CONSISTENT COMMUNITY DETECTION IN MULTI-LAYER NETWORKS WITH PERSONALIZED EDGE DIFFERENTIAL PRIVACY

Yaoming Zhen^a, Shirong Xu^b, AND Junhui Wang^c

Department of Statistical Sciences, University of Toronto^a;

Department of Statistics and Data Science, University of California, Los Angeles^b

Department of Statistics, The Chinese University of Hong Kong^c

Supplementary Material

This Supplementary Material contains all necessary lemmas and technical proofs of the main paper.

S1 Technical proofs

Proof of Lemma 1. For any $(i, j, l) \in [n] \times [L]$, we have

$$\sup_{1 \le i < j \le n, l \in [L]} \sup_{\widetilde{x} \in \{0,1\}} \sup_{x, x' \in \{0,1\}} \frac{P(\mathcal{M}(\mathcal{A}_{i,j,l}) = \widetilde{x} | \mathcal{A}_{i,j,l} = x)}{P(\mathcal{M}(\mathcal{A}_{i,j,l}) = \widetilde{x} | \mathcal{A}_{i,j,l} = x')}$$
$$= \max\{1, \frac{\theta}{1-\theta}, \frac{1-\theta}{\theta}\} = \exp(\epsilon),$$

where the last inequality follows from the assumption that $\theta = (1 + \exp(-\epsilon))^{-1}$.

Proof of Lemma 2. As in the proof of Lemma 1, $\theta_{i,j} = (1 + \exp(-\epsilon_{i,j}))^{-1}$. The decomposition (4) immediately yields that $\epsilon_{i,j} = \log \frac{1+f_j f_j}{1-f_i f_j}$ for $1 \le i < j \le n$.

Proof of Lemma 3. Combining the fact that $\mathbb{E}(\mathbf{A}_{i,j}^{(l)}) = d_i d_j \mathbf{B}_{c_i,c_j}^{(l)}$ and the definition of flipping mechanism, we have

$$\mathbb{E}(\mathcal{M}_{\theta_{i,j}}(\boldsymbol{A}_{i,j}^{(l)})) = \mathbb{E}(\mathcal{M}_{\theta_{i,j}}(\boldsymbol{A}_{i,j}^{(l)})|\boldsymbol{A}_{i,j}^{(l)} = 1)d_id_j\boldsymbol{B}_{c_i,c_j}^{(l)} + \mathbb{E}(\mathcal{M}_{\theta_{i,j}}(\boldsymbol{A}_{i,j}^{(l)})|\boldsymbol{A}_{i,j}^{(l)} = 0)(1 - d_id_j\boldsymbol{B}_{c_i,c_j}^{(l)}) = \theta_{i,j}d_id_j\boldsymbol{B}_{c_i,c_j}^{(l)} + (1 - \theta_{i,j})(1 - d_id_j\boldsymbol{B}_{c_i,c_j}^{(l)}) = (2\theta_{i,j} - 1)d_id_j\boldsymbol{B}_{c_i,c_j}^{(l)} + (1 - \theta_{i,j}). = f_if_jd_id_j\boldsymbol{B}_{c_i,c_j}^{(l)} + \frac{1}{2}(1 - f_if_j).$$

This completes the proof.

Proof of Lemma 4. We first define \widetilde{U} such that $\widetilde{U}_{i,:} = U_{i,:}/||U_{i,:}||_2$. By the definition of U, we have

$$\boldsymbol{U}_{i,:} = f_i d_i / \sqrt{\gamma_{c_i^*}} \boldsymbol{O}_{c_i^*,:}$$

By the fact that $\|\boldsymbol{O}_{c_i^*,:}\| = 1$, we further have $\widetilde{\boldsymbol{U}} = \boldsymbol{O}_{c_i^*,:}$. Clearly, $\widetilde{\boldsymbol{U}}$ has only K distinct rows, and each corresponding to one community. It immediately follows that $\widetilde{\boldsymbol{U}}_{i,:} = \widetilde{\boldsymbol{U}}_{j,:}$ if $c_i^* = c_j^*$. Further, as \boldsymbol{O} is an orthogonal matrix, $\widetilde{\boldsymbol{U}}_{i,:}$ and $\widetilde{\boldsymbol{U}}_{j,:}$ are perpendicular to each other if $c_i^* \neq c_j^*$ and $\|\widetilde{\boldsymbol{U}}_{i,:}\| = 1$. We thus conclude that $\|\widetilde{\boldsymbol{U}}_{i,:} - \widetilde{\boldsymbol{U}}_{j,:}\| = \sqrt{2}$ if $c_i^* \neq c_j^*$, for $i, j \in [n]$. This completes

the proof.

Lemma 1. Under the conditions of Lemma 4, there exists an orthogonal matrix $\mathbf{O}^{(1)} \in \mathbb{R}^{K \times K}$, such that the left singular vectors corresponding to the non-zero singular values of $\mathcal{M}_1(\widetilde{\mathcal{P}})(\mathbf{V} \otimes \mathbf{U})$ is $\mathbf{UO}^{(1)}$.

