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In Section S1, we describe the kernel mean embeddings of probability dis-

tributions and provide the proofs of all the theorems presented in the main

text. In Section S2, we describe the use of a finite-dimensional space ap-

proximation to the infinite-dimensional RKHS to save computation costs,

and then theoretically investigate the impact of ignoring mislabeling of

outcomes and the performance of the proposed correction method in this

finite-dimensional approximate space. In Section S3, we describe the SUP3

dataset in details and report additional numerical results to the sensitivity
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analyses presented in Section 6.2 of the main text. In Section S4, we report

simulation studies to assess the impact of ignoring mislabeling of outcomes

and the performance of the proposed correction method.

S1 Kernel Mean Embedding of Probability Distribu-

tions and Proofs of Theorems in the Main Text

S1.1 Empirical Kernel Mean Embedding

For completeness, here we describe basics about kernel mean embeddings of

probability distributions. Let k : Z ×Z → R denote a continuous, positive-

definite kernel function, and let Hk denote the reproducing kernel Hilbert

space (RKHS) induced from the kernel k; all elements in Hk are functions

from Z to R. A common choice of the kernel function k is the Gaussian

kernel function

k(v1, v2) = exp(−γ||v1 − v2||22), (S.1)

For details, see Muandet et al. (2017).

As in Lopez-Paz et al. (2015), consider a separable topological space

(Z, τz), where τz represents the topology on the set Z (Armstrong 1983).

Suppose that Q is the probability distribution of a random variable V ,

defined as a function from a probability space (Ω, E ,P) to a measurable
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space (Z, σ(τz)), where Ω is the sample space, E represents a σ-algebra in

Ω, P denotes a probability measure, and σ(τz) is the σ-algebra generated

by τz. The kernel mean embedding method is to project the probability

distribution Q into RKHS Hk via a mapping, denoted µk. Specifically, let

µk(Q) denote the corresponding element inHk, which is a function mapping

from Z to R, defined by

µk(Q)(x) ≜
∫
z∈Z

k(z, x)dQ(z) for any x ∈ Z, (S.2)

where the integral refers to the Bochner integral (e.g., Diestel and Uhl 1977,

Chapter 2).

Evaluation of (S.2) may be difficult, and often, we consider its empirical

kernel mean embedding by approximating Q with an empirical distribution.

Specifically, let S ≜
{
Vj
∣∣ j = 1, · · · , J

}
denote a sequence of indepen-

dent and identically distributed (i.i.d) variables from the probability space

(Ω, E ,P) to the measurable space (Z, σ(τz)), generated from the probability

distribution Q, where J is a large positive integer specified by users. Define

QS ≜
1

J

J∑
j=1

δ(Vj),

where δ(x0) represents a Dirac measure centered at x0, defined by δ(x0)(A
∗) =

1 if x0 ∈ A∗; and δ(x0)(A
∗) = 0 if x0 /∈ A∗. Here, x0 is a point in R and A∗

is any subset of R.
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Consequently, an empirical kernel mean embedding for Q is defined as

the function µk(QS) : Z → R, given by

µk(QS)(x) =
1

J

J∑
j=1

k(Vj, x) for x ∈ Z, (S.3)

which, for each argument x ∈ Z, is essentially a random variable from

(Ω, E ,P) to R due to the randomness induced from the Vj in S; when the

sample S is realized as s, the resultant µk(Qs) becomes a deterministic

function.

S1.2 Convergence in Mean

To make the empirical kernel mean embedding (S.3) useful to approximate

(S.2), we want to identify conditions to ensure µk(QS) to be close to µk(Q) in

some sense. For f ∈ Hk, let ||f ||∞ = sup
z∈Z

|f(z)| and ||f ||Hk
=
√
< f, f >Hk

,

where < ·, · >Hk
is the inner product in Hk; see Muandet et al. (2017,

Chapter 2 ) for details. Lopez-Paz et al. (2015) showed that under certain

conditions, ||µk(QS) − µk(Q)||Hk
converges in probability to zero as J →

∞. Here, we examine E||µk(QS) − µk(Q)||Hk
and establish the following

convergence result.

Theorem S1. Assume that the kernel function k is bounded on Z and that
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for any f ∈ Hk with ||f ||Hk
≤ 1, ||f ||∞ ≤ 1. Then for µk(QS) in (S.3),

lim
J→∞

E||µk(QS)− µk(Q)||Hk
= 0,

where J is the size of S and the expectation is evaluated with respect to the

joint distribution of S.

Proof. By Theorem 28 of Song (2008), we have that for any random variable

V following the probability distribution Q,

||µk(QS)− µk(Q)||Hk
= sup

||f ||Hk
≤1

[E{f(V )} − 1

J

J∑
j=1

f(Vj)], (S.4)

where the expectation is evaluated with respect to Q. Then by the proof

of Theorem 1 in Lopez-Paz et al. (2015), we have that

E
{

sup
||f ||Hk

≤1

[E{f(V )} − 1

J

J∑
j=1

f(Vj)]
}
≤ 2

√
E[k(V, V )]

J
. (S.5)

Since k(z, z) is bounded on Z, E[k(V, V )] <∞. Then

lim
J→∞

√
E[k(V, V )]

J
= 0. (S.6)

Furthermore, by the definition of norm, ||µk(QS) − µk(Q)||Hk
≥ 0. There-

fore, combining (S.4), (S.5) and (S.6) gives that

lim
J→∞

E
{
||µk(QS)− µk(Q)||Hk

}
= 0.
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The conditions in Theorem S1 are satisfied by useful kernel functions,

such as the Gaussian kernel in (S.1). Theorem S1 shows the convergence

in the mean of ||µk(QS)− µk(Q)||Hk
to zero as J → ∞, implying that the

mean distance between µk(QS) and µk(Q) approaches zero as the sample

size J of S approaches infinity, where the distance is measured by the

norm in Hilbert space Hk. This result is stronger than the convergence in

probability of ||µk(QS)−µk(Q)||Hk
to zero as J → ∞, implied by Theorem

1 of Lopez-Paz et al. (2015).

Remark 1. It is known that convergence in mean implies convergence in

probability (Geiss and Geiss 2004, Proposition 4.1.3), but not vice versa.

As a counterexample, let B(R) denote the Borel σ-algebra on R (see

Definition 1.1.8 of Geiss and Geiss 2004). Consider the probability space

(Ω, E ,P), where Ω = [0, 1], E ≜
{
G ∩ [0, 1]

∣∣ G ∈ B(R)
}
, and P is the

Lebesgue measure on [0, 1] (see Definition 1.3.1 of Geiss and Geiss 2004).

For n = 1, 2, · · · , let p(n) denote the unique nonnegative integer such

that n ∈ [2p(n)+1 − 1, 2p(n)+2 − 2]. Define

Un(ω) = 2p(n)+1I

{
ω ∈

[n− 2p(n)+1 + 1

2p(n)+1
,
n− 2p(n)+1 + 2

2p(n)+1

]}
,

where I

{
ω ∈

[
n−2p(n)+1+1

2p(n)+1 , n−2p(n)+1+2
2p(n)+1

]}
is the indicator function represent-

ing whether ω is in the interval of
[
n−2p(n)+1+1

2p(n)+1 , n−2p(n)+1+2
2p(n)+1

]
, taking value 1
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if yes and value 0 otherwise. That is, for n = 1, 2, · · · , Un is a random

variable defined over the probability space (Ω, E ,P).

Then for any 1 > ε > 0,

P
{
|Un| ≥ ε

}
≤ P

{
ω ∈

[n− 2p(n)+1 + 1

2p(n)+1
,
n− 2p(n)+1 + 2

2p(n)+1

]}
=

1

2p(n)+1
,

implying that

lim
n→∞

P
{
|Un| ≥ ε

}
= 0.

That is,
{
Un

∣∣ n = 1, 2, · · ·
}
converges to zero in probability as n approaches

to infinity.

On the other hand,

E
{
Un

}
= 2p(n)+1 · P

{
ω ∈

[n− 2p(n)+1 + 1

2p(n)+1
,
n− 2p(n)+1 + 2

2p(n)+1

]}
= 2p(n)+1 · 1

2p(n)+1

= 1,

implying that
{
Un

∣∣ n = 1, 2, · · ·
}
does not converge in mean to zero as n

approaches to infinity.

Remark 2. Back to our setting in Section 2.2 in the main text, applying

(S.3) to each i = 1, · · · , n, we define empirical kernel mean embedding

µk(PSi
) =

1

mi

mi∑
j=1

k(Zij, ·), (S.7)
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and then application of Theorem S1 gives that for each i = 1, · · · , n,

lim
mi→∞

E||µk(PSi
)− µk(Pi)||Hk

= 0,

where the expectation is evaluated with respect to the joint distribution of

Si.

S1.3 Proof of Theorem 1 in the Main Text

Proof of Theorem 1 (a):

Applying Theorem 3 of Lopez-Paz et al. (2015) with δ set to 1
n
and

using the notation C(n,m,Lφ, LF , B) in (3.6) in the main text, we have

that

P
{
Rφ(f̂)−Rφ(f0) ≤ C

(
n,m,Lφ, LF , B

)}
≥ 1− 1

n
. (S.8)

Since 0 ≤ φ(−f(h)l) ≤ B for every f ∈ F , h ∈ Hk and l ∈ L,

Rφ(f̂)−Rφ(f0) ≤ |Rφ(f̂)|+ |Rφ(f0)|

= E{φ(−f̂(µk(P )(·))l)}+ E{φ(−f0(µk(P )(·))l)}

≤ 2B. (S.9)

Using (S.8) with (S.9), we now examine that for any n and mi,

E{Rφ(f̂)−Rφ(f0)}

= E
[{
Rφ(f̂)−Rφ(f0)

}
I
{
Rφ(f̂)−Rφ(f0) ≤ C

(
n,m,Lφ, LF , B

)}
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+
{
Rφ(f̂)−Rφ(f0)

}
I
{
Rφ(f̂)−Rφ(f0) > C

(
n,m,Lφ, LF , B

)}]
≤ E

[
C
(
n,m,Lφ, LF , B

)
I
{
Rφ(f̂)−Rφ(f0) ≤ C

(
n,m,Lφ, LF , B

)}
+ 2BI

{
Rφ(f̂)−Rφ(f0) > C

(
n,m,Lφ, LF , B

)}]
= C

(
n,m,Lφ, LF , B

)
P
{
Rφ(f̂)−Rφ(f0) ≤ C

(
n,m,Lφ, LF , B

)}
+ 2BP

{
Rφ(f̂)−Rφ(f0) > C

(
n,m,Lφ, LF , B

)}
≤ C

(
n,m,Lφ, LF , B

)
+ 2BP

{
Rφ(f̂)−Rφ(f0) > C

(
n,m,Lφ, LF , B

)}
≤ C

(
n,m,Lφ, LF , B

)
+

2B

n
, (S.10)

where the first inequality comes from (S.9) as well as the definition of the

indicator function, and the last inequality is due to (S.8). This completes

the proof of Theorem 1 (a).

Proof of Theorem 1 (b):

By the remark below Theorem 3 of Lopez-Paz et al. (2015), the order

of R(F) is O(n− 1
2 ), showing that lim

n→∞
R(F) = 0. Since k(z, z) is bounded

on Z, E{k(Zi, Zi)} <∞, we obtain that

lim
n→∞

lim
min

1≤i≤n
mi→∞

4LφLF

n

n∑
i=1

[√
E{k(Zi, Zi)}

mi

+

√
log 2n

mi

]
= 0,

and thus, by the assumption R(F) = O(n− 1
2 ),

lim
n→∞

{
C
(
n,m,Lφ, LF , B

)
+

2B

n

}
= 0. (S.11)
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Since f0 is the minima of Rφ(·), we have that

Rφ(f̂)−Rφ(f0) ≥ 0.

Therefore, by Theorem 1 (a) in the main text, we have that

lim
n→∞

lim
m→∞

E{Rφ(f̂)−Rφ(f0)} = 0.

Proof of Theorem 1 (c):

Part (ii) of Theorem 1 (c) is immediate by taking the limit on both sides

of the inequality in part (i) of Theorem 1 (c), where we utilize the proof of

part (b) and the fact that ζφ(·) is a continuous function with ζφ(0) = 0.

Now it remains to show part (i) of Theorem 1 (c). By Theorem 1 and

Lemma 2 of Bartlett et al. (2006), for the convex surrogate φ(·), there

exists a nonnegative continuous convex function ψ̃φ(·) from [−1, 1] to R

with ψ̃φ(0) = 0 such that

ψ̃φ(R(f̂)−R0) ≤ Rφ(f̂)− inf
h∈G

Rφ(h)

= Rφ(f̂)−Rφ(f0), (S.12)

where the equality is due to inf
h∈G

Rφ(h) = min
f∈F

Rφ(f) = R(f0).

If the convex surrogate φ(·) is classification-calibration, then by the

comment after Theorem 1 of Bartlett et al. (2006), ψ̃φ(·) is invertible on

[0, 1]. Thus, we consider the restricted version of ψ̃φ(·) on [0, 1], and let ψφ(·)
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denote it. That is, ψφ(·) maps [0, 1] to R, satisfying ψφ(x) = ψ̃φ(x) for all

x ∈ [0, 1]. Then ψφ(·) is nonnegative, convex, invertible, and continuous

over [0, 1], where continuity at the end points 0 and 1 refers to the right-

continuous at 0 and left-continuous at 1, respectively. Further, ψφ is strictly

increasing over [0, 1]. Indeed, by part 9 of Lemma 2 of Bartlett et al. (2006),

for all x ∈ (0, 1], we have that ψφ(x) > 0, i.e., ψφ(x) > ψφ(0) because

ψφ(0) = ψ̃φ(0) = 0; by part 2 of Lemma 1 of Bartlett et al. (2006), we

have that for all 0 < y < x ≤ 1, ψφ(y) ≤ y
x
ψφ(x) < ψφ(x). Therefore, ψφ(·)

is nonnegative, convex, continuous, strictly increasing, and invertible with

ψφ(0) = 0.

