{\omega}_{(b),j} = \frac{\widehat{dcov_{(b)}^2}(X_j, \mathbf{Y})}{\sqrt{\widehat{dcov_{(b)}^2}(X_j, X_j)\widehat{dcov_{(b)}^2}(\mathbf{Y}, \mathbf{Y})}}$$

6: end for

7:
$$\hat{\omega}_j^{SDC} = \frac{1}{B} \sum_{b=1}^B \hat{\omega}_{(b),j}$$

- 8: end for
- 9: Arrange $\hat{\omega}_{j}^{SDC}, j = 1, \dots, p$ in order from largest to smallest, denoting $\widehat{\mathcal{M}}^{SDC} = \{j : \hat{\omega}_{j}^{SDC} \geq \hat{\omega}_{(d_0)}^{SDC}\}$, where $\hat{\omega}_{(d_0)}^{SDC}$ is the d_0 -th largest statistic.
- 10: return: $\widehat{\mathcal{M}}^{SDC}$ as the estimates of the set of significant covariates \mathcal{M} .

Algorithm 3 JDC-OSS screening **Input:** $\mathbf{Y}, \mathbf{X}, n, B, d_0$.

Output: $\widehat{\mathcal{M}}$.

1: The nB subsample was extracted by the OSS algorithm and randomly divided into B segments.

Each segment subsample was denoted as $\mathcal{D}_b, b = 1, \ldots, B$

- 2: for all $j = 1, 2, \dots, p$ do
- 3: for all b = 1, ..., B, m = 1, ..., n do

4: Construct
$$dcov_{(b,-m)}^2(X_j, \mathbf{Y}), dcov_{(b,-m)}^2(X_j, X_j)$$
 and $dcov_{(b,-m)}^2(\mathbf{Y}, \mathbf{Y})$ based on $\mathbf{X}_{(b,-m)} = (\mathbf{X}_i : i \in \mathcal{D}_b, j \neq m)^\top$, and $\mathbf{Y}_{(b,-m)} = (\mathbf{Y}_i : i \in \mathcal{D}_b, j \neq m)^\top$

5: Calculate $\widehat{\triangle}_{(b)}(X_j, \mathbf{Y}), \widehat{\triangle}_{(b)}(X_j, X_j), \text{ and } \widehat{\triangle}_{(b)}(\mathbf{Y}, \mathbf{Y}) \text{ based on Equation (3.4)}$

6:
$$\widehat{dcov^2}^{JDC}(X_j, \mathbf{Y}) = \frac{1}{B} \sum_{b=1}^{B} \{ \widehat{dcov^2}_{(b)}(X_j, \mathbf{Y}) - \widehat{\triangle}_{(b)}(X_j, \mathbf{Y}) \}$$

7:
$$\widehat{dcov^2}^{JDC}(X_j, X_j) = \frac{1}{B} \sum_{b=1}^{B} \{\widehat{dcov^2}_{(b)}(X_j, X_j) - \widehat{\triangle}_{(b)}(X_j, X_j)\}$$

8:
$$\widehat{dcov^2}^{JDC}(\mathbf{Y},\mathbf{Y}) = \frac{1}{B} \sum_{b=1}^{B} \{\widehat{dcov^2}_{(b)}(\mathbf{Y},\mathbf{Y}) - \widehat{\triangle}_{(b)}(\mathbf{Y},\mathbf{Y})\}$$

9: end for

10:
$$\widehat{dcov^2}^{JDC}(X_j, \mathbf{Y}) = \frac{1}{B} \sum_{b=1}^{B} \{\widehat{dcov^2}_{(b)}(X_j, \mathbf{Y}) - \widehat{\triangle}_{(b)}(X_j, \mathbf{Y})\}$$

- 11: **end for**
- 12: Arrange $\hat{\omega}_j^{JDC} = \frac{\widehat{dcov^2}^{JDC}(X_j, \mathbf{Y})}{\sqrt{\widehat{dcov^2}^{JDC}(X_j, X_j)\widehat{dcov^2}^{JDC}(\mathbf{Y}, \mathbf{Y})}}, j = 1, \dots, p \text{ in order from largest to smallest,}$ denoting $\widehat{\mathcal{M}}^{JDC} = \{j : \hat{\omega}_j^{JDC} \ge \hat{\omega}_{(d_0)}^{JDC}\}, \text{ where } \hat{\omega}_{(d_0)}^{JDC} \text{ is the } d_0\text{-th largest statistic.}}$
- 13: return: $\widehat{\mathcal{M}}^{JDC}$ as the estimates of the set of significant covariates \mathcal{M} .

S2 Supplementary Material for Simulation Studies and Application

In addition to the evaluation above, we also carried out the assessment of the two proposed procedures in terms of the False Discovery Rate (FDR) control. For this, we considered a new knockoff of covariate observations generated by constructing Gaussian distributions corresponding to the sample expectation and sample covariance of covariate data. The statistics $\omega_j^{JDC}(X_j, \mathbf{Y})$ (or $\omega_j^{SDC}(X_j, \mathbf{Y})$) and $\omega_j^{JDC}(\tilde{X}_j, \mathbf{Y})$ (or $\omega_j^{SDC}(\tilde{X}_j, \mathbf{Y})$) were then constructed under the proposed JDC-OSS (or SDC-OSS) method based on the orthogonal subsample of the true observed data $\mathbf{X}_{\tilde{A}}$ of the covariate and the corresponding knockoff data $\tilde{\mathbf{X}}$. Furthermore, define the statistics

$$W_j^{JDC} = \omega_j^{JDC}(X_j, \mathbf{Y}) - \omega_j^{JDC}(\widetilde{X}_j, \mathbf{Y}) , \ (W_j^{SDC} = \omega_j^{SDC}(X_j, \mathbf{Y}) - \omega_j^{SDC}(\widetilde{X}_j, \mathbf{Y})) ,$$

and the threshold T_{α}

$$T_{\alpha} = \min\left\{t \in \mathcal{W} : \frac{1 + \#\{j : W_j \le t\}\}}{\#\{j : W_j \ge t\}} \le \alpha\right\}$$

for the given FDR control level α by following Liu et al.(2022), where $\mathcal{W} = \{|W_j| : 1 \le j \le p\}/\{0\}.$

								()		
								S		
n	$B(d_0)$	Method	time(sec)	AUC(%)	PA	5%	25%	50%	75%	95%
			Right-c	ensored rat	te = 20	%				
10	60(18)	JDC-OSS	78.54	99.893	0.97	4	4	4	4	13
- •	00(10)	SDC-OSS	55.18	99.939	0.96	4	4	4	4	12
		JDC-RSS	26.50	99.757	0.915	4	4	4	7	26.05
		SDC-RSS	3.61	99.858	0.925	4	4	4	Ġ	24
	100(20)	JDC-OSS	140.94	99,998	1	4	4	4	4	5
		SDC-OSS	109.32	99,999	1	4	4	4	4	4
		JDC-BSS	36.98	99.960	0.99	4	4	4	4	$\overline{7}$
		SDC-RSS	5.67	99,991	0.995	4	4	4	4	5
20	25(17)	JDC-OSS	76 79	99 988	0.995	4	4	4	4	ő
20	20(11)	SDC-OSS	49.56	99 983	0.985	4	4	4	4	6 05
		JDC-BSS	28 71	99,899	0.900	4	4	4	5	23.6
		SDC-RSS	2 15	99.909	0.955	4	4	4	5	14.1
	40(19)	IDC-OSS	110 44	00.000	1	4	-1	-1	4	14.1
	40(13)	SDC-OSS	85 49	99.999	1	4	4	4	4	4
		IDC-BSS	36.10	99.990	1	4	4	4	4	4
		SDC BSS	284	99.990	1	4	4	4	4	4 05
		300-165	2.04 Dimbt c	99.990	1	-4 07	4	4	4	4.00
10	CO(18)		70 04	censored ra	te = 40	70	4	4	4	F
10	60(18)	1DC-022	18.84	99.998	1	4	4	4	4	5
		SDC-USS	04.77 97.04	99.997	1	4	4	4	4	5
		JDC-RSS	27.04	99.983	0.99	4	4	4	4	5
	100(00)	SDC-LSS	3.00	99.977	0.995	4	4	4	4	5 4
	100(20)	JDC-088	149.90	100.000	1	4	4	4	4	4
		SDC-OSS	115.65	100.000	1	4	4	4	4	4
		JDC-RSS	40.10	100.000	1	4	4	4	4	4
20	OF(1 =)	SDC-RSS	5.97	100.000	1	4	4	4	4	4
20	25(17)	JDC-OSS	75.43	99.999	1	4	4	4	4	4
		SDC-OSS	47.45	99.999	1	4	4	4	4	4
		JDC-RSS	29.47	99.999	1	4	4	4	4	4
	10(10)	SDC-RSS	1.98	99.998	1	4	4	4	4	4
	40(19)	JDC-OSS	109.62	100.000	1	4	4	4	4	4
		SDC-OSS	78.97	100.000	1	4	4	4	4	4
		JDC-RSS	32.58	100.000	1	4	4	4	4	4
		SDC-RSS	2.92	100.000	1	4	4	4	4	4
			Right-c	ensored rat	te = 60	%				
10	60(18)	JDC-OSS	75.95	99.996	1	4	4	4	4	5
		SDC-OSS	53.33	99.997	1	4	4	4	4	5
		JDC-RSS	25.83	99.988	0.99	4	4	4	4	6
		SDC-RSS	3.40	99.982	0.99	4	4	4	4	6.05
	100(20)	JDC-OSS	134.20	100.000	1	4	4	4	4	4
	. ,	SDC-OSS	104.63	100.000	1	4	4	4	4	4
		JDC-RSS	34.51	100.000	1	4	4	4	4	4
		SDC-RSS	5.56	100.000	1	4	4	4	4	4
20	25(17)	JDC-OSS	78.24	100.000	1	4	4	4	4	4
		SDC-OSS	48.88	99.998	1	4	4	4	4	4
		JDC-RSS	31.51	99.998	1	4	4	4	4	4
		SDC-RSS	2.04	99.997	1	4	4	4	4	4
	40(19)	JDC-OSS	110.64	100.000	1	4	4	4	4	4
	()	SDC-OSS	79.44	100.000	1	$\overline{4}$	$\overline{4}$	$\overline{4}$	$\overline{4}$	$\overline{4}$
		JDC-RSS	33.16	100.000	1	4	4	4	4	4
		SDC-RSS	2.92	100.000	1	4	4	4	4	4

Table 1: Simulation results under Model 2 (a).

								()		
	D(1)		·· ()			F07	0507	S	7507	0507
n	$B(d_0)$	Method	time(sec)	AUC(%)	PA	5%	25%	50%	75%	95%
10	100(00)		Right-	-censored r	ate $= 20$	J%	10	10	14	69
10	100(20)	JDC-OSS	240.15	99.917	0.845	10	10	10	14	63
		SDC-OSS	176.41	99.883	0.815	10	10	10	15	76.15
		JDC-RSS	48.69	99.768	0.695	10	10	13	24	86.6
	150(01)	SDC-RSS	9.09	99.752	0.690	10	10	13	23.25	97.1
	150(21)	JDC-OSS	360.13	99.990	0.985	10	10	10	10	13
		SDC-OSS	296.07	99.986	0.975	10	10	10	10	14
		JDC-RSS	60.24	99.941	0.900	10	10	10	12	40.2
1 5	10(10)	SDC-RSS	11.78	99.958	0.935	10	10	10	15.05	33.30
15	40(18)	JDC-OSS	159.60	99.895	0.785	10	10	11	15.25	47.15
		SDC-OSS	96.60	99.876	0.795	10	10	10.5	16	67.15
		JDC-R55	40.52	99.000	0.515	10	11	10.0	40.0	200.45
	CO(10)	SDC-RSS	0.40	99.081	0.040	10	11	10	44.20	175.7
	60(19)	1DC-022	219.11	99.975	0.920	10	10	10	11	20
		SDC-055	150.09	99.971	0.925	10	10	10	14.95	$\frac{24.1}{102.75}$
		JDC-R55	50.01	99.802	0.805	10	10	10	14.20	102.75
	100(91)	SDC-RSS	1.01	99.809	1.000	10	10	11	14	10
	100(21)	2DC-022	000.20 071.05	1.000	1.000	10	10	10	10	10
			271.00	1.000	1.000	10	10	10	10	11.05
		JDC-USS	00.00	1.000	0.995	10	10	10	10	11.05
		SDC-RSS	0.21 Dialat	1.000	0.960	10	10	10	10	11
10	100(00)		Right-	-censored r	ate = 40	J%	10	10	10.05	01
10	100(20)	1DC-022	238.24	99.964	0.940	10	10	10	10.20	21
		2DC-022	174.54	99.953	0.935	10	10	10	12.05	21.05
		JDC-USS	47.70	99.930	0.890	10	10	10	13.20	34.1
	150(01)	SDC-RSS	9.05	99.903	0.800	10	10	10	10	45.05
	150(21)	1DC-022	370.59	99.999	1.000	10	10	10	10	10.05
		SDC-055	307.00	99.997	0.995	10	10	10	10	12.05
		SDC BSS	02.32	99.900	0.980	10	10	10	10	15.05
15	40(18)	JDC-RSS	160.09	99.900	0.975	10	10	10	11.95	25.05
10	40(18)	SDC OSS	100.02	99.905	0.905	10	10	10	11.20	25.05 27.05
		IDC BSS	30.00	00.885	0.300	10	10	11	16	27.00
		SDC-RSS	5.61	99.885	0.790	10	10	11	16	59 25
	60(19)	IDC-OSS	216 32	00.006	0.100	10	10	10	10	11
	00(13)	SDC-OSS	148.99	99.990	0.995	10	10	10	10	11
		IDC-BSS	49.02	99 972	0.935	10	10	10	10	21 15
		SDC-RSS	7.08	99 977	0.945	10	10	10	10	21.10
	100(21)	IDC-OSS	325.63	1 000	1 000	10	10	10	10	10
	100(21)	SDC-OSS	272.76	1.000	1.000	10	10	10	10	10
		JDC-BSS	56.68	1.000	0.990	10	10	10	10	10
		SDC-RSS	8 27	1 000	0.990	10	10	10	10	10
		50 1055	Bight.	-censored r	$\frac{0.000}{\text{ate} - 60}$	12	10	10	10	10
10	100(20)	JDC-OSS	236 64	99 970	0.950	10	10	10	11	19.25
10	100(20)	SDC-OSS	177.16	99 956	0.940	10	10	10	11	22.1
		JDC-RSS	47.70	99.899	0.860	10	10	10	13	52.2
		SDC-RSS	9.92	99,891	0.845	10	10	10	14	58.45
	150(21)	JDC-OSS	364 63	99 999	0.995	10	10	10	10	10
	100(21)	SDC-OSS	305.40	99,999	0.995	10	10	10	10	10
		JDC-RSS	64.41	99.990	0.980	10	ĩŏ	ĩŏ	ĩŏ	14
		SDC-RSS	13.01	99.990	0.985	10	10	10	10	12.05
15	40(18)	JDC-OSS	153.79	99,963	0.900	10	10	10	12	30.25
		SDC-OSS	94.08	99.946	0.895	īŏ	10	īŏ	11	37.05
		JDC-RSS	40.94	99.918	0.820	10	10	11	15	51.2
		SDC-RSS	6.75	99.910	0.780	10	10	11	17	55.5
	60(19)	JDC-OSS	216.31	99.997	0.995	10	10	10	10	12
	< - /	SDC-OSS	151.28	99.995	0.990	10	10	10	10	11
		JDC-RSS	50.36	99.961	0.945	10	10	10	11	29.1
		SDC-RSS	7.68	99.954	0.940	10	10	10	10.25	26.1
	100(21)	JDC-OSS	328.68	1.000	1.000	10	10	10	10	10
	` '	SDC-OSS	271.97	1.000	1.000	10	10	10	10	10
		JDC-RSS	57.70	1.000	1.000	10	10	10	10	10
		SDC-RSS	7.91	1.000	1.000	10	10	10	10	10

Table 2: Simulation results under Model 2 (b).

