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S1 Technical proofs

Proof of Lemma 1. For any (i, j, l) ∈ [n]× [n]× [L], we have

sup
1≤i<j≤n,l∈[L]

sup
x̃∈{0,1}

sup
x,x′∈{0,1}

P (M(Ai,j,l) = x̃|Ai,j,l = x)

P (M(Ai,j,l) = x̃|Ai,j,l = x′)

= max{1, θ

1− θ
,
1− θ

θ
} = exp(ϵ),

where the last inequality follows from the assumption that θ =
(
1 +

exp(−ϵ)
)−1. ■
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Proof of Lemma 2. As in the proof of Lemma 1, θi,j =
(
1+ exp(−ϵi,j)

)−1.

The decomposition (4) immediately yields that ϵi,j = log
1+fjfj
1−fifj for 1 ≤ i <

j ≤ n. ■

Proof of Lemma 3. Combining the fact that E(A(l)
i,j) = didjB

(l)
ci,cj and the

definition of flipping mechanism, we have

E(Mθi,j(A
(l)
i,j)) = E(Mθi,j(A

(l)
i,j)|A

(l)
i,j = 1)didjB

(l)
ci,cj

+ E(Mθi,j(A
(l)
i,j)|A

(l)
i,j = 0)(1− didjB

(l)
ci,cj

)

= θi,jdidjB
(l)
ci,cj

+ (1− θi,j)(1− didjB
(l)
ci,cj

)

= (2θi,j − 1)didjB
(l)
ci,cj

+ (1− θi,j).

= fifjdidjB
(l)
ci,cj

+
1

2
(1− fifj).

This completes the proof. ■

Proof of Lemma 4. We first define Ũ such that Ũi,: = Ui,:/∥Ui,:∥2. By

the definition of U , we have

Ui,: = fidi/
√
γc∗iOc∗i ,:

.

By the fact that ∥Oc∗i ,:
∥ = 1, we further have Ũ = Oc∗i ,:

. Clearly, Ũ has only

K distinct rows, and each corresponding to one community. It immediately

follows that Ũi,: = Ũj,: if c∗i = c∗j . Further, as O is an orthogonal matrix, Ũi,:

and Ũj,: are perpendicular to each other if c∗i ̸= c∗j and ∥Ũi,:∥ = 1. We thus

conclude that ∥Ũi,: − Ũj,:∥ =
√
2 if c∗i ̸= c∗j , for i, j ∈ [n]. This completes
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the proof. ■

Lemma 1. Under the conditions of Lemma 4, there exists an orthogonal

matrix O(1) ∈ RK×K , such that the left singular vectors corresponding to the

non-zero singular values of M1(P̃)(V ⊗U) is UO(1).

Proof of Lemma 1. Since the columns of V and U are all orthonormal

vectors, V ⊗U is also a column orthogonal matrix. Note that the Tucker

decomposition of P̃ implies that

M1(P̃) = UM1(C)(V ⊗U)T .

Let OM1(C)ΣM1(C)V
T
M1(C) be the singular value decomposition of M1(C),

it then follows that

M1(P̃)(V ⊗U) = (UOM1(C))ΣM1(C)V
T
M1(C).

Therefore, (UOM1(C))ΣM1(C)V
T
M1(C) is the singular value decomposition

of M1(P̃)(V ⊗ U). The desired result immediately follows by taking

O(1) = OM1(C). ■

Lemma 2. Under Assumptions A, it holds true that

σk
(
M1(P̃)(V ⊗U)

)
≍ nsnψ

√
L, for k ∈ [K],

where ψ = 1
n

∑n
i=1 f

2
i d

2
i .
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Proof of Lemma 2. The Tucker decomposition of P̃ implies that

σk
(
M1(P̃)(V ⊗U)

)
= σk

(
UM1(C)(V ⊗U)T (V ⊗U)

)
= σk

(
M1(C)

)
,

where the last equality follows from the fact that U has orthonormal columns

and hence does not affect the singular values. It then follows from the Tucker

decomposition of B ×1 Γ×2 Γ that

σk
(
M1(C)

)
= σk

(
OM1(C)(V ⊗O)T

)
= σk

(
M1(B ×1 Γ×2 Γ)

)
.