As the domain [0, 1] of ψφ(·) is compact and R is a Hausdorff space

(Kelly 2017), by the result that the inverse of a continuous bijection from a

compact space onto a Hausdorff space is also continuous (Hoffmann 2015),

the inverse of ψφ(·), denoted ζφ(·), is continuous. In addition, because

ψφ(·) is strictly increasing with ψφ(0) = 0, its inverse ζφ(·) is also strictly

increasing with ψφ(0) = 0.

Because R0 is the minimum value of R(h) over G, F is a subset of G,

and R(·) is always between 0 and 1 by (3.3) with ℓ(·) being between 0 and

1, we obtain that

0 ≤ R(f̂)−R0 ≤ R(f̂) ≤ 1.
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Then by (S.12) and the definition of ψφ, we have that

ψφ(R(f̂)−R0) ≤ Rφ(f̂)−Rφ(f0). (S.13)

Then by the property of ψφ and Jensen’s inequality together with (S.13),

we have that

ψφ

(
E{R(f̂)−R0}

)
≤ E

{
ψφ

(
R(f̂)−R0

)}
≤ E

{
Rφ(f̂)−Rφ(f0)

}
,

yielding that by the monotonicity of the inverse ζφ(·) of ψφ(·),

E{R(f̂)−R0} ≤ ζφ

(
E
{
Rφ(f̂)−Rφ(f0)

})
. (S.14)

Then combining (S.14) with the result in part (a), we prove part (i) of

Theorem 1 (c).

Proof of Theorem 1 (d): By (S.13), there exists a nonnegative, convex,

continuous, and strictly increasing function ψφ : [0, 1] → R with ψφ(0) = 0

such that

ψφ

(
R(f̂)−R0

)
≤ Rφ(f̂)−Rφ(f0).

Then taking the expectation on both sides of this inequality and utilizing

Jensen’s inequality yield

ψφ

(
E{R(f̂)−R0}

)
≤ E

{
ψφ

(
R(f̂)−R0

)}
≤ E

{
Rφ(f̂)−Rφ(f0)

}
,
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which shows (3.7).

Furthermore, applying Theorem 1.3 of Bartlett et al. (2006), we prove

the equivalence among parts (i), (ii), and (iii).

S1.4 Proof of Theorem 2 in the Main Text

Proof of Part (a):

We first examine Rφ(g)−Rφ(f0) by connecting it with R̂φ(·) and F :

Rφ(g)−Rφ(f0)

= {Rφ(g)− R̂φ(g)}+ {R̂φ(g)− R̂φ(f̂)}+ {R̂φ(f̂)− R̂φ(f0)}+ {R̂φ(f0)−Rφ(f0)}

≤ {Rφ(g)− R̂φ(g)}+ {R̂φ(g)− R̂φ(f̂)}+ {R̂φ(f0)−Rφ(f0)}

≤ 2 sup
f∈F

|Rφ(f)− R̂φ(f)|+ {R̂φ(g)− R̂φ(f̂)}

≤ 2 sup
f∈F

|Rφ(f)− R̂φ(f)|+
∣∣R̂φ(g)− R̂φ(f̂)

∣∣, (S.15)

where the first inequality holds since f̂ is the minimum point of the func-

tional R̂φ(f), and the second inequality comes from the definition of supre-

mum.

By the proof of Theorem 3 of Lopez-Paz et al. (2015) and setting their

δ to 1
n
, we have that

P
{
2 sup
f∈F

|Rφ(f)− R̂φ(f)| ≤ C
(
n,m,Lφ, LF , B

)}
≥ 1− 1

n
. (S.16)
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Since 0 ≤ φ(−f(h)l) ≤ B for every f ∈ F , h ∈ Hk and l ∈ L,

|Rφ(f)− R̂φ(f)| ≤ |Rφ(f)|+ |R̂φ(f)|

=
∣∣∣E{φ(−f̂(µk(P )(·))l)}

∣∣∣+ ∣∣∣ 1
n

n∑
i=1

φ(−lif(µk(PSi
)))
∣∣∣

≤ 2B,

where the second step is due to the definition of Rφ(·) at the end of the

paragraph before (3.4) in the main text and the definition of R̂φ(·) before

(3.5) in the main text. Consequently,

2 sup
f∈F

|Rφ(f)− R̂φ(f)| ≤ 4B (S.17)

Then, for any n and mi,

E{2 sup
f∈F

|Rφ(f)− R̂φ(f)|}

= E
[{

2 sup
f∈F

|Rφ(f)− R̂φ(f)|
}
I
{
2 sup
f∈F

|Rφ(f)− R̂φ(f)| ≤ C
(
n,m,Lφ, LF , B

)}
+
{
2 sup
f∈F

|Rφ(f)− R̂φ(f)|
}
I
{
2 sup
f∈F

|Rφ(f)− R̂φ(f)| > C
(
n,m,Lφ, LF , B

)}]
≤ E

[
C
(
n,m,Lφ, LF , B

)
I
{
2 sup
f∈F

|Rφ(f)− R̂φ(f)| ≤ C
(
n,m,Lφ, LF , B

)}
+ 4BI

{
2 sup
f∈F

|Rφ(f)− R̂φ(f)| > C
(
n,m,Lφ, LF , B

)}]
= C

(
n,m,Lφ, LF , B

)
P
{
2 sup
f∈F

|Rφ(f)− R̂φ(f)| ≤ C
(
n,m,Lφ, LF , B

)}
+ 4BP

{
2 sup
f∈F

|Rφ(f)− R̂φ(f)| > C
(
n,m,Lφ, LF , B

)}
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≤ C
(
n,m,Lφ, LF , B

)
+ 4BP

{
2 sup
f∈F

|Rφ(f)− R̂φ(f)| > C
(
n,m,Lφ, LF , B

)}
≤ C

(
n,m,Lφ, LF , B

)
+

4B

n
, (S.18)

where the first inequality comes from (S.17), the third step is due to the

definition of the indicator function, and the last inequality is due to (S.16).

Now we examine the second term of (S.15). By the definition of R̂φ(·)

before (3.5) in the main text, we have that

∣∣R̂φ(g)− R̂φ(f̂)
∣∣

=
∣∣∣ 1
n

n∑
i=1

φ(−lig(µk(PSi
)))− 1

n

n∑
i=1

φ(−lif̂(µk(PSi
)))
∣∣∣

≤ 1

n

n∑
i=1

∣∣φ(−lig(µk(PSi
)))− φ(−lif̂(µk(PSi

)))
∣∣

≤ 1

n

n∑
i=1

Lφ|g(µk(PSi
))− f̂(µk(PSi

))| · |li|

=
1

n

n∑
i=1

Lφ|g(µk(PSi
))− f̂(µk(PSi

))|

≤ 1

n

n∑
i=1

Lφ sup
x∈Hk

|g(x)− f̂(x)|

= Lφ sup
x∈Hk

|g(x)− f̂(x)|, (S.19)

where the second step is due to the triangle inequality of absolute value, the

third step comes from condition (R3) of Theorem 1, the fourth step is due

to the fact that |li| = 1 for any i, and the fifth step is due to the definition

of supremum.
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Taking expectation on both sides of (S.15) and combining (S.18) and

(S.19) yield part (a), where the definition of F (f̂ , g, Lφ) is used.

Proof of Part (b):

Taking limsup on the both sides of the inequality in part (a) in the

main text and utilizing that

lim sup
n→∞

lim sup
m→∞

{
C
(
n,m,Lφ, LF , B

)
+

4B

n

}
= lim

n→∞
lim

m→∞

{
C
(
n,m,Lφ, LF , B

)
+

4B

n

= 0,

we prove part (b) in the main text.

Proof of Part (c):

Replacing f̂ with g and replacing the upper bound in Theorem 1 (a)

with the upper bound in part (a), we repeat the proof of Part (i) in Theorem

1 (c) and then we can prove the first inequality in part (c).

Taking limsup with respect to m and n on both sides of the first in-

equality in Part (c) and utilizing the fact that ζφ(·) is continuous, we can

show the second inequality in part (c).

Proof of Part (d): Repeating the proof of Theorem 1 (d) by replacing f̂

with g yields part (d).
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S1.5 Proof of Theorem 3 in the Main Text

Lemma 1: For any li and l
∗
i , we have that E|li − l∗i | ≤ 2D.

Proof. First, it can be easily shown that for any random variable U and a

binary variable V taking values v1 and v2,

E(U) = E(U |V = v1)P(V = v1) + E(U |V = v2)P(V = v2) (S.20)

Next, we examine E|li − l∗i | using (S.20) with U set as |li − l∗i | and V

taken different forms for (4.9) and (4.10) in the main text. If (4.9) in the

main text is used to describe the misclassification in labels, then we set

V = li and applying (S.20) gives that

E|li − l∗i | = E{|li − l∗i |
∣∣li = 1} × P(li = 1) + E{|li − l∗i |

∣∣li = −1} × P(li = −1)

≤ E{|li − l∗i |
∣∣li = 1}+ E{|li − l∗i |

∣∣li = −1}

= 2(1− p∗1) + 2(1− p∗−1)

= 2D.

When (4.10) in the main text is used to describe the misclassification in

labels, we take Vi = l∗i and applying (S.20) gives that

E|li − l∗i | = E{|li − l∗i |
∣∣l∗i = 1} × P(l∗i = 1) + E{|li − l∗i |

∣∣l∗i = −1} × P(l∗i = −1)

≤ E{|li − l∗i |
∣∣l∗i = 1}+ E{|li − l∗i |

∣∣l∗i = −1}

= 2(1− p1) + 2(1− p−1)
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= 2D.

Therefore, the conclusion in the lemma follows.

Proof of Part (a):

The proof of the first inequality consists of the following three steps.

Step 1: First, we examine the absolute difference |Rφ(f̂
∗)−Rφ(f̂)| by

connecting it with R̂(·) and F , where we examine two cases by the sign of

Rφ(f̂
∗)−Rφ(f̂).

Case 1: when Rφ(f̂
∗)−Rφ(f̂) ≥ 0:

|Rφ(f̂
∗)−Rφ(f̂)| = Rφ(f̂

∗)−Rφ(f̂)

=
{
Rφ(f̂

∗)− R̂∗
φ(f̂

∗)
}
+
{
R̂∗

φ(f̂
∗)− R̂∗

φ(f̂)
}
+
{
R̂∗

φ(f̂)−Rφ(f̂)
}

≤
{
Rφ(f̂

∗)− R̂∗
φ(f̂

∗)
}
+
{
R̂∗

φ(f̂)−Rφ(f̂)
}

≤ 2sup
f∈F

|Rφ(f)− R̂∗
φ(f)| (S.21)

= 2sup
f∈F

|Rφ(f)− R̂φ(f) + R̂φ(f)− R̂∗
φ(f)|

≤ 2sup
f∈F

|Rφ(f)− R̂φ(f)|+ 2sup
f∈F

|R̂φ(f)− R̂∗
φ(f)|, (S.22)

where the first inequality holds since R̂∗
φ(f̂

∗)− R̂∗
φ(f̂) ≤ 0 by that f̂ ∗ is the

minimum point of the functional R̂∗
φ(f), and the last inequality comes from

the triangle inequality and the definition of supremum.
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Case 2: when Rφ(f̂
∗)−Rφ(f̂) < 0:

|Rφ(f̂
∗)−Rφ(f̂)| = Rφ(f̂)−Rφ(f̂

∗)

=
{
Rφ(f̂)− R̂φ(f̂)

}
+
{
R̂φ(f̂)− R̂φ(f̂

∗)
}
+
{
R̂φ(f̂

∗)−Rφ(f̂
∗)
}

≤
{
Rφ(f̂)− R̂φ(f̂)

}
+
{
R̂φ(f̂

∗)−Rφ(f̂
∗)
}

≤ 2sup
f∈F

|Rφ(f)− R̂φ(f)|

≤ 2sup
f∈F

|Rφ(f)− R̂φ(f)|+ 2sup
f∈F

|R̂φ(f)− R̂∗
φ(f)|, (S.23)

where the first inequality holds since R̂φ(f̂)− R̂φ(f̂
∗) ≤ 0 by that f̂ is the

minimum point of the functional R̂φ(f).

By combining (S.22) and (S.23), we have that

|Rφ(f̂
∗)−Rφ(f̂)| ≤ 2sup

f∈F
|Rφ(f)− R̂φ(f)|+ 2sup

f∈F
|R̂φ(f)− R̂∗

φ(f)|. (S.24)

Step 2: Next, we examine the first term of (S.24). By the proof of

Theorem 3 in Lopez-Paz et al. (2015) and setting their δ to 1
n
, we have

that

P
{
2sup
f∈F

|Rφ(f)− R̂φ(f)| ≤ C
(
n,m,Lφ, LF , B

)}
≥ 1− 1

n
. (S.25)

In addition,

2sup
f∈F

|Rφ(f)− R̂φ(f)|
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≤ 2sup
f∈F

|Rφ(f)|+ 2sup
f∈F

|R̂φ(f)|

= 2sup
f∈F

∣∣E{φ(−f(µk(P )(·))l)}
∣∣+ 2sup

f∈F

∣∣∣ 1
n

n∑
i=1

φ(−lif(µk(PSi
)))
∣∣∣

≤ 4B (S.26)

where the first step comes from the triangle inequality and the definition

of supremum, the second step is due to the definition of Rφ(·) at the end

of the paragraph before (3.4) in the main text and the definition of R̂φ(·)

before (3.5) in the main text, and the third step comes from the condition

that 0 ≤ φ(−f(h)l) ≤ B for every f ∈ F , h ∈ Hk and l ∈ L.