Proof of Lemma 1. Since the columns of V and U are all orthonormal vectors, $V \otimes U$ is also a column orthogonal matrix. Note that the Tucker decomposition of $\widetilde{\mathcal{P}}$ implies that

$$\mathcal{M}_1(\widetilde{\mathcal{P}}) = U\mathcal{M}_1(\mathcal{C})(V \otimes U)^T.$$

Let $O_{\mathcal{M}_1(\mathcal{C})} \Sigma_{\mathcal{M}_1(\mathcal{C})} V_{\mathcal{M}_1(\mathcal{C})}^T$ be the singular value decomposition of $\mathcal{M}_1(\mathcal{C})$, it then follows that

$$\mathcal{M}_1(\widetilde{\mathcal{P}})(oldsymbol{V}\otimesoldsymbol{U}) = (oldsymbol{U}oldsymbol{O}_{\mathcal{M}_1(oldsymbol{\mathcal{C}})}) \Sigma_{oldsymbol{\mathcal{M}}_1(oldsymbol{\mathcal{C}})} V_{oldsymbol{\mathcal{M}}_1(oldsymbol{\mathcal{C}})}^T$$

Therefore, $(\boldsymbol{U}\boldsymbol{O}_{\mathcal{M}_{1}(\boldsymbol{c})})\boldsymbol{\Sigma}_{\mathcal{M}_{1}(\boldsymbol{c})}\boldsymbol{V}_{\mathcal{M}_{1}(\boldsymbol{c})}^{T}$ is the singular value decomposition of $\mathcal{M}_{1}(\widetilde{\boldsymbol{\mathcal{P}}})(\boldsymbol{V}\otimes\boldsymbol{U})$. The desired result immediately follows by taking $\boldsymbol{O}^{(1)} = \boldsymbol{O}_{\mathcal{M}_{1}(\boldsymbol{c})}$.

Lemma 2. Under Assumptions A, it holds true that

$$\sigma_k(\mathcal{M}_1(\widetilde{\mathcal{P}})(V \otimes U)) \asymp ns_n \overline{\psi} \sqrt{L}, \text{ for } k \in [K],$$

where $\overline{\psi} = \frac{1}{n} \sum_{i=1}^{n} f_i^2 d_i^2$.

Proof of Lemma 2. The Tucker decomposition of $\widetilde{\mathcal{P}}$ implies that

$$\sigma_k\big(\mathcal{M}_1(\widetilde{\mathcal{P}})(\boldsymbol{V}\otimes\boldsymbol{U})\big)=\sigma_k\big(\boldsymbol{U}\mathcal{M}_1(\mathcal{C})(\boldsymbol{V}\otimes\boldsymbol{U})^T(\boldsymbol{V}\otimes\boldsymbol{U})\big)=\sigma_k\big(\mathcal{M}_1(\mathcal{C})\big),$$

where the last equality follows from the fact that U has orthonormal columns and hence does not affect the singular values. It then follows from the Tucker decomposition of $\mathcal{B} \times_1 \Gamma \times_2 \Gamma$ that

$$\sigma_k \big(\boldsymbol{\mathcal{M}}_1(\boldsymbol{\mathcal{C}}) \big) = \sigma_k \big(\boldsymbol{O} \boldsymbol{\mathcal{M}}_1(\boldsymbol{\mathcal{C}}) (\boldsymbol{V} \otimes \boldsymbol{O})^T \big) = \sigma_k \big(\boldsymbol{\mathcal{M}}_1(\boldsymbol{\mathcal{B}} \times_1 \boldsymbol{\Gamma} \times_2 \boldsymbol{\Gamma}) \big).$$

Let $\mathbf{F}^{(l)} = \mathbf{\Gamma} \mathbf{\mathcal{B}}_{:,;,l} \mathbf{\Gamma}$, for $l \in [L]$, and then we have $\mathbf{\mathcal{M}}_1(\mathbf{\mathcal{B}} \times_1 \mathbf{\Gamma} \times_2 \mathbf{\Gamma}) = ([\mathbf{F}^{(1)}, ..., \mathbf{F}^{(L)}])$. With this, it follows that

$$\sigma_k \big(\mathcal{M}_1(\widetilde{\mathcal{P}})(\mathbf{V} \otimes \mathbf{U}) \big) = \sigma_k([\mathbf{F}^{(1)}, ..., \mathbf{F}^{(L)}]) = \Big(\lambda_k \Big(\sum_{l=1}^L \mathbf{F}^{(l)}(\mathbf{F}^{(l)})^T \Big) \Big)^{1/2},$$

where $\lambda_k(\cdot)$ denotes the k-th largest eigenvalue of a symmetric matrix. By Assumptions A, we have

$$\lambda_k \left(\boldsymbol{F}^{(l)} (\boldsymbol{F}^{(l)})^T \right) \asymp (n s_n \overline{\psi})^2, \text{ for } l \in [L].$$

Further, it follows from Weyl's inequality that

$$\lambda_k \Big(\sum_{l=1}^L \boldsymbol{F}^{(l)} (\boldsymbol{F}^{(l)})^T \Big) \asymp n^2 s_n^2 \overline{\psi}^2 L, \text{ for } k \in [K].$$

The desired result then follows immediately.

