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S1 Distribution of Data with Truncation

When truncation occurs to the left of the mode, regardless of the heaviness

of truncation or the skewness of the data, the mode remains unaffected due

to the mode’s inherent focus on the most frequent or dense point in the dis-

tribution, rather than the tails or extremes. This robustness of the mode

stems from its reliance on local maxima, which remain intact as long as the

truncation does not eliminate the region around the mode. However, when

truncation increases beyond the mode, the data available to estimate the

mode shrink considerably, causing the mode to shift or disappear entirely.

In such scenarios, the mode ceases to be a reliable measure for reconstruct-

ing the relationship between variables, as the available data no longer reflect

the underlying distribution accurately (Figure S1).

Different from fixed (and therefore nonrandom) truncation, random
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Figure S1: Distribution of Data with Truncation (Fixed Truncation)

truncation represents a biased sampling scheme, introducing a fundamental

challenge in the estimation of regression models. In the context of random

truncation, observations of the variables (Y,X) are left-truncated by an in-

dependent random variable T , which acts as a censoring threshold. Specif-

ically, it indicates that all three quantities of Y , X, and T are observable

only when Y ≥ T . This truncation alters the distributional structure of the

observed data, and consequently, the standard regression model F [Y | X]

that we might estimate from untruncated data is no longer directly applica-

ble. The only regression function that can be estimated from the truncated

sample is F [Y | X, Y ≥ T ], where F represents a functional operator such

as the mean, quantile, or mode. The key issue with random truncation is

that the marginal distribution functions of both Y and T are inherently

modified in the sample, compared to the original population data. As a

result, the mode of the truncated sample F [Y | X, Y ≥ T ] may no longer

coincide with the mode of the original distribution F [Y | X].
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S2 Mechanism of Kernel Mode-Based Function

The kernel mode-based objective function serves as a generalization of the

sample mode to the regression context, just as least squares generalizes

the sample mean to the linear model. In the context of modal regression,

the objective function in (2.2) is specifically designed to estimate the mode

of the conditional distribution of the response variable, rather than the

mean. To understand the underlying mechanism of (2.2), which reveals the

“most likely” or mode effect of the predictor on the response, we define

g(ε) as the continuous density function of the error term ε, with the kernel

function K(w) satisfying
∫
|w|K(w)dw <∞. The term M(ε,K) represents

the kernel-smoothed approximation of g(ε), defined as

M(ε,K) =

∫
1

h0
K

(
ε− t

h0

)
g(t)dt =

∫
K(w)g(ε+ wh0)dw,

where h0 is the bandwidth parameter that controls the smoothness of the

kernel estimator. We can establish the uniform convergence as follows

sup
ε∈R

|g(ε)−M(ε,K)| = sup
ε∈R

|g(ε)−
∫
K(w)g(ε+ wh0)dw|

≤ sup
ε∈R

∫
|g(ε)− g(ε+ wh0)|K(w)dw

≤ sup
ε∈R

∫
|g(1)(ε)wh0|K(w)dw = sup

ε∈R
|g(1)(ε)|h0

∫
|w|K(w)dw → 0

with h0 → 0, where g(1)(ε) represents the first derivative of g(ε). Conse-

quently, M(ε,K) can converge uniformly to g(ε) as h0 → 0, implying that
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argmaxεM(ε,K) → argmaxε g(ε). This indicates that the kernel objective

function in (2.2) can be utilized to capture the modal estimator.

In the paper, we demonstrate that to achieve a robust and efficient esti-

mator with
√
n-consistency (parametric convergence rate), the bandwidth

h0 is treated as a tuning parameter or constant that is independent of sam-

ple size. This is because, in the modal regression framework, the mode

captures local characteristics of the distribution, and oversmoothing (too

large h0) can mask these local features, while undersmoothing (too small

h0) can lead to excessive variance in the estimator. By treating h0 as fixed,

we ensure that the estimator remains stable and achieves optimal conver-

gence properties, making the kernel mode-based objective function in (2.2)

both efficient and computationally tractable.

Figure S2: Mode in Different Cases
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In addition, it has been discovered that when the data are asymmet-

rically distributed, the mode can provide an important complement to the

mean by allowing the bandwidth h0 → 0 as sample size n → ∞ (Figure

S2-the first plot). In such cases, the target of regression—representing the

“most likely” or mode value—diverges from the target of mean estimation,

which seeks to estimate the “average” value. The distinction is particularly

crucial in skewed distributions, where the mean can be heavily influenced

by extreme values, while the mode remains a more stable measure of central

tendency. For symmetrically distributed data, the mode and mean coincide,

resulting in Mode(Y ) = E(Y ) (Figure S2-the second and third plots). In

these cases, treating the bandwidth h0 as a constant or tuning parameter

in the kernel objective function allows for the accurate recovery of both the

mean and the mode. Theoretically, this reflects the fact that in symmetric

distributions, the most likely value is equal to the average value, and thus

modal regression and mean regression converge to the same estimate. In

our research, we term the resulting estimators in the asymmetric case as

“modal estimators” due to their focus on estimating the mode, as demon-

strated in Yao and Li (2014) and Ullah et al. (2023). For other cases, where

the primary goal is to derive robust and efficient estimators by focusing

on the mode, we refer to this class of techniques as “mode-based” estima-
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tion; see Yao et al. (2012) and Wang (2024). Similar model and method

have been developed in Wang and Li (2021). This framework is particu-

larly useful when the underlying data distribution may not adhere to strong

parametric assumptions, and robustness is a key concern.

In summary, modal regression typically involves nonparametric meth-

ods where the bandwidth parameter shrinks to zero as the sample size

increases. It aims to estimate the conditional mode of the response variable

given the predictors, often using techniques such as kernel density estima-

tion. It offers a useful alternative to mean or quantile regression when the

most frequent or likely value is of primary interest. This method is sensitive

to the choice of bandwidth and is particularly suited for capturing complex,

nonlinear relationships in the data. In contrast, mode-based regression, as

used in our study, refers to robust estimation methods that employ the

mode as a measure of central tendency to mitigate the influence of outliers

and heavy-tailed distributions. While modal regression specifically seeks to

estimate the mode of the conditional distribution, mode-based regression is

more concerned with ensuring robust and efficient estimators by focusing

on the mode, rather than the mean or median, as the primary target of es-

timation. It uses a constant bandwidth (instead of a shrinkage bandwidth)

parameter to enhance both robustness and efficiency.
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S3 Simulation Example in Section 2

We generate data from the model

Y = β1 + β2X + εX = 1 + 2X + εX

until there are n ∈ {200, 400, 600, 1000} observations for which Y ≥ 0,

where X ∼ U [−1, 1] and ε ∼ N (0, 1). This truncation scheme ensures

that only the positive Y -values are retained, effectively introducing a left-

truncation mechanism in the dataset. We then use the truncated dataset

to perform two types of estimation: mode-based estimation and mean es-

timation (least squares). For the mode-based estimation, we employ the

Gaussian kernel alongside the MEM Algorithm 1, where the bandwidth pa-

rameter h0 is chosen by the cross-validation procedure specified in (3.8).

The results from both the mode-based and mean estimations are presented

in Table S1 and Figure S3, where the average estimate, standard error (SE),

and mean squared error (MSE) are reported based on 400 simulations.

From the results, it is evident that kernel mode-based regression is par-

ticularly well-suited for truncated data, as it consistently captures the true

parameter values in scenarios of fixed truncation. This is in stark contrast to

mean regression with least squares estimation, which tends to yield biased

estimates when applied to the observed truncated data. The SE and MSE

of the mode-based estimator decrease when the sample size n increases,
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which is expected from the asymptotic property listed in Section 3. Com-

pared to existing truncated estimators, such as those discussed in Lai and

Ying (1992), the kernel mode-based estimator offers significant practical

advantages. Most notably, it provides numerical simplicity by avoiding the

need for explicit bias corrections, which are often required in traditional

truncated regression techniques. Furthermore, the mode-based estimator

is flexible in terms of the error distribution. Unlike traditional estimators

that often assume homoskedasticity or impose specific distributional forms,

the kernel mode-based approach does not require such assumptions.

Table S1: Results of Estimation (Fixed Truncation)

Mode-Based Mean

Sample Size β1,mode (SE) MSE(β1,mode) β2,mode (SE) MSE(β2,mode) β1,mean (SE) MSE(β1,mean) β2,mean (SE) MSE(β2,mean)

n=200 1.0062 (0.0189) 0.0004 1.8180 (0.2220) 0.0822 1.1588 (0.0355) 0.0265 1.6562 (0.1001) 0.1281

n=400 1.0056 (0.0106) 0.0002 1.8380 (0.1896) 0.0620 1.1596 (0.0259) 0.0261 1.6615 (0.0734) 0.1200

n=600 1.0060 (0.0094) 0.0001 1.8242 (0.1614) 0.0568 1.1573 (0.0207) 0.0252 1.6622 (0.0627) 0.1180

n=1000 1.0047 (0.0078) 0.00008 1.8351 (0.1356) 0.0455 1.1576 (0.0147) 0.0250 1.6631 (0.0460) 0.1156

true β1=1 β2 = 2 β1=1 β2 = 2

Figure S3: Results of Estimation for n =400 and 1000
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S4 Comments for Conditions in Subsection 3.2

C1 assumes that the parameter space is compact, which has been commonly

adopted in the literature. It should be noted that since all mean estimators

exhibit bias at extreme boundary points, computing mode-based estimator

becomes more advantageous when the estimators operate within a bounded

and closed parameter space. C2 is utilized to guarantee that the observed

data have no ties with probability one and that mode-based coefficients

are identifiable. The condition aG ≤ aF is necessary for identifiability; see

He and Yang (2003). Without this condition, we could have two different

regression models generating the same randomly truncated observations.

