
Statistica Sinica: Supplement

Simultaneous jump detection for multiple sequences

via screening and multiple testing

Shengji Jia and Chunming Zhang

Shanghai Lixin University of Accounting and Finance

University of Wisconsin-Madison

Supplementary Material

S1 Conditions and proofs of main results

The following technical conditions are imposed. They are not the weak-

est possible, but facilitate the proofs. In Section 3.3, when we detect the

simultaneous jump points in multiple sequences, we need to replace the

conditions A1, A2 and B1 by the corresponding conditions A1′, A2′ and

B1′ respectively. Without loss of generality, we assume T = [0, 1].

A1. α(·) has a continuous second derivative;

A1′. αk(·) has a continuous second derivative, k = 1, . . . ,m;

A2. σ2(·) has a continuous second derivative;
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A2′. σ2
k(·) has a continuous second derivative, k = 1, . . . ,m;

A3. The density function f(·) of {Ti : i = 1, . . . , n} is Lipschitz-continuous

and bounded away from 0;

A4. K+(·) is a right-continuous function with bounded variation on [0, 1];

A5. K+(·) is compactly supported with K+(0) > 0;

A6. h1 → 0, nh1/ log(h
−1
1 ) → ∞ and log(h−1

1 )/ log(log(n)) → ∞ as n → ∞;

A7. J < ∞ is fixed and the jumps {τ1 < τ2 < · · · < τJ} satisfy min1≤j≤J+1(τj−

τj−1) > ξ, for some ξ > 0, where τ0 = 0, τJ+1 = 1.

Condition A7 means that the adjacent jumps cannot be too close to

each other. This condition can be relaxed, as long as the number of jumps

J diverges at a slower rate than the sample size n. The following technical

conditions are imposed in Section 3.1 when we apply the profile likelihood

estimation procedure in the partially linear model.

B1. supt∈T E
{
|ε(t)|4+δ0

}
< ∞ for some δ0 > 0;

B1′. supt∈T E
{
|εk(t)|4+δ0

}
< ∞ for some δ0 > 0, k = 1, . . . ,m;

B2. nh8
2 → 0 and nh2

2/ log
3(n) → ∞ as n → ∞;

B3. h3 → 0 and nh3/ log(n) → ∞ as n → ∞;
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B4. K(·) is a symmetric continuously differentiable probability density func-

tion on [−1, 1].

To control the upper bound of the difference process L(t) at continuity

points, the strong uniform consistency result for the locally-linear regression

estimator (Blondin, 2007) is employed in the proof of following Lemma 1,

which is based upon modern empirical process theory.

Lemma 1. Assume conditions A1–A6, and suppose that µ(·) is a continu-

ous function on the compact set C ⊆ [0, 1]. Then we have

∣∣∣{ nh1

2 log(h−1
1 )

}1/2

sup
t∈C

|µ̂+(t)− E{µ̂+(t)}| − Λ
∣∣∣ = o(1) a.s., (S1.1)

where

Λ = sup
t∈C

{σ2(t)

f(t)

∫
(K+)2(u)du

}1/2

.

Proof: Replace K(·) by K+(·) in Theorem 3.1 of Blondin (2007). ■

The following Lemma 2 shows the asymptotic normality of µ̂+(t). Recall

that µj =
∫
ujK+(u)du and νj =

∫
uj(K+)2(u)du.

Lemma 2. Assume conditions A1–A6. If there is no change point on

(τj, τj + h1), then we have

√
nh1

{
µ̂+(τj)− µ+(τj)−

1

2
Cα′′(τj)h

2
1

}
D→ N

(
0,

V σ2(τj)

f(τj)

)
, j = 1, . . . , J,

(S1.2)
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where

V =
µ2
2ν0 − 2µ1µ2ν1 + µ2

1ν2
(µ0µ2 − µ2

1)
2

, and C =
µ2
2 − µ1µ3

µ0µ2 − µ2
1

.