Lemma 3. Denote $\delta_n = \|\mathcal{M}_1(\widetilde{\mathcal{A}})(\mathbf{V} \otimes \mathbf{U}) - \mathcal{M}_1(\widetilde{\mathcal{P}})(\mathbf{V} \otimes \mathbf{U})\|$. Then there

exists an orthogonal matrix ${oldsymbol O}^{(2)}$ such that

$$\|\widehat{\boldsymbol{U}} - \boldsymbol{U}\boldsymbol{O}^{(2)}\|_{F} \leq \frac{2\sqrt{2}\Big(2\sigma_{1}\big(\boldsymbol{\mathcal{M}}_{1}(\widetilde{\boldsymbol{\mathcal{P}}})(\boldsymbol{V}\otimes\boldsymbol{U})\big) + \delta_{n}\Big)\delta_{n}}{\sigma_{K}^{2}\big(\boldsymbol{\mathcal{M}}_{1}(\widetilde{\boldsymbol{\mathcal{P}}})(\boldsymbol{V}\otimes\boldsymbol{U})\big)}.$$

4

Proof of Lemma 3. By Lemma 1, we know that there exists an orthogonal matrix $O^{(1)}$ such that, $UO^{(1)}$ are the left singular vectors corresponding to the non-zero singular values of $\mathcal{M}_1(\widetilde{\mathcal{P}})(V \otimes U)$. Applying similar argument in Lemma 1 to $\widetilde{\mathcal{A}}$, there exists an orthogonal matrix $O^{(3)} \in \mathbb{R}^{K \times K}$ such that $\widehat{U}O^{(3)}$ are the left singular vectors corresponding to the first K leading singular values of $\mathcal{M}_1(\widetilde{\mathcal{A}})(V \otimes U)$. By Theorem 3 in [2], there exists an orthogonal matrix $O^{(4)}$ such that

$$\begin{split} \|\widehat{\boldsymbol{U}} - \boldsymbol{U}\boldsymbol{O}^{(1)}\boldsymbol{O}^{(4)}(\boldsymbol{O}^{(3)})^{T}\|_{F} &= \|\widehat{\boldsymbol{U}}\boldsymbol{O}^{(3)} - \boldsymbol{U}\boldsymbol{O}^{(1)}\boldsymbol{O}^{(4)}\|_{F} \\ &\leq \frac{2\sqrt{2}\Big(2\sigma_{1}\big(\boldsymbol{\mathcal{M}}_{1}(\widetilde{\boldsymbol{\mathcal{P}}})(\boldsymbol{V}\otimes\boldsymbol{U})\big) + \delta_{n}\Big)\delta_{n}}{\sigma_{K}^{2}\big(\boldsymbol{\mathcal{M}}_{1}(\widetilde{\boldsymbol{\mathcal{P}}})(\boldsymbol{V}\otimes\boldsymbol{U})\big)} \end{split}$$

The desired result then follows immediately by taking $\boldsymbol{O}^{(2)} = \boldsymbol{O}^{(1)} \boldsymbol{O}^{(4)} (\boldsymbol{O}^{(3)})^T$.

Lemma 4. Let δ_n be defined in Lemma 3. Under Assumptions A to D, it holds true that

$$\delta_n = O_p \Big(\sqrt{n\varphi_n \log n} \Big),$$

where $\varphi_n = 1 - \min_{i \in [n]} f_i + 4s_n$.

Proof of Lemma 4. Note that

$$\left\| \mathcal{M}_{1}(\widetilde{\mathcal{A}} - \widetilde{\mathcal{P}})(\mathbf{V} \otimes \mathbf{U}) \right\| = \left\| \sum_{l=1}^{L} \sum_{i \leq j} (\widetilde{\mathcal{A}}_{i,j}^{(l)} - \widetilde{\mathcal{P}}_{i,j}^{(l)}) \mathbf{E}^{(i,j)} \mathbf{V}_{l,:}^{T} \otimes \mathbf{U} \right\|, \quad (S1.1)$$

where $E^{(i,j)}$ is the square matrix with 1 in the (i, j)-th and (j, i)-th entries

and 0 otherwise. Clearly, $(\widetilde{A}_{i,j}^{(l)} - \widetilde{P}_{i,j}^{(l)}) E^{(i,j)}(V_{l,:}^T \otimes U)$ are independent zero-mean random matrices, for $i, j \in [n], l \in [L]$.