The bounded support condition in C3 can be released. As argued by a large

number of research (Ullah et al., 2021, 2022, 2023), it is not indispensable

for the kernel function to have bounded support as long as its tails are thin,

for example, Gaussian kernel is permissible, which is the default kernel we

use for numerical calculations. C4 is employed to make sure that associated

higher order terms can be asymptotically ignored when employing Taylor

Consider the regression Yi = β1+β2X2i+εi, where {εi}ni=1 are i.i.d. sequences of N (0, σ2) random

variables. In addition, for some positive constant M , suppose that we have |β1 + β2X2i| < M . If aF <

aG, set A = aG−M . Let vi = εiI(εi ≥ A)+AI(εi < A), where I(·) is an indicator function. By construc-

tion, we have Y ′
i = (β1+E(vi))+β2X2i+(vi−E(vi)). Suppose that Yi and Y ′

i are subject to random trun-

cation by an i.i.d. sequence of variable Ti. Then, both regression models will generate the same randomly

truncated observations. Therefore, we cannot identify the coefficients.
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expansion. C5 is expressed based on conditional expectation, indicating

that the distribution of ε can depend on covariates. This is weaker than the

corresponding assumptions in Chen et al. (1996) and Stute (1993), where

the error term ε is assumed to be independent of the covariates. Notice that

the condition E[K(1)
h (ε) | X] = 0 guarantees the consistency of estimator,

which can be satisfied if the error density function is symmetric and has a

global unique mode. However, it is not necessary to require the error dis-

tribution to be symmetric. If the assumption E[K(1)
h (ε) | X] = 0 does not

hold, the suggested estimate is actually estimating the function M̂(x) =

argmaxM E[Kh(Y − M) | X = x]; see Yao et al. (2012). In practice, we

also allow the existence of local modes for numerical estimation, since the

proposed MEM algorithm can be efficiently employed to capture the global

mode estimate. C6 encapsulates the primary characteristic of the suggested

mode-based estimation, where the bandwidth parameter h serves to adjust

both robustness and efficiency. This assumption of a constant bandwidth

enables us to establish a parametric convergence rate, facilitating compar-

ison between the resulting mode-based estimator and traditional mean or

median estimator. C7 is a common assumption to ensure the existence of

both consistency and asymptotic normality.

Following a reviewer’s suggestion, we also provide comments on these
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conditions for both the simulation studies and real data analysis. As argued

by Yao and Li (2014) and Ullah et al. (2021, 2022, 2023), the choice of kernel

function does not significantly impact mode estimation. This implies that

various kernel functions, including the Gaussian kernel, could be used with-

out substantial differences in the estimation results. Consequently, we opt

for the Gaussian kernel forK(·) in this paper to conduct numerical analysis.

Thus, conditions C3-C5, related to properties of the kernel function and its

derivatives, can be readily satisfied by utilizing a Gaussian kernel. Condi-

tion C1 pertains to the compactness of the parameter space. In simulation

studies, where both true parameter values and data are known, this condi-

tion can be satisfied because we have complete knowledge of the parameter

space. Additionally, since simulation studies involve generating data from

known distributions, conditions C2 and C7, related to distribution and ma-

trix properties, can also be fulfilled. In empirical analysis, the true param-

eter values are unknown. However, the finite nature of the dataset and the

use of linear regression to model the relationship between variables provide

implicit constraints on the parameter space. Therefore, the resulting esti-

mates can indirectly support the existence of a compact parameter space,

as required by condition C1. Without meeting this condition, obtaining

meaningful estimates from empirical data would be challenging or impos-
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sible. Despite the unknown true model, conditions C2 and C7 can still be

satisfied in empirical analysis due to the finite sample size. Throughout

numerical analysis, the bandwidth h is determined via cross-validation pro-

cedure, ensuring the fulfilment of condition C6.

S5 Convergence of the Penalized MEM Algorithm

We discuss the convergence (a sufficiently small change in the parameters)

of the proposed penalized MEM algorithm. We follow the classical EM al-

gorithm to define a stationary point of the function Qp
n(β) as any point of β

where the gradient vector is zero (Wu, 1983). Following Lim and Oh (2014),

we let M(β) be the point-to-set map (a function from points to subsets)

implicitly defined by the algorithm, which transitions from β̂
p(m)

to β̂
p(m+1)

for any point β̂
p(m)

. Subsequently, we provide the theorem listed below to

characterize the limit points of the set {β̂
p(m)

: m = 0, 1, 2, · · · }.

Theorem S1. With an initial value β̂
p(0)

, let β̂
p(m)

= Mm(β̂
p(0)

) denote

the corresponding mapping. If Qp
n(β) = Qp

n(M(β)) holds only for stationary

points β of Qp
n and if β̂

∗
is a limit point of the sequence {β̂

p(m)
} such that

M(β) is continuous at β̂
∗
, then β̂

∗
is a stationary point of Qp

n(β).

Theorem S1 provides a necessary condition for a point to be a limit point

of the suggested algorithm. The existence of a limit point is then consid-
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ered under a sufficient condition. Given β̂
p(0)

, the set B = {β̂
p
| Qp

n(β̂
p
) ≥

Qp
n(β̂

p(0)
)} is compact and contains the entire sequence {β̂

p(m)
}∞m=0 since

Qp
n(·(m+1)) ≥ Qp

n(·(m)) with the nondecreasing SCAD penalty. This ensures

that the sequence has at least one limit point, which must be a stationary

point of Qp
n(·) according to the above theorem. If in addition, there is only

one stationary point, such as when Qp
n(·) is strictly concave, we may concl-

ude that the algorithm must converge to the unique stationary point.

As pointed out by a reviewer, the suggested mode-based estimation

utilizing the MEM algorithm might not offer computational advantages

compared to existing estimations, primarily due to its iterative nature. For

instance, with a sample size of 1000 in DGP 1, the computation time for

mode-based regression is 113 seconds, whereas it is 47 seconds for Huber

regression. Note that all programs are written in R and the computer has a

2.10GHz to 4.90GHz Pentium processor and 32GB memory. However, while

this computational disadvantage exists, it is not a significant concern, par-

ticularly given the reasonable computation time and the robustness and effi-

ciency achieved by the proposed method. Additionally, due to the favorable

convergence property of the suggested MEM algorithm, when initial points

are chosen appropriately, the MEM algorithm converges rapidly toward the

neighborhood of a stationary point, ensuring efficient computation.
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S6 Multimodal Case

As mentioned in the paper, the global unique mode assumption can be re-

leased without affecting the estimation procedure. Multimodal datasets are

common in economics. For example, when examining a country’s income

distribution, it is evident that there are often two modes corresponding to

developing and developed countries, reflecting a dichotomous world com-

posed of nations with varying income levels. The proposed mode-based

regression can be employed to capture these two distinct situations simulta-

neously by using the suggested MEM algorithm. To demonstrate that the

developed estimation method can effectively handle multimodal case, we

conduct a Monte Carlo simulation as described below.

We generate random samples from the following model

Yi = X1iβ1 +X2iβ2 +X1iεi, i = 1, · · · , n,

where we set the parameters to be β = (1, 2)T . The covariate vector Xi is

normally distributed with mean 0, variance I2×2, and correlation 0.2|k−j|,

where k, j = 1, 2. To create a multimodal case, we generate εi by mixing two

normal distributions with equal weights, where one is centered at 0 and the

other is centered at 4, and both have variances equal to 1 (Figure S4).

The generalized errors {εi}ni=1 indicate that E(εi) = 2 andMode(εi) = 0

or 4. In this scenario, mean regression may produce misleading results
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Figure S4: Mixture Normal Distribution with Two Modes

by disregarding data heterogeneity. We then have the following equations

showing two different mode-based regression lines
Mean Regression: E(Yi | Xi) = 3X1i + 2X2i,

Mode-Based Regression Line 1: Mode(Yi | Xi) = X1i + 2X2i,

Mode-Based Regression Line 2: Mode(Yi | Xi) = 5X1i + 2X2i.

We consider data samples of size n ∈ {200, 400, 600} with 400 replica-

tions to assess finite sample performance. The average estimate, standard

error (SE), and mean squared error (MSE) for each estimator are calculated

for evaluation. Table S2 displays the simulation results, demonstrating the

effectiveness of the proposed estimation method in handling multimodal
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case with finite samples. This efficacy stems from the approximate initial-

ization of estimates, which facilitates capturing different mode-based re-

gression lines for data exhibiting multiple modes using the suggested MEM

algorithm. For both mode-based regression lines, the estimates of unknown

parameters converge closer to the true values and both the SE and MSE of

each estimator decrease with increasing sample size n.