Let F (l) = ΓB:,:,lΓ, for l ∈ [L], and then we have M1(B ×1 Γ×2 Γ) =

([F (1), ...,F (L)]). With this, it follows that

σk
(
M1(P̃)(V ⊗U)

)
= σk([F

(1), ...,F (L)]) =
(
λk

( L∑
l=1

F (l)(F (l))T
))1/2

,

where λk(·) denotes the k-th largest eigenvalue of a symmetric matrix. By

Assumptions A, we have

λk
(
F (l)(F (l))T

)
≍ (nsnψ)

2, for l ∈ [L].

Further, it follows from Weyl’s inequality that

λk

( L∑
l=1

F (l)(F (l))T
)
≍ n2s2nψ

2
L, for k ∈ [K].

The desired result then follows immediately. ■

Lemma 3. Denote δn = ∥M1(Ã)(V ⊗U )−M1(P̃)(V ⊗U )∥. Then there

exists an orthogonal matrix O(2) such that

∥Û −UO(2)∥F ≤
2
√
2
(
2σ1

(
M1(P̃)(V ⊗U )

)
+ δn

)
δn

σ2
K

(
M1(P̃)(V ⊗U)

) .
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Proof of Lemma 3. By Lemma 1, we know that there exists an orthogonal

matrix O(1) such that, UO(1) are the left singular vectors corresponding to

the non-zero singular values of M1(P̃)(V ⊗U ). Applying similar argument

in Lemma 1 to Ã, there exists an orthogonal matrix O(3) ∈ RK×K such

that ÛO(3) are the left singular vectors corresponding to the first K leading

singular values of M1(Ã)(V ⊗U). By Theorem 3 in [2], there exists an

orthogonal matrix O(4) such that

∥Û −UO(1)O(4)(O(3))T∥F = ∥ÛO(3) −UO(1)O(4)∥F

≤
2
√
2
(
2σ1

(
M1(P̃)(V ⊗U)

)
+ δn

)
δn

σ2
K

(
M1(P̃)(V ⊗U)

) .

The desired result then follows immediately by taking O(2) = O(1)O(4)(O(3))T .

■

Lemma 4. Let δn be defined in Lemma 3. Under Assumptions A to D, it

holds true that

δn = Op

(√
nφn log n

)
,

where φn = 1−mini∈[n] fi + 4sn.

Proof of Lemma 4. Note that

∥∥∥M1(Ã− P̃)(V ⊗U)
∥∥∥ =

∥∥∥ L∑
l=1

∑
i≤j

(Ã
(l)
i,j − P̃

(l)
i,j )E

(i,j)V T
l,: ⊗U

∥∥∥, (S1.1)

where E(i,j) is the square matrix with 1 in the (i, j)-th and (j, i)-th entries
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and 0 otherwise. Clearly, (Ã
(l)
i,j − P̃

(l)
i,j )E

(i,j)(V T
l,: ⊗ U) are independent

zero-mean random matrices, for i, j ∈ [n], l ∈ [L].

Next, we proceed to verify the required conditions of the matrix Bernstein

inequality (Theorem 1.6 in [1]) in order to provide an probabilistic upper

bound for (S1.1). For each i, j ∈ [n] and l ∈ [L], we have

∥∥∥(Ã(l)
i,j − P̃

(l)
i,j )E

(i,j)V T
l,: ⊗U

∥∥∥ ≤


∥∥∥(Vl,: ⊗Uj,:,Vl,: ⊗Ui,:

)∥∥∥, if i < j,∥∥∥(Vl,: ⊗Ui,:

)∥∥∥, if i = j.