Next, we proceed to verify the required conditions of the matrix Bernstein inequality (Theorem 1.6 in [1]) in order to provide an probabilistic upper bound for (S1.1). For each $i, j \in [n]$ and $l \in [L]$, we have

$$\left\| (\widetilde{\boldsymbol{A}}_{i,j}^{(l)} - \widetilde{\boldsymbol{P}}_{i,j}^{(l)}) \boldsymbol{E}^{(i,j)} \boldsymbol{V}_{l,:}^{T} \otimes \boldsymbol{U} \right\| \leq \begin{cases} \left\| \left(\boldsymbol{V}_{l,:} \otimes \boldsymbol{U}_{j,:}, \boldsymbol{V}_{l,:} \otimes \boldsymbol{U}_{i,:} \right) \right\|, & \text{if } i < j, \\ \left\| \left(\boldsymbol{V}_{l,:} \otimes \boldsymbol{U}_{i,:} \right) \right\|, & \text{if } i = j. \end{cases}$$
(S1.2)

The right-hand side of (S1.2) can be further upper bounded by $\sqrt{2}|\mathbf{V}_{l,:}||$ max $\{||\mathbf{U}_{i,:}||, ||\mathbf{U}_{j,:}||\}$, where the coefficient $\sqrt{2}$ is due to the case that i < j and $c_i^* = c_j^*$. Note that

$$\sigma_{L_0} \Big(\mathcal{M}_3 \big(\mathcal{C} \times_1 \mathbf{O} \times_2 \mathbf{O} \big) \Big) = \sigma_{L_0} \Big(\mathbf{V} \mathcal{M}_3 \big(\mathcal{C} \times_1 \mathbf{O} \times_2 \mathbf{O} \big) \Big)$$
$$= \sigma_{L_0} \Big(\mathcal{M}_3 \big(\mathbf{B} \big) (\mathbf{\Gamma} \otimes \mathbf{\Gamma}) \Big) = \Omega(n \overline{\psi} \sqrt{L} s_n).$$

where the last equality follows from Assumption D. Therefore, for any $l \in [L]$, we have

$$\begin{split} \|\boldsymbol{V}_{l,:}\|\sigma_{L_0}\Big(\boldsymbol{\mathcal{M}}_3\big(\boldsymbol{\mathcal{C}}\times_1\boldsymbol{O}\times_2\boldsymbol{O}\big)\Big) &\leq \|(\boldsymbol{V}_{l,:})^T\boldsymbol{\mathcal{M}}_3\big(\boldsymbol{\mathcal{C}}\times_1\boldsymbol{O}\times_2\boldsymbol{O}\big)\| \\ &= \|\big(\boldsymbol{\mathcal{C}}\times_1\boldsymbol{O}\times_2\boldsymbol{O}\times_3\boldsymbol{V}\big)_{:,:,l}\|_F \\ &= \|\big(\boldsymbol{B}\times_1\boldsymbol{\Gamma}\times_2\boldsymbol{\Gamma}\big)_{:,:,l}\|_F = O(n\overline{\psi}s_n). \end{split}$$

Combining the above two bounds implies that

$$\| oldsymbol{V}_{l,:} \| = rac{\| oldsymbol{V}_{l,:} \| \sigma_{L_0} \Big(oldsymbol{\mathcal{M}}_3 oldsymbol{(\mathcal{C}} imes_1 oldsymbol{O} imes_2 oldsymbol{O} ildsymbol{)} \Big)}{\sigma_{L_0} \Big(oldsymbol{\mathcal{M}}_3 oldsymbol{(\mathcal{C}} imes_1 oldsymbol{O} imes_2 oldsymbol{O} ildsymbol{)} \Big)} = Oig(rac{1}{\sqrt{L}}ig).$$

Thus, it follows from Assumption A and B that

$$\left\| (\widetilde{\boldsymbol{A}}_{i,j}^{(l)} - \widetilde{\boldsymbol{P}}_{i,j}^{(l)}) \boldsymbol{E}^{(i,j)} \boldsymbol{V}_{l,:}^T \otimes \boldsymbol{U} \right\| \le \sqrt{\frac{2C_1}{L \min\{n_{c^*i}, n_{c_j^*}\}}} \le C_2 \sqrt{\frac{1}{nL}},$$

for some absolute constant C_2 . We next proceed to bound the second-order central moment. Denote

$$\begin{aligned} \operatorname{Var}_{1} &= \sum_{l=1}^{L} \sum_{i \leq j} \mathbb{E} \big(\widetilde{\boldsymbol{A}}_{i,j}^{(l)} - \widetilde{\boldsymbol{P}}_{i,j}^{(l)} \big)^{2} \boldsymbol{E}^{(i,j)} \big(\boldsymbol{V}_{l,:}^{T} \otimes \boldsymbol{U} \big) \big(\boldsymbol{V}_{l,:}^{T} \otimes \boldsymbol{U} \big)^{T} \boldsymbol{E}^{(i,j)}, \\ \operatorname{Var}_{2} &= \sum_{l=1}^{L} \sum_{i \leq j} \mathbb{E} \big(\widetilde{\boldsymbol{A}}_{i,j}^{(l)} - \widetilde{\boldsymbol{P}}_{i,j}^{(l)} \big)^{2} \Big(\boldsymbol{V}_{l,:}^{T} \otimes \boldsymbol{U} \Big)^{T} \boldsymbol{E}^{(i,j)} \boldsymbol{E}^{(i,j)} \big(\boldsymbol{V}_{l,:}^{T} \otimes \boldsymbol{U} \big). \end{aligned}$$

In what follows, we proceed to bound $||Var_1||$ and $||Var_2||$, separately, and then obtain a upper bound for $\max\{||Var_1||, ||Var_2||\}$.