Next, we evaluate E{2sup
f∈F

|Rφ(f)−R̂φ(f)|} by following the same deriva-

tions as in (S.10), except replacingRφ(f̂)−Rφ(f0) in (S.10) with 2sup
f∈F

|Rφ(f)−

R̂φ(f)|, (S.8) with (S.25), and (S.9) with (S.26). Then we obtain

E{2sup
f∈F

|Rφ(f)− R̂φ(f)|} ≤ C
(
n,m,Lφ, LF , B

)
+

4B

n
. (S.27)

Step 3: Finally, we examine the expectation of the second term in

(S.24).

E
{
2sup
f∈F

|R̂φ(f)− R̂∗
φ(f)|

}
= E

[
2sup
f∈F

∣∣∣ 1
n

n∑
i=1

{φ(−f(µk(PSi
))li)− φ(−f(µk(PSi

))l∗i )}
∣∣∣]

≤ E
[
2sup
f∈F

{ 1
n

n∑
i=1

|φ(−f(µk(PSi
))li)− φ(−f(µk(PSi

))l∗i )|
}]
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≤ 2

n

n∑
i=1

E{sup
f∈F

|φ(−f(µk(PSi
))li)− φ(−f(µk(PSi

))l∗i )|}

≤ 2Lφ

n

n∑
i=1

E{sup
f∈F

|f(µk(PSi
))li − f(µk(PSi

))l∗i |}

=
2Lφ

n

n∑
i=1

E
[{

sup
f∈F

|f(µk(PSi
))|
}
|li − l∗i |

]
, (S.28)

where the first inequality is due to Jensen’s inequality, the second inequality

comes from that sup
x
{|g1(x)| + |g2(x)|} ≤ sup

x
|g1(x)| + sup

x
|g2(x)| for any

functions g1 and g2, and the third inequality is due to the Lipschitzness of

φ.

Since for any f ∈ F and h ∈ Hk, |f(h)| ≤M ||h||Hk
, then

|f(µk(PSi
))| ≤M ||µk(PSi

)||Hk
. (S.29)

Furthermore,

||µk(PSi
)||Hk

=

〈
1

mi

mi∑
j=1

k(Zij, ·),
1

mi

mi∑
j=1

k(Zij, ·)

〉
Hk

=
1

m2
i

mi∑
j=1

mi∑
k=1

k(Zij, Zik)

≤ A, (S.30)

where the last step comes from that k(z1, z2) ≤ A for any z1, z2 ∈ Z.

Combining (S.29) and (S.30) gives that

sup
f∈F

|f(µk(PSi
))| ≤MA. (S.31)
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Combining (S.28), (S.31) and Lemma 1 gives that

E{2sup
f∈F

|R̂φ(f)− R̂∗
φ(f)|} ≤ 4MLφAD. (S.32)

Then applying (S.27) and (S.32) to (S.24) proves the first inequality in part

(a).

Now we prove the second inequality in part (a). By the triangle in-

equality, we have that

E{|R(f̂ ∗)−R(f̂)|}
2

=
E{|R(f̂ ∗)−R0 +R0 −R(f̂)|}

2

≤ E{|R(f̂ ∗)−R0|}
2

+
E{|R0 −R(f̂)|}

2

=
E{R(f̂ ∗)−R0}

2
+

E{R(f̂)−R0}
2

(S.33)

where the last equality is because both R(f̂ ∗) and R(f̂) are always greater

than or equal to R0.

By repeating the derivation of (S.13) with replacing f̂ by f̂ ∗, we have

that

ψφ(R(f̂
∗)−R0) ≤ Rφ(f̂

∗)−Rφ(f0). (S.34)

where ψφ(·) is defined in the proof of Theorem 1 and is a nonnegative,

convex, continuous, and strictly increasing function.

Then applying ψφ(·) to both sides of (S.33) yields that

ψφ

(1
2
E{|R(f̂ ∗)−R(f̂)|}

)
≤ ψφ

(E{R(f̂ ∗)−R0}
2

+
E{R(f̂)−R0}

2

)
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≤
ψφ

(
E{R(f̂ ∗)−R0}

)
+ ψφ

(
E{R(f̂)−R0}

)
2

≤
E
{
ψφ

(
R(f̂ ∗)−R0

)}
+ E

{
ψφ

(
R(f̂)−R0

)}
2

≤
E
{
Rφ(f̂

∗)−Rφ(f0)
}
+ E

{
Rφ(f̂)−Rφ(f0)

}
2

=
E
{
Rφ(f̂

∗)−Rφ(f0) +Rφ(f̂)−Rφ(f0)
}

2
,

(S.35)

where the second inequality is due to the convexity of ψφ, the third inequal-

ity is due to Jensen’s inequality, and the fourth inequality is due to (S.13)

and (S.34).

Now we examine Rφ(f̂
∗)−Rφ(f0) +Rφ(f̂)−Rφ(f0) in (S.35) by intro-

ducing R̂∗
φ(f̂

∗), R̂∗
φ(f0), R̂φ(f̂), and R̂φ(f0) as bridging components:

Rφ(f̂
∗)−Rφ(f0) +Rφ(f̂)−Rφ(f0)

= Rφ(f̂
∗)− R̂∗

φ(f̂
∗) + R̂∗

φ(f̂
∗)− R̂∗

φ(f0) + R̂∗
φ(f0)−Rφ(f0) +Rφ(f̂)− R̂φ(f̂)

+ R̂φ(f̂)− R̂φ(f0) + R̂φ(f0)−Rφ(f0)

≤ Rφ(f̂
∗)− R̂∗

φ(f̂
∗) + R̂∗

φ(f0)−Rφ(f0) +Rφ(f̂)− R̂φ(f̂) + R̂φ(f0)−Rφ(f0)

≤ 2sup
f∈F

|Rφ(f)− R̂φ(f)|+ 2sup
f∈F

|R̂∗
φ(f)−Rφ(f)|

= 2sup
f∈F

|Rφ(f)− R̂φ(f)|+ 2sup
f∈F

∣∣R̂∗
φ(f)− R̂φ(f) + R̂φ(f)−Rφ(f)

∣∣
≤ 2sup

f∈F
|Rφ(f)− R̂φ(f)|+ 2sup

f∈F
|R̂∗

φ(f)− R̂φ(f)|+ 2sup
f∈F

|R̂φ(f)−Rφ(f)|
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= 4sup
f∈F

|Rφ(f)− R̂φ(f)|+ 2sup
f∈F

|R̂φ(f)− R̂∗
φ(f)|, (S.36)

where the first inequality holds since R̂∗
φ(f̂

∗) − R̂∗
φ(f0) ≤ 0 and R̂φ(f̂) −

R̂φ(f0) ≤ 0 by that f̂ ∗ and f̂ are the minimum points of the functional R̂∗
φ(f)

and R̂φ(f), respectively; the second inequality comes from the definition of

supremum; and the last inequality is due to the triangle inequality and the

property of the supremum.

Taking the expectation on both sides of (S.36) and utilizing (S.27),

(S.32), and (S.35), we obtain that

ψφ

(1
2
E{|R(f̂ ∗)−R(f̂)|}

)
≤ C

(
n,m,Lφ, LF , B

)
+
4B

n
+2MLφAD. (S.37)

By the proof of Theorem 1, the inverse ζφ(·) of ψφ(·) is a nondecreasing

continuous function with ζφ(0) = 0. Therefore, applying ζφ(·) to the both

sides of (S.37), we obtain that

E{|R(f̂ ∗)−R(f̂)|} ≤ 2ζφ

(
C
(
n,m,Lφ, LF , B

)
+
4B

n
+2MLφAD

)
. (S.38)

Then we prove the second inequality in part (a).

Proof of Part (b):

By taking limsup as both m and n approach infinity on both sides of

the first inequality in part (a), as well as utilizing (S.11), we prove the first

inequality in part (b).

Similarly, taking limsup as both m and n approach infinity on both
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sides of (S.38) and utilizing (S.11), we prove the second inequality in part

(b).

S1.6 Proof of Theorem 4 in the Main Text

First, we show the following lemma.

Lemma 2: For any t ∈ R, if the misclassification probability (4.9) in

the main text is taken, we have that

E{φ∗(t, l∗)|l} = φ(−tl); (S.39)

if the reclassification probability (4.10) in the main text is taken, we have

that

E{φ(−tl)|l∗} = φ∗(t, l∗). (S.40)

Proof. We first prove (S.39). Under the misclassification probability (4.9)

in the main text, by definition (5.15) in the main text, we have that

E{φ∗(t, l∗)|l = 1}

= E
{p∗−l∗φ(−tl∗)− (1− p∗l∗)φ(tl

∗)

p∗1 + p∗−1 − 1

∣∣∣l = 1
}

=
p∗−1φ(−t)− (1− p∗1)φ(t)

p∗1 + p∗−1 − 1
× P(l∗ = 1|l = 1)

+
p∗1φ(t)− (1− p∗−1)φ(−t)

p∗1 + p∗−1 − 1
× P(l∗ = −1|l = 1)

=
p∗−1φ(−t)− (1− p∗1)φ(t)

p∗1 + p∗−1 − 1
× p∗1 +

p∗1φ(t)− (1− p∗−1)φ(−t)
p∗1 + p∗−1 − 1

× (1− p∗1)
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= φ(−t)

and

E{φ∗(t, l∗)|l = −1}

= E
{p∗−l∗φ(−tl∗)− (1− p∗l∗)φ(tl

∗)

p∗1 + p∗−1 − 1

∣∣∣l = −1
}

=
p∗−1φ(−t)− (1− p∗1)φ(t)

p∗1 + p∗−1 − 1
× P(l∗ = 1|l = −1)

+
p∗1φ(t)− (1− p∗−1)φ(−t)

p∗1 + p∗−1 − 1
× P(l∗ = −1|l = −1)

=
p∗−1φ(−t)− (1− p∗1)φ(t)

p∗1 + p∗−1 − 1
× (1− p∗−1) +

p∗1φ(t)− (1− p∗−1)φ(−t)
p∗1 + p∗−1 − 1

× p∗−1

= φ(t).

Thus, (S.39) follows.

Next, we prove (S.40). Under the reclassification probability (4.10) in

the main text, we have that

E{φ(−tl)|l∗ = 1} = φ(−t)× P(l = 1|l∗ = 1) + φ(t)× P(l = −1|l∗ = 1)

= φ(−t)× p1 + φ(t)× (1− p1);

and

E{φ(−tl)|l∗ = −1} = φ(−t)× P(l = 1|l∗ = −1) + φ(t)× P(l = −1|l∗ = −1)

= φ(−t)× (1− p−1) + φ(t)× p−1.

Then by definition (5.15) in the main text, we conclude (S.40).
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Now we prove Theorem 4 by taking a different start point, either from

Rφ∗(f) or Rφ(f), depending on whether (4.9) or (4.10) in the main text is

under consideration. The derivations for (4.9) and (4.10) in the main text

are of opposite order, with intermediate steps differing in whether l∗ or l is

taken as the conditioning variable. Specifically, under the misclassification

probability (4.9) in the main text, we have that

Rφ∗(f) = E{φ∗(f(µk(P )(·)), l∗)}

= E
[
E{φ∗(f(µk(P )(·)), l∗)|l}

]
= E{φ(−lf(µk(P )(·)))}

= Rφ(f) (S.41)

where the first equality is by definition of Rφ∗(f) in Section 5 of the main

text, the second equality is due to the property of conditional expectation,

the third equality is due to (S.39) of Lemma 2 in this appendix, and the

last equality is due to the definition of Rφ(·) at the end of the paragraph

before (3.4) in the main text.

In contrast, under the misclassification probability (4.10) in the main

text, we have that

Rφ(f) = E{φ(−f(µk(P )(·))l)}

= E
[
E{φ(−lf(µk(P )(·)))|l∗}

]
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= E{φ∗(f(µk(P )(·)), l∗)}

= Rφ∗(f) (S.42)

where the first equality is due to the definition of Rφ(·) at the end of the

paragraph before (3.4) in the main text, the second equality is due to the

property of conditional expectation, the third equality is due to (S.40) of

Lemma 2 in this appendix, and the last equality comes from the definition

of Rφ∗(f) in Section 5 of the main text.

Thus, (S.41) and (S.42) lead to Theorem 4 in the main text.

S1.7 Proof of Theorem 5 in the Main Text

To show Theorem 5, we first present two lemmas.

Lemma 3: For any t1, t2 ∈ R and l∗ ∈ {−1, 1}, we have that

∣∣φ∗(t1, l
∗)− φ∗(t2, l

∗)
∣∣ ≤ L∗

φ|t1 − t2|,

where L∗
φ is defined in (5.19) of the main text.

Proof. We first consider the misclassification model (4.9) in the main text:

∣∣φ∗(t1, l
∗)− φ∗(t2, l

∗)
∣∣

=
∣∣∣p∗−l∗φ(−t1l∗)− (1− p∗l∗)φ(t1l

∗)

p∗1 + p∗−1 − 1
−
p∗−l∗φ(−t2l∗)− (1− p∗l∗)φ(t2l

∗)

p∗1 + p∗−1 − 1

∣∣∣
≤

p∗−l∗

|p∗1 + p∗−1 − 1|
∣∣φ(−t1l∗)− φ(−t2l∗)

∣∣+ 1− p∗l∗

|p∗1 + p∗−1 − 1|
∣∣φ(t1l∗)− φ(t2l

∗)
∣∣
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≤
(1− p∗l∗ + p∗−l∗)Lφ

|p∗1 + p∗−1 − 1|
|t1 − t2|

≤ 2Lφ

|p∗1 + p∗−1 − 1|
|t1 − t2|

= L∗
φ|t1 − t2|, (S.43)

where the first equality is due to the expression of φ∗(·, ·) in (5.15) of the

main text, the second step is due to the triangle inequality of absolute value,

the third step holds because φ(·) is Lφ-Lipschitz continuous and |l∗| = 1

for any l∗ ∈ {−1, 1}, the fourth step is due to the fact that p∗−l∗ ≤ 1 + p∗l∗ ,

and the last step is due to (5.19) in the main text.