(S1.2)

The right-hand side of (S1.2) can be further upper bounded by
√
2|Vl,:||max

{||Ui,:||, ||Uj,:||}, where the coefficient
√
2 is due to the case that i < j and

c∗i = c∗j . Note that

σL0

(
M3

(
C ×1 O ×2 O

))
= σL0

(
V M3

(
C ×1 O ×2 O

))
= σL0

(
M3

(
B
)
(Γ⊗ Γ)

)
= Ω(nψ

√
Lsn),

where the last equality follows from Assumption D. Therefore, for any l ∈ [L],

we have

∥Vl,:∥σL0

(
M3

(
C ×1 O ×2 O

))
≤ ∥(Vl,:)TM3

(
C ×1 O ×2 O

)
∥

= ∥
(
C ×1 O ×2 O ×3 V

)
:,:,l

∥F

= ∥
(
B ×1 Γ×2 Γ

)
:,:,l

∥F = O(nψsn).
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Combining the above two bounds implies that

∥Vl,:∥ =
∥Vl,:∥σL0

(
M3

(
C ×1 O ×2 O

))
σL0

(
M3

(
C ×1 O ×2 O

)) = O
( 1√

L

)
.

Thus, it follows from Assumption A and B that

∥∥∥(Ã(l)
i,j − P̃

(l)
i,j )E

(i,j)V T
l,: ⊗U

∥∥∥ ≤
√

2C1

Lmin{nc∗i, nc∗j}
≤ C2

√
1

nL
,

for some absolute constant C2. We next proceed to bound the second-order

central moment. Denote

Var1 =
L∑
l=1

∑
i≤j

E
(
Ã

(l)
i,j − P̃

(l)
i,j

)2
E(i,j)

(
V T
l,: ⊗U

)(
V T
l,: ⊗U

)T
E(i,j),

Var2 =
L∑
l=1

∑
i≤j

E
(
Ã

(l)
i,j − P̃

(l)
i,j

)2(
V T
l,: ⊗U

)T
E(i,j)E(i,j)

(
V T
l,: ⊗U

)
.

In what follows, we proceed to bound ∥Var1∥ and ∥Var2∥, separately, and

then obtain a upper bound for max{∥Var1∥, ∥Var2∥}.

Let Q = FD and then we can verify that
(
V T
l,: ⊗ U

)(
V T
l,: ⊗ U

)T
=
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∥Vl,:∥2QZΓ−2ZTQ. Thus,

Var1 =
L∑
l=1

∥Vl,:∥2
∑
i≤j

E(Ã(l)
i,j − P̃

(l)
i,j )

2E(i,j)QZΓ−2ZTQE(i,j)

=
L∑
l=1

∥Vl,:∥2
∑
i≤j

(fifjP i,j,l +
1− fifj

2
)(
1 + fifj

2
− fifjP i,j,l)

×E(i,j)QZΓ−2ZTQE(i,j)

=
L∑
l=1

∥Vl,:∥2
∑
i≤j

(1
4
−
f 2
i f

2
j

4
(1− 2P i,j,l)

2
)
E(i,j)QZΓ−2ZTQE(i,j)

⪯
L∑
l=1

φn∥Vl,:∥2

4

∑
i≤j

E(i,j)QZΓ−2ZTQE(i,j) =
L∑
l=1

φn∥Vl,:∥2

4
(KIn +Gc),

where φn = 1−mini∈[n] f +4sn, In is the n-dimensional identity matrix, and

Gc is a n×n matrix such that (Gc)ii = 0 for i ∈ [n], (Gc)ij = (fifjdidj)γ
−1
c∗i

if c∗i = c∗j and 0 otherwise for i ̸= j. Herein, the partial order ⪯ between two

matrix M (1) and M (2) is defined as M (1) ⪯ M (2) if and only if M (2)−M (1)

is positive semi-definite. This leads to

∥Var1∥ ≤
L∑
l=1

φn∥Vl,:∥2

4

(
K +max

i∈[n]

√
f 2
i d

2
inc∗i
γc∗i

)
≤

L∑
l=1

φn∥Vl,:∥2

4
(K +

√
C1),

where the first inequality follows from the triangle inequality, Gershgorin

circle theorem and Cauchy-Schwarz inequality, and the second inequality

follows from Assumption B.
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Next, we turn to bound the spectral norm of Var2. Note that