Table S2: Results of Estimation for Multimodal Case

Method n β1(SE) MSE(β1) β2(SE) MSE(β2)

Mode-Based 1

200 1.0017 (0.0583) 0.0035 2.0063 (0.0497) 0.0028

400 0.9963 (0.0378) 0.0015 2.0048 (0.0388) 0.0015

600 0.9982 (0.0306) 0.0010 2.0012 (0.0295) 0.0009

Mode-Based 2

200 4.9862 (0.1267) 0.0163 2.0072 (0.1091) 0.0119

400 4.9472 (0.0983) 0.0126 1.9938 (0.0836) 0.0068

600 4.9603 (0.0822) 0.0092 1.9926 (0.0721) 0.0056

Mean

200 2.9634 (0.3976) 0.1589 2.0023 (0.4028) 0.1625

400 2.9813 (0.2882) 0.0838 1.9954 (0.2967) 0.0903

600 2.9920 (0.2357) 0.0560 2.0006 (0.2302) 0.0544

S7 Numerical Examples in Section 5

Figure S5: Ratio of SE/SD of DGP 1
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Figure S6: Distributions and Boxplots of Proposed Estimators
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Figure S8: Correlation Matrix of Covariates
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Figure S7: Histogram and Empirical Distribution of Dependent Variable

S8 Extension to Left-Truncated and Right-Censored Data

We in this section demonstrate that the proposed kernel mode-based estima-

tion procedure can be extended to analyze left-truncated and right-censored

data, which are commonly encountered in survival analysis and economic

studies; see Gross and Lai (1996), Zhou and Yip (1999), Su and Wang

(2012), among others. Left-truncated data arise when individuals or units

enter the study after a certain event has already occurred, leading to biased

sampling if not properly accounted for. In such cases, the risk set is con-

ditioned on having already survived until the truncation point, which can

result in overestimating survival probabilities if the truncation mechanism

is not adequately modeled. On the other hand, right-censored data occur

when the event of interest has not been observed for some individuals by

the end of the study period, which often leads to incomplete information.
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Suppose that we are interested in studying a certain event for individ-

uals during the time period (τ0, τ) with τ0 < τ . The sampling strategy

involves recruiting all individuals who have experienced a first event be-

tween τ0 and τ and who have not experienced a second event by the time τ

for a prospective follow-up study. This study will be terminated at time τ ∗

with τ ∗ > τ , representing the final endpoint of the observation period. Let

Ts denote the initial time of the first event. The variable T is used to denote

the time from Ts to the occurrence of the second event. The variable V is

defined as the time from Ts to τ , representing the recruitment time at τ . To

account for the censoring that occurs in the follow-up study, we introduce

the variable C, which represents the time from Ts to the censoring event.

In this framework, the censoring time C is determined as C = min(C1, C2)

and P (C ≥ V ) = 1, where C1 = V + τ ∗ − τ represents the time from the

first event (beginning of the study) to the end of the study at τ ∗, and C2

denotes the time from the first event to the individual’s dropout from the

study, which may occur before the study’s termination at τ ∗. The condition

P (C ≥ V ) = 1 ensures that no individual can be censored before recruit-

ment at τ , meaning that all individuals recruited have experienced the first

event within the time window (τ0, τ) and have not yet experienced a sec-

ond event. This assumption holds due to the design of the study, where
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recruitment only occurs after the first event and before the censoring time.

Furthermore, the analysis considers a set of covariates, denoted by X,

which may influence the event times and censoring mechanisms. We further

assume that the variables T , V , and C are continuous. We make the as-

sumption that (T,X) and (V,C) are independent of each other, but V and

C are dependent with the condition P (C ≥ V ) = 1. For left-truncated and

right-censored data, we observe nothing if T < V , and observe (Z, V, δ,X)

with δ = I(T < C) and Z = min(T,C) if T ≥ V . Note that δ = I(T < C)

is an indicator variable that equals 1 if the second event occurs before cen-

soring and 0 if the observation is censored, and Z = min(T,C) represents

the observed event time, either the time of the second event or the censoring

time. Given this structure, we consider the following semiparametric linear

regression model for the event time

Ti = XT
i β + εi, i = 1, 2, · · · , n,

where β is the vector of regression coefficients to be estimated and ε is the

random error term. The presence of left truncation (where T < V ) and

right censoring (where T > C) introduces additional complexities into the

estimation of β. To estimate β, we implement the developed techniques in

this paper in combination with kernel smoothing methods to account for

the censoring and truncation mechanisms.
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Let F (t) = P (T ≤ t) denote the cumulative distribution function of

the event time T . Additionally, let Q(t) = P (C ≤ t) and G(t) = P (V ≤

t) denote the cumulative distribution functions of C and V , respectively.

Define F (t,x) = P (T ≤ t,X ≤ x). Let α = P (V ≤ T ) denote the

probability of untruncation, that is, the probability that we observe the

random variable T and the individual is not truncated out of the study.

Let aF and bF denote the left and right endpoints of the support of F ,

and similarly, define (aG, bG) and (aQ, bQ) as the left and right endpoints

of V and C, respectively. To ensure identifiability of F (t), we impose the

following assumptions

aG = aF = aQ = 0, bG ≤ min(bF , bQ), and bF ≤ bQ,

where bG ≤ min(bF , bQ) ensures that truncation occurs before or at the end

of the event time and censoring period, and bF ≤ bQ indicates that the

second event either occurs before or at the censoring time.

Given the observed left-truncated and right-censored sample {Zi, Vi, δi,

Xi}ni=1, we can express F̃ (z,x) as

F̃ (z,x) = P (Zi ≤ z, δi = 1,Xi ≤ x) = α−1P (V ≤ T ≤ C, T ≤ z,X ≤ x)

= α−1

∫
u≤z

∫
w≤x

P (V ≤ u ≤ C)F (du, dw).

From this, we can obtain

F (z,x) = α

∫
u≤z

∫
w≤x

1

P (V ≤ u ≤ C)
F̃ (z,x).
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For left-truncated and right-censored data, the product-limit estimator of

F (t), also known as the Kaplan-Meier estimator, is given by

F̂n(z) = 1−
∏
u≤z

[
1− N(du)

nRn(u)

]
,

where Rn(u) = n−1
∑n

i=1 I(Vi ≤ u ≤ Zi) is the risk set at time u, N(u) =∑n
i=1 I(Zi ≤ u, δi = 1) is the counting process for the observed events, and

N(du) = N(u)−N(u−) represents the increments in the counting process.

Following Shen (2005), we can consider two estimators of the untrun-

cation probability α, i.e.,

αn =

[
1

n

n∑
i=1

1

1− F̂n(Vi)

]−1

,

which is a sample-based estimator that adjusts for truncation by weight-

ing the contributions of the observed individuals based on their truncation

times, and

α̂n(z) =
[Ĝn(z)− Q̂n(z−)][1− F̂n(z−)]

Rn(z)
,

where Ĝn(z) and Q̂n(z) are the inverse-probability-weighted estimators such

that

Ĝn(z) =

[
n∑

i=1

1

1− F̂n(Vi)

]−1 n∑
i=1

I(Vi ≤ z)

1− F̂n(Vi)
,

and

Q̂n(z) =

[
n∑

i=1

1

1− F̂n(Vi)

]−1 n∑
i=1

I(Zi ≤ z, δi = 0)

1− F̂n(Zi)
,
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respectively. Shen (2005) showed that α̂n(z) does not depend on z and

is equivalent to αn. This implies that the untruncation probability αn,

estimated using the sample data, can be treated as a constant and does not

vary with z.

Given that P (V ≤ z ≤ C) can be consistently estimated by Ĝn(z) −

Q̂n(z), we can now construct a nonparametric estimate of F (z,x) for left-

truncated and right-censored data, which is

F̂n(z,x) =

∫
u≤z

∫
w≤x

1

α−1
n (Ĝn(u)− Q̂n(u))

F̃n(z,x),

where F̃n(z,x) = n−1
∑n

i=1 I(Zi ≤ z, δi = 1,Xi ≤ x) is the empirical

distribution function of F̃ (z,x) based on the observed data. Note that

α−1
n (Ĝn(u)− Q̂n(u)) plays a key role in the nonparametric estimation and

adjusts for both truncation and censoring, which is computed as

α−1
n (Ĝn(u)− Q̂n(u)) =

1

n

n∑
i=1

1

1− F̂n(Vi)
− 1

n

n∑
i=1

I(Vi ≤ z)

1− F̂n(Vi)
.

When there is no censoring or truncation, let {Ti,Xi}ni=1 denote the

observed sample. The kernel mode-based regression estimate is obtained by

finding the value of β that maximizes the objective function
∑n

i=1Kh(Ti −

XT
i β), which can be expressed in integral form as

1

h

∫ ∞

−∞

∫ ∞

0

K

(
T −XTβ

h

)
F̂TX(dt, dx),

where F̂TX(t,x) is the empirical distribution function of (Ti,Xi). For left-
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truncated and right-censored data, the empirical joint distribution function

F̂TX(t,x) is replaced by the corresponding estimator F̂n(z,x). Thus, the

kernel mode-based objective function for censored and truncated data be-

comes

1

h

∫ ∞

−∞

∫ ∞

0

K

(
Z −XTβ

h

)
F̂n(dz, dx)

=
1

h

∫ ∞

−∞

∫ ∞

0

1

α−1
n (Ĝn(z)− Q̂n(z))

K

(
Z −XTβ

h

)
F̃n(dz, dx).