Similarly, we evaluate the reclassification model (4.10) in the main text:

∣∣φ∗(t1, l
∗)− φ∗(t2, l

∗)
∣∣ = ∣∣pl∗(φ(−t1l∗)− φ(−t2l∗)) + (1− pl∗)(φ(t1l

∗)− φ(t2l
∗))
∣∣

≤ pl∗|φ(−t1l∗)− φ(−t2l∗)|+ (1− pl∗)|φ(t1l∗)− φ(t2l
∗)|

≤ pl∗Lφ|t1 − t2|+ (1− pl∗)Lφ|t1 − t2|

= Lφ|t1 − t2|

= L∗
φ|t1 − t2|, (S.44)

where the first equality is due to the expression of φ∗(·, ·) in (5.15) of the

main text, the first inequality is due to the triangle inequality of absolute

value, and the second inequality is because φ(·) is Lφ-Lipschitz continuous

and |l∗| = 1 for any l∗ ∈ {−1, 1}.
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By combining (S.43) and (S.44), we prove Lemma 3.

Lemma 4: For any f ∈ F , h ∈ Hk, and l ∈ L, we have that

∣∣φ∗(f(h), l)
∣∣ ≤ B∗,

where B∗ is defined in (5.20) in the main text.

Proof. If the reclassification model (4.10) in the main text is taken, the proof

is straightforward by using condition (R2) in Theorem 1 and the definition

of B∗ in (5.20) in the main text.

Then we examine the misclassification model (4.9) in the main text.

For any f ∈ F , h ∈ Hk, and l ∈ L, we have that

∣∣φ∗(f(h), l)
∣∣ = ∣∣∣∣p∗−lφ(−f(h)l)− (1− p∗l )φ(f(h)l)

p∗1 + p∗−1 − 1

∣∣∣∣
≤

p∗−l

|p∗1 + p∗−1 − 1|
∣∣φ(−f(h)l)∣∣+ 1− p∗l

|p∗1 + p∗−1 − 1|
∣∣φ(f(h)l)∣∣

≤
Bp∗−l

|p∗1 + p∗−1 − 1|
+

B(1− p∗l )

|p∗1 + p∗−1 − 1|

≤ 2B

|p∗1 + p∗−1 − 1|
(S.45)

where the first inequality is due to the triangle inequality of absolute value,

the second inequality is due to condition (R2) presented in Theorem 1, and

the last inequality holds because both p∗−l and 1− p∗l are less than or equal

to one for any l ∈ L.
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By the definition of B∗ in (5.20) in the main text, (S.45) implies Lemma

4.

Proof of Part (a):

By Theorem 4 in the main text, f0 is also the minimum of the φ∗-risk

functional Rφ∗(·). We further have

Rφ(f̂
correct)−Rφ(f0) = Rφ∗(f̂ correct)−Rφ∗(f0). (S.46)

With C(·, ·, ·, ·, ·) defined in (3.6) in the main text, by applying Lemmas

3 and 4 to the proof of Theorem 3 of Lopez-Paz et al. (2015) with their δ

set to 1
n
, we have that

P
{
Rφ∗(f̂ correct)−Rφ∗(f0) ≤ C(n,m,L∗

φ, LF , B)
}
≥ 1− 1

n
.

Then by (S.46) and repeating the proof of Theorem 1 (a) in Section S1.3

with B replaced by B∗, we prove Theorem 5 (a) in the main text.

Proof of Part (b): Repeating the proof of (S.11) by replacing Lφ and B

with L∗
φ and B∗, respectively, we have that

lim
n→∞

{
C
(
n,m,L∗

φ, LF , B
∗
)
+

2B∗

n

}
= 0.

Then by taking limits as both m and n approach infinity in both sides of

part (a), we prove part (b).

Proof of Part (c):
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By repeating the proof of part (i) in Theorem 1 (c) with f̂ and the

upper bound in Theorem 1 (a) replaced by f̂ correct and the upper bound

in part (a), respectively, we show the upper bound in part (c) (i). The

lower bound in part (c) (i) is directly derived from the fact that R0 is the

minimum value of R(·) over G and f̂ correct ∈ G.

Part (c) (ii) is immediate by taking the limit on both sides of the in-

equality in part (c) (i), where we utilize the proof of part (b) and the fact

that ζφ(·) is a continuous function with ζφ(0) = 0.

S2 Finite-dimensional Approximation Space of the Infinite-

dimensional RKHS

S2.1 Approximation of Empirical Kernel Mean Embedding (S.7)

Because RKHS Hk is usually infinite-dimensional, it is practically difficult

or even impossible to implement exact classification algorithms in Hk due

to huge or infinite computation and memory costs. For instance, if the

support vector machine (SVM) is used to classify µk(Pi) for i = 1, 2, · · · , n,
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then one needs to compute the matrix
⟨µk(P1)(·), µk(P1)(·)⟩Hk

. . . ⟨µk(P1)(·), µk(Pn)(·)⟩Hk

...
. . .

...

⟨µk(Pn)(·), µk(P1)(·)⟩Hk
. . . ⟨µk(Pn)(·), µk(Pn)(·)⟩Hk

 ,

which requires O(n2) computation and memory costs, and this can be pro-

hibitive when the size n is extremely large.

As a viable solution, we use a finite-dimensional space to approximate

infinite-dimensional Hk so that µk(Pi) for i = 1, 2, · · · , n can be reasonably

approximated by elements in the finite-dimensional space.

S2.1.1 Approximation with a Shift-Invariant Kernel

To see how to approximate the infinite-dimensionalHk with a finite-dimensional

space, we consider the method of Lopez-Paz et al. (2015), where the ker-

nel function k is assumed shift-invariant. That is, there exists a function

k′ : Z → R such that

k(z, z′) = k
′
(z − z′) for any z, z′ ∈ Z.

Without loss of generality, assume that Z = Rd with d being a positive

integer.

For a real-valued and shift-invariant kernel function k, Bochner’s The-

orem (Rudin, 1962) showed that the kernel function k can be expressed
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as:

k(z, z′) = 2CkE[cos(⟨ω, z⟩+ b)cos(⟨ω, z′⟩+ b)] (S.47)

for any z, z′ ∈ Z, where ω and b are independent random variables having

the distribution ω ∼ 1
Ck
pk and b ∼ U [0, 2π], U [0, 2π] represents the uniform

distribution over [0, 2π], pk is the Fourier transformation of the function

k′(z−z′), Ck =
∫
Z pk(ω)dω, and the expectation in (S.47) is evaluated with

respect to the joint distribution of ω and b (Lopez-Paz et al. 2015).

With the Gaussian kernel function (S.1), which is shift-invariant, Lopez-

Paz et al. (2015) showed that the Fourier transformation pk and Ck associ-

ated with (S.47) are:

pk(ω) = (2π)−
d
2 (2γ)−

1
2 exp

{
− 1

2
(2γωTω)

}
and Ck = 1,

where γ > 0 is an user-specified hyper parameter.

Often, the expectation in (S.47) has no analytical form and is approx-

imated by a sample mean. Suppose that for a given positive integer r, for

t = 1, · · · , r, the (ωt, bt) are independently generated from ωt ∼ 1
Ck
pk and

bt ∼ U [0, 2π]. Then the function k(z, ·) in (S.47) is approximated by

ĝzr (·) =
1

r

r∑
t=1

2Ckcos(⟨ωt, z⟩+ bt)cos(⟨ωt, ·⟩+ bt), (S.48)

where the dependence of ĝzr (·) on the underlying kernel function is sup-

pressed in the notation.
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Consequently, we approximate µk(PSi
) in (S.7) by:

µ̂(PSi
) =

1

mi

mi∑
j=1

ĝZij
r (·). (S.49)

S2.1.2 Input Space Expansion

For any probability measure Q′ on Z, let

L2(Q′) ≜
{
h : Z → R

∣∣∣ h is measurable and

∫
z∈Z

{
h(z)

}2
dQ

′
(z) <∞

}
denote the L2 space associated with the measure Q′. For any h ∈ L2(Q′),

let ||h||L2(Q′) ≜
[ ∫

z∈Z

{
h(z)

}2
dQ

′
(z)
] 1

2
denote the L2(Q′) norm of h (Brézis

2011, Section 4.2).

For any shift-invariant kernel function k satisfying supz∈Z k(z, z) ≤ 1,

the proof of Lemma 3 in Lopez-Paz et al. (2015) shows that

Hk ⊆ L2(Q′). (S.50)

Lemma 1 in Lopez-Paz et al. (2015) shows that for each i,

|| 1
mi

mi∑
j=1

ĝZij
r (·)− µk(PSi

)||L2(Q′)

p

−→ 0 as r → ∞. (S.51)

That is, by (S.48),
{
µk(PSi

)
∣∣ i = 1, · · · , n

}
can be reasonably approximated

by some elements in the finite-dimensional subspace of L2(Q′), denoted

Sk,r(Q
′), spanned by

{
cos(⟨ωt, ·⟩ + bt)

∣∣ t = 1, · · · , r} for a large r, where

ωt and bt are defined in the paragraph before (S.48) for t = 1, · · · , r.
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Specifically, for a given r, let

er(·) ≜ (cos(⟨ω1, ·⟩+ b1), · · · , cos(⟨ωr, ·⟩+ br))
T, (S.52)

then Sk,r(Q
′) is formulated as

Sk,r(Q
′) =

{
αTer(·)

∣∣ α ∈ Rr
}
, (S.53)

where subscript k shows the underlying kernel function k.

By (S.48), ĝ
Zij
r (·) is a linear combination of the bases er(·) for any i

and j, and thus, (S.53) implies that ĝ
Zij
r (·) belongs to Sk,r(Q

′) for any i and

j. On the other hand, (S.53) shows that Sk,r(Q
′) is a linear space, that is,

any linear combination of the elements in Sk,r(Q
′) must belong to Sk,r(Q

′).

Therefore, given that ĝ
Zij
r (·) ∈ Sk,r(Q

′) for any i and j, the approximation

1
mi

∑mi

j=1 ĝ
Zij
r (·) of the input µk(PSi

) in (S.49) belongs to the the finite-

dimensional approximation space Sk,r(Q
′) for each i. Consequently, the

causal learning procedure in Section 2.2 in the main text can be modified

as classification in Sk,r(Q
′), where we use

{
1
mi

∑mi

j=1 ĝ
Zij
r (·)

∣∣∣ i = 1, · · · , n
}

as inputs, together with labels
{
li
∣∣i = 1, · · · , n

}
to train a classifier.

S2.1.3 Modified Classifier with Clean Data

By (S.50), the RKHS Hk is part of L2(Q′) to which the approximation

1
mi

∑mi

j=1 ĝ
Zij
r (·) of the input µk(PSi

) belongs, indicating that the approxi-

mated inputs
{

1
mi

∑mi

j=1 ĝ
Zij
r (·)

∣∣∣ i = 1, · · · , n
}

may not belong to RKHS
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Hk. Consequently, to facilitate the rigorous exposition, here we consider

the discriminant functional from L2(Q′) rather than Hk to R. To be spe-

cific, let FQ′ denote a set of the functionals mapping from L2(Q′) to R

that are of interest, then the class of candidate classifiers is formulated as{
sign(f)

∣∣ f ∈ FQ′
}
. Similar to (3.4) in Section 3 of the main text, we aim

to find the optimal discriminant functional f̃0 ∈ FQ′ that minimizes the

φ-risk:

f̃0 = argminf∈FQ′ Rφ(f), (S.54)

where Rφ(·) is defined at the end of the paragraph before (3.4) of the main

text. By the definition of the kernel mean embedding of probability distri-

butions, we have that µk(P ) ∈ Hk for any probability distribution P , then

(S.50) implies µk(P ) ∈ L2(Q′). Therefore, using µk(P ) as the input of f in

the definition of Rφ(·) is well-defined for any f ∈ FQ′ .

We note that the approximation 1
mi

∑mi

j=1 ĝ
Zij
r (·) of the input µk(PSi

)

falls in the r-dimensional subspace Sk,r(Q
′) of L2(Q′), which is a space of

functions. Thus, directly taking the function 1
mi

∑mi

j=1 ĝ
Zij
r (·) as an input

to train a classifier may be practically infeasible. To get around this, we

equivalently express any element in Sk,r(Q
′) using its coordinates over the

bases er(·) defined in (S.52), and then use those coordinates as an input to

train a classifier.
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Specifically, as opposed to (S.48), we define

µk,r(PSi
) =

2Ck

|Si|

(∑
Z∈Si

cos(⟨ω1, Z⟩+ b1),
∑
Z∈Si

cos(⟨ω2, Z⟩+ b2),

· · · ,
∑
Z∈Si

cos(⟨ωr, Z⟩+ br)
)T
, (S.55)

for i = 1, · · · , n, where PSi
is the empirical distribution derived from the

samples Si, defined in (2.1) of the main text, Ck is a constant related to the

kernel function k, introduced in (S.47), |Si| represents the sample size of Si,

and
{
ωt

∣∣ t = 1, · · · , r
}
and

{
bt
∣∣ t = 1, · · · , r

}
are realizations generated

from two probability distributions introduced before (S.48).