Var2 =
L∑
l=1

∑
i≤j

E(Ã(l)
i,j − P̃

(l)
i,j )

2(V T
l,: ⊗U)TI(i,j)(V T

l,: ⊗U)

=
L∑
l=1

(V T
l,: ⊗U

)T (∑
i≤j

E(Ã(l)
i,j − P̃

(l)
i,j )

2I(i,j)
)
(V T

l,: ⊗U)

=
L∑
l=1

(V T
l,: ⊗U

)T (∑
i≤j

(1
4
−
f 2
i f

2
j

4
(1− 2P i,j,l)

2
)
I(i,j)

)
(V T

l,: ⊗U)

⪯
L∑
l=1

nφn
4

(V T
l,: ⊗U )T (V T

l,: ⊗U),

where I(i,j) is the diagonal matrix with the (i, i)-th and (j, j)-th entries

being 1 and all other entries being zero. Hence,

∥Var2∥ ≤
∥∥∥ L∑
l=1

nφn
4

(V T
l,: ⊗U)T (V T

l,: ⊗U)
∥∥∥ ≤

L∑
l=1

nφn∥Vl,:∥2

4
.

Since n ≫ (K + C1), the variance condition can be met by the fact that

σ2 = max{∥Var1∥, ∥Var2∥} ≤
∑L

l=1 nφn∥Vl,:∥2/4. With this, Theorem 1.6

in [1] yields that, for any t > 0,

P
(∥∥∥ L∑

l=1

∑
i≤j

(Ã
(l)
i,j − P̃

(l)
i,j )E

(i,j)(V T
l,: ⊗U)

∥∥∥ ≥ t
)

≤(n+KL0) exp
{
− 6t2

3
∑L

l=1 nφn∥Vl,:∥2 +
4C2√
Ln
t

}
.

By the upper bound of ∥Vl,:∥, there exists an absolute constant C3, such

that for any t > 0,

P
(∥∥∥M1(Ã− P̃)(V ⊗U)

∥∥∥ ≥ t
)
≤ exp

{
2 log n− C3t

2

nφn +
t√
nL

}
.

9



YAOMING ZHEN, SHIRONG XU AND JUNHUI WANG

Taking t =
√

8
C3
φnn log n, then with probability at least 1− n−2, we have∥∥∥M1(Ã− P̃)(V ⊗U)

∥∥∥ <√
8

C3

φnn log n. (S1.3)

This completes the proof. ■

Proof of Theorem 1. Let Û ∈ Rn×K be any matrix having orthonormal

columns such that the column space of Û is the same as the one that spanned

by the first K leading left singular vectors of M1(Ã). Then the (1 + τ)-

optimal K-medians algorithm is applied to estimate assignment matrix and

spectral embedding centers, which finds a pair of solution (Ẑ, Ŵ ) such that

∥ẐŴ − ̂̃
U∥2,1 ≤ (1 + τ) min

Z∈∆,W∈RK×K
∥ZW − ̂̃

U∥2,1.

Define Sk = {i : c∗i = k, ∥Ẑi,:Ŵ − Ũi,:O
(2)∥ ≥

√
2/2}, where O(2) is defined

as in Lemma 3. It is easy to show that

∥ŨO(2) − ẐŴ ∥2,1 ≤ ∥ŨO(2) − ̂̃
U∥2,1 + ∥ ̂̃U − ẐŴ ∥2,1

≤ (2 + τ)∥ŨO(2) − ̂̃
U∥2,1,

where the last inequality follows from the (1 + τ)-optimality of (Ẑ, Ŵ ).