								S		
n	$B(d_0)$	Method	time(sec)	AUC(%)	PA	5%	25%	50%	75%	95%
1.0	100(00)	IDG OGG	Rig	nt-censored	1 rate =	20%	10	10	150.05	105 15
10	100(20)	IDC-088	227.49 165.27	97.748	0.295 0.240	4	16 21	49 56 5	150.25 155.25	435.15 500.65
		JDC-RSS	49.63	95.387	0.240 0.080	13.95	$\frac{21}{56}$	129.5	297	610.03
		SDC-RSS	7.87	95.108	0.060	18.95	58.75	131	315.25	677.4
	200(23)	JDC-OSS	500.17	99.246	0.575	6	7	17	55.25	205.4
		SDC-OSS	434.97	99.206	0.555	6	7	16	56.25	220.8
		JDC-RSS	79.51	98.209	0.350	6	16.75	39 40 5	115	425.25
	300(24)	IDC-055	508.02	0 000	1 000	6	6	49.0	102 12.75	452.55 20.3
	500(24)	SDC-OSS	508.54	0.998	0.800	6	6.25	8.5	22	$\frac{20.3}{53.7}$
		JDC-RSS	107.70	0.991	0.400	Ğ	16.5	61.5	$\overline{85}$	122.3
	()	SDC-RSS	15.18	0.989	0.300	7.35	19.75	62	104.5	147.2
20	80(22)	JDC-OSS	250.56	99.462	0.730	6	6	8.5	26	238.35
		IDC BSS	205.91	99.485	0.715 0.570	6	6	18	27.25	105.05
		SDC-RSS	5 15	98.663	0.570 0.575	6	8 75	175	58.75	389.7
	100(23)	JDC-OSS	329.16	99.692	0.855	Ğ	6	7	13	103.45
	(-)	SDC-OSS	258.02	99.710	0.850	6	6	7	13	106
		JDC-RSS	79.10	99.164	0.620	6	7	13.5	42	255.75
		SDC-RSS	5.57	99.187	0.615	6	8	16	49.25	247.25
10	100(20)	IDC-OSS	131 53	1t-censored 07 081	1 rate = 0.285	40% 7	17 75	13	149	466 45
10	100(20)	SDC-OSS	101.52	98.084	0.205 0.315	7	14.75	48.5	$142 \\ 122$	418.75
		JDC-RSS	34.93	96.028	0.075	16	39.75	120.5	258.75	565.55
		SDC-RSS	5.39	95.860	0.075	16.9	54.5	130	272.75	566.2
	200(23)	JDC-OSS	325.29	99.522	0.720	6	$\frac{7}{2}$	9	25.75	159.4
		SDC-OSS	263.24	99.512	0.685	6	0.75	10	27.25	159.35
		SDC-RSS	9.88	98.004 98.442	$0.435 \\ 0.450$	6	9.75	30	104.25 104.75	391.4 374.65
	300(24)	JDC-OSS	593.41	99.936	0.900	ő	6	6	8.25	23.95
	000(=-)	SDC-OSS	503.65	99.896	0.900	Ğ	Ğ	Ğ	6.75	39.5
		JDC-RSS	106.40	99.190	0.600	6.9	9.25	17	51.5	198.25
00	00(00)	SDC-RSS	14.72	99.155	0.600	6.9	9.25	16.5	80.5	179.3
20	80(22)	2DC-022	384.31	99.708	0.870	6	6	6	10.25	$\frac{98.1}{72.2}$
		JDC-RSS	65.52	99.457	0.335 0.745	6	6	9	23	199.3
		SDC-RSS	7.54	99.419	0.755	Ğ	Ğ	ğ	21.25	202.35
	100(23)	JDC-OSS	524.90	99.922	0.945	6	6	6	7	24.35
		SDC-OSS	441.82	99.918	0.945	6	6	6	7	26
		JDC-RSS	73.99	99.719 00.715	0.820	6	6	7	13.25	71.05
		SDC-RSS		99.710 nt-censored	$\frac{0.000}{1 \text{ rate}} =$: 60%	0	1	14.20	01.0
10	100(20)	JDC-OSS	135.23	98.021	0.350	7	15.75	42	122.25	465.25
	()	SDC-OSS	105.50	97.972	0.320	7	15	39	134.75	449.35
		JDC-RSS	35.18	95.707	0.090	11	56.5	132	281.5	641.35
	000(00)	SDC-RSS	5.31	95.349	0.080	13.9	60	136.5	314.25	669.25
	200(23)	SDC-088	499.71 435.07	99.493 99.477	0.085 0.615	0 6	0 6	10	37 42 25	140.15 140.8
		JDC-RSS	79.22	98.619	0.465	6	11	26.5	115.25	313.05
		SDC-RSS	13.63	98.504	0.445	6	11.75	32.5	108	343.3
	300(24)	JDC-OSS	609.56	0.999	0.900	6	6	7	9.5	39.4
		SDC-OSS	517.65	0.998	0.800	6	6	7	16	48.9
		JDC-RSS	108.72 15.16	0.993	0.800	6.45 6	7.25	87	16 14	219.05 141 g
20	80(22)	JDC-088	241 72	99.869	0.885	6	6	6	8	54.85
20	50(22)	SDC-OSS	183.21	99.890	0.885	6	ő	ő	8	50.05
		JDC-RSS	65.47	99.558	0.745	6	6	9	23	140.3
	100(77)	SDC-RSS	4.81	99.557	0.765	6	6	9	20	143.05
	100(23)	JDC-OSS	370.51	99.958	0.970	6	6	6	7	21
		DC-DSS	311.35 65.45	99.958 00.682	0.950	0	0	07	(14	$\frac{21.15}{114.9}$
		SDC-RSS	6.55	99.690	0.830	6	6	7	14	79.55

Table 3: Simulation results under Model 2 (c).

		Table	<u>4: Simu</u>	<u>ilation re</u>	sults 1	under	Mode	<u>13.</u>		
								\overline{S}		
n	$B(d_0)$	Method	time(sec)	AUC(%)	PA	5%	25%	50%	75%	95%
	- (**0)		Righ	nt-censored	rate =	= 20%				
8	100(19)	JDC-OSS	97.56	97.648	0.055	19	60	116.5	207.75	503.6
~		SDC-OSS	68.43	97.031	0.015	26.95	72.75	132	272.75	618.1
		JDC-RSS	34.68	96.526	0.015	46	95.5	175.5	318.25	633.55
		SDC-RSS	4.81	95.697	0.005	44.95	111.5	205	358	672.45
	150(20)	JDC-OSS	160.88	99.092	0.235	12	21	42.5	111	277.95
	(-)	SDC-OSS	121.28	98.865	0.19	12	25.75	53	118.25	299.5
		JDC-RSS	48.13	98.607	0.115	14.95	32	62.5	139.25	345.15
		SDC-RSS	7.25	98.157	0.09	17.95	41.75	84	171.25	482.65
	200(22)	JDC-OSS	236.07	99.529	0.54	10	13	20.5	48	208.55
	()	SDC-OSS	186.45	99.384	0.45	10	14	26.5	68.25	250.45
		JDC-RSS	61.07	99.197	0.33	11	18.75	36.5	90.25	260.55
		SDC-RSS	9.76	98.986	0.22	12	24.75	47	112.25	300.2
10	80(19)	JDC-OSS	97.77	98.483	0.105	16	33	74.5	152.75	359.95
	. ,	SDC-OSS	67.66	98.164	0.06	16.95	37.75	87.5	180.5	429.5
		JDC-RSS	34.97	97.554	0.06	19	50.75	109.5	262.5	560.6
		SDC-RSS	4.03	97.179	0.03	22	62	121	274.75	607
	100(20)	JDC-OSS	127.40	98.987	0.335	10	17	41.5	109.75	352.3
		SDC-OSS	92.22	98.926	0.255	11	20	42.5	117.25	360.1
		JDC-RSS	41.40	98.537	0.095	14.95	35	63.5	142	359.5
		SDC-RSS	4.95	98.158	0.085	17	36	78.5	181.5	440.75
			Righ	nt-censored	l rate =	= 40%				
8	100(19)	JDC-OSS	97.40	98.514	0.145	13	33	62.5	149.25	410.15
		SDC-OSS	68.51	98.295	0.115	14.95	30.75	68	190.25	461.05
		JDC-RSS	34.25	97.917	0.065	18	44.75	93	208.25	470.5
		SDC-RSS	4.76	97.717	0.045	20	47	102	211.75	475.45
	150(20)	JDC-OSS	161.32	99.421	0.435	10	13.75	23	75	222.6
		SDC-OSS	121.58	99.336	0.425	10	14	27	81	226.3
		JDC-R55	48.22	99.327	0.295	11	10.75	30	(4 01.05	243.35
	200(22)	SDC-RSS	1.21	99.200	0.200	12	19.70	39.0	20.05	214.2 194.C
	200(22)	JDC-022	235.17	99.685	0.65	10	11	15	32.25	134.0 107.2
		SDC-USS	100.70	99.005	0.595	10	11	10	40	197.2
		SDC RSS	0.89	99.598	0.505	10	12	185	43.25	104.1 101.7
10	80(10)	JDC-RSS	9.01	99.041	0.07	10	12	25.5	49 77 5	205
10	80(19)	and Osa	91.44 67.75	99.110	0.33	11	1775	25.5	02	320 917 9
		IDC BSS	34.14	99.050	0.200	1205	21.10	45	120.5	371.45
		SDC-RSS	4.00	98.790	0.10 0.14	12.30	26	40 5	148.5	374.4
	100(20)	IDC-OSS	120 14	00 /82	0.14	10	12	40.0 99	52.5	180.25
	100(20)	SDC-035	03.28	00 463	0.405	10	12	20	55 25	245 55
		IDC-BSS	41.70	99.405	0.000	11	1575	275	64	240.00
		SDC-RSS	5.05	99.331	0.345	11	17	31	72^{-04}	224.85
		2201000	Rioł	it-censored	rate -	= 60%	±•		•-	
8	100(19)	JDC-OSS	97.77	98.459	0.125	15	32	68	153.75	467.25
0	100(10)	SDC-OSS	68.53	98,288	0.08	15.95	39	78	171	530
		JDC-RSS	34.69	97.807	0.065	19	45.5	89	208	525.65
		SDC-RSS	4.82	97.656	0.04	20.95	48.75	100.5	224.25	583.7
	150(20)	JDC-OSS	159.60	99.384	0.38	10	15	28	76.25	211.35
		SDC-OSS	120.64	99.292	0.35	10	15.75	33.5	85.25	239.55
		JDČ-ŘŠŠ	47.36	99.217	0.32	īĭ	17	34	86.75	247.6
		SDC-RSS	7.18	99.034	0.27	11	19.75	41	88	323.1
	200(22)	JDC-OSS	237.29	99.676	0.655	10	11	14	33	168.2
	· /	SDC-OSS	187.39	99.639	0.64	10	11	15	39.25	167.15
		JDC-RSS	61.55	99.593	0.61	10	12	17	40.25	158.45
		SDC-RSS	9.74	99.507	0.555	10	12	21	48.75	221.1
10	80(19)	JDC-OSS	97.51	99.248	0.325	11	17.75	35	78.25	286.15
	. /	SDC-OSS	67.82	99.208	0.275	11	19	34.5	88	290.25
		JDC-RSS	34.44	98.777	0.21	13	23	52	129.5	380.05
		SDC-RSS	3.97	98.652	0.19	13	24	58	138.5	457.6
	100(20)	JDC-OSS	127.44	99.479	0.42	10	13	25.5	53	232.1
	. /	SDC-OSS	92.30	99.491	0.445	10	14	26.5	54	218.9
		JDC-RSS	41.18	99.186	0.3	11	17	36.5	87.75	257.1
		SDC-RSS	4.92	99.109	0.31	10.95	18	35	97.5	231.55

FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

Figure 1: Empirical FDR, SEN and powers.

Figure 1 presents the FDR control for the two proposed methods with n = 20, B = 100, p = 5000 and $\alpha = 0.10, 0.15, 0.20, 0.25$ or 0.30 based on 200 replications. Here the true failure times were generated under **Model** 1 with the true parameter being $\boldsymbol{\beta} = (\mathbf{2}_{10}, \mathbf{0}_{p-10})^{\top}$ and the censoring rate is 20%, 40% or 60%. That is, there exist ten important or relevant variables.

S2. SUPPLEMENTARY MATERIAL FOR SIMULATION STUDIES AND APPLICATION

Figure 2: The comparison of JDC-OSS and SDC-OSS in different n with B = 300.