Proof: Take c = 0 in Theorem 3.3 of Fan and Gijbels (1996). ■

Lemma 3. Assume conditions A1–A6. Assume there is only one jump

point τ (i.e., J = 1). Denote the estimator of the unique jump point τ by

the global maximizer τ̂ of L(t). Then we have

nh1

(
{µ̂+(τ̂)− µ̂−(τ̂)} − {µ̂+(τ)− µ̂−(τ)}

)
= OP(1). (S1.3)

Proof: Take α(n, h1) = β(n, h1) = nh1 in Theorem 3.1 and Lemma 3.1

of Grégoire and Hamrouni (2002). ■

Proof of Proposition 1. For any τ̃j ∈ Sλ, 1 ≤ j ≤ J̃ , without loss of

generality, let τ̃j = ωi for some i ∈ {1, . . . , q}. Then according to (2.6) and

(2.7), we have

L(ωi) ≥ λ > λ′,

ωi /∈
i−1⋃
j=1

(ωj − h1, ωj + h1),

which means ωi ∈ Sλ′ , and thus Sλ ⊆ Sλ′ . ■

Proof of Theorem 1. It suffices to prove part (b); the proof of part (a)

follows from (S1.12) directly. Let Ij := (τj − h1/2, τj + h1/2) be the neigh-

borhood of τj, j = 1, . . . , J , and define C := [0, 1] ∩ {I1 ∪ · · · ∪ IJ}c, where



S1. CONDITIONS AND PROOFS OF MAIN RESULTS

Ac denotes the complement of a set A. It is obvious that µ(·) is continuous

on the compact set C. To avoid confusion, in the remaining proof, we will

use λ ≡ λn and J̃ ≡ J̃n to emphasize the dependence on sample size n.

For any t ∈ C, the estimator µ̂+(t) does not involve any jumps, thus ac-

cording to the results for standard locally-linear regression (Theorem 11.6.3

of Bickel and Doksum (2016)), supt∈C |E{µ̂+(t)}−µ+(t)| = O(h2
1), together

with (S1.1), we have

sup
t∈C

|µ̂+(t)− µ+(t)| = O
(
h2
1 +

{ log(h−1
1 )

nh1

}1/2)
a.s., (S1.4)

and similarly,

sup
t∈C

|µ̂−(t)− µ−(t)| = O
(
h2
1 +

{ log(h−1
1 )

nh1

}1/2)
a.s.. (S1.5)

Using µ−(t) = µ+(t), ∀t ∈ C, together with (S1.4), (S1.5) and the triangular

inequality, we have

sup
t∈C

L(t) = sup
t∈C

|µ̂+(t)− µ̂−(t)| = O
(
h2
1 +

{ log(h−1
1 )

nh1

}1/2)
= o(λn) a.s..

(S1.6)

By the definition of τ̃j, together with (S1.6), there exists N1 > 0 such that

L(τ̃j) ≥ λn > sup
t∈C

L(t) a.s., j = 1, . . . , J̃n,

when n > N1, which implies

{τ̃1, . . . , τ̃J̃n} ⊆ Cc = I1 ∪ · · · ∪ IJ a.s., (S1.7)
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when n > N1. (S1.7) together with the fact that min1≤i,j≤J̃n
|τ̃i− τ̃j| > h1 =

max1≤j≤J |Ij| imply that each neighborhood Ij can not contain more than

one estimator τ̃j. Thus when n > N1, we have

J̃n ≤ J a.s.. (S1.8)

