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S1. NOTATION

S1. Notation

Table S1.1: Notations

Symbol Description

Xi i-th observation

X∗i i-th denoised observation

Zi i-th noise vector

πi(k) k-th barycentric coordinat of X∗i

V ∗k k-th true vertex

V̂k estimate of k-th true vertex under correctly specified models

Ṽk estimate of k-th true vertex under misspecified models

S∗ simplex spanned by V ∗1 , V
∗
2 , . . . , V

∗
K

S̃ simplex spanned by Ṽ1, Ṽ2, . . . , ṼK

σ2,∗ true variance of noise

σ̂2 estimate of σ2,∗ under correctly specified models

σ̃2 estimate of σ2,∗ under misspecified models

α parameter of the Dirichlet distribution

f(π;α) density of Dirichlet distribution with parameter α

φr(x;µ,Σ) density of Nr(µ,Σ)

`(V, σ2, α) minus pseudo log-likelihood

Nk set of pure nodes in community k

Nk(η) set of “nearly” pure nodes in community k

M set of mixed nodes

‖ · ‖ Euclidean/L2 norm of a vector
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S2. PROOF OF PROPOSITION 2.1

S2. Proof of Proposition 2.1

We prove Proposition 2.1, which provides an equivalent form of the minus

pseudo log-likelihood function. In the proof, we give a more general form

of the minus pseudo log-likelihood function for r ≥ K − 1.

Proof. Notice that if we let π̃ = (π(1), . . . , π(K − 1))′ for any π ∈ RK , we

can obtain another expression for the K-th order standard simplex SK−1

as follows

SK−1 = {π ∈ RK
+ : ‖π‖1 = 1} 1−1↔ {π̃ ∈ RK−1

+ : 0 < ‖π̃‖1 < 1} =: ∆K−1.

In the above,
1−1↔ represents a one-to-one transformation from the set on the

left to that on the right. When α = (1, 1, . . . , 1)′, the minus log-likelihood

function can be re-written as

`(V, σ2, α) = −
n∑
i=1

log

(∫
exp

{
− 1

2σ2
‖Xi − V πi‖2

}
I{π̃i ∈ ∆K−1}dπ̃i

)

+
nr

2
log(σ2)− n

K−1∑
j=1

log j +
nr

2
log(2π), (S2.1)

where πi = (π̃′i, 1 − ‖π̃i‖1)′. To understand the impact of V on the log-

likelihood function, we will focus on the first part of the right hand side of

the above equation. Let

g(π̃i) = exp

{
− 1

2σ2
‖Xi − V πi‖2

}
I{π̃i ∈ ∆K−1} and

G(V, σ2) =

∫
g(π̃i)dπ̃i.
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S2. PROOF OF PROPOSITION 2.1

The key is to apply the proper change of variables to the integral. Let

Ṽ = (V1 − VK , . . . , VK−1 − VK)′, π̃i = (πi(1), . . . , πi(K − 1))′,

ỹi = Ṽ π̃i and yi = V πi.

Then yi = ỹi + VK and

g(π̃i) = exp

{
− 1

2σ2

∥∥∥Xi − Ṽ π̃i − VK
∥∥∥2} I{π̃i ∈ ∆K−1}.

Since V1, . . . , VK are affinely independent, rank(Ṽ ) = K−1. Define V̄K , V̄K+1,

. . . , V̄r as a group of unit orthogonal basis of the orthogonal complimen-

t of the colume space of Ṽ in Rr, and let V ∗ = (V̄K , V̄K+1, . . . , V̄r) ∈

Rr×(r−K+1). Define π∗i = (π̄i(K), π̄i(K+1), . . . , π̄i(r))
′ for any π̄i(K), π̄i(K+

1), . . . , π̄i(r) ∈ R+ and y∗i = V ∗π∗i , and let

V̄ = (Ṽ , V ∗), π̄i = (π̃′i, (π
∗
i )
′)′ and ȳi = V̄ π̄i.

Then it can be derived that

ȳi = Ṽ π̃i + V ∗π∗i = ỹi + y∗i .

Notice that G(V, σ2) can be re-written as

G(V, σ2) =

∫
g(π̃i)I{π∗i ∈ (0, 1)r−K+1}dπ̄i.

Since ȳi = V̄ π̄i and V̄ is invertable, π̄i = V̄ −1ȳi and dπ̄i = | det(V̄ −1)|dȳi =

| det(V̄ )|−1dȳi. By the change of variables from π̄i to ȳi (ȳi = V̄ π̄i),

G(V, σ2) =

∫
g((V̄ −1ȳi)1,...,K−1)I{(V̄ −1ȳi)K,...,r ∈ (0, 1)r−K+1}| det(V̄ )|−1dȳi,

(S2.2)
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S2. PROOF OF PROPOSITION 2.1

where (V̄ −1ȳi)1,...,K−1 and (V̄ −1ȳi)K,...,r represent the first K−1 and the last

r −K + 1 components of the vector V̄ −1ȳi, respectively.

To move forward, we define V̄1, V̄2, . . . , V̄K−1 as a group of unit orthog-

onal basis of the colume space of Ṽ and let V01 = (V̄1, V̄2, . . . , V̄K−1) ∈

Rr×(K−1). Then there exists an invertable matrix A ∈ R(K−1)×(K−1) such

that Ṽ = V01A. For notation consistency, we denote V02 = V ∗ homoge-

neously and define V0 = (V01, V02) = (V̄1, V̄2, . . . , V̄r) ∈ Rr×r which is an

orthogonal matrix such that V −10 = V ′0 , V ′01V02 = 000 and V ′02V01 = 000. Let

A0 =


A 000

000 Ir−K+1

 .