The kernel mode-based regression estimate β̂ for left-truncated and right-

censored data is then defined as the solution that maximize the following

objective function

Qn(β) =
1

nh

n∑
i=1

I(δi = 1)

α−1
n (Ĝn(Zi)− Q̂n(Zi))

K

(
Zi −XT

i β

h

)
,

which generalizes the kernel mode-based regression framework to handle

left-truncated and right-censored data. The detailed asymptotic properties

of the resulting estimator, such as its consistency and asymptotic normality,

can be derived using empirical process theory and techniques similar to

those outlined in Section S9. Additionally, empirical likelihood estimation

developed in this paper could be used to improve inference about β. These

topics are left for future research to further refine and extend the proposed

methodology for truncated and censored data.
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S9 Technical Proofs

Proof of Theorem 1

By Corollary 2.5 of He and Yang (1998), we know that αn → α0 =
∫
G0(x)

dF (x) = α/G(bF ) almost surely as n → ∞. Clearly, α/G(x) = α0/G0(x)

for all x ∈ (aG, bF ]. To establish identification of the model, by using the

law of total expectation, we have

E
[
α

h

1

G (U)
K

(
U −WTβ

h

) ∣∣∣X]

=E
{
E
[
α

h

1

G (U)
K

(
U −WTβ

h

) ∣∣∣Y,X] ∣∣∣X}

=E
{
E
[
α

h

1

G (Y )
K

(
Y −XTβ

h

) ∣∣∣Y,X] ∣∣∣X} = E
[
1

h
K

(
Y −XTβ

h

) ∣∣∣X]
because of Fn(y,x) = αn

∫
u≤y

∫
w≤x

1
Gn(u)

F ∗
n(du, dw) and

∫
1
h
K
(

y−xTβ
h

)
dFn(y,x) =

∫
u≤y

∫
w≤x

αn

Gn(u)
1
h
K
(

u−wTβ
h

)
dF ∗

n(u,w) shown in the paper.

The identification follows from the fact that this expression is uniquely

determined for a given β under the regularity conditions C1-C7. Based on

this, we can prove |Qn(β)−QN(β)| = op(1), where

|Qn(β)−QN(β)| = |Qn(β)− E(Qn(β)) + E(Qn(β))− E(QN(β))

+E(QN(β))−QN(β)| = |Qn(β)− E(Qn(β)) + E(QN(β))−QN(β)|

≤|Qn(β)− E(Qn(β))|+ |E(QN(β))−QN(β)| = op(1)

according to the triangle inequality and the Law of Large Numbers.

□
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Lemma 1. Let ψn(β) be a sequence of random functions on Rp, which is

concave in β. Let ψ(β) be a random function such that for each fixed β,

ψn(β) → ψ(β) with probability one and in probability. Then, for any com-

pact set Ω ⊂ Rp, we can obtain

sup
β∈Ω

|ψn(β)− ψ(β)| → 0

with probability one and in probability, respectively.

Proof. Consider any β1,β2 ∈ Ω and λ ∈ [0, 1]. For all n, we have

ψn(λβ1 + (1− λ)β2) ≥ λψn(β1) + (1− λ)ψn(β2).

Due to the continuity and almost sure convergence of the sequence {ψn},

by taking the limit as n→ ∞ (almost surely) on both sides, we obtain

ψ(λβ1 + (1− λ)β2) ≥ λψ(β1) + (1− λ)ψ(β2),

which confirms that ψ(β) is concave. Since ψ(β) is concave and finite on the

compact set Ω, it is continuous on Ω. Specifically, for any β0 ∈ Ω and any

sequence {βk} ⊂ Ω such that βk → β0, we have limk→∞ ψ(βk) = ψ(β0).

We then prove by contradiction. Suppose that the convergence is not

uniform on Ω. Thereupon, there exists an ϵ > 0 and a subsequence {nk}

such that supβ∈Ω|ψnk
(β) − ψ(β)| ≥ ϵ for all k. This means that for each

k, there exists βnk
∈ Ω such that |ψnk

(βnk
) − ψ(βnk

)| ≥ ϵ. Since Ω is

compact, the sequence {βnk
} has a convergent subsequence. Without loss

of generality, assume that βnk
→ β0 ∈ Ω as k → ∞. Since ψn(β) → ψ(β)
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almost surely for each fixed β, we have limk→∞ ψnk
(βnk

) = ψ(β0). Also, be-

cause ψ(β) is continuous on Ω, we have limk→∞ ψ(βnk
) = ψ(β0). We then

get limk→∞|ψnk
(βnk

) − ψ(βnk
)| = 0, which contradicts with |ψnk

(βnk
) −

ψ(βnk
)| ≥ ϵ for all k. Therefore, supβ∈Ω|ψn(β) −ψ(β)| → 0 almost surely.

To show convergence in probability, for any ϵ > 0 and δ > 0, we have

P

(
sup
β∈Ω

|ψn(β)− ψ(β)| ≥ ϵ

)
≤ δ

for sufficiently large n. This follows because the pointwise convergence in

probability implies that for each β, P (|ψn(β)− ψ(β)| ≥ ϵ) → 0 as n→ ∞.

Since Ω is compact, it can be covered by a finite number of open balls due to

its total boundedness. Let {β1, . . . ,βm} be a finite ϵ/3-net for Ω, meaning

that for every β ∈ Ω, there exists some βi such that ∥β − βi∥ < (ϵ/3)L,

where L is a Lipschitz constant for ψn and ψ (which exists due to concavity

and compactness). Using the union bound, we obtain

P

(
sup
β∈Ω

|ψn(β)− ψ(β)| ≥ ϵ

)
≤

m∑
i=1

P (|ψn(βi)− ψ(βi)| ≥ ϵ/3) .

Since each term on the right-hand side converges to zero as n → ∞, the

sum also converges to zero, ensuring convergence in probability. We then

prove the lemma. Note that there are many other versions for the proof of

this Convexity Lemma. Interested readers are referred to Pollard (1991).
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Lemma 2. Define Kh(u) = h−1K(u/h). For u ∈ Rp, define Rn(x, y,u) =

Kh(y − xT (β0 + u/
√
n)) − Kh(y − xTβ0) + K

(1)
h (y − xTβ0)x

Tu/
√
n and

Q(u) = αn

∑n
i=1[Gn(Ui)]

−1 Rn(Wi, Ui,u) =
∫
nRn(x, y,u)Fn(dy, dx). Un-

der the conditions C1-C7, for any fixed C > 0, we have

sup
∥u∥<C

∣∣Q(u)− 1

2
uTE{[K(2)

h (ε) | x]xxT}u
∣∣→ 0 in probability.

Proof. We aim to show that Q(u) converges to its limiting value uniformly

over u ∈ Rp. Since Q(u) is concave in u, according to Lemma 1, the result

will follow if we can show Q(u) → 1
2
uTE{[K(2)

h (ε) | x]xxT}u in probability.

At first, using a second-order Taylor expansion around β0, we obtain

Kh(y − xT (β0 + u/
√
n))

=Kh(y − xTβ0) +K
(1)
h (y − xTβ0)

xTu√
n

+
1

2
K

(2)
h (y − xTβ0)

(xTu)2

n
+ op

(
1

n

)
.

Substituting this into the expression for Rn(x, y,u), we find that

Rn(x, y,u) =
1

2
K

(2)
h (y − xTβ0)

(xTu)2

n
+ op

(
1

n

)
.

Thus, by the Law of Large Numbers, we have∫
nRn(x, y,u)F (dy, dx) = E[nRn(x, y,u)]

=
uT

2
E{[K(2)

h (ε) | x]xxT}u+ op(1),

which provides the pointwise convergence of Q(u). To extend to uniform

convergence, we use the fact that Rn(x, y,u) is a smooth function of u. The
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second-order Taylor expansion we applied is valid uniformly over u ∈ Ω be-

cause of the compactness of Ω and the smoothness of K(·). By standard

results in empirical process theory, the remainder terms op(1) in the Taylor

expansion are uniformly small over compact sets. This gives

sup
∥u∥<C

∣∣Q(u)− 1

2
uTE{[K(2)

h (ε) | x]xxT}u
∣∣ = op(1).

Thus, the convergence is uniform over u ∈ Ω.

We now need to control the difference between the empirical measure

Fn and the true distribution F . By some calculations, we can get

∣∣ ∫ nRn(x, y,u)Fn(dy, dx)−
∫
nRn(x, y,u)F (dy, dx)

∣∣
=
∣∣αn

∫
nRn(x, y,u)

F ∗
n(dy, dx)

Gn(y)
− α

∫
nRn(x, y,u)

F ∗(dy, dx)

G(y)

∣∣
≤
∣∣αn

∫
nRn(x, y,u)

( 1

Gn(y)
− 1

G(y)

)
F ∗
n(dy, dx)

∣∣
+
∣∣αn

∫
nRn(x, y,u)

F ∗
n(dy, dx)

G(y)
− α

∫
nRn(x, y,u)

F ∗(dy, dx)

G(y)

∣∣
≤
∣∣ ∫ nRn(x, y,u)

(G(y)−Gn(y)

G(y)

)
Fn(dy, dx)

∣∣+ ∣∣(αn − α)

∫
nRn(x, y,u)

F ∗
n(dy, dx)

G(y)
+ α

∫
nRn(x, y,u)

1

G(y)
(F ∗

n(dy, dx)− F ∗(dy, dx))
∣∣

≤ sup
√
n|G(y)−Gn(y)|

∫
|
√
nRn(x, y,u)|

Fn(dy, dx)

G(y)

+
√
n|αn − α|

∫
|
√
nRn(x, y,u)|

F ∗
n(dy, dx)

G(y)

+ α
∣∣ ∫ nRn(x, y,u)

1

G(y)
(F ∗

n(dy, dx)− F ∗(dy, dx))
∣∣ = op(1).
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The first two terms are op(1) due to the fact that
√
nRn(x, y,u) → 0,

sup
√
n|Gn(y) − G(y)| = Op(1), and

√
n(αn − α) = Op(1); see He and

Yang (2003). The last term is also op(1) according to van der Vaart (1998),

where empirical processes converge uniformly over compact sets to their

population counterparts. Combining all the above results, we conclude that

Q(u)−
∫
nRn(x, y,u)F (dy, dx)

p→ 0. This completes the proof.