Let $\boldsymbol{Q} = \boldsymbol{F} \boldsymbol{D}$ and then we can verify that $\left(\boldsymbol{V}_{l,:}^T \otimes \boldsymbol{U} \right) \left(\boldsymbol{V}_{l,:}^T \otimes \boldsymbol{U} \right)^T =$

 $\|V_{l,:}\|^2 Q Z \Gamma^{-2} Z^T Q$. Thus,

$$\begin{aligned} \operatorname{Var}_{1} &= \sum_{l=1}^{L} \| \boldsymbol{V}_{l,:} \|^{2} \sum_{i \leq j} \mathbb{E}(\widetilde{\boldsymbol{A}}_{i,j}^{(l)} - \widetilde{\boldsymbol{P}}_{i,j}^{(l)})^{2} \boldsymbol{E}^{(i,j)} \boldsymbol{Q} \boldsymbol{Z} \boldsymbol{\Gamma}^{-2} \boldsymbol{Z}^{T} \boldsymbol{Q} \boldsymbol{E}^{(i,j)} \\ &= \sum_{l=1}^{L} \| \boldsymbol{V}_{l,:} \|^{2} \sum_{i \leq j} (f_{i} f_{j} \boldsymbol{\mathcal{P}}_{i,j,l} + \frac{1 - f_{i} f_{j}}{2}) (\frac{1 + f_{i} f_{j}}{2} - f_{i} f_{j} \boldsymbol{\mathcal{P}}_{i,j,l}) \\ &\times \boldsymbol{E}^{(i,j)} \boldsymbol{Q} \boldsymbol{Z} \boldsymbol{\Gamma}^{-2} \boldsymbol{Z}^{T} \boldsymbol{Q} \boldsymbol{E}^{(i,j)} \\ &= \sum_{l=1}^{L} \| \boldsymbol{V}_{l,:} \|^{2} \sum_{i \leq j} \left(\frac{1}{4} - \frac{f_{i}^{2} f_{j}^{2}}{4} (1 - 2 \boldsymbol{\mathcal{P}}_{i,j,l})^{2} \right) \boldsymbol{E}^{(i,j)} \boldsymbol{Q} \boldsymbol{Z} \boldsymbol{\Gamma}^{-2} \boldsymbol{Z}^{T} \boldsymbol{Q} \boldsymbol{E}^{(i,j)} \\ &\preceq \sum_{l=1}^{L} \frac{\varphi_{n} \| \boldsymbol{V}_{l,:} \|^{2}}{4} \sum_{i \leq j} \boldsymbol{E}^{(i,j)} \boldsymbol{Q} \boldsymbol{Z} \boldsymbol{\Gamma}^{-2} \boldsymbol{Z}^{T} \boldsymbol{Q} \boldsymbol{E}^{(i,j)} = \sum_{l=1}^{L} \frac{\varphi_{n} \| \boldsymbol{V}_{l,:} \|^{2}}{4} (K \boldsymbol{I}_{n} + \boldsymbol{G}_{c}), \end{aligned}$$

where $\varphi_n = 1 - \min_{i \in [n]} f + 4s_n$, I_n is the *n*-dimensional identity matrix, and G_c is a $n \times n$ matrix such that $(G_c)_{ii} = 0$ for $i \in [n]$, $(G_c)_{ij} = (f_i f_j d_i d_j) \gamma_{c_i^*}^{-1}$ if $c_i^* = c_j^*$ and 0 otherwise for $i \neq j$. Herein, the partial order \preceq between two matrix $M^{(1)}$ and $M^{(2)}$ is defined as $M^{(1)} \preceq M^{(2)}$ if and only if $M^{(2)} - M^{(1)}$ is positive semi-definite. This leads to

$$\|\operatorname{Var}_{1}\| \leq \sum_{l=1}^{L} \frac{\varphi_{n} \|\boldsymbol{V}_{l,:}\|^{2}}{4} \left(K + \max_{i \in [n]} \sqrt{\frac{f_{i}^{2} d_{i}^{2} n_{c_{i}^{*}}}{\gamma_{c_{i}^{*}}}}\right) \leq \sum_{l=1}^{L} \frac{\varphi_{n} \|\boldsymbol{V}_{l,:}\|^{2}}{4} (K + \sqrt{C_{1}}),$$

where the first inequality follows from the triangle inequality, Gershgorin circle theorem and Cauchy-Schwarz inequality, and the second inequality follows from Assumption B. Next, we turn to bound the spectral norm of Var_2 . Note that