Consequently, (S.48) yields that

1

mi

mi∑
j=1

ĝZij
r (·) = 1

mi

mi∑
j=1

1

r

r∑
l=1

2Ckcos(⟨ωl, Zij⟩+ bl)cos(⟨ωl, ·⟩+ bl)

=
1

r

r∑
l=1

[{2Ck

mi

mi∑
j=1

cos(⟨ωl, Zij⟩+ bl)
}
· cos(⟨ωl, ·⟩+ bl)

]

=
1

r

{
µk,r(PSi

)
}T
er(·), (S.56)

showing that the vector of the coordinates of 1
mi

∑mi

j=1 ĝ
Zij
r (·) over the bases

er(·) is 1
r
µk,r(PSi

).

As considered by Lopez-Paz et al. (2015), we take r times the coordi-

nate of 1
mi

∑mi

j=1 ĝ
Zij
r (·) over the bases er(·), i.e., µk,r(PSi

) defined by (S.55),

as the input in learning a classifier. That is, in our data analysis in Sec-

tion 6 of the main text and Section S4, we train the classifier using the
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r-dimensional approximated
{
(µk,r(PSi

), li)
∣∣ i = 1, · · · , n

}
vector rather

than the infinite-dimensional kernel mean embeddings.

These r-dimensional approximate vectors can be computed in O(r) time

and stored in O(1) memory, leading to much less computation and memory

costs compared with the classification in the infinite-dimensional space Hk

when the size n is large. In addition, they can be used in conjunction with

any available classification algorithm.

S2.2 Modified Classifiers with Label Noise

In the presence of label noise, the naive and correction classifiers described

in Sections 3 and 4 of the main text can be modified in a manner similar to

(S.54), with the approximation (S.49) replacing µk(PSi
), where the kernel

function k is taken as shift-invariant.

Specifically, with 1
mi

∑mi

j=1 ĝ
Zij
r (·) in (S.49) approximating µk(PSi

) for

each i, finding the naive classifier (4.11) is modified to finding the optimal

f̃ ∗ ∈ FQ′ such that

f̃ ∗ = argminf∈FQ′ R̃
∗
φ(f), (S.57)

where R̃∗
φ(f) ≜

1
n

∑n
i=1 φ

(
− f

{
1
mi

∑mi

j=1 ĝ
Zij
r (·)

}
l∗i

)
.

Similarly, the corrected classifier (5.18) is modified as

f̃ correct = argminf∈FQ′ R̃φ∗(f), (S.58)
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where R̃φ∗(f) ≜ 1
n

∑n
i=1 φ

∗
{
f
(

1
mi

∑mi

j=1 ĝ
Zij
r (·)

)
, l∗i

}
.

Here, we investigate the performance of the naive classifier f̃ ∗ in (S.57)

and the correction classifier f̃ correct in (S.58) by examining upper bounds of

E{Rφ(f̃
∗)}−E{Rφ(f̃0)} and E{Rφ(f̃

correct)}−E{Rφ(f̃0)}. As in Section 3

of the main text, m = min
1≤i≤n

mi.

Theorem S2. Let Z = Rd and let Q′ be any probability measure on Z.

Assume conditions (R3)-(R4) in Theorem 1 in the main text. Furthermore,

assume the following two conditions that modify conditions (R1) and (R2)

in Theorem 1 in the main text:

(R1)′. All elements in FQ′ are Lipschitz continuous with respect to the norm

in L2(Q′), and there exists a common Lipschitz constant, denoted

LF , for all elements in FQ′. That is, for any f ∈ FQ′ and h, h′ ∈

L2(Q′), |f(h)− f(h′)| ≤ LF ||h− h′||L2(Q′);

(R2)′. There exists a positive constant B such that φ(−f(h)l) ≤ B for any

f ∈ FQ′, h ∈ L2(Q′), and l ∈ L ≜ {−1, 1}.

In addition, assume the following conditions that modify conditions (R5)

and (R6) in Theorem 3 in the main text:

(R5)′. all elements in FQ′ are uniformly bounded, that is, there exists a

positive constant M ′ such that for any f ∈ FQ′ and h ∈ L2(Q′),
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|f(h)| ≤M
′||h||L2(Q′).

(R6)′. the kernel function k is shift-invariant, that is, there exists a positive

definite function k′(·) such that k′(z−z′) = k(z, z′) for any z, z′ ∈ Z.

Then for f̃0 in (S.54) and f̃ ∗ in (S.57),

lim sup
n→∞

lim sup
m→∞

lim sup
r→∞

E{Rφ(f̃
∗)−Rφ(f̃0)} ≤ 4M

′
LφAD.

Theorem S2 shows that as r approaches infinity, the asymptotic bias

of the naive classification induced from the r-dimensional approximation is

upper bounded by that derived from using the infinite-dimensional projec-

tions {µk(PSi
) : i = 1, · · · , n} as stated in Theorem 3 of the main text.

Theorem S3. Let Z = Rd and let Q′ be any probability measure on Z.

Assume conditions (R3)-(R4) in Theorem 1 in the main text and conditions

(R1)′, (R2)′, and (R6)′ in Theorem S2. Then for f̃0 in (S.54) and f̃ correct

in (S.58),

(a).

E{Rφ(f̃
correct)−Rφ(f̃0)}

≤ C
(
n,

1

n
, Lφ, LF , B

∗
)
+

4B∗

n

+
2L∗

φLF

n

n∑
i=1

{
2Ck√
r

(
1 +

√
2log(rmi)

)
+

4|Ck|
r

}
,
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where C(·, ·, ·, ·, ·) is defined in (3.6) in the main text, and B∗ is defined

in (5.20) in the main text.

(b).

lim
n→∞

lim
m→∞

lim
r→∞

E{Rφ(f̃
correct)−Rφ(f̃0)} = 0,

where m = min
1≤i≤n

mi, defined in Section 3 of the main text.

The proofs of Theorems S2 and S3 are deferred to Section S2.3. Theo-

rem S3 (a) characterizes an upper bound for E{Rφ(f̃
correct)−Rφ(f̃0)} valid

under finite settings. Theorem S3 (b) shows that E{Rφ(f̃
correct)} converges

to E{Rφ(f̃0)} as r → ∞, m → ∞, and n → ∞, suggesting that the cor-

rected classifier induced from the r-dimensional approximation is consistent

in terms of φ-risk as r, m, and n approach infinity.

The applicability of Theorem S3 depends on the validity of its asso-

ciated conditions. Condition (R1)′ on Lipschitz continuity is widely used

in the machine learning community, as discussed in Section 3 in the main

text. A straightforward example of F satisfying condition (R1)′ is a class

of bounded linear functionals with a common bound. Conditions (R2)′

and (R3) are mild and commonly hold in applications. For example, if the

convex surrogate φ is continuous and for all f ∈ F , |f | is uniformly up-

per bounded, then Condition (R2)′ holds; and if φ is further continuously
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differentiable, Condition (R3) is also satisfied. Conditions (R4) and (R6)′

are related to the choice of kernel functions. Many commonly used kernel

functions, such as Gaussian kernel defined in (S.1), satisfy these conditions.

In Section S2.4, we examine these conditions when φ is chosen for lo-

gistic or hinge loss and when F is specified as Fr, as defined in Section 6.1

of the main text.

S2.3 Proofs of Theorems S2 and S3

S2.3.1 Proof of Theorem S2

First, we examine the difference Rφ(f̃
∗) − Rφ(f̃0) by connecting it with

R̂∗
φ(·), R̃∗

φ(·), and F :

Rφ(f̃
∗)−Rφ(f̃0)

= Rφ(f̃
∗)− R̃∗

φ(f̃
∗) + R̃∗

φ(f̃
∗)− R̃∗

φ(f̃0) + R̃∗
φ(f̃0)−Rφ(f̃0)

≤ Rφ(f̃
∗)− R̃∗

φ(f̃
∗) + R̃∗

φ(f̃0)−Rφ(f̃0)

≤ 2 sup
f∈FQ′

|Rφ(f)− R̃∗
φ(f)|

= 2 sup
f∈FQ′

|Rφ(f)− R̂∗
φ(f) + R̂∗

φ(f)− R̃∗
φ(f)|

≤ 2 sup
f∈FQ′

|Rφ(f)− R̂∗
φ(f)|+ 2 sup

f∈FQ′

|R̂∗
φ(f)− R̃∗

φ(f)| (S.59)
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where the first inequality holds since R̃∗
φ(f̃

∗)− R̃∗
φ(f̃0) ≤ 0 by that f̃ ∗ is the

minimum point of the functional R̃∗
φ(f), and the last inequality comes from

the triangle inequality and the definition of supremum.

Now we examine the two terms in (S.59) individually in the following

two steps.

Step 1: Examining the first term of (S.59).

Noting that the first term in (S.59) is the same as (S.21) except that F in

(S.21) is replaced by FQ′ here, we adapt the proof of Theorem 3 of the main

text in Section S1.5 to obtain an upper bound for lim sup
n→∞

lim sup
m→∞

E
{
2 sup
f∈FQ′

|Rφ(f)−

R̂∗
φ(f)|

}
by first verifying that the conditions in Theorem 3 of the main text

are satisfied if F is replaced by FQ′ . Except for conditions (R1) and (R2)

in Theorem 1 in the main text and condition (R5) in Theorem 3 of the

main text, all other conditions in Theorem 3 of the main text are obviously

satisfied if F in Theorem 3 of the main text is replaced by FQ′ .

Now we examine these three conditions with F in Theorem 3 of the main

text replaced by FQ′ . We first examine condition (R1) in Theorem 1 in the

main text with F replaced by FQ′ . As stated in the second paragraph after

(S.48) in Section S2, the proof of Lemma 3 in Lopez-Paz et al. (2015) shows

that Hk ⊆ L2(Q′). Thus, ||h||L2(Q′) ≤ ||h||Hk
for any h ∈ Hk. Therefore, by
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the first condition of Theorem S2, for any h, h′ ∈ Hk and f ∈ FQ′ ,

|f(h)− f(h′)| ≤ LF ||h− h′||L2(Q′) ≤ LF ||h− h′||Hk
,

showing condition (R1) in Theorem 1 in the main text when F is replaced

by FQ′ . ByHk ⊆ L2(Q′) and condition (R2)′ in Theorem S2, condition (R2)

in Theorem 1 in the main text holds when F is replaced by FQ′ . Finally,

by Hk ⊆ L2(Q′), ||h||L2(Q′) ≤ ||h||Hk
for any h ∈ Hk. Then by condition

(R5)′ in Theorem S2, there exists a constant M
′
such that for any f ∈ FQ′

and h ∈ Hk,

|f(h)| ≤M
′ ||h||L2(Q′) ≤M

′ ||h||Hk
,

suggesting that condition (R5) in Theorem 3 in the main text holds with

F replaced by FQ′ .

Consequently, repeating the proof of Theorem 3 of the main text in

Section S1.5 with replacing F by FQ′ , we obtain that

lim sup
n→∞

lim sup
m→∞

lim sup
r→∞

E
{
2 sup
f∈FQ′

|Rφ(f)− R̂∗
φ(f)|

}
= lim sup

n→∞
lim sup
m→∞

E
{
2 sup
f∈FQ′

|Rφ(f)− R̂∗
φ(f)|

}
≤ 4M

′
LφAD, (S.60)

where the first equation holds by that 2 sup
f∈FQ′

|Rφ(f)−R̂∗
φ(f)| does not involve

r and the inequality is due to the results of Theorem 3 in the main text.
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Step 2: Examining the second term in (S.59):

sup
f∈FQ′

∣∣∣R̂∗
φ(f)− R̃∗

φ(f)
∣∣∣

= sup
f∈FQ′

∣∣∣ 1
n

n∑
i=1

φ(−f(µk(PSi
))l∗i )−

1

n

n∑
i=1

φ
{
− f

( 1

mi

mi∑
j=1

ĝZij
r (·)

)
l∗i

}∣∣∣
≤ 1

n
sup

f∈FQ′

n∑
i=1

∣∣∣φ(−f(µk(PSi
))l∗i )− φ

{
− f

( 1

mi

mi∑
j=1

ĝZij
r (·)

)
l∗i

}∣∣∣
≤ 1

n

n∑
i=1

sup
f∈FQ′

∣∣∣φ(−f(µk(PSi
))l∗i )− φ

{
− f

( 1

mi

mi∑
j=1

ĝZij
r (·)

)
l∗i

}∣∣∣
≤ Lφ

n

n∑
i=1

sup
f∈FQ′

∣∣∣f(µk(PSi
))l∗i − f

{ 1

mi

mi∑
j=1

ĝZij
r (·)

}
l∗i

∣∣∣
=
Lφ

n

n∑
i=1

sup
f∈FQ′

∣∣∣f(µk(PSi
))− f

{ 1

mi

mi∑
j=1

ĝZij
r (·)

}∣∣∣
≤ LφLF

n

n∑
i=1

sup
f∈FQ′

∥∥∥µk(PSi
)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

=
LφLF

n

n∑
i=1

∥∥∥µk(PSi
)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

, (S.61)

where the first inequality is due to the Jensen’s inequality, the second in-

equality comes from that sup
x
{|g1(x)| + |g2(x)|} ≤ sup

x
|g1(x)| + sup

x
|g2(x)|

for any functions g1 and g2, the third inequality is due to Lipschitzness of

φ, the fourth inequality is due to Lipschitzness of f , and the last equality

holds because the expression does not depend on f .