On the other hand, since h1 → 0 and λn → 0, and by condition

A7, there exists N2 > 0 such that min1≤j≤J+1(τj − τj−1) ≥ ξ > 2h1 and

min1≤j≤J |βj| > 2λn when n > N2. Thus for j = 1, . . . , J , we have

L(τj) = |µ̂+(τj)− µ̂−(τj)| >
1

2
|µ+(τj)− µ−(τj)| > λn, a.s., (S1.9)

when n > N2. Define Ĩj := (τ̃j − h1, τ̃j + h1) as the neighborhood of the

estimator τ̃j, j = 1, . . . , J̃n, and let C̃ := [0, 1] ∩ (Ĩ1 ∪ · · · ∪ ĨJ̃n
)c. We claim

that

sup
t∈C̃

L(t) ≤ λn, (S1.10)

when n > N2. Otherwise, if there is a local maximizer ω ∈ C̃ such that

L(ω) > λn, according to the definition of C̃, we have min1≤j≤J̃n
|ω− τ̃j| > h1,

and thus ω ∈ Sλ, which is impossible. (S1.9) and (S1.10) imply that

sup
t∈C̃

L(t) ≤ λn < L(τj) a.s., j = 1, . . . , J,

when n > N2, that means

{τ1, . . . , τJ} ⊆ C̃c = Ĩ1 ∪ · · · ∪ ĨJ̃n
, a.s., (S1.11)
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when n > N2. Again each Ĩj can not contain more than one jump point

since min1≤j≤J+1(τj − τj−1) > 2h1 = max1≤j≤J̃n
|Ĩj|. Thus we have

J ≤ J̃n, a.s., (S1.12)

when n > N2. Now (2.9) follows from (S1.8) and (S1.12) if we take N =

max{N1, N2}. Next, to show (2.10), under the event {J̃n = J}, each Ij

contains only one estimator τ̃j. For the problem of detecting a single jump

point on the fixed interval [τj − ξ/2, τj + ξ/2], it’s easy to check that all the

conditions in Theorem 3.2 of Grégoire and Hamrouni (2002) are satisfied,

and thus we have n(τ̃j − τj) = OP(1). ■

Proof of Theorem 2. Since K−(u) = K+(−u), we have

∫
ujK−(u)du = (−1)j

∫
ujK+(u)du,

∫
uj(K−)2(u)du = (−1)j

∫
uj(K+)2(u)du.

Therefore after replacing K+(u) by K−(u), the expressions of V and C in

Lemma 2 will not change. Thus we can derive the asymptotic normality

for µ̂−(τj):

√
nh1

{
µ̂−(τj)− µ−(τj)−

1

2
Cα′′(τj)h

2
1

}
D→ N

(
0,

V σ2(τj)

f(τj)

)
. (S1.13)

Since µ̂+(τj) and µ̂−(τj) only utilize the data points located on the right and

left side of τj, they are independent. By (S1.2) and (S1.13), the asymptotic



Shengji Jia and Chunming Zhang

distribution of µ̂+(τj)− µ̂−(τj) is

√
nh1

{
µ̂+(τj)− µ̂−(τj)− βj

} D→ N
(
0,

2V σ2(τj)

f(τj)

)
. (S1.14)

For the problem of detecting a single jump point on the fixed interval [τj −

ξ/2, τj+ξ/2], it is easy to check that the conditions in Lemma 3 are satisfied,

and thus we have

√
nh1

(
{µ̂+(τ̃j)− µ̂−(τ̃j)} − {µ̂+(τj)− µ̂−(τj)}

)
= OP

( 1√
nh1

)
= oP(1).

(S1.15)

Now Theorem 2 follows from (S1.14) and (S1.15). ■

Proof of Theorem 3. First we show

√
n(β̂ − β)

D→ N
(
0,

E
{
σ2(T1)var(Z1 | T1)

}[
E
{
var(Z1 | T1)

}]2 )
. (S1.16)

By (3.18), we have

√
n(β̂ − β) =

√
n(Z̃

T
Z̃)−1Z̃(I− S)(m+ ε). (S1.17)

By taking p = 1, q = 1, and X = (1, . . . , 1)T in Lemma A.2 of Fan and

Huang (2005), and applying the law of large numbers and the property of

conditional expectation, we have

n−1Z̃
T
Z̃ = n−1

n∑
i=1

{
Zi − E(Zi | Ti)