$$\begin{aligned} \operatorname{Var}_{2} &= \sum_{l=1}^{L} \sum_{i \leq j} \mathbb{E} (\widetilde{\boldsymbol{A}}_{i,j}^{(l)} - \widetilde{\boldsymbol{P}}_{i,j}^{(l)})^{2} (\boldsymbol{V}_{l,:}^{T} \otimes \boldsymbol{U})^{T} \boldsymbol{I}^{(i,j)} (\boldsymbol{V}_{l,:}^{T} \otimes \boldsymbol{U}) \\ &= \sum_{l=1}^{L} (\boldsymbol{V}_{l,:}^{T} \otimes \boldsymbol{U})^{T} \Big(\sum_{i \leq j} \mathbb{E} (\widetilde{\boldsymbol{A}}_{i,j}^{(l)} - \widetilde{\boldsymbol{P}}_{i,j}^{(l)})^{2} \boldsymbol{I}^{(i,j)} \Big) (\boldsymbol{V}_{l,:}^{T} \otimes \boldsymbol{U}) \\ &= \sum_{l=1}^{L} (\boldsymbol{V}_{l,:}^{T} \otimes \boldsymbol{U})^{T} \Big(\sum_{i \leq j} \Big(\frac{1}{4} - \frac{f_{i}^{2} f_{j}^{2}}{4} (1 - 2\boldsymbol{\mathcal{P}}_{i,j,l})^{2} \Big) \boldsymbol{I}^{(i,j)} \Big) (\boldsymbol{V}_{l,:}^{T} \otimes \boldsymbol{U}) \\ &\preceq \sum_{l=1}^{L} \frac{n\varphi_{n}}{4} (\boldsymbol{V}_{l,:}^{T} \otimes \boldsymbol{U})^{T} (\boldsymbol{V}_{l,:}^{T} \otimes \boldsymbol{U}), \end{aligned}$$

where $I^{(i,j)}$ is the diagonal matrix with the (i,i)-th and (j,j)-th entries being 1 and all other entries being zero. Hence,

$$\|\operatorname{Var}_2\| \le \left\|\sum_{l=1}^L \frac{n\varphi_n}{4} (\boldsymbol{V}_{l,:}^T \otimes \boldsymbol{U})^T (\boldsymbol{V}_{l,:}^T \otimes \boldsymbol{U})\right\| \le \sum_{l=1}^L \frac{n\varphi_n \|\boldsymbol{V}_{l,:}\|^2}{4}$$

Since $n \gg (K + C_1)$, the variance condition can be met by the fact that $\sigma^2 = \max\{\|\operatorname{Var}_1\|, \|\operatorname{Var}_2\|\} \leq \sum_{l=1}^L n\varphi_n \|\boldsymbol{V}_{l,:}\|^2/4$. With this, Theorem 1.6 in [1] yields that, for any t > 0,

$$\mathbb{P}\Big(\Big\|\sum_{l=1}^{L}\sum_{i\leq j}(\widetilde{\boldsymbol{A}}_{i,j}^{(l)}-\widetilde{\boldsymbol{P}}_{i,j}^{(l)})\boldsymbol{E}^{(i,j)}(\boldsymbol{V}_{l,:}^{T}\otimes\boldsymbol{U})\Big\|\geq t\Big)$$
$$\leq (n+KL_{0})\exp\Big\{-\frac{6t^{2}}{3\sum_{l=1}^{L}n\varphi_{n}\|\boldsymbol{V}_{l,:}\|^{2}+\frac{4C_{2}}{\sqrt{Ln}}t}\Big\}.$$

By the upper bound of $\|V_{l,:}\|$, there exists an absolute constant C_3 , such that for any t > 0,

$$\mathbb{P}\Big(\Big\|\mathcal{M}_1(\widetilde{\mathcal{A}}-\widetilde{\mathcal{P}})(\mathbf{V}\otimes\mathbf{U})\Big\|\geq t\Big)\leq \exp\Big\{2\log n-\frac{C_3t^2}{n\varphi_n+\frac{t}{\sqrt{nL}}}\Big\}.$$

Taking $t = \sqrt{\frac{8}{C_3}\varphi_n n \log n}$, then with probability at least $1 - n^{-2}$, we have

$$\left\| \mathcal{M}_{1}(\widetilde{\mathcal{A}} - \widetilde{\mathcal{P}})(\mathbf{V} \otimes \mathbf{U}) \right\| < \sqrt{\frac{8}{C_{3}} \varphi_{n} n \log n}.$$
 (S1.3)

This completes the proof.