Lemma 3. Define Kh(u) = h−1K(u/h). Under the conditions C1-C7, we

can obtain that

argmaxSn(u) → argmaxV (u) = (E{[K(2)
h (ε) | x]xxT})−1W

in distribution, where u ∈ Rp, Sn(u) =
∑n

i=1 αn[Gn(Ui)]
−1Kh(y − xT (β0 +

u/
√
n))−Kh(y−xTβ0), V (u) = 2−1uTE{[K(2)

h (ε) | x]xxT}u−WTu, and W

∼ N (0,Σ).

Proof. Due to the use of concave kernel function K(·), it is natural to argue

that Sn(u) inherits this concavity and its maximizer is well-defined. Simi-

larly, the quadratic form in V (u) (i.e., the term 2−1uTE{[K(2)
h (ε) | x]xxT}u)

ensures that V (u) has a unique maximizer (due to the positive definite Hes-

sian matrix), which is given by the solution to ∂V (u)/∂u = 0. This leads

to u = (E{[K(2)
h (ε) | x]xxT})−1W .

The Taylor expansion of Sn(u) around β0 is given by Sn(u) ≈ Sn(0)−
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1√
n

∑n
i=1 αn[Gn(Ui)]

−1K
(1)
h (εi)x

T
i u+ 1

2n

∑n
i=1 αn[Gn(Ui)]

−1K
(2)
h (εi)(x

T
i u)

2,

where εi = yi − xT
i β0. We focus on Sn,1 = − 1√

n

∑n
i=1 αn[Gn(Ui)]

−1K
(1)
h (εi)

xT
i u. Our aim is to show that Sn,1 converges in distribution to −WTu. We

then mainly need to show that n−1
∑n

i=1G
−1
n (Ui)K

(1)
h (εi)

p→ α−1E[K(1)
h (εi)]

because this term represents the gradient (or score function) in the estima-

tion process, and the maximization of Sn(u) is driven by the behavior of

its gradient. We decompose the sum into two parts

1

n

n∑
i=1

1

Gn(Ui)
K

(1)
h (εi) =

1

n

n∑
i=1

(
1

Gn(Ui)
− 1

G(Ui)

)
K

(1)
h (εi)

+
1

n

n∑
i=1

1

G(Ui)
K

(1)
h (εi) = Dn1 +Dn2.

The conditional joint density function of (X, Y ) is

F ∗(x, y) = P (X ≤ x, Y ≤ y|Y ≥ T ) = α−1

∫
µ≤x

∫
aG≤ω≤y

G(ω)F (dµ, dω),

which yields that

f ∗(x, y) = F ∗(dx, dy) = α−1G(y)F (dx, dy) = α−1G(y)f(x, y).

In addition, for each i, since K
(1)
h (εi) ≤ |K(1)

h (εi)|, we have 1
G(Ui)

K
(1)
h (εi) ≤

1
G(Ui)

|K(1)
h (εi)|. Therefore, summing over i, we obtain 1

n

∑n
i=1

1
G(Ui)

K
(1)
h (εi) ≤

1
n

∑n
i=1

1
G(Ui)

|K(1)
h (εi)|. By the Law of Large Numbers and under conditions

C3-C5, we can derive the following upper bound

1

n

n∑
i=1

1

G(Ui)
K

(1)
h (εi) ≤

1

n

n∑
i=1

1

G(Ui)
|K(1)

h (εi)|
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→
∫ ∫

1

G(y)
|K(1)

h (ε)|f ∗(x, y)dxdy =

∫ ∫
1

α
|K(1)

h (ε)|f(x, y)dxdy

=
1

α

∫
E(|K(1)

h (ε)| | x)dx ≤M

for some constant M coming from controlling K
(1)
h (ε) by its upper bound.

Furthermore, according to the argument in the paper, we have

|G(Ui)−Gn(Ui)| ≤ sup
U≥aF

|Gn(Ui)−G(Ui)|,

Gn(Ui)G(Ui) ≥ (G(aF )− sup
U≥aF

|Gn(Ui)−G(Ui)|)G(Ui)

≥ (G(aF )− sup
U≥aF

|Gn(Ui)−G(Ui)|)G(aF ),

where G(aF ) is the lower bound for both G(Ui) and Gn(Ui), and the supre-

mum is the least upper bound of the set {|Gn(U) − G(U)| : U ≥ aF}. By

combining these with the consistency result supU≥aF
|Gn(Ui) −G(Ui)| =

Op(n
−1/2) from Liang et al. (2011), as n→ ∞, we obtain

|Dn1| =
∣∣ 1
n

n∑
i=1

(
1

Gn(Ui)
− 1

G(Ui)

)
K

(1)
h (εi)

∣∣ = ∣∣ 1
n

n∑
i=1

G(Ui)−Gn(Ui)

Gn(Ui)G(Ui)
K

(1)
h (εi)

∣∣
≤

supU≥aF
|Gn(Ui)−G(Ui)|

G(aF )− supU≥aF
|Gn(Ui)−G(Ui)|

1

n

n∑
i=1

1

G(Ui)
|K(1)

h (εi)|

≤
supU≥aF

|Gn(Ui)−G(Ui)|
G(aF )− supU≥aF

|Gn(Ui)−G(Ui)|
M = op(1).

Regarding Dn2 associated with the true function G(Ui), by the Law of

Large Numbers and under conditions C3-C5, we know that

1

n

n∑
i=1

1

G(Ui)
K

(1)
h (εi) → E

(
1

G(Ui)
K

(1)
h (εi)

)
.

By combining this with the joint conditional density f ∗(x, y) = α−1G(y)f(x, y),
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we get

E
(

1

G(Ui)
K

(1)
h (εi)

)
=

1

α

∫
E
(
K

(1)
h (ε) | x

)
dx.

Hence, we conclude that Dn2 → E(K(1)
h (ε)).

After that, we apply the central limit theorem to obtain the asymptotic

normality of the gradient term. By Theorem 4.4 of He and Yang (2003), we

know that for any measurable function g(x, y), if the following finite mo-

ment conditions hold:
∫ bF
−∞

dG
1−F

<∞,
∫

dF
G2 <∞, and g2(x,y)

G(x)
F (dx, dy) <∞,

as n→ ∞, we can obtain

√
n

{∫
g(x, y)Fn(dx, dy)−

∫
g(x, y)F (dx, dy)

}
d→ N (0, σ2),

where σ2 = α
∫ (g(x,y)−µ)2

G(x)
F (dx, dy) + α g̃2

(1−F )G2dG, µ =
∫
g(x, y)F (dx, dy),

and g̃(s) =
∫
x≤s

(g(x, y) − µ)F (dx, dy). Following that, we can apply the

above result to obtain the nominal convergence of αn

∑n
i=1

1
Gn(Ui)

K
(1)
h (yi −

xT
i β0)x

T
i u/

√
n. For this purpose, let (g(x, y) − µ)2 = K

(1)
h (ε)XjK

(1)
h (ε)Xk

and g̃2 =
∫
Y≤s

K
(1)
h (ε) XjF (dY, dX)

∫
Y≤s

K
(1)
h (ε)XkF (dY, dX). Thereafter,

we have the following asymptotic normal distribution with Σ = (σ)jk

W = αn

n∑
i=1

1

Gn(Ui)
K

(1)
h (yi − xT

i β0)x
T
i u/

√
n

d→ N (0,Σ),

where

σjk =α

{∫
K

(1)
h (ε)XjK

(1)
h (ε)Xk

G(Y )
F (dY, dX)

+

∫ ∫
Y≤s

K
(1)
h (ε)XjF (dY, dX)

∫
Y≤s

K
(1)
h (ε)XkF (dY, dX)

(1− F (s))G2(s)
G(ds)

}
.
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For Sn,2 = 1
2n

∑n
i=1 αn[Gn(Ui)]

−1K
(2)
h (εi)(x

T
i u)

2, based on the result

from Lemma 2, we can conclude that Sn,2
p→ 1

2
uTE{[K(2)

h (ε) | x]xxT}u.

Combining the first-order and second-order terms, we have

Sn(u) = Sn,1 + Sn,2
d→ −WTu+

1

2
uTE{[K(2)

h (ε) | x]xxT}u.

By the theory of epi-convergence (Geyer, 1994), convergence of functions

implies convergence of their maximizers when the limit function is strictly

concave with a unique maximizer. Since Sn(u)
d→ V (u) and both func-

tions are concave with unique maximizers, we have argmaxu Sn(u)
d→

argmaxu V (u). Because V (u) has a unique maximizer, by taking ∂V (u)/∂u

= 0, we can obtain the unique maximizer u = (E{[K(2)
h (ε) | x]xxT})−1W .

We then complete the proof.

