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S1 Technical proofs

Proof of Lemma 1. For any (7, 7,1) € [n] x [n] x [L], we have

PM(Ai 1) = 2| Aiju = )

sup sup sup — p

1<i<j<n,l€[L) #€{0,1} x,x’€{0,1} P(M(»Ad,j,l) = $|A¢,j,l =2 )

0 1-—46
1-6" 0

= max{1, } = exp(e),

where the last inequality follows from the assumption that 6 = (1 +
exp(—e))f1 |
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Proof of Lemma 2. As in the proof of Lemma 1, 0, ; = (1 —i—exp(—ei,j))_l.

1+fifi
1—fifj

j<n. [ |

The decomposition (4) immediately yields that ¢; ; = log for 1 <i<

Proof of Lemma 3. Combining the fact that IE(AEZJ)) = diijéch and the
definition of flipping mechanism, we have
B(Ms,, (A7) = B(M,, (AT)A) = 1)did; BY,,
+E(M,, (A1) AT) = 0)(1 — did; B,
= 0;;d;d; BY, + (1= 0,;)(1 — did; B, )
= (20;; — 1)did; BY, + (1 —0;;).
= fif;did; BY,, + %(1 = fifi)-
This completes the proof. [ |

Proof of Lemma 4. We first define U such that ﬁl =U,./|Ui.||2- By

the definition of U, we have

Ui,: = fidi/\/’ycfocf,:-

By the fact that [[O.: .|| = 1, we further have U = O.: .. Clearly, U has only

K distinct rows, and each corresponding to one community. It immediately
follows that ﬁz = ~j7; if ¢ = cj. Further, as O is an orthogonal matrix, ﬁz
and ﬁj7; are perpendicular to each other if ¢f # ¢} and |U;.|| = 1. We thus
conclude that ||IN], - [NIJH =V2if ¢ # c;, for 4,7 € [n]. This completes
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the proof. ]

Lemma 1. Under the conditions of Lemma 4, there exists an orthogonal

matriz O € REXE such that the left singular vectors corresponding to the

non-zero singular values of My(P)(V @ U) is UOW.

Proof of Lemma [Il Since the columns of V and U are all orthonormal
vectors, V ® U is also a column orthogonal matrix. Note that the Tucker

decomposition of P implies that
M, (P) =UM,(C)(V oU)".

Let OMl(C)EMl(C)V,\T/lI(c) be the singular value decomposition of M;(C),

it then follows that
Mi(P)(V @U) = (UOm, ) Emiic) Vi, -

Therefore, (UOpm,(c))X Ml(C)V,AT/h(c) is the singular value decomposition

of M{(P)(V @ U). The desired result immediately follows by taking

O = Op, (c).- u
Lemma 2. Under Assumptions A, it holds true that
0% (Ml('ﬁ)(V ® U)) = ns,yV'L, fork e (K],

where 1 = L3 f2d2.
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Proof of Lemma [2. The Tucker decomposition of P implies that
o (ML(P)(V @ U)) = 0, (UM, (C)(V @ U)T(V @ U)) = 0 (M,(C)),

where the last equality follows from the fact that U has orthonormal columns
and hence does not affect the singular values. It then follows from the Tucker

decomposition of B x; I' x5 I that
O'k(Ml(C)) = O'k(OMl(C)<V & O)T) = O'k(Ml(B X1 T X9 F))

Let FO = I'B.. T, for | € [L], and then we have M;(B x; ' X, T') =

([FO, ..., FD]). With this, it follows that

1/2

o (MUP)V 9 U)) = au(([FV,... FO)) = (W Y FOFEO)T))

where A\i(-) denotes the k-th largest eigenvalue of a symmetric matrix. By

Assumptions A, we have
A (FO(FONTY < (ns,)?, for | € [L].
Further, it follows from Weyl’s inequality that
)\k<iF(l)(F(”)T) = n2s2¢° L, for k € [K].
=1

The desired result then follows immediately. |

Lemma 3. Denote 6,, = || M1(A)(VQU)—-M(P)(VRU)|. Then there

exists an orthogonal matriz O such that

~ 22 (20, (M(P)V @ U)) +5,)5,
U -UO?||p < — .
o3 (Mu(P)(V @ U))
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Proof of Lemma [3} By Lemmall] we know that there exists an orthogonal
matrix O such that, UOW are the left singular vectors corresponding to
the non-zero singular values of M, (P)(V @U). Applying similar argument

in Lemma [1] to A, there exists an orthogonal matrix O® € RE*K such

that UO® are the left singular vectors corresponding to the first K leading

singular values of M;(A)(V @ U). By Theorem 3 in [2], there exists an

orthogonal matrix O™ such that

||ﬁ _ U0(1)0(4)(0(3))T||F _ Hﬁ0(3) _ U0(1)0(4)||F

2v/2 (201 (ML(P)(V @ U)) + 5n)5n
0% (ML (P)(V @ U)) '

The desired result then follows immediately by taking O? = OWOW(OGNHT,

Lemma 4. Let §,, be defined in Lemma [ Under Assumptions A to D, it

holds true that
Op = Op<\/ng0n logn),

where @, = 1 — min;ep,) fi + 4s,.