}2{1 +OP(cn)}

P→ E
{
Z1 − E(Z1 | T1)

}2
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= E
{
var(Z1 | T1)

}
, (S1.18)

where cn =
{
log(1/h2)/(nh2)

}1/2
+ h2

2. Lemma A.4 of Fan and Huang

(2005) and condition B2 imply that

√
n(Z̃

T
Z̃)−1Z̃(I− S)m = OP(

√
nc2n) = oP(1). (S1.19)

Using the derivation similar to that of (S1.18), and the central limit theo-

rem, we have

1√
n
Z̃

T
(I− S)ε =

1√
n

n∑
i=1

{
Zi − E(Zi | Ti)

}
ε(Ti){1 + oP(1)}

D→ N
(
0,E

{
σ2(T1)var(Z1 | T1)

})
. (S1.20)

Therefore (S1.16) follows after we plug (S1.18)−(S1.20) into (S1.17). Next,

we show Theorem 3. By (3.19), the Wald statistic W can be decomposed

in the following way:

W =
nβ̂2

[
E
{
var(Z1 | T1)

}]2
E
{
σ2(T1)var(Z1 | T1)

} ·
(
n−1Z̃

T
Z̃
)2[

E
{
var(Z1 | T1)

}]2 ·
E
{
σ2(T1)var(Z1 | T1)

}
n−1Z̃

T
Σ̂Z̃

.

(S1.21)

According to (S1.16), under H0: β = 0, we have[
E
{
var(Z1 | T1)

}]2
E
{
σ2(T1)var(Z1 | T1)

}(√nβ̂
)2 D→ χ2

1. (S1.22)

An application of Proposition 1 of Li (2011) implies that

max
1≤i≤n

|σ̂2(Ti)− σ2(Ti)| = OP(dn), (S1.23)
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where dn =
{
log(n)/(nh2)

}1/2
+ h2

2 +
{
log(n)/(nh3)

}1/2
+ h2

3. Using the

derivation similar to that of (S1.18), and the law of large numbers, by

(S1.23) and the fact that Z̃ and σ2(·) are bounded, we have

n−1Z̃
T
Σ̂Z̃ = n−1Z̃

T
ΣZ̃ + n−1Z̃

T (
Σ̂−Σ

)
Z̃

= n−1

n∑
i=1

{
Zi − E(Zi | Ti)

}2
σ2(Ti){1 +OP(cn)}+OP(dn)

P→ E
[{

Z1 − E(Z1 | T1)
}2
σ2(T1)

]
= E

{
σ2(T1)var(Z1 | T1)

}
, (S1.24)

where Σ = diag{σ2(T1), . . . , σ
2(Tn)}. Theorem 3 follows after we plug

(S1.18), (S1.22) and (S1.24) into (S1.21). ■

Proof of Theorem 4. The proof is similar to Theorem 1 except that (S1.6)

is replaced by

sup
t∈C

Lmulti(t) = sup
t∈C

m∑
k=1

{
µ̂k;+(t)− µ̂k;−(t)

}2

≤
m∑
k=1

sup
t∈C

{
µ̂k;+(t)− µ̂k;−(t)

}2

= O
(
h4
1 +

log(h−1
1 )

nh1

)
= o(λ) a.s.

according to the conditions for λ in Theorem 4. ■

Proof of Proposition 2. First, we show part (a). The multiple sample

Wald statistics {Wmulti
j }J̃j=1 are independent because the sets Nj’s defined
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in (3.22) are disjoint. According to Theorem 3, under the null hypothesis

H0,j in (3.27), we have Wk,j
D→ χ2

1, k = 1, . . . ,m. Since all the m sequences

are independent, the statistics {Wk,j}mk=1 are also independent. Therefore

under H0,j, we have,

Wmulti
j =

m∑
k=1

Wk,j
D→ χ2

m.