Proof of Theorem 2

LetMn(β) =
∫
Kh(y−xTβ)Fn(dy, dx)−

∫
Kh(y−xTβ0)Fn(dy, dx). Then,

the maximizers of Mn are identical to those of Qn(β) defined in the paper,

since Mn is a shift of Qn(β) by a constant term independent of β. By The-

orem 3.2 of He and Yang (2003), we can obtain∫
ϕ(y,x)Fn(dy, dx) →

∫
ϕ(y,x)F (dy, dx) almost surely,

for any measurement function ϕ(·). Note that this is a uniform convergence
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result for empirical processes based on Glivenko-Cantelli-type theorems,

which ensures that the empirical distribution Fn converges to the true dis-

tribution F uniformly over measurable functions.

With the above result, by defining ϕ(y,x) = Kh(y − xTβ) − Kh(y −

xTβ0), for any fixed β ∈ Rp, we have Mn(β) →M(β) almost surely, where

M(β) = E[Kh(y−xTβ)−Kh(y−xTβ0)] is the population counterpart. To

demonstrate the consistency of the estimator, we analyze the behavior of

the population function M(β) around β0. Under condition C5, we can get

dM(β)

dβ

∣∣∣
β=β0

= E[xK(1)
h (y − xTβ)]|β=β0

= 0,

d2M(β)

dβdβT
= E[xK(2)

h (y − xTβ)xT ] ≥ 0.

The strict inequality holds for β ̸= β0 in a neighborhood of β0. Thus, β0

is the unique maximizer for M(β).

To establish the consistency, let Ω be any compact set such that for all

β in Ω, ∥β − β0∥ < γ <∞. Because of the concave of Mn(β) in β, by the

concavity and the results from Lemma 1, we have

sup
β∈Ω

|Mn(β)−M(β)| → 0 almost surely,

which implies that Mn(β) uniformly converges to M(β) over Ω. Since

M(β0) > M(β) for β ∈ Ω, β ̸= β0, and M(β) is continuous in β, Lemma

1 implies with probability one that for large enough n, Mn(β0) is greater
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than Mn(β) for any value on the boundary of Ω. Therefore, with proba-

bility one, Mn contains a local maximum in Ω for sufficiently large n. By

the definition of β̂, this implies that with probability one, β̂ is eventually

in Ω. Since Ω can be chosen to be arbitrarily small, it follows that β̂ → β0

almost surely. By following the results of Lemma 2 and Lemma 3, we can

straightforwardly demonstrate the asymptomatic normality.

□

Proof of Theorem 3

Denote λβ0
= ∥λβ0

∥v0 with v0 being a unit vector. To prove Theorem 3,

following Owen (1990), we first need to prove that

max
1≤i≤n

|λT
β0
Ξi(β0)| ≤ ∥λβ0

∥ max
1≤i≤n

|vT
0 Ξi(β0)| = Op(n

−1/2)op(n
1/2) = op(1)

to provide support for the following Taylor expansion. It means that we

need to demonstrate ∥λβ0
∥ = Op(n

−1/2) and max1≤i≤n|vT
0 Ξi(β0)| = op(n

1/2).

Let Ξi(β0) = G−1(Ui)K
(1)
h (εi)Wi. We first prove max1≤i≤n|vT

0 Ξi(β0)| =

o(n1/2) almost surely. At first, according to the construction, we know

that |vT
0 Ξi(β0)| ≥ 0 are i.i.d. random variables due to the independence

of the data. Also, based on kernel conditions listed in C5, it is evident

that E(|vT
0 Ξi(β0)|2) < ∞ because G−1(Ui) and Wi are also well-behaved

in terms of moments. Since E(|vT
0 Ξi(β0)|2) < ∞, the probability that
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|vT
0 Ξi(β0)|2 exceeds n decays sufficiently fast. Specifically, we have

∑∞
i=1

P (|vT
0 Ξi(β0)|2 > n) < ∞, which implies that |vT

0 Ξi(β0)|2 > n occurs only

finitely often with probability one. Now, consider
∑
P (|vT

0 Ξi(β0)| > n1/2).

By applying the same reasoning, the sum of these probabilities is finite∑
P (|vT

0 Ξi(β0)| > n1/2) < ∞. Therefore, by the Borel-Cantelli Lemma

(used to control the growth of sums of probabilities for large n), we can

conclude that |vT
0 Ξi(β0)| > n1/2 occurs only finitely often with probabil-

ity one. If |vT
0 Ξi(β0)| > n1/2 happens only finitely often, it implies that

for sufficiently large n, the maximum max1≤i≤n|vT
0 Ξi(β0)| cannot exceed

n1/2 for large n. The above argument holds for any A > 0 such that

max1≤i≤n|vT
0 Ξi(β0)| > An1/2 occurs finitely often. Therefore, we achieve

lim sup max
1≤i≤n

|vT
0 Ξi(β0)|/n1/2 ≤ A

with probability one. The above inequality holds simultaneously with prob-

ability one for any countable set of values for A, so max1≤i≤n|vT
0 Ξi(β0)| =

o(n1/2) with probability one.

We then prove ∥λβ0
∥ = Op(n

−1/2). Since λβ0
is the solution of 1

n

∑n
i=1

Ξi(β0)

1+λT
βΞi(β0)

= 0, we can have the following equations

0 =
∥∥∥ 1
n

n∑
i=1

Ξi(β0)

1 + ∥λβ0
∥vT

0 Ξi(β0)

∥∥∥ ≥
∣∣∣vT

0

n

n∑
i=1

Ξi(β0)

1 + ∥λβ0
∥vT

0 Ξi(β0)

∣∣∣
=
∣∣∣vT

0

n

n∑
i=1

Ξi(β0)

(
1−

∥λβ0
∥vT

0 Ξi(β0)

1 + ∥λβ0
∥vT

0 Ξi(β0)

) ∣∣∣ = ∣∣∣vT
0

n

n∑
i=1

Ξi(β0)
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+
vT
0

n

n∑
i=1

Ξi(β0)
G(Ui)−Gn(Ui)

Gn(Ui)
−

∥λβ0
∥vT

0

n

n∑
i=1

Ξi(β0)Ξ
T
i (β0)v0

1 + ∥λβ0
∥vT

0 Ξi(β0)

[
1+

2
G(Ui)−Gn(Ui)

Gn(Ui)
+

(
G(Ui)−Gn(Ui)

Gn(Ui)

)2 ]∣∣∣ ≥ ∥λβ0
∥vT

0 Φn(β0)v0

1 + ∥λβ0
∥max1≤i≤n|vT

0 Ξi(β0)|

−
∣∣∣vT

0

1

n

n∑
i=1

Ξi(β0)
∣∣∣− supU≥aF

|Gn(Ui)−G(Ui)|
G(aF )− supU≥aF

|Gn(Ui)−G(Ui)|(
1

n

n∑
i=1

|vT
0 Ξi(β0)|+

2∥λβ0
∥vT

0 Φn(β0)v0

1 + ∥λβ0
∥max1≤i≤n|vT

0 Ξi(β0)|

)

−
(

supU≥aF
|Gn(Ui)−G(Ui)|

G(aF )− supU≥aF
|Gn(Ui)−G(Ui)|

)2 ∥λβ0
∥vT

0 Φn(β)v0

1 + ∥λβ0
∥max1≤i≤n|vT

0 Ξi(β0)|
,

where Φn(β0) =
∑n

i=1 Ξi(β0)Ξ
T
i (β0).

According to Lemma 3 and Theorem 4.4 of He and Yang (2003), we

can get αn

∑n
i=1

1
Gn(Ui)

K
(1)
h (yi − xT

i β0)x
T
i v0/

√
n

d→ N (0,Σ). Combining

with the Law of Large Numbers, we know that Φn(β0) converges to a pos-

itive definite matrix as n → ∞. These imply that there exists a constant

c > 0 such that P (vT
0 Φn(β0)v0) > c → 1 as n → ∞. In view of (3.5) and

condition C5, by using E[K(1)
h (ε) | X] = 0, we have E(n−1

∑n
i=1 Ξi(β0)) =

E(K(1)
h (εi)WiG

−1(Ui)) = 0 and Var(n−1
∑n

i=1 Ξi(β0)) = O(n−1). There-

fore, we can achieve n−1
∑n

i=1 Ξi(β0) = Op(n
−1/2). Also, according to the

results in Liang et al. (2011), we know that supU≥aF
|Gn(U) − G(U)| =

Op(n
−1/2). Then, we can obtain that

∥λβ0
∥

1 + ∥λβ0
∥max1≤i≤n|vT

0 Ξi(β0)|
= Op(n

−1/2).

We already prove that max1≤i≤n|vT
0 Ξi(β0)| = o(n1/2) with probability one.
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We therefore can conclude that ∥λβ0
∥ = Op(n

−1/2). Based on the above pro-

cedures, we complete the proof of max1≤i≤n|λT
β0
Ξi(β0)| ≤ ∥λβ0

∥ max1≤i≤n

|vT
0 Ξi(β0)| = Op(n

−1/2)op(n
1/2) = op(1).