Table 5:	The screening	results for	the SEE	R data	with 50) covariates a	and their	interaction
----------	---------------	-------------	---------	--------	-----------	----------------	-----------	-------------

terms.

Commintee	DC	JDC-OSS	SDC-OSS	JDC-RSS	SDC-RSS
Covariates	(B=100)	(B=100, n=15)	(B=100,n=15)	(B=100,n=15)	(B=100, n=15)
Year. of. diagnosis * CS. Schema. A JCC. 6 th. Edition	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year.of.diagnosis	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year. of. diagnosis * Site. recode. ICD. O. 3. WHO. 2008	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year.of.diagnosis*TNM.7.CS.v0204Schema.recode	\checkmark	\checkmark			\checkmark
Year. of. diagnosis * Site. recode. ICD. O. 3. WHO. 2008. for. SIRs and the second statement of the	; √	\checkmark		\checkmark	\checkmark
Year. of. diagnosis * Histology. recode. Brain. groupings	\checkmark	\checkmark	\checkmark	\checkmark	
Year. of. diagnosis * SEER. Brain. and. CNS. Recode	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year.of.diagnosis*Behavior.code.ICD.O.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$Year. of. diagnosis {\rm *Behavior. recode. for. analysis}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year.of.diagnosis*AYA.site.recode.WHO.2008	\checkmark		\checkmark	\checkmark	\checkmark
Sex*Year.of.diagnosis	\checkmark		\checkmark		
Year.of.diagnosis*TNM.7.CS.v0204.Schema.thru.2017	\checkmark	\checkmark	\checkmark		\checkmark
Site.recode.rare.tumors*Breast.T		\checkmark	\checkmark		
Primary.Site*Histologic.Type.ICD.O.3		\checkmark	\checkmark		
$Site.recode.rare.tumors {\rm *RX.Summ.Surg.Prim.Site}$		\checkmark	\checkmark	\checkmark	
Site.recode.rare.tumors*Breast.Stage		\checkmark	\checkmark		

In the figure, three metrics were calculated and they are the average of empirical FDR (FDR), the average of empirical sensitivity (SEN) and the average of empirical powers (Power). One can see from the figure that overall both methods gave good and consistent performances. Also the two procedures are similar in terms of FDR and Power but the SDC-OSS method seems to yield higher SEN values than the JDC-OSS method.

S3 Preliminary Lemmas

Before the proof of our main results, we introduce the following preliminary lemmas. The first two are extracted from Lemma 5.6.1.A and Theorem 5.6.1.A of Serfling (1980) for which the proof is omitted.

Lemma 1. Let $\mu = E(Y)$. If $Pr(a \leq Y \leq b) = 1$, then

$$E\left[\exp\{s(Y-\mu)\}\right] \le \exp(s^2(b-a)^2/8), \text{ for any } s > 0.$$

Lemma 2. Let $h(x_1, \ldots, x_m)$ be a kernel of the U-statistic U_n , and $\theta = E(h(x_1, \ldots, x_m))$. If $a \le h(x_1, \ldots, x_m) \le b$, then for any t > 0 and $n \ge m$,

$$Pr(|U_n - \theta| \ge t) \le 2\exp(-2\lfloor n/m \rfloor t^2/(b-a)^2),$$

where |n/m| denotes the integer part of n/m.

Lemma 3. Suppose $\hat{\gamma}_1, \hat{\gamma}_2$, and $\hat{\gamma}_3$ are estimates of parameters γ_1, γ_2 , and γ_3 based on a size-n sample, respectively. Assume $\gamma_2 > 0, \gamma_3 > 0$ and

 $M \geq 2 \max\{\gamma_1, \gamma_2, \gamma_3, \widehat{\gamma}_1, \widehat{\gamma}_2, \widehat{\gamma}_3\}. \ If$

$$P(|\widehat{\gamma}_k - \gamma_k| > \varepsilon) \le c_1 \exp(-c_2 n^{1-\kappa} \varepsilon^2) + n \exp(-c_3 n^{\kappa}), k = 1, 2, 3,$$

for some positive constants c_1, c_2, c_3 . Then we have

$$Pr\left(\left|\frac{\widehat{\gamma}_{1}}{\sqrt{\widehat{\gamma}_{2}\widehat{\gamma}_{3}}} - \frac{\gamma_{1}}{\gamma_{2}\gamma_{3}}\right| > \varepsilon\right) \le 5c_{1}\exp\{-c_{2}n^{1-\kappa}\varepsilon^{2}\gamma_{0}\} + 5n\exp(-c_{3}n^{\kappa}),$$

where $\gamma_0 = \min\{\gamma_2^2 \gamma_3^2/4M^4, \gamma_2^3 \gamma_3^3/4M^4\}.$

Proof of Lemma 3. Some $\gamma_1, \gamma_2, \gamma_3, \widehat{\gamma}_1, \widehat{\gamma}_2, \widehat{\gamma}_3$ are bounded by M/2. It is easy to verify that

$$Pr(|\widehat{\gamma}_{2}\widehat{\gamma}_{3} - \gamma_{2}\gamma_{3}| > 2\varepsilon) = Pr(|\widehat{\gamma}_{2}(\widehat{\gamma}_{3} - \gamma_{3}) + (\widehat{\gamma}_{2} - \gamma_{2})\gamma_{3}| > 2\varepsilon)$$

$$\leq Pr(|\widehat{\gamma}_{3} - \gamma_{3}| > \frac{\varepsilon}{\widehat{\gamma}_{2}}) + Pr(|\widehat{\gamma}_{2} - \gamma_{2}| > \frac{\varepsilon}{\gamma_{3}})$$

$$\leq Pr(|\widehat{\gamma}_{3} - \gamma_{3}| > \frac{2\varepsilon}{M}) + Pr(|\widehat{\gamma}_{2} - \gamma_{2}| > \frac{2\varepsilon}{M})$$

$$\leq 2c_{1} \exp(-c_{2}n^{1-\kappa}4\varepsilon^{2}/M^{2}) + 2n\exp(-c_{3}n^{\kappa}).$$

If event $\{|\sqrt{\widehat{\gamma}_2\widehat{\gamma}_3} - \sqrt{\gamma_2\gamma_3}| > 2\varepsilon\}$ is true, then we have

$$2\varepsilon\sqrt{\gamma_2\gamma_3} < \sqrt{\gamma_2\gamma_3} |\sqrt{\widehat{\gamma}_2\widehat{\gamma}_3} - \sqrt{\gamma_2\gamma_3}| < |\sqrt{\widehat{\gamma}_2\widehat{\gamma}_3} + \sqrt{\gamma_2\gamma_3}| \cdot |\sqrt{\widehat{\gamma}_2\widehat{\gamma}_3} - \sqrt{\gamma_2\gamma_3}| = |\widehat{\gamma}_2\widehat{\gamma}_3 - \gamma_2\gamma_3|.$$

Thus,

$$Pr(|\sqrt{\widehat{\gamma}_{2}\widehat{\gamma}_{3}} - \sqrt{\gamma_{2}\gamma_{3}}| > 2\varepsilon)$$

$$\leq Pr(|\widehat{\gamma}_{2}\widehat{\gamma}_{3} - \gamma_{2}\gamma_{3}| > 2\varepsilon\sqrt{\gamma_{2}\gamma_{3}})$$

$$\leq 2c_{1}\exp(-c_{2}n^{1-\kappa}\gamma_{2}\gamma_{3}4\varepsilon^{2}/M^{2}) + 2n\exp(-c_{3}n^{\kappa}).$$
(S3.1)

Let $\gamma = \sqrt{\gamma_2 \gamma_3}$ and $\widehat{\gamma} = \sqrt{\widehat{\gamma}_2 \widehat{\gamma}_3}$. For any $0 < \varepsilon < 1$, we have

$$\begin{aligned} ⪻\Big(|\frac{1}{\widehat{\gamma}} - \frac{1}{\gamma}| > \varepsilon\Big) = Pr\big(|\widehat{\gamma} - \gamma| > |\widehat{\gamma}\gamma|\varepsilon\big) \\ &\leq ⪻\Big(|\widehat{\gamma} - \gamma| > |\widehat{\gamma}\gamma|\varepsilon, |\widehat{\gamma}| \ge \frac{\gamma}{2}\Big) + Pr\Big(|\widehat{\gamma}| < \frac{\gamma}{2}\Big) \\ &\leq ⪻\Big(|\widehat{\gamma} - \gamma| > \frac{\gamma^2}{2}\varepsilon\Big) + Pr\Big(|\widehat{\gamma} - \gamma| > \frac{\gamma}{2}\Big) \\ &\leq ⪻\Big(|\widehat{\gamma} - \gamma| > \frac{\gamma^2}{2}\varepsilon\Big) + Pr\Big(|\widehat{\gamma} - \gamma| > \frac{\gamma}{2}\varepsilon\Big) \\ &\leq &2Pr\Big(|\widehat{\gamma} - \gamma| > \min\{\gamma^2, \gamma\}\frac{\varepsilon}{2}\Big). \end{aligned}$$

The second inequality sign in the above equation is due to $\{|\hat{\gamma}| < \gamma/2\} = \{\hat{\gamma} - \gamma < -\gamma/2\} = \{\gamma - \hat{\gamma} > \gamma/2\}$ and $|\hat{\gamma} - \gamma| > \gamma - |\hat{\gamma}| > \gamma/2$. Therefore, we have $\{|\hat{\gamma}| < \gamma/2\} \subseteq \{|\hat{\gamma} - \gamma| > \gamma/2\}$. The third inequality is because $|\hat{\gamma} - \gamma| > \gamma/2 > \frac{\gamma}{2}\varepsilon$. From (S3.1), we have

$$Pr\left(\left|\frac{1}{\widehat{\gamma}} - \frac{1}{\gamma}\right| > \varepsilon\right)$$

$$\leq 4c_1 \exp\left(-c_2 n \gamma^2 \min\{\gamma^4, \gamma^2\} \frac{\varepsilon^2}{4M^2}\right)$$

$$\leq 4c_1 \exp\left(-c_2 n^{1-\kappa} \gamma' \frac{\varepsilon^2}{4M^2}\right) + 4n \exp(-c_3 n^{\kappa}),$$

where $\gamma^{'}=\min\{\gamma_{2}^{3}\gamma_{3}^{3},\gamma_{2}^{2}\gamma_{3}^{2}\}.$ As a result

$$Pr\left(\left|\frac{\widehat{\gamma}_{1}}{\sqrt{\widehat{\gamma}_{2}\widehat{\gamma}_{3}}} - \frac{\gamma_{1}}{\sqrt{\gamma_{2}\gamma_{3}}}\right| > \varepsilon\right)$$

= $Pr\left(\left|\frac{\widehat{\gamma}_{1}}{\widehat{\gamma}} - \frac{\gamma_{1}}{\gamma}\right| > \varepsilon\right) = Pr\left(\left|\widehat{\gamma}_{1}\left(\frac{1}{\widehat{\gamma}} - \frac{1}{\gamma}\right) + (\widehat{\gamma}_{1} - \gamma_{1})\frac{1}{\gamma}\right| > \varepsilon\right)$
 $\leq Pr\left(\left|\frac{1}{\widehat{\gamma}} - \frac{1}{\gamma}\right| > \frac{\varepsilon}{2\widehat{\gamma}_{1}}\right) + Pr\left(\left|\widehat{\gamma}_{1} - \gamma_{1}\right| > \frac{\varepsilon\gamma}{2}\right)$

$$\leq Pr\left(\left|\frac{1}{\widehat{\gamma}} - \frac{1}{\gamma}\right| > \frac{\varepsilon}{M}\right) + Pr\left(\left|\widehat{\gamma}_{1} - \gamma_{1}\right| > \frac{\varepsilon\gamma}{2}\right)$$

$$\leq 4c_{1} \exp\left(-c_{2}n^{1-\kappa}\gamma'\frac{\varepsilon^{2}}{4M^{4}}\right) + 4n \exp(-c_{3}n^{\kappa}) + c_{1} \exp\left(-c_{2}n^{1-\kappa}\frac{\varepsilon^{2}\gamma^{2}}{4}\right) + n \exp(-c_{3}n^{\kappa})$$

$$\leq 5c_{1} \exp\left(-c_{2}n^{1-\kappa}\varepsilon^{2}\gamma_{0}\right) + 5n \exp(-c_{3}n^{\kappa}),$$

where
$$\gamma_0 = \min\left\{\frac{\gamma_2^2 \gamma_3^3}{4M^4}, \frac{\gamma_2^2 \gamma_3^2}{4M^4}, \frac{\gamma_2 \gamma_3}{4}\right\}$$
. According to $\gamma_2 \leq M/2$ and $\gamma_3 \leq M/2$, $\frac{\gamma_2^3 \gamma_3^3}{4M^4} = \frac{\gamma_2 \gamma_3}{4} \frac{\gamma_2^2 \gamma_3^2}{M^4} < \frac{\gamma_2 \gamma_3}{4}$ can be obtained. Thus $\gamma_0 = \min\left\{\frac{\gamma_2^3 \gamma_3^3}{4M^4}, \frac{\gamma_2^2 \gamma_3^2}{4M^4}, \frac{\gamma_2 \gamma_3}{4}\right\} = \min\left\{\frac{\gamma_2^3 \gamma_3^3}{4M^4}, \frac{\gamma_2^2 \gamma_3^2}{4M^4}\right\}$.

S4 Technical Proofs

Proof of Theorem 1.

In the following, we will derive the order of the variance for $\hat{\omega}_j^{SDC}$ and $\hat{\omega}_j^{JDC}$, respectively.

Part I: Variance order derivation for $\widehat{\omega}_{j}^{SDC}$.