∥ŨO(2) − ̂̃
U∥2,1 =

n∑
i=1

∥∥∥ Ui,:

∥Ui,:∥
O(2) − Ûi,:

∥Ûi,:∥

∥∥∥ ≤ 2
n∑
i=1

∥Ui,:O
(2) − Ûi,:∥

∥Ui,:O(2)∥
,

where the inequality follows from the fact that
∥∥ v1
∥v1∥ −

v2
∥v2∥

∥∥ ≤ 2∥v1−v2∥
∥v1∥ for

any two vectors with same dimension. By the Cauchy-Swartz inequality, we

10
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further have

∥ŨO(2) − ̂̃
U∥2,1 ≤ 2

√√√√ n∑
i=1

∥Ui,:O(2) − Ûi,:∥2
n∑
j=1

1

∥Uj,:O(2)∥2

= 2

√√√√ n∑
i=1

∥Ui,:O(2) − Ûi,:∥2
√√√√ n∑

j=1

γc∗j
f 2
j d

2
j

= 2∥UO(2) − Û∥F

√√√√ n∑
j=1

γc∗j
f 2
j d

2
j

= 2∥UO(2) − Û∥F

√√√√ K∑
k=1

n2
kvk,

where vk = n−2
k

∑
c∗i=k

γk(fidi)
−2. Here it can be verified that vk takes value

in [1,∞) and higher privacy requirement of nodes within community k leads

to larger value of vk, which then leads to a slower convergence rate.

Next, we proceed to establish the connection between the Hamming

error of ĉ and ∥UO(2) − Û∥2F . It is straightforward to verified that

Err(ĉ, c∗) ≤ 1

n

K∑
k=1

|Sk|

≤
√
2

n
∥ŨO(2) − ẐŴ ∥2,1

≤
√
2(4 + 2τ)

n
∥UO(2) − Û∥F

√√√√ K∑
k=1

n2
kvk.

11



YAOMING ZHEN, SHIRONG XU AND JUNHUI WANG

Combined with Lemma 3 and 4, it follows that

Err(ĉ, c∗) ≤
√
2(4 + 2τ)

n
∥UO(2) − Û∥F

√√√√ K∑
k=1

n2
kvk

≤

√∑K
k=1 n

2
kvk(16 + 8τ)

n

(
2σ1

(
M1(P̃)(V ⊗U)

)
+ δn

)
δn

σ2
K

(
M1(P̃)(V ⊗U)

)
= Op

(√√√√ K∑
k=1

vk
(√φn log n√

nLsnψ
+
φn log n

ns2nψ
2
L

))

= Op

(√√√√ K∑
k=1

vk

√
φn log n√
nLsnψ

))
.

where the last equality follows from the lower of sn in Assumption 3, yielding

that
√
φn logn√
nLsnψ

vanishes. This completes the proof. ■

Proof of Corollary 1. (1) Suppose fifj ≍ α2
n, for i, j ∈ [n], under the

condition of Corollary 1, we have vk = γk
n2
k

∑
c∗i=k

1
f2i d

2
i
≍ nkα

2
n

n2
k

· nk

α2
n

≍ 1,

φn = 1 − α + 4sn = O(1), and ψ = 1
n

∑n
i=1(fidi)

2 ≍ α2
n. By the result of

theorem 1, we have

Err(ĉ, c∗) = OP

(√ log n

nLs2nα
4
n

)
= op(1).

(2) Under the condition of Corollary 1, we have

vk =
γk
n2
k

∑
c∗i=k

1

f 2
i d

2
i

≍
(
α2
nβnnk + (1− βn)nk

)(
βnnk/α

2
n + (1− βn)nk

)
n2
k

≍ (1− βn)(βn/α
2
n + 1− βn).

Therefore,
√∑

k vk ≍
√
(1− βn)(βn/α2

n + 1− βn), and φn = 1−αn+4sn =

12
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O(1). In addition,

ψ =
1

n

n∑
i=1

(fidi)
2 =

1

n

K∑
k=1

(
α2
nβnnk + (1− βn)nk

)
= Ω(1− βn).

Note that the condition βn
α2
n(1−βn)

≪ nLs2n
logn

and logn
nLs2n

= o(1) imply that

(1− βn)
(
βn
α2
n
+ 1− βn

)
≪ nLs2nψ

2

logn
. By the result of Theorem 1, we have

Err(ĉ, c∗) = Op(

√
(1− βn)

(βn
α2
n

+ 1− βn
)√φn log n

nLs2nψ
2 ) = op(1).

■
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