The preceding result implies that the upcoming Taylor expansion is

valid. Following Owen (1990), applying the second-order Taylor expan-

sion on (1 + λT
β0
Ξi(β0))

−1 for i from 1 to n and approximating the high-

order terms by factoring them into the
(λT

β0
Ξi(β0))

2

1−λT
β0

Ξi(β0)
form, we can obtain from

1
n

∑n
i=1

Ξi(β0)

1+λT
β0

Ξi(β0)
= 0 that

0 =
1

n

n∑
i=1

Ξi(β0)

1 + λT
β0
Ξi(β0)

=
1

n

n∑
i=1

Ξi(β0)

(
1− λT

β0
Ξi(β0) +

(λT
β0
Ξi(β0))

2

1− λT
β0
Ξi(β0)

)

=
1

n

n∑
i=1

Ξi(β0)−
1

n

n∑
i=1

Ξi(β0)Ξ
T
i (β0)λβ0

+
1

n

n∑
i=1

Ξi(β0)
(λT

β0
Ξi(β0))

2

1− λT
β0
Ξi(β0)

.

The above expansion gives

λβ0
= {Φn(β0)}

−1 1

n

n∑
i=1

Ξi(β0) + {Φn(β0)}
−1 rn(β0),

where rn(β0) =
1
n

∑n
i=1 Ξi(β0)(1−λT

β0
Ξi(β0))

−1{λT
β0
Ξi(β0)}2. It is obvious

that max1≤i≤n|λT
β0
Ξi(β0)| = op(1) based on the previous proofs. Thus,

|rn(β0)| ≤ max
1≤i≤n

∥Ξi(β0)∥(1− max
1≤i≤n

|λT
β0
Ξi(β0)|)−1λT

β0
Φn(β0)λβ0

= op(n
1/2)Op(n

−1) = op(n
−1/2).

Therefore, we have

λβ0
= {Φn(β0)}

−1 1

n

n∑
i=1

Ξi(β0) + op(n
−1/2).

The above equation can also be proved by the following way. From 1
n

∑n
i=1



Supplementary Material

Ξi(β0)

1+λT
β0

Ξi(β0)
= 0, we write

0 =
1

n

n∑
i=1

Ξi(β0)

1 + λT
β0
Ξi(β0)

=
1

n

n∑
i=1

Ξi(β0)

(
1− λT

β0
Ξi(β0) +

(λT
β0
Ξi(β0))

2

1− λT
β0
Ξi(β0)

)

=
1

n

n∑
i=1

Ξi(β0)− Φn(β0)λβ0
+

1

n

n∑
i=1

Ξi(β0)
G(Ui)−Gn(Ui)

Gn(Ui)

− 1

n

n∑
i=1

Ξi(β0)Ξ
T
i (β0)λβ0

[
2
G(Ui)−Gn(Ui)

Gn(Ui)
+

(
G(Ui)−Gn(Ui)

Gn(Ui)

)2
]

+
1

n

n∑
i=1

Ξi(β0)(λ
T
β0
Ξi(β0))

2

1 + λT
β0
Ξi(β0)

(
1 +

G(Ui)−Gn(Ui)

Gn(Ui)

)3

.

At the same time, we know that

∥∥∥ 1
n

n∑
i=1

Ξi(β0)(λ
T
β0
Ξi(β0))

2

1− λT
β0
Ξi(β0)

∥∥∥ ≤ 1

n

n∑
i=1

∥Ξi(β0)∥3∥λβ0
∥2|1− λT

β0
Ξi(β0)|−1

= op(n
−1/2).

Thus, from max1≤i≤n|λT
β0
Ξi(β0)| ≤ ∥λβ0

∥max1≤i≤n|vT
0 Ξi(β0)| = Op(n

−1/2)

op(n
1/2) = op(1) and the consistency result supU≥aF

|Gn(U) − G(U)| =

Op(n
−1/2) from Liang et al. (2011), we can achieve the result.

Similarly, by the third order Taylor expansion on log(1 + λT
β0
Ξi(β0))

for all i, we can approximate L(β0) = 2
∑n

i=1 log{1 + λT
β0
Ξi(β0)} as

L(β0) = 2
n∑

i=1

λT
β0
Ξi(β0)−

n∑
i=1

{
λT

β0
Ξi(β0)

}2

+
2

3

n∑
i=1

{
λT

β0
Ξi(β0)

}3

(1 + η∗i )
−3,

where η∗i lies between 0 and λT
β0
Ξi(β0). Since η∗i lies in the interval [0,

λT
β0
Ξi(β0)], we know that 0 ≤ η∗i ≤ max1≤i≤n|η∗i |. Thus, (1 + η∗i )

−3 is

bounded from above by (1+η∗i )
−3 ≤ (1−max1≤i≤n|η∗i |)−3. By the previous



Kernel Mode-Based Regression under Random Truncation

result max1≤i≤n|λT
β0
Ξi(β0)| ≤ ∥λβ0

∥max1≤i≤n|vT
0 Ξi(β0)| = Op(n

−1/2)op(n
1/2)

= op(1), this upper bound remains well-behaved as a constant independent

of n. Also, using matrix notation, we can rewrite the quadratic sum as

n∑
i=1

(λT
β0
Ξi(β0))

2 = nλT
β0

(
n−1

n∑
i=1

Ξi(β0)Ξ
T
i (β0)

)
λβ0

= nλT
β0
Φn(β0)λβ0

,

where Φn(β0) = n−1
∑n

i=1 Ξi(β0)Ξ
T
i (β0). Then, we can calculate that∣∣∣ n∑

i=1

{
λT

β0
Ξi(β0)

}3

(1 + η∗i )
−3
∣∣∣ ≤ n∑

i=1

|λT
β0
Ξi(β0)|3(1− max

1≤i≤n
|η∗i |)−3

≤ max
1≤i≤n

|λT
β0
Ξi(β0)|(1− max

1≤i≤n
|η∗i |)−3

n∑
i=1

|λT
β0
Ξi(β0)|2

= max
1≤i≤n

|λT
β0
Ξi(β0)|(1− max

1≤i≤n
|η∗i |)−3nλT

β0
Φn(β0)λβ0

= op(1)Op(1) = op(1),

where according to the previous calculations, max1≤i≤n|λT
β0
Ξi(β0)| = op(1),

(1 − max1≤i≤n|η∗i |)−3 is bounded as a constant, and nλT
β0
Φn(β0)λβ0

=∑n
i=1(λ

T
β0
Ξi(β0))

2 = Op(1) is controlled by max1≤i≤n|λT
β0
Ξi(β0)| = op(1)

and the convergence of Φn(β0). The above equation can also be proved by

the following way. By Taylor’s expansion, we have

L(β0) = 2
n∑

i=1

λT
β0
Ξi(β0)−

n∑
i=1

{
λT

β0
Ξi(β0)

}2

+ 2
n∑

i=1

λT
β0
Ξi(β0)

G(Ui)−Gn(Ui)

Gn(Ui)

−
n∑

i=1

{
λT

β0
Ξi(β0)

}2
[
2
G(Ui)−Gn(Ui)

Gn(Ui)
+

(
G(Ui)−Gn(Ui)

Gn(Ui)

)2
]

+O

(
∥λβ0

∥ max
1≤i≤n

|λT
β0
Ξi(β0)|

n∑
i=1

Ξi(β0)Ξ
T
i (β0)

(
1 +

G(Ui)−Gn(Ui)

Gn(Ui)

)2
)
.



Supplementary Material

Following the previous arguments, by incorporating λβ0
= {Φn(β0)}

−1 1
n

∑n
i=1

Ξi(β0)+op(n
−1/2), we obtain L(β0) = 2

∑n
i=1 λ

T
β0
Ξi(β0)−

∑n
i=1

{
λT

β0
Ξi(β0)

}2

+op(1). Then, the rest task is to prove chi-square distribution for L(β0).

Define Ξ = n−1
∑n

i=1 Ξi(β0). Rewriting L(β0) in a matrix format,

L(β0) = 2
n∑

i=1

log
{
1 + λT

β0
Ξi(β0)

}
= 2

n∑
i=1

λT
β0
Ξi(β0)−

n∑
i=1

{
λT

β0
Ξi(β0)

}2

+ op(1) = 2
n∑

i=1

λT
β0
Ξi(β0)−

n∑
i=1

λT
β0
Ξi(β0)Ξ

T
i (β0)λβ0

+ op(1)

= 2nλT
β0
Ξ− nλT

β0
Φn(β0)λβ0

+ op(1) = 2nΞ
T{Φn(β0)}−1Ξ−

nΞ
T{Φn(β0)}−1Φn(β0){Φn(β0)}−1Ξ + op(1) = nΞ

T{Φn(β0)}−1Ξ

+ op(1) =
{
n−1/2

n∑
i=1

Ξi(β0)
}T

{Φn(β0)}−1
{
n−1/2

n∑
i=1

Ξi(β0)
}
+ op(1),

where Φn(β0) = n−1
∑n

i=1 Ξi(β0)Ξ
T
i (β0), λβ0

= {Φn(β0)}
−1 1

n

∑n
i=1 Ξi(β0)+

op(n
−1/2) = {Φn(β0)}

−1 Ξ + op(n
−1/2), and Ξi(β0) = G−1

n (Ui)K
(1)
h (εi)Wi.

According to Lemma 3 and Theorem 4.4 of He and Yang (2003), we have the

asymptotic normality
∑n

i=1
1

Gn(Ui)
K

(1)
h (εi)Wi/

√
n =

∑n
i=1 Ξi(β0)/

√
n

d→

N (0,Σ∗), where the covariance matrix Σ∗ = limn→∞ Var(n−1/2
∑n

i=1 Ξi(β0)).