Define $\mathbf{D}_j = (S_{j1}, \dots, S_{j8})^{\top}$, and $\widehat{\mathbf{D}}_{(b),j} = (\widehat{S}_{(b),j1}, \dots, \widehat{S}_{(b),j8})^{\top}$ with $\widehat{S}_{(b),jh}, h = 1, \dots, 8$ are the corresponding estimates of $S_{(b),jh}, h = 1, \dots, 8$ based on the data segment \mathcal{D}_b . Define function $g(\mathbf{x}) = \frac{x_1 + x_2 x_3 - 2x_4}{\sqrt{x_5 + x_2^2 - 2x_6}\sqrt{x_7 + x_3^2 - 2x_8}}$ with $\mathbf{x} = (x_1, \dots, x_8)^{\top}$. In order to reduce the symbolic complexity, we omit the covariate index in the subsequent proof. So that $g(\widehat{\mathbf{D}}_{(b)}) = \widehat{\omega}_{(b)}, g(\mathbf{D}) =$ ω and $\widehat{\omega}^{SDC} = B^{-1} \sum_{b=1}^{B} \widehat{\omega}_{(b)} = B^{-1} \sum_{b=1}^{B} g(\widehat{\mathbf{D}}_{(b)}).$

Take Taylor expansion of $g(\widehat{D}_{(b)})$ and since the derivative of $g(\cdot)$ is

bounded, there is $C_1 > 0$ such that $||g'(\mathbf{D})||_{\max} \leq C_1$. We can get the following inequality

$$g(\widehat{\boldsymbol{D}}_{(b)}) = g(E\widehat{\boldsymbol{D}}_{(b)}) + g'(E\widehat{\boldsymbol{D}}_{(b)})^{\top} (\widehat{\boldsymbol{D}}_{(b)} - E\widehat{\boldsymbol{D}}_{(b)}).$$

According to Condition (C2) and the proof of proposition 1 in Li et al. (2020), we can get the variance of $\hat{S}_{(b),1}, \ldots, \hat{S}_{(b),8}$ as follow

$$Var(\hat{S}_{(b),1}) = Var\left(\binom{n}{2}^{-1} \sum_{i,k}^{n} \frac{1}{2!} \sum_{\Omega\{i,k\}} \|X_{ji} - X_{jk}\|_{1} \|\mathbf{Y}_{i} - \mathbf{Y}_{k}\|_{2}\right) = O\left(\frac{1}{n^{2}}\right),$$

$$Var(\hat{S}_{(b),2}) = Var\left(\binom{n}{2}^{-1} \sum_{i,k}^{n} \frac{1}{2!} \sum_{\Omega\{i,k\}} \|X_{ji} - X_{jk}\|_{1}\right) = O\left(\frac{1}{n^{2}}\right),$$

$$Var(\hat{S}_{(b),3}) = Var\left(\binom{n}{2}^{-1} \sum_{i,k}^{n} \frac{1}{2!} \sum_{\Omega\{i,k\}} \|\mathbf{Y}_{i} - \mathbf{Y}_{k}\|_{2}\right) = O\left(\frac{1}{n^{2}}\right),$$

$$Var(\hat{S}_{(b),4}) = Var\left(\binom{n}{3}^{-1} \sum_{i,k}^{n} \frac{1}{3!} \sum_{\Omega\{i,k\}} \|X_{ji} - X_{jl}\|_{1} \|\mathbf{Y}_{k} - \mathbf{Y}_{l}\|_{2}\right) = O\left(\frac{1}{n^{3}}\right),$$

$$\dots,$$

$$(1)$$

$$Var(\hat{S}_{(b),8}) = Var\left(\binom{n}{3}^{-1} \sum_{i,k}^{n} \frac{1}{3!} \sum_{\Omega\{i,k,l\}} \|\mathbf{Y}_{i} - \mathbf{Y}_{l}\|_{2} \|\mathbf{Y}_{k} - \mathbf{Y}_{l}\|_{2}\right) = O\left(\frac{1}{n^{3}}\right).$$

According to the relationship between correlation coefficient and covariance and the value range of correlation coefficient (that is, $0 \leq \frac{Cov(X,Y)^2}{Cov(X)Cov(Y)} \leq 1$), it can be obtained

$$\left(Cov(\hat{S}_{(b),1},\hat{S}_{(b),2})\right)^2 \le Var(\hat{S}_{(b),1})Var(\hat{S}_{(b),2}) = O\left(\frac{1}{n^4}\right),$$

and then $Cov(\hat{S}_{(b),1}, \hat{S}_{(b),2}) = O\left(\frac{1}{n^2}\right)$. Similarly, we can get $Cov(\hat{S}_{(b),1}, \hat{S}_{(b),3}) = O\left(\frac{1}{n^2}\right), Cov(\hat{S}_{(b),1}, \hat{S}_{(b),4}) = O\left(\frac{1}{n^{5/2}}\right), \dots, Cov(\hat{S}_{(b),7}, \hat{S}_{(b),8}) = O\left(\frac{1}{n^{5/2}}\right).$

Thus

$$\begin{aligned} &Var(g(\widehat{D}_{(b)})) \\ &\leq \sum_{h=1}^{8} C_{1}^{2} Var\Big(\hat{S}_{(b),h} - E(\hat{S}_{(b),h})\Big) + \sum_{h_{1} \neq h_{2}}^{8} C_{1}^{2} Cov\Big(\hat{S}_{(b),h_{1}} - E(\hat{S}_{(b),h_{1}}), \hat{S}_{(b),h_{2}} - E(\hat{S}_{(b),h_{2}})\Big) \\ &= \sum_{h=1}^{8} C_{1}^{2} Var\Big(\hat{S}_{(b),h}\Big) + \sum_{h_{1} \neq h_{2}}^{8} C_{1}^{2} Cov\Big(\hat{S}_{(b),h_{1}}, \hat{S}_{(b),h_{2}}\Big) \\ &= O\Big(\frac{1}{n^{2}}\Big) + O\Big(\frac{1}{n^{5/2}}\Big) + O\Big(\frac{1}{n^{3}}\Big). \end{aligned}$$

Then, combined with condition $B = O(N^{\alpha})$ and $n = O(N^{\iota})$, we get

$$Var(\widehat{\omega}^{SDC}) = Var\left(\frac{1}{B}\sum_{b=1}^{B}g(\widehat{D}_{(b)})\right) = \frac{1}{B}Var(g(\widehat{D}_{(b)}))$$
$$= O\left(\frac{1}{N^{\alpha+2\iota}}\right) + O\left(\frac{1}{N^{\alpha+5/2\iota}}\right) + O\left(\frac{1}{N^{\alpha+3\iota}}\right),$$

for $j \in 1, \ldots, p$. Therefore,

$$\max_{j=1,\dots,p} Var(\widehat{\omega}_j^{SDC}) = O\left(\frac{1}{N^{\alpha+2\iota}}\right) + O\left(\frac{1}{N^{\alpha+5/2\iota}}\right) + O\left(\frac{1}{N^{\alpha+3\iota}}\right).$$

Part II: Variance order derivation for $\widehat{\omega}_{j}^{JDC}$.

Define $\mathbf{D}_j = (S_{j1}, S_{j2}, S_{j3}, S_{j4})^{\top}$, and $\widehat{\mathbf{D}}_{(b),j} = (\hat{S}_{(b),j1}, \hat{S}_{(b),j2}, \hat{S}_{(b),j3}, \hat{S}_{(b),j4})^{\top}$ with $\hat{S}_{(b),jh}, h = 1, \ldots, 4$ are the corresponding estimates of $S_{(b),jh}, h = 1, \ldots, 4$ based on the data segment \mathcal{D}_b . After removing the *m*-th sample in data segment \mathcal{D}_b , the estimation based on the remaining (n-1)samples is denoted as $\widehat{\mathbf{D}}_{(b,-m)} = (\hat{S}_{(b,-m),j1}, \hat{S}_{(b,-m),j2}, \hat{S}_{(b,-m),j3}, \hat{S}_{(b,-m),j4})^{\top}$. Define function $g(\mathbf{x}) = x_1 + x_2x_3 - 2x_4$ with $\mathbf{x} = (x_1, x_2, x_3, x_4)^{\top}$. In order to reduce the symbolic complexity, we omit the covariate index in the subsequent proof. So that the distance covariance of the population is $dcov^2(X, \mathbf{Y}) = g(\mathbf{D})$, the distance covariance estimation for the data segment $\mathcal{D}_{(b,-m)}$ is $g(\widehat{\mathbf{D}}_{(b,-m)})$, and for the data segment $\mathcal{D}_{(b)}$ is $g(\widehat{\mathbf{D}}_{(b)})$.

There have

$$\widehat{dcov^{2}}_{(b)}^{JDC}(X, \mathbf{Y}) = g(\widehat{D}_{(b)}) - \frac{n-1}{n} \sum_{m=1}^{n} \left[g(\widehat{D}_{(b,-m)}) - (n-1)g(\widehat{D}_{(b)}) \right]$$
$$= ng(\widehat{D}_{(b)}) - \frac{n-1}{n} \sum_{m=1}^{n} g(\widehat{D}_{(b,-m)}).$$
(S4.1)

Similar to the above proof procedure of $Var(\widehat{\omega}^{SDC})$, we can also derive

$$Var(g(\widehat{\boldsymbol{D}}_{(b)})) = O\left(\frac{1}{n^2}\right) + O\left(\frac{1}{n^{5/2}}\right) + O\left(\frac{1}{n^3}\right), \quad (S4.2)$$

$$Var(g(\widehat{D}_{(b,-m)})) = O\left(\frac{1}{(n-1)^2}\right) + O\left(\frac{1}{(n-1)^{5/2}}\right) + O\left(\frac{1}{(n-1)^3}\right), \quad (S4.3)$$

and

$$Cov\left(ng(\widehat{\boldsymbol{D}}_{(b)}), \frac{n-1}{n} \sum_{m=1}^{n} g(\widehat{\boldsymbol{D}}_{(b,-m)})\right)$$
$$= n\frac{n-1}{n} \sum_{m=1}^{n} Cov\left(g(\widehat{\boldsymbol{D}}_{(b)}), g(\widehat{\boldsymbol{D}}_{(b,-m)})\right)$$
$$= n\frac{n-1}{n} \sum_{m=1}^{n} \left(Var\left(g(\widehat{\boldsymbol{D}}_{(b)})\right) Var\left(g(\widehat{\boldsymbol{D}}_{(b,-m)})\right)\right)^{1/2}$$
$$= O(1) + O\left(\frac{1}{n^{1/2}}\right) + O\left(\frac{1}{n}\right).$$
(S4.4)

Combining equations S4.1, S4.2, S4.3, and S4.4, we can obtain

$$\begin{aligned} &\widehat{Var(dcov^2}_{(b)}^{JDC}(X, \mathbf{Y})) \\ =& n^2 Var(g(\widehat{\boldsymbol{D}}_{(b)})) + (\frac{n-1}{n})^2 \sum_{m=1}^n Var(g(\widehat{\boldsymbol{D}}_{(b,-m)})) \\ &+ Cov\left(ng(\widehat{\boldsymbol{D}}_{(b)}), \frac{n-1}{n} \sum_{m=1}^n g(\widehat{\boldsymbol{D}}_{(b,-m)})\right) \\ =& O(1) + O\left(\frac{1}{n^{1/2}}\right) + O\left(\frac{1}{n}\right). \end{aligned}$$

By the definition of $\widehat{dcov^2}^{JDC}(X, \mathbf{Y})$,

$$Var(\widehat{dcov^2}^{JDC}(X, \mathbf{Y})) = Var\left(\frac{1}{B}\sum_{b=1}^B \widehat{dcov^2}_{(b)}^{JDC}(X, \mathbf{Y})\right)$$
$$= O\left(\frac{1}{B}\right) + O\left(\frac{1}{Bn^{1/2}}\right) + O\left(\frac{1}{Bn}\right).$$

And similarly, we can get $Var(\widehat{dcov^2}^{JDC}(X,X)) = O\left(\frac{1}{B}\right) + O\left(\frac{1}{Bn^{1/2}}\right) + O\left(\frac{1}{Bn}\right)$ and $Var(\widehat{dcov^2}^{JDC}(\mathbf{Y},\mathbf{Y})) = O\left(\frac{1}{B}\right) + O\left(\frac{1}{Bn^{1/2}}\right) + O\left(\frac{1}{Bn}\right).$

Given the definition of
$$\hat{\omega}^{JDC}$$
, we construct the function $f(x_1, x_2, x_3) = \frac{x_1}{\sqrt{x_2}\sqrt{x_3}}$ such that $\hat{\omega}^{JDC} = f(\widehat{dcov^2}^{JDC}(X, \mathbf{Y}), \widehat{dcov^2}^{JDC}(X, X), \widehat{dcov^2}^{JDC}(\mathbf{Y}, \mathbf{Y})).$

It can be obtained that the elements of the first derivative of the function $f(x_1, x_2, x_3)$ are bounded. By combining condition $B = O(N^{\alpha})$ and $n = O(N^{\iota})$ with the Taylor expansion of

$$f(\widehat{dcov^2}^{JDC}(X, \mathbf{Y}), \widehat{dcov^2}^{JDC}(X, X), \widehat{dcov^2}^{JDC}(\mathbf{Y}, \mathbf{Y}))$$

at point $(dcov^{2JDC}(X, \mathbf{Y}), dcov^{2JDC}(X, X), dcov^{2JDC}(\mathbf{Y}, \mathbf{Y}))$, we obtain

$$\begin{aligned} \operatorname{Var}(\widehat{\omega}^{JDC}) \\ = O\left(\operatorname{Var}(\widehat{dcov^2}^{JDC}(X,\mathbf{Y})) + \operatorname{Var}(\widehat{dcov^2}^{JDC}(X,X)) + \operatorname{Var}(\widehat{dcov^2}^{JDC}(\mathbf{Y},\mathbf{Y})) \\ &+ \operatorname{Cov}\left(\widehat{dcov^2}^{JDC}(X,\mathbf{Y})\right), \widehat{dcov^2}^{JDC}(X,X)\right) + \operatorname{Cov}\left(\widehat{dcov^2}^{JDC}(X,\mathbf{Y})\right), \widehat{dcov^2}^{JDC}(\mathbf{Y},\mathbf{Y})\right) \\ &+ \operatorname{Cov}\left(\widehat{dcov^2}^{JDC}(X,X), \widehat{dcov^2}^{JDC}(\mathbf{Y},\mathbf{Y})\right)\right) \\ = O\left(\operatorname{Var}(\widehat{dcov^2}^{JDC}(X,\mathbf{Y})) + \operatorname{Var}(\widehat{dcov^2}^{JDC}(X,X)) + \operatorname{Var}(\widehat{dcov^2}^{JDC}(\mathbf{Y},\mathbf{Y})) \\ &+ \left(\operatorname{Var}(\widehat{dcov^2}^{JDC}(X,\mathbf{Y}))\operatorname{Var}(\widehat{dcov^2}^{JDC}(\mathbf{Y},\mathbf{Y}))\right)^{1/2} \\ &+ \left(\operatorname{Var}(\widehat{dcov^2}^{JDC}(X,\mathbf{Y}))\operatorname{Var}(\widehat{dcov^2}^{JDC}(\mathbf{Y},\mathbf{Y}))\right)^{1/2} \\ &+ \left(\operatorname{Var}(\widehat{dcov^2}^{JDC}(X,X))\operatorname{Var}(\widehat{dcov^2}^{JDC}(\mathbf{Y},\mathbf{Y}))\right)^{1/2} \\ &= O\left(\frac{1}{N^{\alpha}}\right) + O\left(\frac{1}{N^{\alpha+1/2t}}\right) + O\left(\frac{1}{N^{\alpha+t}}\right), \end{aligned}$$

for all $j \in 1, \ldots, p$. Thus,

$$\max_{j=1,\dots,p} Var(\widehat{\omega}_j^{JDC}) = O\left(\frac{1}{N^{\alpha}}\right) + O\left(\frac{1}{N^{\alpha+1/2\iota}}\right) + O\left(\frac{1}{N^{\alpha+\iota}}\right).$$

This completes the proof of Theorem 1.