Second, we show part (b). Similar to part (a), the single-index modu-

lated p-values {pSIMj }J̃j=1 are independent because the sets Nj’s are disjoint.

Under the null hypothesis H0,j in (3.27), the p-value pk,j asymptotically

follows the uniform distribution on [0, 1], and thus Φ−1(pk,j)
D→ N(0, 1),

k = 1, . . . ,m. Since all the m sequences are independent, {Φ−1(pk,j)}mk=1

are the independent standard normal random variables. Now
∑m

k=1w
2
k = 1

implies that the linear combination

m∑
k=1

wkΦ
−1(pk,j)

D→ N(0, 1)

under H0,j. Thus pSIMj = Φ(
∑m

k=1wkΦ
−1(pk,j))

D→ unif(0, 1), which com-

pletes the proof. ■
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S2 Additional simulation

In this simulation, we will investigate the finite sample performance of the

Wald test statisticW in (3.19). First, we consider the partially linear model

Y (t) = α(t) + βI(t > t∗) + ε(t), (S2.25)

where the sample size n = 100, and Ti = i/n, i = 1, . . . , n. We set the

location of the potential discontinuity point t∗ = 0.6, the nonparametric

component α(t) = e−t, and β = 0.1 × θ, θ ∈ {0, 1, . . . , 5}, and the case

θ = 0 corresponds to the null hypothesis H0 in (3.14). Suppose that ε(t) is

a Gaussian random process with mean 0 and σ(t) = 0.1(1 + t), t ∈ [0, 1].

We conduct the simulation 500 times, with the significance level α = 0.05.

For each simulated data, we take the Epanechnikov kernel K(u) = 0.75(1−

u2)+, u ∈ [−1, 1], the bandwidth h2 ∈ {0.09, 0.12, 0.15}, and h3 is selected

automatically by the R package “np” (Li and Racine, 2007).

Figure 1 shows the QQ plots and powers of the Wald test statistic

(3.19) with different bandwidths over 500 simulations. The plots depict

that the Wald test statistic W closely follows the χ2
1 distribution, which is

consistent with our asymptotic theory. The power functions increase rapidly

as β increases, which in turn shows that the Wald test statistic proposed in

Section 3.1 works well. Besides, the results are quite stable with different
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Figure 1: QQ plots and powers of the Wald test statistic with different bandwidths.

bandwidths, thus the proposed testing procedure is not sensitive to the

choice of the bandwidth h2, and there is a wide range for selecting the

tuning parameters.

Next, we investigate the impact of estimation error in the potential

jump estimator τ̃ on the performance of the Wald test statistic. Notably,

τ̃ is derived from the identical dataset utilized for testing purposes. To

accomplish this, we undertake a simulation study similar to our previous

endeavor. However, a crucial distinction lies in the fact that the candidate

τ̃ is initially obtained through the screening procedure. Subsequently, we
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proceed to test the hypothesis (3.12) with t∗ = τ̃ .

Figure 2: Histograms of the jump estimator τ̃ in (S2.25), with β = 0.5 and QQ plots of

the Wald test statistic for testing the hypothesis (3.12), with t∗ = τ̃ .

Figure 2 depicts the histograms of the jump estimator τ̃ and QQ plots

of the Wald test statistic across 500 simulations, with varying bandwidths.

From the plots, we find that the jump estimators cluster around the true

jump point 0.6. As the bandwidth h2 increases, the estimator’s precision

also enhances since more observations are exploited in the neighborhood.

Notably, compared with Figure 1, the influence of estimation error in τ̃

on the Wald test statistic appears to be minimal. This observation can be

attributed to the convergence rate of the jump estimator τ̃ , which isOP(n
−1)



REFERENCES

in Theorem 1, lower than the standard convergence rate OP(n
−1/2) of β̂ in

the Wald test statistic (3.19). A similar argument of the post-selection

inference for the classic screening procedure can be found in (S1.15).
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