Proof of Theorem 1. Let $\widehat{U} \in \mathbb{R}^{n \times K}$ be any matrix having orthonormal columns such that the column space of \widehat{U} is the same as the one that spanned by the first K leading left singular vectors of $\mathcal{M}_1(\widetilde{A})$. Then the $(1 + \tau)$ optimal K-medians algorithm is applied to estimate assignment matrix and spectral embedding centers, which finds a pair of solution $(\widehat{Z}, \widehat{W})$ such that

$$\|\widehat{\boldsymbol{Z}}\widehat{\boldsymbol{W}} - \widehat{\widetilde{\boldsymbol{U}}}\|_{2,1} \le (1+\tau) \min_{\boldsymbol{Z} \in \boldsymbol{\Delta}, \boldsymbol{W} \in \mathbb{R}^{K \times K}} \|\boldsymbol{Z}\boldsymbol{W} - \widehat{\widetilde{\boldsymbol{U}}}\|_{2,1}.$$

Define $S_k = \{i : c_i^* = k, \|\widehat{Z}_{i,:}\widehat{W} - \widetilde{U}_{i,:}O^{(2)}\| \ge \sqrt{2}/2\}$, where $O^{(2)}$ is defined as in Lemma 3. It is easy to show that

$$\begin{split} \|\widetilde{\boldsymbol{U}}\boldsymbol{O}^{(2)} - \widehat{\boldsymbol{Z}}\widehat{\boldsymbol{W}}\|_{2,1} &\leq \|\widetilde{\boldsymbol{U}}\boldsymbol{O}^{(2)} - \widehat{\widetilde{\boldsymbol{U}}}\|_{2,1} + \|\widehat{\widetilde{\boldsymbol{U}}} - \widehat{\boldsymbol{Z}}\widehat{\boldsymbol{W}}\|_{2,1} \\ &\leq (2+\tau)\|\widetilde{\boldsymbol{U}}\boldsymbol{O}^{(2)} - \widehat{\widetilde{\boldsymbol{U}}}\|_{2,1}, \end{split}$$

where the last inequality follows from the $(1 + \tau)$ -optimality of $(\widehat{Z}, \widehat{W})$.

$$\|\widetilde{\boldsymbol{U}}\boldsymbol{O}^{(2)} - \widehat{\widetilde{\boldsymbol{U}}}\|_{2,1} = \sum_{i=1}^{n} \left\| \frac{\boldsymbol{U}_{i,:}}{\|\boldsymbol{U}_{i,:}\|} \boldsymbol{O}^{(2)} - \frac{\widehat{\boldsymbol{U}}_{i,:}}{\|\widehat{\boldsymbol{U}}_{i,:}\|} \right\| \le 2\sum_{i=1}^{n} \frac{\|\boldsymbol{U}_{i,:}\boldsymbol{O}^{(2)} - \widehat{\boldsymbol{U}}_{i,:}\|}{\|\boldsymbol{U}_{i,:}\boldsymbol{O}^{(2)}\|},$$

where the inequality follows from the fact that $\left\|\frac{v_1}{\|v_1\|} - \frac{v_2}{\|v_2\|}\right\| \le 2\frac{\|v_1 - v_2\|}{\|v_1\|}$ for any two vectors with same dimension. By the Cauchy-Swartz inequality, we

further have

$$\begin{split} \|\widetilde{\boldsymbol{U}}\boldsymbol{O}^{(2)} - \widehat{\widetilde{\boldsymbol{U}}}\|_{2,1} &\leq 2\sqrt{\sum_{i=1}^{n} \|\boldsymbol{U}_{i,:}\boldsymbol{O}^{(2)} - \widehat{\boldsymbol{U}}_{i,:}\|^{2} \sum_{j=1}^{n} \frac{1}{\|\boldsymbol{U}_{j,:}\boldsymbol{O}^{(2)}\|^{2}}} \\ &= 2\sqrt{\sum_{i=1}^{n} \|\boldsymbol{U}_{i,:}\boldsymbol{O}^{(2)} - \widehat{\boldsymbol{U}}_{i,:}\|^{2}} \sqrt{\sum_{j=1}^{n} \frac{\gamma_{c_{j}^{*}}}{f_{j}^{2}d_{j}^{2}}} \\ &= 2\|\boldsymbol{U}\boldsymbol{O}^{(2)} - \widehat{\boldsymbol{U}}\|_{F} \sqrt{\sum_{j=1}^{n} \frac{\gamma_{c_{j}^{*}}}{f_{j}^{2}d_{j}^{2}}} = 2\|\boldsymbol{U}\boldsymbol{O}^{(2)} - \widehat{\boldsymbol{U}}\|_{F} \sqrt{\sum_{k=1}^{K} n_{k}^{2}v_{k}}, \end{split}$$

where $v_k = n_k^{-2} \sum_{c_i^*=k} \gamma_k (f_i d_i)^{-2}$. Here it can be verified that v_k takes value in $[1, \infty)$ and higher privacy requirement of nodes within community k leads to larger value of v_k , which then leads to a slower convergence rate.