Now we examine an upper bound for the expectation of the summands

in (S.61), E
{∥∥∥µk(PSi

) − 1
mi

∑mi

j=1 ĝ
Zij
r (·)

∥∥∥
L2(Q′)

}
, which is derived in the

following three parts.
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Part 1: We show that∥∥∥µk(PSi
)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

≤ 4|Ck| (S.62)

for Zij evaluated at every ω ∈ Ω. Here and below, for ease of exposition,

when presenting an inequality involving a random variable, it is meant to

be evaluated for every ω ∈ Ω. For instance, the inequality “
∣∣k(Zij, ·)

∣∣ ≤ a”

should be understood as “
∣∣k(Zij(ω), ·)

∣∣ ≤ a for any ω ∈ Ω”.

By (S.47), we have that for any z, z′ ∈ Z,

|k(z, z′)| =
∣∣2CkE

{
cos(⟨ω, z⟩+ b)cos(⟨ω, z′⟩+ b)

}∣∣
≤ 2
∣∣Ck

∣∣E{∣∣cos(⟨ω, z⟩+ b)cos(⟨ω, z′⟩+ b)
∣∣}

≤ 2|Ck|, (S.63)

where the first inequality is due to Jensen’s inequality and the second in-

equality is due to the fact that |cos(x)| ≤ 1 for any x ∈ R. Then by (S.7),

we have that

∣∣µk(PSi
)
∣∣ ≤ 1

mi

mi∑
j=1

∣∣k(Zij, ·)
∣∣

≤ 1

mi

mi∑
j=1

2|Ck|

= 2|Ck|, (S.64)

where the first inequality is due to Jensen’s inequality and the second in-

equality comes from (S.63) with the inequality understood to hold for all
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ω ∈ Ω.

By (S.48), we have that

∣∣∣ 1
mi

mi∑
j=1

ĝZij
r (·)

∣∣∣ ≤ 1

mi

mi∑
j=1

∣∣∣ĝZij
r (·)

∣∣∣
=

1

mi

mi∑
j=1

∣∣∣1
r

r∑
i=1

{
2Ckcos(⟨ωi, Zij⟩+ bi)cos(⟨ωi, ·⟩+ bi)

}∣∣∣
≤ 1

mi

mi∑
j=1

1

r

r∑
i=1

{
|2Ckcos(⟨ωi, Zij⟩+ bi)cos(⟨ωi, ·⟩+ bi)|

}
≤ 1

mi

mi∑
j=1

1

r

r∑
i=1

2|Ck|

= 2|Ck|, (S.65)

where the first and second inequalities are due to Jensen’s inequality and

the third inequality is due to the fact that |cos(x)| ≤ 1 for any x ∈ R.

Then by the definition of the L2 norm in L2(Q′) (Section 4.2, Brézis

2011) and (S.64) (S.65), we further have that

||µk(PSi
)||L2(Q′) ≤ 2|Ck|, (S.66)

and ∥∥∥ 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

≤ 2|Ck|. (S.67)

Therefore, by the triangle inequality and (S.66) (S.67),

∥∥∥µk(PSi
)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

≤ ||µk(PSi
)||L2(Q′) +

∥∥∥ 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)
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≤ 4|Ck|.

Part 2: Next, we show that
∥∥∥µk(PSi

)− 1
mi

∑mi

j=1 ĝ
Zij
r (·)

∥∥∥
L2(Q′)

is upper

bounded with a probability greater than 1− 1
r
:

For i = 1, · · · , n and any δ > 0, we obtain that by Lemma 1 of Lopez-

Paz et al. (2015),∥∥∥µk(PSi
)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

≤ 2Ck√
r

(
1 +

√
2log(

mi

δ
)
)

with probability larger than 1− δ. Then taking δ = 1
r
gives that

P
{∥∥∥µk(PSi

)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

≤ 2Ck√
r

(
1 +

√
2log(rmi)

)}
≥ 1− 1

r
.

(S.68)

Part 3: Finally, we examine the expectation of
∥∥∥µk(PSi

)− 1
mi

∑mi

j=1 ĝ
Zij
r (·)

∥∥∥
L2(Q′)

:

E
{∥∥∥µk(PSi

)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

}
= E

{∥∥∥µk(PSi
)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

×

[
I
{∥∥∥µk(PSi

)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

≤ 2Ck√
r

(
1 +

√
2log(rmi)

)}
+ I
{∥∥∥µk(PSi

)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

>
2Ck√
r

(
1 +

√
2log(rmi)

)}]}

= E

[∥∥∥µk(PSi
)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

× I
{∥∥∥µk(PSi

)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

≤ 2Ck√
r

(
1 +

√
2log(rmi)

)}]
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+ E

[∥∥∥µk(PSi
)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

× I
{∥∥∥µk(PSi

)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

>
2Ck√
r

(
1 +

√
2log(rmi)

)}]

≤ E

[
2Ck√
r

(
1 +

√
2log(rmi)

)
× I
{∥∥∥µk(PSi

)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

≤ 2Ck√
r

(
1 +

√
2log(rmi)

)}]

+ E

[
4|Ck|I

{∥∥∥µk(PSi
)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

>
2Ck√
r

(
1 +

√
2log(rmi)

)}]

=
2Ck√
r

(
1 +

√
2log(rmi)

)
P

{∥∥∥µk(PSi
)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

≤ 2Ck√
r

(
1 +

√
2log(rmi)

)}

+ 4|Ck|P

{∥∥∥µk(PSi
)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

>
2Ck√
r

(
1 +

√
2log(rmi)

)}

≤ 2Ck√
r

(
1 +

√
2log(rmi)

)
+

4|Ck|
r

, (S.69)

where the first inequality is due to (S.62) and the second inequality is due

to (S.68).

Therefore,

0 ≤ lim
r→∞

E
{∥∥∥µk(PSi

)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

}
≤ lim

r→∞

{2Ck√
r

(
1 +

√
2log(rmi)

)
+

4|Ck|
r

}
= 0, (S.70)
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and thus,

lim
n→∞

lim
m→∞

lim
r→∞

E
{∥∥∥µk(PSi

)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

}
= 0. (S.71)

Combining (S.61) and (S.71) gives that

lim
n→∞

lim
m→∞

lim
r→∞

E
{
2 sup
f∈FQ′

∣∣∣R̂∗
φ(f)− R̃∗

φ(f)
∣∣∣} = 0. (S.72)

Applying (S.60) and (S.72) to (S.59) proves Theorem S2.

S2.3.2 Proof of Theorem S3

Part (b) is immediate by taking the limit with respect to r,m, and n on

both sides of part (a). It now remains to show Part (a).

First, we examine the difference Rφ(f̃
correct)−Rφ(f̃0) by connecting it

with Rφ∗(·), R̃φ∗(·), R̂φ∗(·), and F :

Rφ(f̃
correct)−Rφ(f̃0)

= Rφ∗(f̃ correct)−Rφ∗(f̃0)

= Rφ∗(f̃ correct)− R̃φ∗(f̃ correct) + R̃φ∗(f̃ correct)− R̃φ∗(f̃0) + R̃φ∗(f̃0)−Rφ∗(f̃0)

≤ Rφ∗(f̃ correct)− R̃φ∗(f̃ correct) + R̃φ∗(f̃0)−Rφ∗(f̃0)

≤ 2 sup
f∈FQ′

∣∣Rφ∗(f)− R̃φ∗(f)
∣∣

= 2 sup
f∈FQ′

∣∣Rφ∗(f)− R̂φ∗(f) + R̂φ∗(f)− R̃φ∗(f)
∣∣

≤ 2 sup
f∈FQ′

∣∣Rφ∗(f)− R̂φ∗(f)
∣∣+ 2 sup

f∈FQ′

∣∣R̂φ∗(f)− R̃φ∗(f)
∣∣, (S.73)
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where the first equality is due to Theorem 4 in the main text, the first

inequality holds since R̃φ∗(f̃ correct) − R̃φ∗(f̃0) ≤ 0 by that f̃ correct is the

minimum point of the functional R̃φ∗(·), the second inequality is due to the

property of the supremum, and the last inequality comes from the triangle

inequality and the definition of supremum.

Now we examine the two terms in (S.73) individually in the following

two steps.

Step 1: Examining the first term of (S.73).

By applying Lemmas 3 and 4 in Section S1.7 to the proof of Theorem

3 of Lopez-Paz et al. (2015) by letting their δ = 1
n
, we have that

P
{
2 sup
f∈FQ′

∣∣Rφ∗(f)− R̂φ∗(f)
∣∣ ≤ C(n,m,L∗

φ, LF , B
∗)
}
≥ 1− 1

n
,

where L∗
φ, B

∗, and C(·, ·, ·, ·, ·) are defined in (5.19), (5.20), and (3.6) in the

main text, respectively.

By the proof of Theorem S2, the conditions in Theorem S3 implies the

conditions in Theorem 1 in the main text. Then repeating the calculation

of E
{
2sup
f∈F

∣∣Rφ(f)− R̂φ(f)
∣∣} in Section S1.4 by replacing B, φ and F with

B∗, φ∗ and FQ′ , respectively, we obtain that

E
{
2 sup
f∈FQ′

∣∣Rφ∗(f)− R̂φ∗(f)
∣∣} = C

(
n,m,L∗

φ, LF , B
∗
)
+

4B∗

n
. (S.74)

Step 2: Examining the second term of (S.73).
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By (5.17) in the main text and the definition of R̃φ∗(f) after (S.58), we

obtain that

sup
f∈FQ′

∣∣R̂φ∗(f)− R̃φ∗(f)
∣∣

= sup
f∈FQ′

∣∣∣ 1
n

n∑
i=1

φ∗(f(µk(PSi
)), l∗i )−

1

n

n∑
i=1

φ∗
{
f
( 1

mi

mi∑
j=1

ĝZij
r (·)

)
, l∗i

}∣∣∣
≤ 1

n
sup

f∈FQ′

n∑
i=1

∣∣∣φ∗(f(µk(PSi
)), l∗i )− φ∗

{
f
( 1

mi

mi∑
j=1

ĝZij
r (·)

)
, l∗i

}∣∣∣
≤ 1

n

n∑
i=1

sup
f∈FQ′

∣∣∣φ∗(f(µk(PSi
)), l∗i )− φ∗

{
f
( 1

mi

mi∑
j=1

ĝZij
r (·)

)
, l∗i

}∣∣∣
≤
L∗
φ

n

n∑
i=1

sup
f∈FQ′

∣∣∣f(µk(PSi
))− f

{ 1

mi

mi∑
j=1

ĝZij
r (·)

}∣∣∣
≤
L∗
φLF

n

n∑
i=1

sup
f∈FQ′

∥∥∥µk(PSi
)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

=
L∗
φLF

n

n∑
i=1

∥∥∥µk(PSi
)− 1

mi

mi∑
j=1

ĝZij
r (·)

∥∥∥
L2(Q′)

, (S.75)

where the first inequality is due to the triangle inequality, the second in-

equality comes from that sup
x
{|g1(x)|+ |g2(x)|} ≤ sup

x
|g1(x)|+sup

x
|g2(x)| for

any functions g1 and g2, the third inequality is due to Lemma 3 in Section

S1.7, the fourth inequality is due to Lipschitzness of f , and the last equality

holds because the expression does not depend on f .

Then combining (S.69) and (S.75) yields that

E
{
2 sup
f∈FQ′

∣∣R̂φ∗(f)−R̃φ∗(f)
∣∣} ≤

2L∗
φLF

n

n∑
i=1

{2Ck√
r

(
1+
√
2log(rmi)

)
+
4|Ck|
r

}
.

(S.76)
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Applying (S.74) and (S.76) to (S.73) proves part (a) of Theorem S3.

S2.4 Examination of the Conditions for Theorem S3

As discussed in Section S2, we train the true, naive and corrected classifiers

in an r-dimensional approximated space rather than the original infinite-

dimensional space Hk, whose theoretical validity of the true and corrected

classifiers requires the conditions in Theorem S3. In particular, condition

(R1)
′
about the Lipschitz continuity modifies condition (R1) in Theorem

1 of the main text to accommodate the approximation of the inputs. As

discussed in Section 3 of the main text, the Lipschitz continuity is widely

used in machine learning community to ensure stability and convergence of

algorithms.

Now we discuss the feasibility of other conditions in Theorem S3 in

conducting sensitivity analyses presented in Section 6 of the main text and

the simulation studies presented in Section S4, where logistic regression and

SVM classifiers are considered.

As discussed in Section S2, we take
{
µk,r(PSi

)
∣∣ i = 1, · · · , n

}
as the

input, which for each i, by (S.55), satisfies

||µk,r(PSi
)||22 =

4C2
k

|Si|2
r∑

j=1

{∑
Z∈Si

cos(⟨ωj, Z⟩+ bj)
}2
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≤ 4rC2
k |Si|2

|Si|2

= 4rC2
k . (S.77)

where Ck is a constant dependent of the kernel function k, introduced in

(S.47) in Section S2.

Let

Sk,0(Q
′) ≜

{
h
∣∣ h = aTer(·) with a satisfying ||r · a||22 ≤ 4rC2

k

}
, (S.78)

where || · ||2 is the L2-norm in Rd with ||b||2 =
√
bTb for b ∈ Rr. Then

by (S.53), it is obvious that Sk,0(Q
′) ⊆ Sk,r(Q

′). Moreover, by (S.56) and

(S.77), the approximation 1
mi

∑mi

j=1 ĝ
Zij
r (·) of the input µk(PSi

) belongs to

Sk,0(Q
′) for each i. Then, in our sensitivity analyses and simulation stud-

ies, we actually implement the classification in Sk,0(Q
′). Therefore, each

element in FQ′ is restricted to Sk,0(Q
′). That is, for any f ∈ FQ′ , f(h) = 0

if h /∈ Sk,0(Q
′).