Proof of Theorem 2.

We will prove the sure screening properties of SDC-OSS and JDC-OSS,

separately.

Part I: The proof of the sure screening property of SDC-OSS

Building upon the symbols and notation introduced in Theorem 1,

Part I, which are hereby adopted for use in this part, we proceed with the analysis of the Taylor expansion of the difference $\hat{\omega}^{SDC} - \omega$. Given that the derivative of the function $g(\cdot)$ is bounded, there exists a constant $C_1 > 0$ such that $\|g'(\mathbf{D})\|_{\max} \leq C_1$. Thus, we can derive the following inequality

$$|\hat{\omega}^{SDC} - \omega| = \left| B^{-1} \sum_{b=1}^{B} g'(\boldsymbol{D})^{\top} (\widehat{\boldsymbol{D}}_{(b)} - \boldsymbol{D}) \right| \le \left| B^{-1} \sum_{b=1}^{B} \sum_{h=1}^{8} C_1 [\widehat{S}_{(b),h} - S_h] \right|.$$

Therefore, the event satisfies relation

$$\{|\hat{\omega}^{SDC} - \omega| > \epsilon\} \subseteq \bigcup_{h=1,\dots,8} \bigg\{ C_1 \big| B^{-1} \sum_{b=1}^B \hat{S}_{(b),h} - S_h \big| \ge \epsilon/8 \bigg\},\$$

and for probability we have

$$Pr(|\hat{\omega}^{SDC} - \omega| > \epsilon) \le \sum_{h=1,\dots,8} Pr(|B^{-1}\sum_{b=1}^{B} \hat{S}_{(b),h} - S_h| \ge \epsilon/(8C_1)).$$
(S4.5)

Now we just need to focus on the relationship between each component estimate and its truth value. First deal with $B^{-1} \sum_{b=1}^{B} \hat{S}_{(b),1}$. Let $h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k) = ||X_i - X_k||_1 ||\mathbf{Y}_i - \mathbf{Y}_k||_2$ be the kernel of the *U*-statistic. We decompose the kernel function h_1 into two parts: $h_1 = h_1 I(h_1 > M) + h_1 I(h_1 \leq M)$ where M will be specified later. The *U*-statistic can now be written as follows,

$$\hat{S}_{(b),1} = \frac{1}{n(n-1)} \sum_{i \neq k}^{n} h_1(X_{(b),i}, \mathbf{Y}_{(b),i}; X_{(b),k}, \mathbf{Y}_{(b),k}) I(h_1(X_{(b),i}, \mathbf{Y}_{(b),i}; X_{(b),k}, \mathbf{Y}_{(b),k}) \leq M) \\ + \frac{1}{n(n-1)} \sum_{i \neq k}^{n} h_1(X_{(b),i}, \mathbf{Y}_{(b),i}; X_{(b),k}, \mathbf{Y}_{(b),k}) I(h_1(X_{(b),i}, \mathbf{Y}_{(b),i}; X_{(b),k}, \mathbf{Y}_{(b),k}) > M)$$

 $\stackrel{\triangle}{=} \hat{S}_{(b),11} + \hat{S}_{(b),12}.$

Accordingly, we decompose S_1 into two parts:

$$S_1 = E[h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k) I(h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k) \le M)]$$
$$+ E[h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k) I(h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k) > M)]$$
$$\triangleq S_{11} + S_{12}.$$

Clearly, $\hat{S}_{(b),11}$ and $\hat{S}_{(b),12}$ are unbiased estimators of S_{11} and S_{12} , respectively.

We deal with the consistency $B^{-1} \sum_{b=1}^{B} \hat{S}_{(b),11}$ of first. With the Markov's inequality, for any t > 0, we can obtain that

$$Pr\left(B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),11} - S_{11} \ge \epsilon\right) \le \exp(-t\epsilon)\exp(-tS_{11})E\left\{\exp\left(tB^{-1}\sum_{b=1}^{B}\hat{S}_{(b),11}\right)\right\}.$$

Serfling (1980, Section 5.1.6) showed that any U-statistic can be represented as an average of averages of independent and identically distributed (i.i.d) random variables. That is, $\hat{S}_{(b),11} = (n!)^{-1} \sum_{n!} \Omega_1(X_{(b),1}, \mathbf{Y}_{(b),1}; \ldots; X_{(b),n}, \mathbf{Y}_{(b),n}),$ where $\sum_{n!}$ denotes the summation over all possible permutations of $(1, \ldots, n)$, and each $\Omega_1(X_{(b),1}, \mathbf{Y}_{(b),1}; \ldots; X_{(b),n}, \mathbf{Y}_{(b),n})$ is an average of m = [n/2] i.i.d random variables (i.e., $\Omega_1 = m^{-1} \sum_r h_1^{(r)} I(h_1^{(r)} \leq M))$). Since the exponential function is convex, it follows from Jensen's inequality that, for $0 < t \leq 2s_0$,

$$E\left\{\exp\left(tB^{-1}\sum_{b=1}^{B}\hat{S}_{(b),11}\right)\right\}$$

$$= E \Big\{ \exp \Big(tB^{-1} \sum_{b=1}^{B} (n!)^{-1} \sum_{n!} \Omega_1(X_{(b),1}, \mathbf{Y}_{(b),1}; \dots; X_{(b),n}, \mathbf{Y}_{(b),n}) \Big) \Big\}$$

$$\leq (n!)^{-1} \sum_{n!} E \Big\{ \exp \Big(tB^{-1} \sum_{b=1}^{B} \Omega_1(X_{(b),1}, \mathbf{Y}_{(b),1}; \dots; X_{(b),n}, \mathbf{Y}_{(b),n}) \Big) \Big\}$$

$$= E^{mB} \Big\{ \exp \Big(t(mB)^{-1} h_1^{(r)} I(h_1^{(r)} \leq M) \Big) \Big\},$$

which together with Lemma 1 entails immediately that

$$Pr\left(B^{-1}\sum_{b=1}^{B} \hat{S}_{(b),11} - S_{11} \ge \epsilon\right)$$

$$\leq \exp(-t\epsilon)E^{mB}\left\{\exp\left(t(mB)^{-1}[h_{1}^{(r)}I(h_{1}^{(r)} \le M) - S_{11}]\right)\right\}$$

$$\leq \exp(-t\epsilon + M^{2}t^{2}/(8mB)).$$

By choosing $t = 4\epsilon m B/M^2$, we have $Pr(B^{-1}\sum_{b=1}^B \hat{S}_{(b),11} - S_{11} \ge \epsilon) \le \exp(-2\epsilon^2 m B/M^2)$. Therefore, by the symmetry of U-statistic, we can obtain easily that

$$Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),11} - S_{11}\right| \ge \epsilon\right) \le 2\exp(-2\epsilon^2 m B/M^2).$$
(S4.6)

Next we show the consistency of $B^{-1} \sum_{b=1}^{B} \hat{S}_{(b),12}$. With Cauchy-Schwartz and Markov's inequality, for any s' > 0, we have

$$S_{12}^{2} \leq E\{h_{1}^{2}(X_{i}, \mathbf{Y}_{i}; X_{k}, \mathbf{Y}_{k})\}Pr(h_{1}(X_{i}, \mathbf{Y}_{i}; X_{k}, \mathbf{Y}_{k}) > M)$$

$$\leq E\{h_{1}^{2}(X_{i}, \mathbf{Y}_{i}; X_{k}, \mathbf{Y}_{k})\}E[\exp(s'h_{1}(X_{i}, \mathbf{Y}_{i}; X_{k}, \mathbf{Y}_{k}))]/\exp(s'M).$$

Using the fact $(a^2 + b^2)/2 \ge (a+b)^2/4 \ge |ab|$, we have

$$h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k) = \{ (X_i - X_k)^2 (\mathbf{Y}_i - \mathbf{Y}_k)^\top (\mathbf{Y}_i - \mathbf{Y}_k) \}^{1/2}$$

$$\leq 2\{(X_i^2 + X_k^2)(\|\mathbf{Y}_i\|_2^2) + \|\mathbf{Y}_k\|_2^2\}^{1/2}$$

$$\leq \{(X_i^2 + X_k^2 + \|\mathbf{Y}_i\|_2^2) + \|\mathbf{Y}_k\|_2^2)^2\}^{1/2}$$

$$= X_i^2 + X_k^2 + \|\mathbf{Y}_i\|_2^2 + \|\mathbf{Y}_k\|_2^2,$$

which yields that

$$E[\exp(s'h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k))] \le E[\exp(s'(X_i^2 + X_k^2 + \|\mathbf{Y}_i\|_2^2 + \|\mathbf{Y}_k\|_2^2))]$$
$$\le E\{\exp(2s'X_i^2)\}E\{\exp(2s'\|\mathbf{Y}_i\|_2^2)\}.$$

The last inequality follows from the Cauchy-Schwartz inequality. If we choose $M = C_2 N^{(\alpha+\iota)\gamma}$ for $0 < \gamma < 1/2 - \kappa$ and a nonnegative constant C_2 , then $S_{12} \leq \epsilon/2$ when $N^{(\alpha+\iota)}$ is sufficiently large. Consequently,

$$Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),12} - S_{12}\right| \ge \epsilon\right) \le Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),12}\right| \ge \epsilon/2\right).$$

It remains to bound the probability $Pr\left(\left|B^{-1}\sum_{b=1}^{B} \hat{S}_{(b),12}\right| \geq \epsilon/2\right)$. We observe that the events satisfy

$$\left\{ \left| B^{-1} \sum_{b=1}^{B} \hat{S}_{(b),12} \right| \ge \epsilon/2 \right\} \subseteq \{ X_{(b),i}^{2} + \| \mathbf{Y}_{(b),i} \|_{2}^{2} > M/2, \text{ for some } 1 \le i \le n, 1 \le b \le B \}.$$

To see this, we assume that $X_{(b),i}^{2} + \| \mathbf{Y}_{(b),i} \|_{2}^{2} \le M/2$ for all $1 \le i \le n, 1 \le b \le B$. This assumption will lead to a contradiction. To be precise, under this assumption, $h_{1}(X_{i}, \mathbf{Y}_{i}; X_{k}, \mathbf{Y}_{k}) \le M$. Consequently,
 $\left| B^{-1} \sum_{b=1}^{B} \hat{S}_{(b),12} \right| = 0$, which is a contrary to the event $\left| B^{-1} \sum_{b=1}^{B} \hat{S}_{(b),12} \right| \ge \epsilon/2$. This proves that the above event inclusion relation is correct.

By invoking condition (C2) and Markov's inequality, there must exist a constant C_3 such that, for s>0

$$Pr(X_{(b),i}^{2} + \|\mathbf{Y}_{(b),i}\|_{2}^{2} > M/2)$$

$$\leq Pr(\|X_{(b),i}\|_{1}^{2} \geq M/2) + Pr(\|\mathbf{Y}_{(b),i}\|_{2}^{2} \geq M/2)$$

$$\leq \frac{E\{\exp(s\|X_{(b),i}\|_{1}^{2})\}}{\exp(sM/4)} + \frac{E\{\exp(s\|\mathbf{Y}_{(b),i}\|_{2}^{2})\}}{\exp(sM/4)}$$

$$\leq 2C_{3}\exp(-sM/4).$$

Consequently,

$$Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),12} - S_{12}\right| \ge \epsilon\right)$$

$$\leq Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),12}\right| \ge \epsilon/2\right)$$

$$\leq \sum_{b=1}^{B}\sum_{i=1}^{n} Pr\left(\left(X_{(b),i}^{2} + \|\mathbf{Y}_{(b),i}\|_{2}^{2}\right) > M/2\right)$$

$$\leq 2N^{(\alpha+\iota)}C_{3}\exp(-sM/4).$$
(S4.7)

Recall that $M = C_2 N^{(\alpha+\iota)\gamma}$. Combining the results (S4.6), and (S4.7), we

have

$$Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),1} - S_{1}\right| \ge 4\epsilon\right)$$

$$\leq Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),11} - S_{11}\right| \ge \epsilon\right) + Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),12} - S_{12}\right| \ge \epsilon\right)$$

$$\leq 2\exp\left(-\epsilon^{2}N^{(\alpha+\iota)(1-2\gamma)}/C_{2}^{2}\right) + 2N^{(\alpha+\iota)}C_{3}\exp\left(-sC_{2}N^{(\alpha+\iota)\gamma}/4\right).$$
(S4.8)

Following arguments for proving (S4.8), we can show that

$$Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),h} - S_{h}\right| \ge 4\epsilon\right)$$

$$\leq 2\exp\left(-\epsilon^{2}N^{(\alpha+\iota)(1-2\gamma)}/C_{2}^{2}\right) + 2N^{(\alpha+\iota)}C_{3}\exp\left(-sC_{2}N^{(\alpha+\iota)\gamma}/4\right), h = 2, 3, 5, 7.$$
(S4.9)

In the sequel, we turn to $B^{-1} \sum_{b=1}^{B} \hat{S}_{(b),4}$ where $\hat{S}_{(b),4} = \frac{1}{n(n-1)(n-2)} \sum_{i \neq k \neq l}^{n} ||X_{(b),i} - X_{(b),l}||_1 \cdot ||\mathbf{Y}_{(b),k} - \mathbf{Y}_{(b),l}||_2$. Here, we define $h_2(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k; X_l, \mathbf{Y}_l) = ||X_i - X_l||_1 ||\mathbf{Y}_k - \mathbf{Y}_l||_2$, which is the kernel of *U*-statistic \hat{S}_4 . Following the arguments to deal with $B^{-1} \sum_{b=1}^{B} \hat{S}_{(b),1}$, we decomposed h_2 into two parts: $h_2 = h_2 I(h_2 > M) + h_2 I(h_2 \le M)$. Accordingly

$$\hat{S}_{(b),4} = \frac{1}{n(n-1)(n-2)} \sum_{i \neq k \neq l}^{n} h_{2(b)} I(h_{2(b)} \leq M) + \frac{1}{n(n-1)(n-2)} \sum_{i \neq k \neq l}^{n} h_{2(b)} I(h_{2(b)} > M)$$
$$\triangleq \hat{S}_{(b),41} + \hat{S}_{(b),42},$$

where

$$h_{2(b)} = h_2(X_{(b),i}, \mathbf{Y}_{(b),i}; X_{(b),k}, \mathbf{Y}_{(b),k}; X_{(b),l}, \mathbf{Y}_{(b),l}),$$

and

$$S_4 = E\{h_2 I(h_2 \le M)\} + E\{h_2 I(h_2 > M)\} \stackrel{\vartriangle}{=} S_{41} + S_{42}.$$

Following similar arguments for proving (S4.6), we can show that

$$Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),41} - S_{41}\right| \ge \epsilon\right) \le 2\exp(-2\epsilon^2 m' B/M^2), \qquad (S4.10)$$

where m' = [n/3] because $\hat{S}_{(b),41}$ is a third-order U-statistic.