Proof of Lemma [4. Note that

, (SL.1)

1,7 %,J

Hml(A"' _P)(Ve U)’ _ H i Z(A@. ~- POEWVI oU

where E() is the square matrix with 1 in the (4, j)-th and (j,4)-th entries
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and 0 otherwise. Clearly, (AVEZJ) — f’z(?)E(”)(VlT ® U) are independent
zero-mean random matrices, for ¢, 5 € [n], [ € [L].
Next, we proceed to verify the required conditions of the matrix Bernstein

inequality (Theorem 1.6 in [I]) in order to provide an probabilistic upper

bound for (S1.1)). For each i,j € [n] and [ € [L], we have

V..U, V,..oU,.)|, ifi<j,
sy < [I0 SO, i
1,7 (2%} 5t —_
|vi.ou)]| if i = .
(S1.2)

The right-hand side of ((S1.2)) can be further upper bounded by v/2|V;.|| max
{|U;.|I, l|U;.||}, where the coefficient v/2 is due to the case that i < j and

cF = c;f. Note that

]

oL, (Mg(C x1 0 Xo O)) =0y, (VM3(C x1 0 Xo O))

_— (Mg(B) (T r)) = Q(npVLsy,),

where the last equality follows from Assumption D. Therefore, for any [ € [L],

we have

Vi, llow, (Mg(c %1 O x5 o)) < [|(Vi.)"M;5(C x1 O x, O)|

=[[(€x10%x20x3V)_|r

Y

=[(Bx1TxT)_ lr= O(nisy,).



S1. TECHNICAL PROOFS

Combining the above two bounds implies that

[Vidllo, (Ma(€ x1 0 x, 0))
oL (Mg(C X1 0 Xo O))

Vil =

Thus, it follows from Assumption A and B that

A0 - BBV U < 26 <op/ L
|l - PO BV oU| < me{nm’nq}_cﬂ/w

for some absolute constant Cy. We next proceed to bound the second-order

central moment. Denote

L
Var, = )Y E(A]) - ) EW (VI o U) (VI o U) B,

=1 1<y

L
Var, = 3 0 Y E(A[ - BY)’ (VZT ® U> B ROV e U).

=1 i<j

In what follows, we proceed to bound ||Vary|| and ||Vars||, separately, and

then obtain a upper bound for max{||Var||, || Vars||}.
Let Q = F'D and then we can verify that (WT ® U) (VlT ® U)T =
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IV..IPQZT2Z"Q. Thus,

Var; = ZHV ” ZE P(l )2E'Lj QZF 2zTQEz])
—ZHV Sl Pos A )
i<j

x BWQZT2ZTQE")

Mh I Mh

1 2 f2 - -
|V |2 Z _ 4 f — 2P, ;1)*) ECQZT*Z"QE )
1<j
onl Vi |I?
4

PN

L
y g VL2
§ :E(z,])QZI\—QZTQE(ZJ) — § %(K[n —+ Gc)7

1<j =1

N
Il
MR

where ¢, = 1 —min;ep,) f +4s,, I, is the n-dimensional identity matrix, and
G. is a n x n matrix such that (G.);; = 0 for i € [n], (Ge)i; = (fifjdid;)v"
if ¢f = ¢} and 0 otherwise for ¢ # j. Herein, the partial order < between two
matrix M® and M® is defined as M < M® if and only if M@ — M)

is positive semi-definite. This leads to

L L
n V: 2 /fz2d12n6* n V: 2
G =1

=1

where the first inequality follows from the triangle inequality, Gershgorin
circle theorem and Cauchy-Schwarz inequality, and the second inequality

follows from Assumption B.
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Next, we turn to bound the spectral norm of Var,. Note that

Ve, = 3° Y B(AY - BV & UY TN (VY @ U)