As discussed in Section S2, for any element in Sk,r(Q
′), we use r times

its coordinates over the bases er(·) defined in (S.52) as the input in our

numerical studies, so the class FQ′ of the discriminant functionals corre-

sponding to Fr defined in Section 6.1 of the main text is given by

FQ′ ≜
{
f
∣∣∣ f(h) = {wT(r · a) + c

}
· I
{
h ∈ Sk,0(Q

′)
}

with h = aTer(·) for h ∈ Sk,0(Q
′)),
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satisfying ||r · a||22 ≤ 4rC2
k , ||w||22 ≤ Cr, and |c| ≤ Cr

}
(S.79)

and

FQ′ =

{
f

∣∣∣∣ f(h) = { n∑
i=1

αili exp(−||µk,r(PSi
)− (r · a)||22) + b

}
× I
{
h ∈ Sk,0(Q

′)
}
,

with h = aTer(·) for h ∈ Sk,0(Q
′), satisfying ||r · a||22 ≤ 4rC2

k ,

|αi| ≤ Cr for i = 1, · · · , n, and |b| ≤ Cr

}
, (S.80)

respectively, for logistic regression and Gaussian kernel-based SVM classi-

fiers.

With the Gaussian kernel (S.1), it is easy to verify that it satisfies con-

dition (R4) in Theorem 1 in the main text and condition (R6)′ in Theorem

S2. In what follows, we verify conditions (R2)
′
and (R3) required by Theo-

rem S3 when logistic regression and Gaussian kernel-based SVM classifiers

are used.

S2.4.1 Verification of Condition (R2)′

First, we examine logistic regression. By (S.79), for any f ∈ FQ′ , when

h /∈ Sk,0(Q
′), we have that

f(h) = 0. (S.81)
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Furthermore, by the Cauchy–Schwarz inequality, for any h = aTer(·) ∈

Sk,0(Q
′) and f ∈ FQ′ , we have that

∣∣f(h)∣∣ = ∣∣wT(r · a) + c
∣∣

≤
∣∣wT(r · a)

∣∣+ ∣∣c∣∣
≤ ||w||2 · ||r · a||2 +

∣∣c∣∣
≤
√

4rC2
kCr + Cr

= 2Ck

√
rCr + Cr. (S.82)

where the last inequality holds because ||r · a||22 ≤ 4rC2
k by the definition of

Sk,0(Q
′) in (S.78) and ||w||22 ≤ Cr, as well as |c| ≤ Cr by (S.79).

For any h ∈ Sk,0(Q
′) and f ∈ FQ′ , combining (S.81) and (S.82) yields

that f(h) ∈ [−2Ck

√
rCr − Cr, 2Ck

√
rCr + Cr]. Then since the logistic

loss used in logistic regression is continuous and any continuous function

is bounded over a bounded closed set in R, condition (R2)′ presented in

Theorem S2 holds.

Next, we examine SVM. By (S.80), for any f ∈ FQ′ , when h /∈ Sk,0(Q
′),

we have that

f(h) = 0. (S.83)

Furthermore, for any h = aTer(·) ∈ Sk,0(Q
′) and f ∈ FQ′ , we have that

|f(h)| =
∣∣∣ n∑
i=1

αili exp
(
− ||µk,r(PSi

)− r · a||22
)
+ b
∣∣∣
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≤
n∑

i=1

∣∣αi

∣∣ · ∣∣li∣∣ · exp (− ||µk,r(PSi
)− r · a||22

)
+
∣∣b∣∣

≤
n∑

i=1

∣∣αi

∣∣+ ∣∣b∣∣
≤ (n+ 1)Cr, (S.84)

where the first inequality is due to the triangle inequality of the absolute

value, the second inequality comes from the property of exponential function

and
∣∣li∣∣ = 1 for all i, and the last inequality is due to |αi| ≤ Cr for i =

1, · · · , n and |b| ≤ Cr by (S.80).

For any h ∈ Sk,0(Q
′) and f ∈ FQ′ , combining (S.83) and (S.84) yields

that f(h) ∈ [−(n + 1)Cr, (n + 1)Cr]. Then since the hinge loss used in

SVM is continuous and any continuous function is bounded over a bounded

closed set in R, condition (R2)′ presented in Theorem S2 holds.

S2.4.2 Verification of Condition (R3)

First, we examine logistic regression, where we use the logistic loss φ(α) =

log2 (1 + exp(α)). By the mean value theorem (Thomas 2014, p.194), for

any α1, α2 ∈ R, we have that

φ(α1)− φ(α2) = φ
′
(α0) · (α1 − α2) (S.85)
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where α0 is a constant between α1 and α2. Noting that

φ
′
(α0) =

exp(α0)

(exp(α0) + 1)log 2
≤ 1

log 2
,

we apply (S.85) and obtain that

∣∣φ(α1)− φ(α2)
∣∣ = φ

′
(α0)

∣∣α1 − α2

∣∣ ≤ 1

log 2

∣∣α1 − α2

∣∣.
That is, φ(·) is a Lipschitz continuous function with a Lipschitz constant

being 1
log 2

. Moreover, for any α ∈ R, it is easy to verify that log2 (1 +

exp(α)) ≥ ℓ(α). Therefore, condition (R3) of Theorem 1 in the main text

holds for logistic regression.

Next, we examine SVM, where we use the hinge loss φ(α) = max{0, 1+

α}. For any α1 ≥ −1 and α2 ≥ −1, we have that

φ(α1)− φ(α2) = α1 − α2,

yielding that ∣∣φ(α1)− φ(α2)
∣∣ = ∣∣α1 − α2

∣∣. (S.86)

For α1 ≥ −1 and α2 ≤ −1, we have that

φ(α1)− φ(α2) = 1 + α1 = α1 − (−1) ≤ α1 − α2,

yielding that ∣∣φ(α1)− φ(α2)
∣∣ ≤ ∣∣α1 − α2

∣∣. (S.87)
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For α1 ≤ −1 and α2 ≥ −1, we have that

φ(α1)− φ(α2) = 0− (1 + α2) = −1− α2 ≥ α1 − α2,

yielding that ∣∣φ(α1)− φ(α2)
∣∣ ≤ ∣∣α1 − α2

∣∣. (S.88)

For α1 ≤ −1 and α2 ≤ −1, we have that

∣∣φ(α1)− φ(α2)
∣∣ = 0 ≤

∣∣α1 − α2

∣∣. (S.89)

Combining (S.86), (S.87), (S.88), and (S.89) yields that for any u1, u2 ∈ R,

∣∣φ(α1)− φ(α2)
∣∣ ≤ ∣∣α1 − α2

∣∣.
That is, the hinge loss is a Lipschitz continuous function with a Lipschitz

constant being 1. Moreover, for any α ∈ R, it is easy to verify that

max{0, 1 + α} ≥ ℓ(α). Therefore, condition (R3) of Theorem 1 in the

main text holds for SVM.

S3 SUP3 Dataset and Additional Analysis Results

S3.1 SUP3 Data

The SUP3 dataset is available at https://www.kaggle.com/c/cause-effect-

pairs/data. This dataset does not contain any personally identifiable in-

formation or offensive content. The dataset includes 162 pairs of variables
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(Xi,Wi)

∣∣ i = 1, · · · , 162
}
from diverse domains including chemistry, cli-

matology, ecology, economy, engineering, epidemiology, genomics, medicine,

physics, and sociology. While the dataset does not include the information

about the meaning of Xi and Wi for each i, the information whether Xi is

the cause of Wi is provided for i = 1, · · · , n with n = 162. That is, the

reported value l∗i , either 1 or −1, of li is included in the dataset, where li

represents the true label for reflecting the causal relationship of {Xi,Wi},

with li = 1 indicating that Xi is the cause of Wi and li = −1 otherwise.

As those labels
{
l∗i
∣∣ i = 1, · · · , n

}
are identified based on applying the

subjective views to determine the causation of each pair of variables, there

is basically a discrepancy between the reported l∗i and the true label li for

some pairs. Among those 162 reported l∗i , 42 of them take 1 and the rest

assume −1. For each i, there are realizations of a sequence of i.i.d samples

Si =
{
(xij, wij)

T
∣∣ j = 1, · · · ,mi

}
of (Xi,Wi)

T. Table S.1 reports the values

of l∗i and mi for i = 1, · · · , 162.

S3.2 Additional Sensitivity Analyses for Section 6.2 of the Main

Text

In Section 6.2 of the main text, we investigate the mislabeling effects and

the performance of the proposed correction method for several values of r
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Table S.1: Values of l∗i and mi for i = 1, · · · , 162.

i l∗i mi i l∗i mi i l∗i mi i l∗i mi i l∗i mi i l∗i mi

1 -1 349 28 -1 1331 55 -1 5559 82 1 254 109 -1 365 136 -1 2027

2 -1 2135 29 -1 392 56 1 365 83 -1 520 110 -1 192 137 -1 768

3 1 347 30 -1 194 57 -1 1030 84 -1 451 111 -1 1030 138 -1 365

4 -1 802 31 -1 349 58 -1 254 85 -1 192 112 -1 314 139 -1 192

5 1 1414 32 -1 1030 59 -1 1030 86 -1 4177 113 1 1030 140 -1 192

6 1 2782 33 -1 392 60 -1 2633 87 -1 1674 114 -1 365 141 1 349

7 1 192 34 1 345 61 -1 345 88 1 564 115 1 192 142 -1 1991

8 1 349 35 -1 194 62 -1 1067 89 -1 452 116 1 1030 143 -1 4177

9 -1 1934 36 -1 3363 63 -1 533 90 -1 538 117 -1 392 144 -1 1030

10 1 205 37 -1 721 64 -1 349 91 -1 1585 118 1 345 145 -1 768

11 -1 452 38 1 345 65 -1 345 92 -1 1030 119 1 349 146 -1 345

12 1 392 39 1 392 66 1 452 93 -1 349 120 -1 2425 147 1 194

13 1 349 40 -1 365 67 -1 349 94 -1 1331 121 -1 345 148 -1 716

14 -1 192 41 1 392 68 1 162 95 -1 205 122 -1 1785 149 -1 1575

15 -1 1030 42 -1 452 69 -1 721 96 -1 765 123 -1 1546 150 1 192

16 -1 2795 43 -1 730 70 -1 192 97 -1 192 124 1 721 151 -1 1030

17 -1 192 44 1 1632 71 1 653 98 -1 451 125 -1 975 152 1 1030

18 -1 768 45 -1 596 72 -1 1632 99 -1 606 126 -1 721 153 1 3063

19 -1 349 46 -1 168 73 -1 1045 100 -1 892 127 1 4499 154 -1 707

20 -1 3034 47 -1 994 74 1 966 101 -1 526 128 -1 2186 155 -1 345

21 -1 347 48 -1 800 75 -1 1030 102 -1 192 129 1 623 156 -1 3102

22 -1 192 49 -1 722 76 -1 994 103 -1 392 130 -1 365 157 -1 392

23 -1 536 50 1 365 77 -1 168 104 -1 192 131 -1 349 158 -1 345

24 -1 194 51 -1 345 78 -1 1263 105 -1 1030 132 1 721 159 1 1404

25 -1 162 52 -1 850 79 1 365 106 1 192 133 -1 768 160 -1 1245

26 1 668 53 -1 782 80 -1 349 107 -1 365 134 -1 365 161 -1 721

27 -1 1727 54 1 365 81 1 314 108 -1 192 135 1 1331 162 -1 365
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and γ via sensitivity analyses.

Here, we explore more intensively how the mislabeling effects and the

performance of the proposed correction method may change with r with

a given γ, or vice versa. In particular, given γ = 3, we consider different

values of r, given by r = 100 × (1 + j); and given r = 500, we examine

different values of γ, given by γ = 10−2+ j
3 , where j = 0, 1, · · · , 9.

In Figure S.1, we plot TX(50, r, 3) and T correct
X (50, r, 3) against r and

TX(50, 500, γ) and T
correct
X (50, 500, γ) against γ, with X representing A or

R, where both the naive and correction methods are applied to the logistic

regression and SVM classifiers.

S4 Simulation Studies

To further demonstrate the mismeasurement effects and the performance of

the proposed correction method described in in Section 5 of the main text,

here we conduct simulation studies, with one hundred simulations run for

each configuration described below.

S4.1 Simulation Design

We let the set P of distributions be the class of bivariate normal distribu-

tions with mean µ = (µ1, µ2)
T and covariance matrix Σ, where µ1, µ2 ∈ R
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Figure S.1: Plots of TX(50, r, 3) (in Red) and T correct
X (50, r, 3) (in Blue), against r, with

r taking 10 equally spaced values in [100, 1000]; and plots of TX(50, 500, γ) (in Red) and

T correct
X (50, 500, γ) (in Blue) against γ, with log γ taking 10 equally spaced values in

[log 0.01, log 10], where X represents A or R, and the results are obtained from the naive

and correction methods with logistic regression and SVM.
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and Σ is a 2 × 2 positive definite matrix. To generate a sequence of n

probability distributions {P1, · · · , Pn} from P , we independently gener-

ate µi1 from the uniform distribution UNIF [a1, a2] and µi2 from the uni-

form distribution UNIF [a3, a4] for i = 1, · · · , n, where aj are constants

for j = 1, · · · , 4; for i = 1, · · · , n, we independently generate Σi from

the Wishart distribution with mean Σ0 and the degree of freedom nw.

Then we specify Pi = N (µi,Σi) for i = 1, · · · , n. For each i, to gener-

ate the label associated with the probability distribution Pi, we generate a

sample li from the Bernoulli distribution, taking value 1 with probability

p = 1
2

{
µi1−a1
a2−a1

+ µi2−a3
a4−a3

}
and −1 with the probability 1− p.