Then we deal with $B^{-1} \sum_{b=1}^{B} \hat{S}_{(b),42}$. We observe that

$$h_2(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k; X_l, \mathbf{Y}_l) = 4(X_i^2 + X_k^2 + X_l^2 + \|\mathbf{Y}_i\|_2^2 + \|\mathbf{Y}_k\|_2^2 + \|\mathbf{Y}_l\|_2^2)/6,$$

which will be smaller than M if $X_{(b),i}^2 + \|\mathbf{Y}_{(b),i}\|_2^2 \leq M/2$ for all $1 \leq i \leq i$

 $n, 1 \leq b \leq B$. Thus, for any $\epsilon > 0$, the event satisfy

$$\left\{ \left| B^{-1} \sum_{b=1}^{B} \hat{S}_{(b),42} \right| \ge \epsilon/2 \right\} \subseteq \{ X_{(b),i}^2 + \| \mathbf{Y}_{(b),i} \|_2^2 > M/2, \text{ for some } 1 \le i \le n, 1 \le b \le B \}.$$

By using the similar arguments to prove (S4.7), it follows that

$$Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),42} - S_{42}\right| \ge \epsilon\right) \le 2N^{(\alpha+\iota)}\exp(-sM/4).$$
(S4.11)

Then combine the results (S4.10) and (S4.11) with $M = C_2 N^{(\alpha+\iota)\gamma}$, for some $0 \le \gamma \le 1/2 - \kappa$, we can obtain

$$Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),4} - S_{4}\right| \ge 4\epsilon\right)$$

$$\leq 2\exp\left(-2\epsilon^{2}N^{(\alpha+\iota)(1-2\gamma)}/(3C_{2}^{2})\right) + 2N^{(\alpha+\iota)}C_{3}\exp\left(-sC_{2}N^{(\alpha+\iota)\gamma}/4\right).$$
(S4.12)

In addition, following arguments for proving (S4.12), we can show that

$$Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),h} - S_{h}\right| \ge 4\epsilon\right)$$
 (S4.13)

$$\leq 2\exp\left(-2\epsilon^2 N^{(\alpha+\iota)(1-2\gamma)}/(3C_2^2)\right) + 2N^{(\alpha+\iota)}C_3\exp\left(-sC_2 N^{(\alpha+\iota)\gamma}/4\right), h = 6, 8.$$

Combining (S4.5), (S4.8), (S4.9), (S4.12) and (S4.13), let $\epsilon = cN^{-(\alpha+\iota)\kappa}$, where $0 \le \kappa + \gamma \le 1/2$, we thus have

$$Pr(|\hat{\omega}^{SDC} - \omega| > cN^{-(\alpha+\iota)\kappa}) = O\Big(\exp\big(-c_1 N^{(\alpha+\iota)(1-2\gamma-2\kappa)}\big) + N^{(\alpha+\iota)}\exp\big(-c_2 N^{(\alpha+\iota)\gamma}\big)\Big),$$

for some positive constants c_1 and c_2 . Therefore,

$$Pr(\max_{1 \le j \le p} |\hat{\omega}_j^{SDC} - \omega_j| > cN^{-(\alpha+\iota)\kappa})$$

$$= O\left(p\left[\exp\left(-c_1 N^{(\alpha+\iota)(1-2\gamma-2\kappa)}\right) + N^{(\alpha+\iota)} \exp\left(-c_2 N^{(\alpha+\iota)\gamma}\right)\right]\right).$$
(S4.14)

The first part of Theorem 2 for SDC-OSS is proven.

Now we deal with the second part of Theorem 2 for SDC-OSS. If $\mathcal{M} \not\subseteq \widehat{\mathcal{M}}$, then there must exist some $k \in \mathcal{M}$ such that $\hat{\omega}_j^{SDC} < cN^{-(\alpha+\iota)\kappa}$. It follows from condition (C3) that $|\hat{\omega}_j^{SDC} - \omega_j| > cN^{-(\alpha+\iota)\kappa}$ for some $k \in \mathcal{M}$, indicating that the events satisfy $\{\mathcal{M} \not\subseteq \widehat{\mathcal{M}}\} \subseteq \{|\hat{\omega}_j^{SDC} - \omega_j| > cN^{-(\alpha+\iota)\kappa}, \text{ for some } k \in \mathcal{M}\}$, and hence $\mathscr{E} = \{\max_{k \in \mathcal{M}} |\hat{\omega}_k^{SDC} - \omega_k| \leq cN^{-(\alpha+\iota)\kappa}\} \subseteq \{\mathcal{M} \subseteq \widehat{\mathcal{M}}\}$. Consequently,

$$Pr(\mathcal{M} \subseteq \widehat{\mathcal{M}}) \ge Pr(\mathscr{E}) = 1 - Pr(\mathscr{E}^{c}) = 1 - Pr\left(\min_{k \in \mathcal{M}} |\hat{\omega}_{k}^{SDC} - \omega_{k}| \ge cN^{-(\alpha+\iota)\kappa}\right)$$
$$= 1 - |\mathcal{M}|Pr(|\hat{\omega}_{k}^{SDC} - \omega_{k}| \ge cN^{-(\alpha+\iota)\kappa})$$
$$\ge 1 - O\left(|\mathcal{M}| \left[\exp\left(-c_{1}N^{(\alpha+\iota)(1-2\gamma-2\kappa)}\right) + N^{(\alpha+\iota)}\exp\left(-c_{2}N^{(\alpha+\iota)\gamma}\right)\right]\right),$$

where $|\mathcal{M}|$ is the cardinality of \mathcal{M} . This completes the proof of the second part of the method SDC-OSS.

Part II: The proof of the sure screening property of JDC-OSS

The symbols and notation introduced in **Theorem 1**, **Part II**, are hereby adopted for use in this Part. Then, the jackknife debaised estimation based on data segment \mathcal{D}_b is expressed by the function

$$\widehat{dcov^2}_{(b)}^{JDC}(X, \mathbf{Y}) = g(\widehat{D}_{(b)}) - \frac{n-1}{n} \sum_{m=1}^n \left[g(\widehat{D}_{(b,-m)}) - (n-1)g(\widehat{D}_{(b)}) \right].$$

This leads to the jackknife debiased simple average distance covariance estimator defined as follows:

$$\widehat{dcov^2}^{JDC}(X, \mathbf{Y}) = \frac{n}{B} \sum_{b=1}^{B} g(\widehat{D}_{(b)}) - \frac{n-1}{nB} \sum_{b=1}^{B} \sum_{m=1}^{n} \left[g(\widehat{D}_{(b,-m)}) - g(\widehat{D}_{(b)}) \right].$$

For $|\widehat{dcov^2}^{JDC}(X, \mathbf{Y}) - dcov^2(X, \mathbf{Y})|$, we can organize it into the following form,

$$\begin{split} & |\widehat{dcov}^{JDC}(X,\mathbf{Y}) - dcov^{2}(X,\mathbf{Y})| \\ &= \left| \frac{1}{nB} \sum_{b=1}^{B} \sum_{m=1}^{n} \left[n \left[g(\widehat{D}_{(b)}) - g(D) \right] - (n-1) \left[g(\widehat{D}_{(b,-m)}) - g(D) \right] \right] \right| \\ &= \left| \frac{1}{nB} \sum_{b=1}^{B} \sum_{m=1}^{n} \left[g'(\boldsymbol{\xi}_{1})^{\top} \left[n\widehat{D}_{(b)} - (n-1)\widehat{D}_{(b,-m)} - D \right] - (n-1)(g'(\boldsymbol{\xi}_{2}) - g'(\boldsymbol{\xi}_{1}))^{\top} \left[\widehat{D}_{(b,-m)} - D \right] \right] \right|, \\ &\leq \left| \frac{1}{nB} \sum_{b=1}^{B} \sum_{m=1}^{n} g'(\boldsymbol{\xi}_{1})^{\top} \left[n\widehat{D}_{(b)} - (n-1)\widehat{D}_{(b,-m)} - D \right] \right| + \left| \frac{(n-1)}{nB} \sum_{b=1}^{B} \sum_{m=1}^{n} \left[g'(\boldsymbol{\xi}_{2}) - g'(\boldsymbol{\xi}_{1}) \right]^{\top} \left[\widehat{D}_{(b,-m)} - D \right] \right|, \end{split}$$

where $g'(\cdot)$ is the derivative of $g(\cdot)$, and $\boldsymbol{\xi}_1 = \boldsymbol{D} + \theta_1(\widehat{\boldsymbol{D}}_{(b)} - \boldsymbol{D}), \boldsymbol{\xi}_2 =$

 $D + \theta_2(\widehat{D}_{(b,-m)} - D)$ with $0 < \theta_1, \theta_2 < 1$. There exist a positive constant

$$C_{2} \text{ such that } \|(n-1)(g'(\xi_{2}) - g'(\xi_{1}))\|_{\infty} = C_{2}. \text{ As for } \frac{1}{n} \sum_{m=1}^{n} \left[n\widehat{D}_{(b)} - (n-1)\widehat{D}_{(b,-m)} \right] = n\widehat{D}_{(b)} - \frac{n-1}{n} \sum_{m=1}^{n} \widehat{D}_{(b,-m)}, \text{ using } \sum_{m=1}^{n} \sum_{i\neq k\neq m}^{n} = (n-2) \sum_{i\neq k}^{n} \text{ and}$$
$$\sum_{m=1}^{n} \sum_{i\neq k\neq l\neq m}^{n} = (n-3) \sum_{i\neq k\neq l}^{n}, \text{ we have}$$
$$n\widehat{S}_{(b),1} - \frac{n-1}{n} \sum_{m=1}^{n} \widehat{S}_{(b,-m),1}$$
$$= \frac{1}{n-1} \sum_{i\neq k}^{n} h_{1(b)}(i,k) - \frac{1}{n(n-2)} \sum_{m=1}^{n} \sum_{i\neq k\neq m}^{n} h_{1(b)}(i,k)$$

$$= \frac{1}{n-1} \sum_{i \neq k}^{n} h_{1(b)}(i,k) - \frac{1}{n} \sum_{i \neq k}^{n} h_{1(b)}(i,k)$$
$$= \frac{1}{n(n-1)} \sum_{i \neq k}^{n} h_{1(b)}(i,k) = \hat{S}_{(b),1},$$

and

$$\begin{split} n\hat{S}_{(b),4} &- \frac{n-1}{n} \sum_{m=1}^{n} \hat{S}_{(b,-m),4} \\ = & \frac{1}{(n-1)(n-2)} \sum_{i \neq k \neq l}^{n} h_{2(b)}(i,k,l) - \frac{1}{n(n-2)(n-3)} \sum_{m=1}^{n} \sum_{i \neq k \neq l \neq m}^{n} h_{2(b)}(i,k,l) \\ = & \frac{1}{(n-1)(n-2)} \sum_{i \neq k \neq l}^{n} h_{2(b)}(i,k,l) - \frac{1}{n(n-2)} \sum_{i \neq k \neq l}^{n} h_{2(b)}(i,k,l) \\ = & \frac{1}{n(n-1)(n-2)} \sum_{i \neq k \neq l}^{n} h_{2(b)}(i,k,l) = \hat{S}_{(b),4}, \end{split}$$

where

$$h_{1(b)}(i,k) = h_1(X_{(b),i}, \mathbf{Y}_{(b),i}; X_{(b),k}, \mathbf{Y}_{(b),k})$$

and

$$h_{2(b)}(i,k,l) = h_2(X_{(b),i}, \mathbf{Y}_{(b),i}; X_{(b),k}, \mathbf{Y}_{(b),k}; X_{(b),l}, \mathbf{Y}_{(b),l}).$$

Similarly, we have $n\hat{S}_{(b),j} - \frac{n-1}{n} \sum_{m=1}^{n} \hat{S}_{(b,-m),j} = \hat{S}_{(b),j}, j = 2, 3, 5, 6, 7, 8$ and $\frac{1}{n} \sum_{m=1}^{n} \left[n \widehat{D}_{(b)} - (n-1) \widehat{D}_{(b,-m)} \right] = \widehat{D}_{(b)}.$ Therefore, $|\widehat{dcov^2}^{JDC}(X, \mathbf{Y}) - dcov^2(X, \mathbf{Y})|$ $\leq \left| \frac{1}{B} \sum_{b=1}^{B} g'(\xi_1)^\top [\widehat{D}_{(b)} - \mathbf{D}] \right| + \left| \frac{(n-1)}{nB} \sum_{b=1}^{B} \sum_{m=1}^{n} [g'(\xi_2) - g'(\xi_1)]^\top [\widehat{D}_{(b,-m)} - \mathbf{D}] \right|.$ Thus, the event satisfies

$$\left\{ |\widehat{dcov}^{JDC}(X,\mathbf{Y}) - dcov^{2}(X,\mathbf{Y})| > \epsilon \right\}$$

$$\subseteq \left\{ \left\{ \left| \frac{1}{B} \sum_{b=1}^{B} g'(\xi_{1})^{\top} [\widehat{\boldsymbol{D}}_{(b)} - \boldsymbol{D}] \right| > \frac{\epsilon}{2} \right\} \cup \left\{ \left| \frac{(n-1)}{nB} \sum_{b=1}^{B} \sum_{m=1}^{n} [g'(\xi_{2}) - g'(\xi_{1})]^{\top} [\widehat{\boldsymbol{D}}_{(b,-m)} - \boldsymbol{D}] \right| > \frac{\epsilon}{2} \right\} \right\}.$$