Next, we proceed to establish the connection between the Hamming error of \hat{c} and $\|UO^{(2)} - \widehat{U}\|_F^2$. It is straightforward to verified that

$$Err(\hat{\boldsymbol{c}}, \boldsymbol{c}^*) \leq \frac{1}{n} \sum_{k=1}^{K} |S_k|$$

$$\leq \frac{\sqrt{2}}{n} \| \widetilde{\boldsymbol{U}} \boldsymbol{O}^{(2)} - \widehat{\boldsymbol{Z}} \widehat{\boldsymbol{W}} \|_{2,1}$$

$$\leq \frac{\sqrt{2}(4+2\tau)}{n} \| \boldsymbol{U} \boldsymbol{O}^{(2)} - \widehat{\boldsymbol{U}} \|_F \sqrt{\sum_{k=1}^{K} n_k^2 v_k}.$$

Combined with Lemma 3 and 4, it follows that

$$\begin{aligned} Err(\hat{\boldsymbol{c}}, \boldsymbol{c}^*) &\leq \frac{\sqrt{2}(4+2\tau)}{n} \|\boldsymbol{U}\boldsymbol{O}^{(2)} - \hat{\boldsymbol{U}}\|_F \sqrt{\sum_{k=1}^K n_k^2 v_k} \\ &\leq \frac{\sqrt{\sum_{k=1}^K n_k^2 v_k} (16+8\tau)}{n} \frac{\left(2\sigma_1(\boldsymbol{\mathcal{M}}_1(\boldsymbol{\widetilde{\mathcal{P}}})(\boldsymbol{V}\otimes\boldsymbol{U})) + \delta_n\right) \delta_n}{\sigma_K^2(\boldsymbol{\mathcal{M}}_1(\boldsymbol{\widetilde{\mathcal{P}}})(\boldsymbol{V}\otimes\boldsymbol{U}))} \\ &= O_p \Big(\sqrt{\sum_{k=1}^K v_k} \Big(\frac{\sqrt{\varphi_n \log n}}{\sqrt{nLs_n \psi}} + \frac{\varphi_n \log n}{ns_n^2 \psi^2 L}\Big)\Big) \\ &= O_p \Big(\sqrt{\sum_{k=1}^K v_k} \frac{\sqrt{\varphi_n \log n}}{\sqrt{nLs_n \psi}}\Big)\Big).\end{aligned}$$

where the last equality follows from the lower of s_n in Assumption 3, yielding that $\frac{\sqrt{\varphi_n \log n}}{\sqrt{nLs_n\psi}}$ vanishes. This completes the proof.

Proof of Corollary 1. (1) Suppose $f_i f_j \simeq \alpha_n^2$, for $i, j \in [n]$, under the condition of Corollary 1, we have $v_k = \frac{\gamma_k}{n_k^2} \sum_{c_i^*=k} \frac{1}{f_i^2 d_i^2} \simeq \frac{n_k \alpha_n^2}{n_k^2} \cdot \frac{n_k}{\alpha_n^2} \simeq 1$, $\varphi_n = 1 - \alpha + 4s_n = O(1)$, and $\overline{\psi} = \frac{1}{n} \sum_{i=1}^n (f_i d_i)^2 \simeq \alpha_n^2$. By the result of theorem 1, we have

$$Err(\hat{\boldsymbol{c}}, \boldsymbol{c}^*) = O_P\left(\sqrt{\frac{\log n}{nLs_n^2\alpha_n^4}}\right) = o_p(1).$$

(2) Under the condition of Corollary 1, we have

$$v_k = \frac{\gamma_k}{n_k^2} \sum_{c_i^* = k} \frac{1}{f_i^2 d_i^2} \approx \frac{\left(\alpha_n^2 \beta_n n_k + (1 - \beta_n) n_k\right) \left(\beta_n n_k / \alpha_n^2 + (1 - \beta_n) n_k\right)}{n_k^2}$$
$$\approx (1 - \beta_n) (\beta_n / \alpha_n^2 + 1 - \beta_n).$$

Therefore, $\sqrt{\sum_k v_k} \approx \sqrt{(1-\beta_n)(\beta_n/\alpha_n^2+1-\beta_n)}$, and $\varphi_n = 1-\alpha_n+4s_n =$

O(1). In addition,

$$\overline{\psi} = \frac{1}{n} \sum_{i=1}^{n} (f_i d_i)^2 = \frac{1}{n} \sum_{k=1}^{K} \left(\alpha_n^2 \beta_n n_k + (1 - \beta_n) n_k \right) = \Omega(1 - \beta_n).$$

Note that the condition $\frac{\beta_n}{\alpha_n^2(1-\beta_n)} \ll \frac{nLs_n^2}{\log n}$ and $\frac{\log n}{nLs_n^2} = o(1)$ imply that $(1-\beta_n)\left(\frac{\beta_n}{\alpha_n^2}+1-\beta_n\right) \ll \frac{nLs_n^2\overline{\psi}^2}{\log n}$. By the result of Theorem 1, we have $Err(\hat{\boldsymbol{c}}, \boldsymbol{c}^*) = O_p(\sqrt{(1-\beta_n)\left(\frac{\beta_n}{\alpha_n^2}+1-\beta_n\right)}\sqrt{\frac{\varphi_n\log n}{nLs_n^2\overline{\psi}^2}}) = o_p(1).$

Bibliography

- Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, 12(4):389–434, 2012.
- [2] Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis-kahan theorem for statisticians. *Biometrika*, 102(2):315–323, 2015.