With (Pi, li) for i = 1, 2, · · · , n, we independently generate mi samples

Si =
{
(Xij,Wij)

T
∣∣ j = 1, · · · ,mi

}
from the probability distribution Pi for

a given positive integer mi.

With (Si, li), for i = 1, 2, · · · , n, we independently generate the mis-

measured output l∗i of li using the probabilities in (4.9) in the main text.

We comment that here we use p∗1 and p
∗
−1 to facilitate the mismeasurement

in outputs, whereas in sensitivity analyses in Section 6 in the main text,

we use p1 and p−1 to describe mismeasurement in output. While either

probabilities can be used to characterize mismeasurement degrees, the con-

venience level is different, and the choice of a particular form is driven by
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individual contexts.

Here we set n = 2000, mi = 1000 for each i, a1 = −200, a2 = 100,

a3 = −100, a4 = 300, nw = 20, and Σ0 =

 1 −2

−2 6

. We set different

values for p∗1 and p∗−1 to reflect different magnitudes of mismeasurement in

outputs, as detailed in the following sections.

S4.2 Simulation Results

With the generated precise dataset
{
(Si, li)

∣∣ i = 1, 2, · · · , n
}

and mis-

measured dataset
{
(Si, l

∗
i )
∣∣ i = 1, 2, · · · , n

}
, we employ Steps 2 and 3 in

Section 6.1 in the main text respectively using logistic regression and Gaus-

sian kernel-based SVM to train the true, naive, and correction classifiers,

denoted sign(fθ), sign(f
∗
θ ), and sign(f correct

θ ), respectively. As noted in Sec-

tion 5 of the main text, the optimization problem (5.18) in the main text

for correction classifiers may be nonconvex when (4.9) in the main text is

taken. In this case, we employ Adam (Kingma and Bac2015), a widely

used stochastic optimization algorithm in machine learning, to derive the

correction classifiers. Then as described in Section 6.2 of the main text, we

calculate the average values of DA(θ), DR(θ), D
correct
A (θ), and Dcorrect

R (θ)

over one hundred simulations.

First, we examine the mislabeling effects under different scenarios with
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varying magnitudes of p∗1 and p∗−1 for label noise. To see how the average

values of DA(θ) and DR(θ) over 100 hundred simulations vary as p∗1 and p
∗
−1

change, we first set r = 500, γ = 3 and consider four settings: p∗1 = p∗−1 =

0.70, 0.80, 0.90, or 0.99. We apply logistic regression and SVM respectively

to the simulated data, with the results reported in Table S.2.

Table S.2: Simulation studies obtained from logistic regression (LR) and SVM classifiers

- assessing the impact of the mislabeling degrees: Average values of DA(θ) and DR(θ)

for p∗1 = p∗−1 = 0.7, 0.8, 0.9, or 0.99 over 100 simulations.

Mislabeling
DA(θ) DR(θ)

Degrees LR SVM LR SVM

p∗1 = p∗−1 = 0.7 0.16 0.28 0.12 0.27

p∗1 = p∗−1 = 0.8 0.10 0.18 0.11 0.18

p∗1 = p∗−1 = 0.9 0.06 0.11 0.06 0.11

p∗1 = p∗−1 = 0.99 0.01 0.03 0.03 0.03

More comprehensively, we consider more values of p∗1 and p∗−1 which

are the cutpoints dividing [0.5, 1] into N equal-length subintervals with

N = 20 except (p∗1, p
∗
−1) = (0.5, 0.5) or (1, 1). We construct heatmaps for

DA(p
∗
1, p

∗
−1, 500, 3) and DR(p

∗
1, p

∗
−1, 500, 3), and display them in the first two

columns in Figure S.2. Figure S.2 conveys similar patterns shown by Figure

1 in the main text.

Next, we assess how the proposed correction method may perform under
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settings with different magnitudes of label noise. In particular, we produce

heatmaps forDcorrect
A (p∗1, p

∗
−1, 500, 3) andD

correct
R (p∗1, p

∗
−1, 500, 3) by applying

the proposed method described in Section 5 of the main text to the LR and

SVM classifiers, and display the results in the last two columns in Figure

S.2. Comparing the last two columns to the first two columns in Figure

S.2 shows that the proposed correction method generally outperforms the

naive method for both classifiers.

Finally, similar to the consideration in Section 6.2 in the main text,

we evaluate how the mismeasurement effects and the performance of the

proposed correction method may be affected by the choice of r and γ. First,

we consider r = 100, 500, or 1000 and γ = 0.01, 0.1, 1, 3, or 10, and report

the average values of TX(20, r, γ) and T
correct
X (20, r, γ) over 100 simulations

obtained from the logistic regression and SVM classifiers in Tables S.3 and

S.4, where “X” represents “A” or “R”.

Furthermore, we assess the mislabeling effects and the performance of

the proposed correction method by considering more refined values of r and

γ. In particular, given γ = 3, we consider different values of r, given by

r = 100 × (1 + j); and given r = 500, we examine different values of γ,

given by γ = 10−2+ j
3 , where j = 0, 1, · · · , 9. We report in Figure S.3 the

results of TX(20, r, 3) and T
correct
X (20, r, 3) against r and TX(20, 500, γ) and
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Figure S.2: Heatmaps in simulation studies, generated from the naive method for

DA(p
∗
1, p

∗
−1, 500, 3) and DR(p

∗
1, p

∗
−1, 500, 3) (displayed in the left two columns) and the

proposed correction method for Dcorrect
A (p∗1, p

∗
−1, 500, 3) and Dcorrect

R (p∗1, p
∗
−1, 500, 3) (dis-

played in the last two columns). Two classifiers are considered, with the results for Lo-

gistic Regression (LR) and SVM displayed at top and bottom rows, respectively. Here,

r = 500, γ = 3, and p1 and p−1 take the values of the cutpoints dividing [0.5, 1] into 20

equal lengthed subintervals, with (p1, p−1) = (0.5, 0.5) and (1, 1) excluded.
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Table S.3: Simulation studies obtained from the naive and proposed methods with logistic

regression (LR) and SVM classifiers - assessing the impact of different choices of r and

γ on accuracy: The values of TA(20, r, γ) and T correct
A (20, r, γ) for r = 100, 500, or 1000

and γ = 0.01, 0.1, 1, 3, or 10.

γ
TA(20, 100, γ) TA(20, 500, γ) TA(20, 1000, γ)

LR SVM LR SVM LR SVM

0.01 33.34 98.56 71.86 98.39 90.19 98.39

0.1 27.82 98.47 55.20 98.39 76.52 98.39

1 32.31 90.81 66.71 98.39 80.45 98.39

3 35.96 64.46 72.03 98.40 86.17 98.39

10 36.13 48.10 71.79 100.51 89.04 98.39

γ
T correct
A (20, 100, γ) T correct

A (20, 500, γ) T correct
A (20, 1000, γ)

LR SVM LR SVM LR SVM

0.01 30.21 47.99 57.76 47.68 93.20 47.66

0.1 18.67 47.81 10.88 47.67 61.60 47.66

1 23.79 102.98 15.55 47.22 56.03 47.64

3 23.63 70.96 22.54 51.54 61.10 46.49

10 23.60 51.59 19.75 166.72 64.07 37.26

T correct
X (20, 500, γ) against γ, with X representing A or R, where both the

naive and correction methods are applied to the logistic regression and SVM

classifiers. The results in Tables S.3 - S.4 and Figure S.3 reveal patterns

similar to those displayed by Tables 1 in the main text and Figure S.1.
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Figure S.3: Plots of TX(20, r, 3) (in Red) and T correct
X (20, r, 3) (in Blue), against r, with

r taking 10 equally spaced values in [100, 1000]; and plots of TX(20, 500, γ) (in Red) and

T correct
X (20, 500, γ) (in Blue) against γ, with log γ taking 10 equally spaced values in

[log 0.01, log 10], where X represents A or R, and the results are obtained from applying

the naive and correction methods to logistic regression and SVM classifiers.
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Table S.4: Simulation studies obtained from the naive and proposed methods with logistic

regression (LR) and SVM classifiers - assessing the impact of different choices of r and

γ on recall: The values of TR(20, r, γ) and T correct
R (20, r, γ) for r = 100, 500, or 1000

and γ = 0.01, 0.1, 1, 3, or 10.

γ
TR(20, 100, γ) TR(20, 500, γ) TR(20, 1000, γ)

LR SVM LR SVM LR SVM

0.01 23.70 96.63 66.73 96.47 87.42 96.46

0.1 10.61 96.58 49.25 96.47 70.88 96.47

1 6.38 84.89 55.90 96.47 73.21 96.47

3 8.08 30.09 61.07 96.47 76.86 96.47

10 8.71 12.03 58.87 98.40 82.52 96.47

γ
T correct
R (20, 100, γ) T correct

R (20, 500, γ) T correct
R (20, 1000, γ)

LR SVM LR SVM LR SVM

0.01 56.64 48.00 54.63 47.76 92.60 47.76

0.1 38.24 47.58 6.16 47.76 59.54 47.76

1 35.71 120.90 4.72 47.18 50.02 47.73

3 30.85 8.89 11.53 51.46 52.79 46.61

10 32.56 2.44 6.48 192.18 58.79 38.65

S4.3 Sensitivity Study of the Proposed Method

The validity of the proposed method relies on the knowledge of the mis-

classification probabilities. It is useful to assess how the proposed method
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may perform if the misclassification probabilities are misspecified. To this

end, here we conduct simulation studies.

We generate the precise dataset
{
(Si, li)

∣∣ i = 1, 2, · · · , n
}
and the mis-

measured dataset
{
(Si, l

∗
i )
∣∣ i = 1, 2, · · · , n

}
by repeating the procedure

in Section S4.1, where we set p∗1 = s1 and p∗−1 = s−1, with s1 = s−1 =

0.65, 0.7, 0.75, or 0.8, respectively called Setting 1, 2, 3, or, 4. Given the

generated data, we employ Steps 2 and 3 in Section 6.1 in the main text us-

ing logistic regression or SVM classifier, where we set r = 500 and γ = 3. To

implement the proposed correction method, we purposefully misspecify p∗1

and p∗−1 as s1+a1 and s−1+a−1, respectively, where we consider (a1, a−1) =

(0, 0), (−0.05,−0.05), (−0.05, 0.05), (0.05,−0.05), (0.05, 0.05), (−0.1,−0.1),

(−0.1, 0.1), (0.1,−0.1), (0.1, 0.1), called Situations 1-9, respectively; Situa-

tion 1 represents the scenario without misspecification and other situations

reflect different misspecification scenarios.

Tables S.5 and S.6 show the average values of Dcorrect
A (θ) and Dcorrect

R (θ)

over 100 simulations in Situations 1-9 obtained from logistic regression and

SVM, respectively. As expected, average values ofDcorrect
A (θ) andDcorrect

R (θ)

may be differently affected by varying degrees of misspecifying p∗1 and p∗−1.

However, the proposed correction method with the SVM classifier tends

to be less sensitive than the corrected logistic regression, showing better



74 FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

robustness to misspecification of p∗1 and p∗−1 than logistic regression.

Table S.5: Simulation results with misspecified (p∗1, p
∗
−1): Average values of Dcorrect

A (θ)

(DA) and Dcorrect
R (θ) (DR) obtained from the proposed method applied to logistic regres-

sion under four settings of s1 = s−1 and nine situations of (a1, a−1).

Setting

Situation 1 2 3 4 5

DA DR DA DR DA DR DA DR DA DR

1 0.19 0.20 0.20 0.20 0.19 0.15 0.19 0.25 0.18 0.19

2 0.14 0.15 0.15 0.16 0.14 0.11 0.15 0.20 0.13 0.14

3 0.09 0.11 0.10 0.12 0.09 0.06 0.10 0.16 0.08 0.10

4 0.04 0.07 0.06 0.08 0.04 0.02 0.06 0.13 0.03 0.06

Setting

Situation 6 7 8 9

DA DR DA DR DA DR DA DR

1 0.20 0.21 0.19 0.13 0.19 0.29 0.17 0.19

2 0.16 0.17 0.15 0.08 0.15 0.25 0.12 0.13

3 0.12 0.13 0.10 0.03 0.11 0.21 0.07 0.09

4 0.07 0.10 0.05 0.00 0.07 0.19 0.03 0.05

Bibliography

Armstrong, M. A. (1983). Basic Topology. New York: Springer.

Bartlett, P. L., M. I. Jordan, and J. D. McAuliffe (2006). Convexity, clas-



BIBLIOGRAPHY75

Table S.6: Simulation results with misspecified (p∗1, p
∗
−1): Average values of Dcorrect

A (θ)

(DA) and Dcorrect
R (θ) (DR) obtained from the proposed method applied to SVM under

four settings of s1 = s−1 and nine situations of (a1, a−1).

Setting

Situation 1 2 3 4 5

DA DR DA DR DA DR DA DR DA DR

1 0.11 0.09 0.10 0.08 0.11 0.09 0.11 0.09 0.12 0.10

2 0.12 0.10 0.11 0.09 0.12 0.10 0.12 0.10 0.13 0.11

3 0.13 0.11 0.12 0.10 0.13 0.11 0.13 0.11 0.13 0.12

4 0.13 0.12 0.13 0.11 0.13 0.12 0.13 0.12 0.14 0.13

Setting

Situation 6 7 8 9

DA DR DA DR DA DR DA DR

1 0.10 0.08 0.11 0.09 0.11 0.09 0.13 0.11

2 0.10 0.08 0.12 0.10 0.12 0.10 0.13 0.12

3 0.11 0.09 0.13 0.11 0.13 0.11 0.14 0.13

4 0.12 0.10 0.13 0.12 0.13 0.12 0.15 0.13



76 FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

sification, and risk bounds. Journal of the American Statistical Associa-

tion 101 (473), 138–156.
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