The corresponding probability satisfies the following inequality:

$$Pr\left(\left|\widehat{dcov^{2}}^{JDC}(X,\mathbf{Y}) - dcov^{2}(X,\mathbf{Y})\right| > \epsilon\right)$$

$$\leq Pr\left\{\left|\frac{1}{B}\sum_{b=1}^{B}g'(\xi_{1})^{\top}\left[\widehat{D}_{(b)} - D\right]\right| > \frac{\epsilon}{2}\right\}$$

$$+ Pr\left\{\left|\frac{(n-1)}{nB}\sum_{b=1}^{B}\sum_{m=1}^{n}\left[g'(\xi_{2}) - g'(\xi_{1})\right]^{\top}\left[\widehat{D}_{(b,-m)} - D\right]\right| > \frac{\epsilon}{2}\right\}$$

$$\leq \sum_{h=1,\dots,4} Pr\left(\left|B^{-1}\sum_{b=1}^{B}\widehat{S}_{(b),h} - S_{h}\right| \ge \frac{\epsilon}{4C_{1}}\right)$$

$$+ \sum_{h=1,\dots,4} Pr\left(\left|(nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\widehat{S}_{(b,-m),h} - S_{h}\right| \ge \frac{\epsilon}{4C_{2}}\right)$$

$$\triangleq \Delta_{1} + \Delta_{2}.$$
(S4.15)

As for \triangle_1 , the proof in **Part I** of this theorem gives us

$$\Delta_1 = O\bigg(\exp\big(-c_1\epsilon^2 N^{(\alpha+\iota)(1-2\gamma)}\big) + N^{(\alpha+\iota)}\exp\big(-c_2 N^{(\alpha+\iota)\gamma}\big)\bigg).$$
(S4.16)

For \triangle_2 , we have get

$$\Delta_2 = \sum_{h=1,\dots,4} \Pr\Big(\Big|(nB)^{-1} \sum_{b=1}^B \sum_{m=1}^n \hat{S}_{(b,-m),h} - S_h\Big| \ge \frac{\epsilon}{4C_2}\Big).$$
(S4.17)

First of all, we will deal with $(nB)^{-1} \sum_{b=1}^{B} \sum_{m=1}^{n} \hat{S}_{(b,-m),1}$. Let $h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k) = \|X_i - X_k\|_1 \|\mathbf{Y}_i - \mathbf{Y}_k\|_2$ be the kernel of the *U*-statistic. We decompose the

kernel function h_1 into two parts: $h_1 = h_1 I(h_1 > M) + h_1 I(h_1 \le M)$ where M will be specified later. The U-statistic can now be written as follows,

$$\begin{split} \hat{S}_{(b,-m),1} \\ &= \frac{1}{(n-1)(n-2)} \sum_{i \neq k \neq m}^{n} h_1(X_{(b),i}, \mathbf{Y}_{(b),i}; X_{(b),k}, \mathbf{Y}_{(b),k}) I(h_1(X_{(b),i}, \mathbf{Y}_{(b),i}; X_{(b),k}, \mathbf{Y}_{(b),k}) \leq M) \\ &+ \frac{1}{(n-1)(n-2)} \sum_{i \neq k \neq m}^{n} h_1(X_{(b),i}, \mathbf{Y}_{(b),i}; X_{(b),k}, \mathbf{Y}_{(b),k}) I(h_1(X_{(b),i}, \mathbf{Y}_{(b),i}; X_{(b),k}, \mathbf{Y}_{(b),k}) > M) \\ & \triangleq \hat{S}_{(b,-m),11} + \hat{S}_{(b,-m),12}. \end{split}$$

Accordingly, we decompose S_1 into two parts:

$$S_1 = E[h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k) I(h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k) \le M)]$$
$$+ E[h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k) I(h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k) > M)]$$
$$\triangleq S_{11} + S_{12}.$$

Clearly, $\hat{S}_{(b),11}$ and $\hat{S}_{(b),12}$ are unbiased estimators of S_{11} and S_{12} , respectively.

We deal with the consistency $(nB)^{-1} \sum_{b=1}^{B} \sum_{m=1}^{n} \hat{S}_{(b,-m),11}$ of first. With the Markov's inequality, for any t > 0, we can obtain that

$$Pr\Big((nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),11} - S_{11} \ge \epsilon\Big)$$

$$\leq \exp(-t\epsilon)\exp(-tS_{11})E\Big\{\exp\Big(t(nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),11}\Big)\Big\}.$$

Serfling (1980, Section 5.1.6) showed that any U-statistic can be represented

as an average of averages of independent and identically distributed (i.i.d) random variables. That is,

$$n^{-1} \sum_{m=1}^{n} \hat{S}_{(b,-m),11} = \frac{1}{n} \sum_{m=1}^{n} \frac{1}{(n-1)(n-2)} \sum_{i\neq m}^{n} \sum_{k\neq m;k\neq m}^{n} \|X_i - X_k\|_1 \|\mathbf{Y}_i - \mathbf{Y}_k\|_2$$
$$= \frac{1}{n(n-1)(n-2)} \sum_{i\neq k\neq m}^{n} \|X_i - X_k\|_1 \|\mathbf{Y}_i - \mathbf{Y}_k\|_2$$
$$= (n!)^{-1} \sum_{n!} \Omega_1(X_{(b),1}, \mathbf{Y}_{(b),1}; \dots; X_{(b),n}, \mathbf{Y}_{(b),n}),$$

where $\sum_{n!}$ denotes the summation over all possible permutations of $(1, \ldots, n)$, and each $\Omega_1(X_{(b),1}, \mathbf{Y}_{(b),1}; \ldots; X_{(b),n}, \mathbf{Y}_{(b),n})$ is an average of $m' = \lfloor n/3 \rfloor$ i.i.d random variables (i.e., $\Omega_1 = (m')^{-1} \sum_r h_1^{(r)} I(h_1^{(r)} \leq M))$). Since the exponential function is convex, it follows from Jensen's inequality that, for $0 < t \leq 2s_0$,

$$E\Big\{\exp\Big(t(nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),11}\Big)\Big\}$$

= $E\Big\{\exp\Big(tB^{-1}\sum_{b=1}^{B}(n!)^{-1}\sum_{n!}\Omega_1(X_{(b),1},\mathbf{Y}_{(b),1};\ldots;X_{(b),n},\mathbf{Y}_{(b),n})\Big)\Big\}$
$$\leq (n!)^{-1}\sum_{n!}E\Big\{\exp\Big(tB^{-1}\sum_{b=1}^{B}\Omega_1(X_{(b),1},\mathbf{Y}_{(b),1};\ldots;X_{(b),n},\mathbf{Y}_{(b),n})\Big)\Big\}$$

= $E^{m'B}\Big\{\exp\Big(t(m'B)^{-1}h_1^{(r)}I(h_1^{(r)}\leq M)\Big)\Big\},$

which together with Lemma 1 entails immediately that

$$Pr\Big((m'B)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),11} - S_{11} \ge \epsilon\Big)$$

$$\leq \exp(-t\epsilon) E^{m'B} \Big\{ \exp\left(t(m'B)^{-1}[h_1^{(r)}I(h_1^{(r)} \leq M) - S_{11}]\right) \Big\}$$

$$\leq \exp(-t\epsilon + M^2 t^2 / (8m'B)).$$

By choosing $t = 4\epsilon B/M^2$, we have

$$Pr\Big((nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),11} - S_{11} \ge \epsilon\Big) \le \exp(-2\epsilon^2 mB/M^2).$$

Therefore, by the symmetry of U-statistic, we can obtain easily that

$$Pr\left(\left|(nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),11} - S_{11}\right| \ge \epsilon\right) \le 2\exp(-2\epsilon^2 m' B/M^2)$$
(S4.18)

Next we show the consistency of $(nB)^{-1} \sum_{b=1}^{B} \sum_{m=1}^{n} \hat{S}_{(b,-m),12}$. With Cauchy-Schwartz and Markov's inequality, for any s' > 0, we have

$$S_{12}^{2} \leq E\{h_{1}^{2}(X_{i}, \mathbf{Y}_{i}; X_{k}, \mathbf{Y}_{k})\}Pr(h_{1}(X_{i}, \mathbf{Y}_{i}; X_{k}, \mathbf{Y}_{k}) > M)$$

$$\leq E\{h_{1}^{2}(X_{i}, \mathbf{Y}_{i}; X_{k}, \mathbf{Y}_{k})\}E[\exp(s'h_{1}(X_{i}, \mathbf{Y}_{i}; X_{k}, \mathbf{Y}_{k}))]/\exp(s'M).$$

Using the fact $(a^2 + b^2)/2 \ge (a+b)^2/4 \ge |ab|$, we have

$$h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k) = \{ (X_i - X_k)^2 (\mathbf{Y}_i - \mathbf{Y}_k)^\top (\mathbf{Y}_i - \mathbf{Y}_k) \}^{1/2}$$

$$\leq 2\{ (X_i^2 + X_k^2) (\|\mathbf{Y}_i\|_2^2) + \|\mathbf{Y}_k\|_2^2 \}^{1/2}$$

$$\leq \{ (X_i^2 + X_k^2 + \|\mathbf{Y}_i\|_2^2) + \|\mathbf{Y}_k\|_2^2)^2 \}^{1/2}$$

$$= X_i^2 + X_k^2 + \|\mathbf{Y}_i\|_2^2 + \|\mathbf{Y}_k\|_2^2,$$

which yields that

$$E[\exp(s'h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k))] \le E[\exp(s'(X_i^2 + X_k^2 + \|\mathbf{Y}_i\|_2^2 + \|\mathbf{Y}_k\|_2^2))]$$
$$\le E\{\exp(2s'X_i^2)\}E\{\exp(2s'\|\mathbf{Y}_i\|_2^2)\}.$$

The last inequality follows from the Cauchy-Schwartz inequality. If we choose $M = C_3 N^{(\alpha+\iota)\gamma}$ for $0 < \gamma + \kappa < 1/2$ and a nonnegative constant C_3 , then $S_{12} \leq \epsilon/2$ when $N^{(\alpha+\iota)}$ is sufficiently large. Consequently,

$$Pr\Big(\Big|(nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),12} - S_{12}\Big| \ge \epsilon\Big) \le Pr\Big(\Big|(nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),12}\Big| \ge \epsilon/2\Big).$$

It remains to bound the probability $Pr\Big(\Big|(nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),12}\Big| \ge \epsilon/2\Big).$ We observe that the events satisfy

$$\left\{ \left| (nB)^{-1} \sum_{b=1}^{B} \sum_{m=1}^{n} \hat{S}_{(b,-m),12} \right| \ge \epsilon/2 \right\}$$
$$= \left\{ \left| B^{-1} \sum_{b=1}^{B} \frac{1}{n(n-1)(n-2)} \sum_{i \ne k \ne m}^{n} h_1(h_1 > M) \right| \ge \epsilon/2 \right\}$$
$$\subseteq \{ X_{(b),i}^2 + \| \mathbf{Y}_{(b),i} \|_2^2 > M/2, \text{ for some } 1 \le i \le n, 1 \le b \le B \}.$$

To see this, we assume that $X_{(b),i}^2 + \|\mathbf{Y}_{(b),i}\|_2^2 \leq M/2$ for all $1 \leq i \leq n, 1 \leq b \leq B$. This assumption will lead to a contradiction. To be precise, under this assumption, $h_1(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k) \leq M$. Consequently, $\left|(nB)^{-1}\sum_{b=1}^B\sum_{m=1}^n \hat{S}_{(b,-m),12}\right| = 0$, which is a contrary to the event $\left|(nB)^{-1}\sum_{b=1}^B\sum_{m=1}^n \hat{S}_{(b,-m),12}\right| \geq \epsilon/2$. This proves that the above event

inclusion relation is correct.