=1 i<y
L

-3 VT®U) (Y EAY - PO IO (VT o U)
=1 1<j
L T 2 £2

=S 07 e U) (X (1~ - 2P ) K 0 1)
=1 i<j

where I(+) is the diagonal matrix with the (4,7)-th and (4,7)-th entries

being 1 and all other entries being zero. Hence,

| Vara)| < | Z

Since n > (K + (), the variance condition can be met by the fact that

nsonllV I
4

vl o) (VI @ U) H

o? = max{||Var||, |[Vara||} < 325, ng,||Vi.||?/4. With this, Theorem 1.6

in [I] yields that, for any ¢ > 0,

PSS - Bewr o v 2

=1 i<y

6>
§(n+KL0)eXp{— }
3321ty el Vial® + S22t

By the upper bound of ||V;.||, there exists an absolute constant Cs, such

that for any ¢t > 0,

Cst? }

P([Mid =PV o 0)] = 1) < exp {2100 — = -
n nL
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Taking t = , /(%gonnlog n, then with probability at least 1 — n=2, we have

HMl(.Z(—’IS)(V(@U)H < @/%gpnnlogn. (S1.3)

This completes the proof. [ |
Proof of Theorem 1. Let U € R™X be any matrix having orthonormal
columns such that the column space of U is the same as the one that spanned
by the first K leading left singular vectors of M;(A). Then the (1 + 7)-
optimal K-medians algorithm is applied to estimate assignment matrix and

spectral embedding centers, which finds a pair of solution (2 , ﬁ\/) such that

|ZW —Ullos < (1+7) _ min  [|ZW = Ulla..

ZcA WCREXK
Define S = {i: ¢/ =k, ||2,‘//‘\/ - ﬁi710(2)|| > \/2/2}, where O®) is defined
as in Lemma [3] It is easy to show that
[GO® = ZW o1 < [UO® ~ sy + U = ZW |z,

< 2+7)]|UOP = U,

—

where the last inequality follows from the (1 + 7)-optimality of (2 ,W).

A N jU,.0® - UH
IGO0 ~Tlas =Y || 5 ,
,Z_; IIUi,:H ||U || Z 1U;,.0®
where the inequality follows from the fact that H T = T H < ””ﬁmlf” for

any two vectors with same dimension. By the Cauchy-Swartz inequality, we
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further have

. = & N 1
UO® — Uy, <2 U;.0® Ui’ ) =53
|| |2 < \;H : 12 o, o

n N n 70;
=2, > IU0:00 - T2\ [ 3 5
i=1 J

=2|U0® ~ U]

- IYC; ~
> e U0 ~Ullr
=1 7377

where v, = n,;Q Zc;:k Ye(fid;) 2. Here it can be verified that vy, takes value
in [1, 00) and higher privacy requirement of nodes within community & leads
to larger value of vy, which then leads to a slower convergence rate.

Next, we proceed to establish the connection between the Hamming

error of é and |[UO? — [7||% It is straightforward to verified that

K
1
Err(é,c) < — Z S|
"=
2 ~ AN
£“U0(2) — ZW ||y,
n

2(4 4+ 2 ~
WHUOQ) ~Ullp

IN

<
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Combined with Lemma [3| and [ it follows that

V2(4 + 27)

Err(é,c’) <

_ V/Z (16 4 87) (201 (M(P)(V 2 1)) + 6, ),

n 0% (M, (P)(V @ U))

luo®

K
_ Venlogn —pnlogn
a Op(\ ka( VnLs, ¥ i ns%EQL >

-0\ )

where the last equality follows from the lower of s, in Assumption 3, yielding

that V\/“"Llogg vanishes. This completes the proof. [ |

Proof of Corollary 1. (1) Suppose f;f; < a2, for i,j € [n], under the

2
143 Ok 1 O ey | np oo
condition of Corollary 1, we have v, = nd ) Gk PE X T ab < 1,

on=1—a+4s, = O(1), and ¢

%Z?:l(fidi)z = 2. By the result of

theorem 1, we have

Err(é,c¢*) = Op( log n ) =o0,(1).

2 o4
nlLs?ak

(2) Under the condition of Corollary 1, we have

—~

v = Tk Z f21d2 - (aiﬁnnk +(1— ﬁn)nk)n(;nnk/ai + (1 — ﬁn)nk)

c*—k

= (1 - Bn)(ﬁn/ai + 1- ﬁn)

Therefore, \/Zk v X \/(1 — Bn)(Bn/a?2 +1—B,), and ¢, = 1 —a, +4s,, =

12
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O(1). In addition,

n K
— 1 1
@/):EZ EZ b B + (1 = Bu)ri) = Q1 — Bn).
i=1 k=1
Note that the condition (’f 7 < ?OLg “2 and rILOLgs% = o(1) imply that

(1-— Bn)( +1-— Bn) < nLsi” . By the result of Theorem 1, we have

logn

n TL]'
Err(@c*)zO(\/( (21— 5,) :LS‘;%%:%(D-
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