According to the theory of quadratic forms, if Z ∼ N (0,Σ∗), the

quadratic form ZTΣ∗−1Z ∼ χ2
p, where p is the dimension of Z. Based

on these arguments, let Z =
∑n

i=1 Ξi(β0)/
√
n, we can have(

n∑
i=1

Ξi(β0)/
√
n

)T (
lim
n→∞

Var(n−1/2

n∑
i=1

Ξi(β0))

)−1( n∑
i=1

Ξi(β0)/
√
n

)
∼ χ2

p.
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In addition, we know that Ξi(β0) are independent random variables

with E(Ξi(β0)) = 0 and covariance matrix Φn(β0) = n−1
∑n

i=1 Ξi(β0)Ξ
T
i (β0).

As n → ∞, the sample covariance matrix Φn(β0) converges in probability

to the true asymptotic covariance matrix Σ∗ with the regularity conditions

C1-C7. Therefore, according to the above equation, as n→ ∞, we obtain{
n−1/2

n∑
i=1

Ξi(β0)
}T

{Φn(β0)}−1
{
n−1/2

n∑
i=1

Ξi(β0)
}

d→ χ2
p.

This completes the proof with

L(β0) = 2
n∑

i=1

log
{
1 + λT

β0
Ξi(β0)

}
=
{
n−1/2

n∑
i=1

Ξi(β0)
}T

{Φn(β0)}−1
{
n−1/2

n∑
i=1

Ξi(β0)
}
+ op(1)

d→ χ2
p.

□

Proof of Theorem 4

Recall that β0 = (βT
1,0,β

T
2,0)

T is the true parameter vector, where β1,0 cor-

responds to the significant variables, and β2,0 = 0(p−s)×1 corresponds to the

insignificant variables. Denote ξ =
√
n(β−β0), ξ̂ =

√
n(β̂

p
−β0), and ξ̂1 =

√
n(β̂

p

1−β1,0). Then, β̂
p
is the maximizer of the following penalized function

αn

n∑
i=1

1

Gn (Ui)
Kh(Ui −WT

i β) + n

p∑
j=1

p
(1)
λ

(
|β(0)

j |
)
sgn(β

(0)
j )(βj − β0j).

Notice that Ui−WT
i β = Ui−WT

i β0−WT
i (β−β0) = εi−

1√
n
WT

i ξ, where

εi = Ui −WT
i β0. Thus, the objective function becomes
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Qn(ξ) =αn

n∑
i=1

1

Gn (Ui)
{Kh(εi −WT

i ξ/
√
n)−Kh(εi)}

+ n

p∑
j=1

p
(1)
λ

(
|β(0)

j |
)
sgn(β

(0)
j )(βj − β0j).

Note that the second term (the penalty term) converges to zero when the

true parameters are within the correct model. Specifically, we have

n

p∑
j=1

p
(1)
λ

(
|β(0)

j |
)
sgn(β

(0)
j )(βj − β0j)

p→


0 if β2 = β2,0,

∞ otherwise.

Therefore, we obtain β̂
p

2

p→ 0, meaning that the penalty drives the irrelevant

variables to zero.

To further analyze the asymptotic properties, we define An = αn

n

∑n
i=1

1
Gn(Ui)

K
(2)
h (εi)WiW

T
i and Bn = αn√

n

∑n
i=1

1
Gn(Ui)

K
(1)
h (εi) Wi. Then, the pe-

nalized objective function can be approximated as Qn(ξ) ≈
1

2
ξTAξ−BT

n ξ+

n
∑p

j=1 p
(1)
λ (|β(0)

j |) sgn(β(0)
j )(βj − β0j) + op(1). We also have A = E(An)

= E{[K(2)
h (ε) | X]XXT}. Denote Bn,11 be the upper-left s × s submatrix

of Bn. Note that ξ̂ is the maximizer of the Qn(ξ), which can be written

asymptotically as

Qn((ξ
T
1 , 0

T )T ) =
1

2
(ξT1 , 0

T )A(ξT1 , 0
T )T −BT

n (ξ
T
1 , 0

T )T

+ n

p∑
j=1

p
(1)
λ

(
|β(0)

j |
)
sgn(β

(0)
j )(βj − β0j) + op(1) → Q(ξ) =

1

2
ξTΣ1ξ1 −BT

n,11ξ1.

Since Ln(ξ) is a concave function of ξ and L(ξ1) has a unique maximizer, the

epi-convergence theory of Geyer (1994) implies that
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argmaxQn(ξ) =
√
n(β̂

p
− β0)

d→ argmaxQ(ξ1),

which establishes the asymptotic normality part.

To prove the consistency of model selection, we need to show β̂
p

2 =

0(p−s)×1 with probability tending to one. It is equivalent to prove that for

any given β1 satisfying ∥β1−β1,0∥ = Op(n
−1/2) and any constant C, we have

Qp
n{(β1,0)

T} = max
∥β2∥≤Cn−1/2

Qp
n{(β1,β2)

T}.

According to Fan and Li (2001), for βj ̸= 0 and j = s+ 1, · · · , d, we have

dLp(β)

dβj
= −nλ

{
λ−1p

(1)
λ (|βj|)sgn(βj) +Op

( 1√
nλ

)}
.

Since lim infn→∞ lim inft→0+ p
(1)
λ (t)/λ > 0 and n1/2λ → ∞, the sign of the

derivative for βj ∈ (−Cn−1/2, Cn1/2) is completely determined by that

of βj. This implies that the maximum of Qp
n(β) occurs at βj = 0 for

j = s+ 1, . . . , p. Therefore, we conclude that β̂
p

2 = 0(p−s)×1 with probabil-

ity tending to one, proving the consistency of model selection.

□

Proof of Theorem 5

To demonstrate the consistency of the extended BIC selection, that is, the

probability of the selected model being equal to the true model asymptoti-

cally approaches one, we can follow Wang et al. (2007) to study the BIC cor-

responding to estimators that fail to select all of the significant variables and
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estimators that select too many variables. We outline the procedure here.

Suppose that ST denotes the true model, i.e., the set of indices corre-

sponding to the true significant covariates, Sλ indicates the set of the indices

of the covariates selection by the penalized kernel mode-based regression

with tuning parameter λ, Ω− = {λ : Sλ ̸⊃ ST} denotes the under-fitted

models, i.e., models that fail to include all the significant variables, and

Ω+ = {λ : Sλ ̸⊉ ST} represents the over-fitted models, i.e., models that

include additional insignificant variables. We construct a sequence of ref-

erence tuning parameters λn = log(n)/
√
n (i.e., λn → 0 and

√
nλn → ∞).

Then, one can verify that P
(
infλ∈Ω−∪Ω+ BICλ > BICλn

)
→ 1 under mild

conditions. Particularly, for under-fitted models, these models are misspec-

ified and will have a larger bias. Also, the lack of significant variables

leads to a poorer fit, increasing the residual sum of squares. Therefore,

we have P (infλ∈Ω− BICλ > BICλn) → 1. For over-fitted models, these

models may fit the data slightly better due to additional parameters, but

they suffer from overfitting. The BIC includes a penalty term for model

complexity proportional to log(n) times the number of parameters. The

additional insignificant variables increase the penalty without substantially

improving the fit. Therefore, P (infλ∈Ω+ BICλ > BICλn) → 1. This means

that we cannot asymptotically choose a λ that identifies an over-fitted or
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under-fitted model.

Because the penalized mode-based estimator β̂
p

λn
with λn = log(n)/

√
n

is exactly the same as the oracle estimator, it follows immediately that

P (BICλn = BICST
) → 1. As a result, we have P (Sλn,opt = ST ) → 1,

indicating that if the true model is contained within the set of candidate

models, it can be guaranteed to be selected by the proposed BIC method.

□

Proof of Theorem S1

Let Θβ denote the set of limit points of the sequence {β̂
p(m)

}. That is,

Θβ =
{
β̂

∗
: β̂

p(gm)
→ β̂

∗
for some subsequence {β̂

p(gm)
} ⊆ {β̂

p(m)
}
}
.

Let β̂
∗
∈ Θβ. Then, there exists a subsequence {β̂

p(gm)
} such that β̂

p(gm)
→

β̂
∗
as m → ∞. Since the algorithm is a hill-climbing algorithm, it pro-

duces a sequence where the penalized objective function values are non-

decreasing Qp
n(β̂

p(gm+1)
) ≥ Qp

n(β̂
p(gm)

). This implies that {Qp
n(β̂

p(gm)
)} is a

non-decreasing sequence bounded above. Therefore, the sequence converges

limm→∞Qp
n(β̂

p(gm)
) = Qp

n(β̂
∗
).

By the nature of the algorithm, each new estimate is obtained by ap-

plying the mapping M to the previous estimate, i.e., β̂
p(gm+1)

=M(β̂
p(gm)

).

Using the monotonicity and the mapping M , we have
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Qp
n(β̂

p(gm+1)
) = Qp

n(M(β̂
p(gm)

)) ≥ Qp
n(β̂

p(gm)
).

Taking limits as m→ ∞, we get

lim
m→∞

Qp
n(β̂

p(gm+1)
) = lim

m→∞
Qp

n(M(β̂
p(gm)

)) = Qp
n(β̂

∗
).

Assuming that M(β) is continuous at β̂
∗
, we have

lim
m→∞

M(β̂
p(gm)

) =M
(
lim

m→∞
β̂

p(gm)
)
=M(β̂

∗
).

Therefore, we have

Qp
n(β̂

∗
) = Qp

n

(
lim

m→∞
M(β̂

p(gm)
)
)
= Qp

n(M(β̂
∗
)),

which completes the proof.

□
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