By invoking condition (C2) and Markov's inequality, there must exist a constant C_4 such that, for s>0

$$Pr(X_{(b),i}^{2} + \|\mathbf{Y}_{(b),i}\|_{2}^{2} > M/2)$$

$$\leq Pr(\|X_{(b),i}\|_{1}^{2} \geq M/2) + Pr(\|\mathbf{Y}_{(b),i}\|_{2}^{2} \geq M/2)$$

$$\leq \frac{E\{\exp(s\|X_{(b),i}\|_{1}^{2})\}}{\exp(sM/4)} + \frac{E\{\exp(s\|\mathbf{Y}_{(b),i}\|_{2}^{2})\}}{\exp(sM/4)}$$

$$\leq 2C_{4}\exp(-sM/4).$$

Consequently,

$$Pr\left(\left|(nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),12} - S_{12}\right| \ge \epsilon\right)$$
(S4.19)
$$\le Pr\left(\left|(nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),12}\right| \ge \epsilon/2\right)$$

$$\le \sum_{b=1}^{B}\sum_{i=1}^{n}Pr\left((X_{(b),i}^{2} + \|\mathbf{Y}_{(b),i}\|_{2}^{2}) > M/2\right)$$

$$\le 2N^{(\alpha+\iota)}C_{4}\exp(-sM/4).$$

Recall that $M = C_3 N^{(\alpha+\iota)\gamma}$. Combining the results (S4.18), and (S4.19), we have

$$Pr\left(\left|(nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),1} - S_{1}\right| \ge 4\epsilon\right)$$

$$\leq Pr\left(\left|(nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),11} - S_{11}\right| \ge \epsilon\right)$$
(S4.20)

$$+ Pr\left(\left|(nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),12} - S_{12}\right| \ge \epsilon\right)$$

$$\le 2\exp\left(-\epsilon^2 N^{(\alpha+\iota)(1-2\gamma)}/C_3^2\right) + 2N^{(\alpha+\iota)}C_4\exp\left(-sC_3N^{(\alpha+\iota)\gamma}/4\right).$$

Following arguments for proving (S4.20), we can show that

$$Pr\Big(\big|(nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),h} - S_{h}\big| \ge 4\epsilon\Big)$$

$$\le 2\exp\big(-\epsilon^{2}N^{(\alpha+\iota)(1-2\gamma)}/C_{3}^{2}\big) + 2N^{(\alpha+\iota)}C_{4}\exp\big(-sC_{3}N^{(\alpha+\iota)\gamma}/4\big), h = 2, 3, 5, 7.$$
(S4.21)

In the sequel, we turn to $(nB)^{-1} \sum_{b=1}^{B} \sum_{m=1}^{n} \hat{S}_{(b,-m),4}$ where

$$n^{-1} \sum_{m=1}^{n} \hat{S}_{(b,-m),4} = \frac{1}{n} \sum_{m=1}^{n} \frac{1}{(n-1)(n-2)(n-3)} \sum_{i\neq k\neq l\neq m}^{n} \|X_{(b),i} - X_{(b),l}\|_1 \cdot \|\mathbf{Y}_{(b),k} - \mathbf{Y}_{(b),l}\|_2$$
$$= \frac{1}{n(n-1)(n-2)(n-3)} \sum_{i\neq k\neq l\neq m}^{n} \|X_{(b),i} - X_{(b),l}\|_1 \cdot \|\mathbf{Y}_{(b),k} - \mathbf{Y}_{(b),l}\|_2.$$

Here, we define $h_2(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k; X_l, \mathbf{Y}_l) = ||X_i - X_l||_1 ||\mathbf{Y}_k - \mathbf{Y}_l||_2$, which is the kernel of U-statistic \hat{S}_4 . Following the arguments to deal with $(nB)^{-1} \sum_{b=1}^{B} \sum_{m=1}^{n} \hat{S}_{(b,-m),1}$, we decomposed h_2 into two parts: $h_2 = h_2 I(h_2 > M) + h_2 I(h_2 \le M)$. Accordingly

$$n^{-1} \sum_{m=1}^{n} \hat{S}_{(b,-m),4} = \frac{1}{n(n-1)(n-2)(n-3)} \sum_{\substack{i \neq k \neq l \neq m}}^{n} h_{2(b,-m)} I(h_{2(b,-m)} \leq M)$$
$$+ \frac{1}{n(n-1)(n-2)(n-3)} \sum_{\substack{i \neq k \neq l \neq m}}^{n} h_{2(b,-m)} I(h_{2(b,-m)} > M)$$
$$\triangleq n^{-1} \sum_{m=1}^{n} \hat{S}_{(b,-m),41} + n^{-1} \sum_{m=1}^{n} \hat{S}_{(b,-m),42},$$

where

$$h_{2(b,-m)} = h_2(X_{(b,-m),i}, \mathbf{Y}_{(b,-m),i}; X_{(b,-m),k}, \mathbf{Y}_{(b,-m),k}; X_{(b,-m),l}, \mathbf{Y}_{(b,-m),l}),$$

and

$$S_4 = E\{h_2 I(h_2 \le M)\} + E\{h_2 I(h_2 > M)\} \stackrel{\triangle}{=} S_{41} + S_{42}$$

Following similar arguments for proving (S4.18), we can show that

$$Pr\left(\left|(nB)^{-1}\sum_{b=1}^{B}\sum_{m=1}^{n}\hat{S}_{(b,-m),41} - S_{41}\right| \ge \epsilon\right) \le 2\exp(-2\epsilon^2 m'' B/M^2),$$
(S4.22)

where m'' = [n/4] because $\hat{S}_{(b,-m),41}$ is a fourth-order U-statistic.

Then we deal with $(nB)^{-1} \sum_{b=1}^{B} \sum_{m=1}^{n} \hat{S}_{(b,-m),42}$. We observe that

 $h_2(X_i, \mathbf{Y}_i; X_k, \mathbf{Y}_k; X_l, \mathbf{Y}_l) = 4(X_i^2 + X_k^2 + X_l^2 + \|\mathbf{Y}_i\|_2^2 + \|\mathbf{Y}_k\|_2^2 + \|\mathbf{Y}_l\|_2^2)/6,$

which will be smaller than M if $X_{(b),i}^2 + \|\mathbf{Y}_{(b),i}\|_2^2 \leq M/2$ for all $1 \leq i \leq n, 1 \leq b \leq B$. Thus, for any $\epsilon > 0$, the event satisfy

$$\left\{ \left| (nB)^{-1} \sum_{b=1}^{B} \sum_{m=1}^{n} \hat{S}_{(b,-m),41} \right| \ge \epsilon/2 \right\}$$
$$\subseteq \{ X_{(b),i}^{2} + \| \mathbf{Y}_{(b),i} \|_{2}^{2} > M/2, \text{ for some } 1 \le i \le n, 1 \le b \le B \}.$$

By using the similar arguments to prove (S4.19), it follows that

$$Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),42} - S_{42}\right| \ge \epsilon\right) \le 2N^{(\alpha+\iota)}\exp(-sM/4).$$
(S4.23)

8.

Then combine the results (S4.22) and (S4.23) with $M = C_3 N^{(\alpha+\iota)\gamma}$, for some $0 \le \gamma \le 1/2 - \kappa$, we can obtain

$$Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),4} - S_{4}\right| \ge 4\epsilon\right)$$

$$\le 2\exp\left(-2\epsilon^{2}N^{(\alpha+\iota)(1-2\gamma)}/(3C_{3}^{2})\right) + 2N^{(\alpha+\iota)}C_{4}\exp\left(-sC_{3}N^{(\alpha+\iota)\gamma}/4\right).$$
(S4.24)

In addition, following arguments for proving (S4.24), we can show that

$$Pr\left(\left|B^{-1}\sum_{b=1}^{B}\hat{S}_{(b),h} - S_{h}\right| \ge 4\epsilon\right)$$

$$\leq 2\exp\left(-2\epsilon^{2}N^{(\alpha+\iota)(1-2\gamma)}/(3C_{3}^{2})\right) + 2N^{(\alpha+\iota)}C_{4}\exp\left(-sC_{3}N^{(\alpha+\iota)\gamma}/4\right), h = 6,$$

Combining (S4.17), (S4.20), (S4.21), (S4.24) and (S4.25), with 0 \leq $\kappa+\gamma\leq 1/2,$ we thus have

$$\Delta_{2} = \sum_{h=1,\dots,8} \Pr\Big(\Big|(nB)^{-1} \sum_{b=1}^{B} \sum_{m=1}^{n} \hat{S}_{(b,-m),h} - S_{h}\Big| \ge \frac{\epsilon}{8C_{2}}\Big)$$
(S4.26)
= $O\Big(\exp\Big(-c_{1}\epsilon^{2}N^{(\alpha+\iota)(1-2\gamma)}\Big) + N^{(\alpha+\iota)}\exp\Big(-c_{2}N^{(\alpha+\iota)\gamma}\Big)\Big),$

for some positive constants c_1 and c_2 . Combining (S4.15), (S4.16) and (S4.26), let $\epsilon = cN^{-(\alpha+\iota)\kappa}$, where $0 \le \kappa + \gamma \le 1/2$, we thus have

$$Pr(|\widehat{dcov^2}^{JDC}(X,\mathbf{Y}) - dcov^2(X,\mathbf{Y})| > cN^{-(\alpha+\iota)\kappa})$$
$$=O\Big(\exp\big(-c_1N^{(\alpha+\iota)(1-2\gamma-2\kappa)}\big) + N^{(\alpha+\iota)}\exp\big(-c_2N^{(\alpha+\iota)\gamma}\big)\Big),$$

for some positive constants c_1 and c_2 . Using Lemma 3, we have

$$\gamma_0 = \min\left\{\frac{dcov^4(X, X)dcov^4(\mathbf{Y}, \mathbf{Y})}{4M^4}, \frac{dcov^6(X, X)dcov^6(\mathbf{Y}, \mathbf{Y})}{4M^4}\right\},\$$

where

$$M \geq 2\max\{dcov(X, \mathbf{Y}), dcov(X, X), dcov(\mathbf{Y}, \mathbf{Y}), \widehat{dcov}(X, \mathbf{Y}), \widehat{dcov}(X, X), \widehat{dcov}(\mathbf{Y}, \mathbf{Y})\}$$

Condition (C2) enables us to conclude that M and γ_0 are bounded constants. Thus

$$Pr(|\hat{\omega}_{j}^{JDC} - \omega_{j}| > cN^{-(\alpha+\iota)\kappa})$$
$$=O\Big(\exp\big(-c_{1}N^{(\alpha+\iota)(1-2\gamma-2\kappa)}\gamma_{0}\big) + N^{(\alpha+\iota)}\exp\big(-c_{2}N^{(\alpha+\iota)\gamma}\big)\Big),$$

for some positive constants c_1 and c_2 . Therefore,

$$Pr\left(\max_{1\leq j\leq p} |\hat{\omega}_{j}^{JDC} - \omega_{j}| > cN^{-(\alpha+\iota)\kappa}\right)$$

$$=O\left(p\left[\exp\left(-c_{1}N^{(\alpha+\iota)(1-2\gamma-2\kappa)}\right) + N^{(\alpha+\iota)}\exp\left(-c_{2}N^{(\alpha+\iota)\gamma}\right)\right]\right).$$
(S4.27)

The first part of Theorem 2 for JDC-OSS is proven.

Now we deal with the second part of Theorem 2 for JDC-OSS. If $\mathcal{M} \not\subseteq \widehat{\mathcal{M}}$, then there must exist some $k \in \mathcal{M}$ such that $\hat{\omega}_j^{JDC} < cN^{-(\alpha+\iota)\kappa}$. It follows from condition (C3) that $|\hat{\omega}_j^{JDC} - \omega_j| > cN^{-(\alpha+\iota)\kappa}$ for some $k \in \mathcal{M}$, indicating that the events satisfy $\{\mathcal{M} \not\subseteq \widehat{\mathcal{M}}\} \subseteq \{|\hat{\omega}_j^{JDC} - \omega_j| > cN^{-(\alpha+\iota)\kappa},$ for some $k \in \mathcal{M}\}$, and hence $\mathscr{E} = \{\max_{k \in \mathcal{M}} |\hat{\omega}_k^{JDC} - \omega_k| \leq cN^{-(\alpha+\iota)\kappa}\} \subseteq \{\mathcal{M} \subseteq \widehat{\mathcal{M}}\}$. Consequently,

$$Pr(\mathcal{M} \subseteq \widehat{\mathcal{M}}) \ge Pr(\mathscr{E}) = 1 - Pr(\mathscr{E}^c) = 1 - Pr(\min_{k \in \mathcal{M}} |\hat{\omega}_k^{JDC} - \omega_k| \ge cN^{-(\alpha+\iota)\kappa})$$
$$= 1 - |\mathcal{M}|Pr(|\hat{\omega}_k^{JDC} - \omega_k| \ge cN^{-(\alpha+\iota)\kappa})$$

$$\geq 1 - O\Big(|\mathcal{M}| \big[\exp\big(-c_1 N^{(\alpha+\iota)(1-2\gamma-2\kappa)}\big) + N^{(\alpha+\iota)}\exp\big(-c_2 N^{(\alpha+\iota)\gamma}\big)\big]\Big),$$

where $|\mathcal{M}|$ is the cardinality of \mathcal{M} . This completes the proof of the second part.

Proof of Theorem 3

Under Condition (C3), noting that $\min_{k \in \mathcal{M}} \omega_k \geq 2cN^{-(\alpha+\iota)\kappa}$ and combining (S4.14), we have

$$Pr(\min_{k \in \mathcal{M}} \widehat{\omega}_{k} \leq \max_{k \notin \mathcal{M}} \widehat{\omega}_{k}) = Pr(\max_{k \notin \mathcal{M}} \widehat{\omega}_{k} - \max_{k \notin \mathcal{M}} \omega_{k} - \min_{k \in \mathcal{M}} \widehat{\omega}_{k} + \min_{k \in \mathcal{M}} \omega_{k} \geq \min_{k \in \mathcal{M}} \omega_{k})$$
$$\leq Pr(\max_{k \notin \mathcal{M}} |\widehat{\omega}_{k} - \omega_{k}| \geq cN^{-(\alpha+\iota)\kappa}) + Pr(\max_{k \in \mathcal{M}} |\widehat{\omega}_{k} - \omega_{k}| \geq cN^{-(\alpha+\iota)\kappa})$$
$$\leq 2Pr(\max_{1 \leq k \leq p} |\widehat{\omega}_{k} - \omega_{k}| \geq cN^{-(\alpha+\iota)\kappa}),$$

where the first equation holds because the corresponding distance correlation measure for unimportant variables is 0. By combining Theorem 2, and plugging them into the equation above, we obtain

$$Pr\left(\max_{\substack{j\notin\mathcal{M}\\j\notin\mathcal{M}}}\hat{\omega}_{j}^{SDC} \leq \min_{\substack{j\in\mathcal{M}\\j\in\mathcal{M}}}\hat{\omega}_{j}^{SDC}\right) \geq 1 - O\left(p\left[\exp(-c_{1}N^{(\alpha+\iota)(1-2\gamma-2\kappa)}) + N^{(\alpha+\iota)}\exp(-c_{2}N^{(\alpha+\iota)\gamma})\right]\right),$$
$$Pr\left(\max_{\substack{j\notin\mathcal{M}\\j\notin\mathcal{M}}}\hat{\omega}_{j}^{JDC} \leq \min_{\substack{j\in\mathcal{M}\\j\in\mathcal{M}}}\hat{\omega}_{j}^{JDC}\right) \geq 1 - O\left(p\left[\exp(-c_{1}N^{(\alpha+\iota)(1-2\gamma-2\kappa)}) + N^{(\alpha+\iota)}\exp(-c_{2}N^{(\alpha+\iota)\gamma})\right]\right).$$

This completes the proof of Theorem 3.

References

Serfling R. (1980). Approximation theorems of mathematical statistics. Vol.162, John Wiley and Sons.

Liu, W., Ke, Y., Liu, J., and Li, R. (2022). Model-free feature screening and FDR control with knockoff features. *Journal of the American Statistical Association* **117(537)**, 428–443.

Li, X., Li, R., Xia, Z., and Xu, C. (2020). Distributed feature screening via componentwise debiasing. *Journal of Machine Learning Research* **21**, 1–32.