Then V̄ = V0A0. Furthermore, we have

ȳi = V̄ π̄i = V0A0π̄i = V0


Aπ̃i

π∗i

 .

Then

π̃i = (A−1 000)V −10 ȳi = (A−1 000)V ′0 ȳi = (A−1 000)


V ′01

V ′02

 ȳi = A−1V ′01ȳi and
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S2. PROOF OF PROPOSITION 2.1

π∗i = (000 Ir−K+1)V
−1
0 ȳi = (000 Ir−K+1)V

′
0 ȳi = (000 Ir−K+1)


V ′01

V ′02

 ȳi = V ′02ȳi.

In other words, (V̄ −1ȳi)1,...,K−1 = A−1V ′01ȳi and (V̄ −1ȳi)K,...,r−K+1 = V ′02ȳi.

Plugging in the expression in (S2.2), we can obtain

G(V, σ2) = | det(V̄ )|−1
∫
g(A−1V ′01ȳi)I{V ′02ȳi ∈ (0, 1)r−K+1}dȳi. (S2.3)

Next, we use the change of variables the second time by applying the

above orthogonal representation (S2.3). Let

y0i = V ′0 ȳi =


V ′01ȳi

V ′02ȳi

 .

Since V0 is orthogonal matrix, det(V ′0) = 1 and hence dy0i = | det(V ′0)|dȳi =

dȳi. By the change of variables from ȳi to y0i (y0i = V ′0 ȳi),

G(V, σ2) = | det(V̄ )|−1
∫
g(A−1(y0i )1,...,K−1)I{(y0i )K,...,r ∈ (0, 1)r−K+1}dy0i

= | det(V̄ )|−1
∫
g(A−1(y0i )1,...,K−1)d(y0i )1,...,K−1.

Let y+i = (y0i )1,...,K−1 ∈ RK−1. Then

G(V, σ2) = | det(V̄ )|−1
∫
g(A−1y+i )dy+i

= | det(V̄ )|−1
∫

exp

{
− 1

2σ2

∥∥∥Xi − Ṽ A−1y+i − VK
∥∥∥2} I{A−1y+i ∈ ∆K−1}dy+i

= | det(V̄ )|−1
∫

exp

{
− 1

2σ2

∥∥Xi − V01y+i − VK
∥∥2} I{A−1y+i ∈ ∆K−1}dy+i ,
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S2. PROOF OF PROPOSITION 2.1

Notice that

A−1y+i ∈ ∆K−1 ⇐⇒ (V1, V2, . . . , VK−1)A
−1y+i + VK(1−

∥∥A−1y+i ∥∥1) ∈ S
⇐⇒ Ṽ A−1y+i + VK ∈ S ⇐⇒ V01y

+
i + VK ∈ S,

where S denote the simplex spanned by V . Thus

G(V, σ2) = | det(V̄ )|−1

·
∫

exp

{
− 1

2σ2

∥∥Xi − (V01y
+
i + VK)

∥∥2} I{V01y+i + VK ∈ S}dy+i .

One important thing we should realize is the relationship between the

volume of the simplex S and the determinant of matrix V̄ . On one hand,

det(V̄ ) = det(V0A0) = det(V0) det(A0) = det(A0)

= det(A) det(Ir−K+1) = det(A).

On the other hand, according to the results on the Cayley-Menger deter-

minant of simplex ((Sommerville, 1958; Gritzmann and Klee, 1994)),

| det(A)| = (K − 1)!Vol(S),

where Vol(S) represents the volume of the simplex S. The last equation in

the above uses the fact that the orthogonal transformation is isometric and

hence keeps the volume of the geometry unchanged. Thus,

| det(V̄ )| = (K − 1)!Vol(S).

Hence,

G(V, σ2) = [(K − 1)!Vol(S)]−1
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S3. PROOF OF THEOREM 3.1

·
∫

exp

{
− 1

2σ2

∥∥Xi − (V01y
+
i + VK)

∥∥2} I{V01y+i + VK ∈ S}dy+i .

Plugging the above expression of G(V, σ2) into (S2.1), we have

`(V, σ2, α)

= −
n∑
i=1

log

(∫
exp

{
−
∥∥Xi − (V01y

+
i + VK)

∥∥2
2σ2

}
I{V01y+i + VK ∈ S}dy+i

)

+ n log Vol(S) +
nr

2
log(σ2) +

nr

2
log(2π). (S2.4)

Specially, when r = K − 1, we have A = A0, V01 = V0 and V̄ = Ṽ .

Furthermore, we can choose V01 = V0 = Ir such that A = A0 = Ṽ = V̄ . In

this case,

`(V, σ2, α) = −
n∑
i=1

log

(∫
x∈S

exp

{
− 1

2σ2
‖Xi − x‖2

}
dx

)
+ n log Vol(S)

+
nr

2
log(σ2) + C.

where C = nr log(2π)/2. The claim has been proved.

S3. Proof of Theorem 3.1

We provide some useful lemmas and their proofs, and prove Theorem 3.1

from Section 3.

Lemma S3.1. Suppose Assumptions 3.1 and 3.2 hold. If θ(0) = (vec(V (0))′,

σ2,(0), α(0))′ satisfies (111′K , (V
(0))′)′ is invertible, for all x ∈ X ⊂ Rr, θ →

log f(x; θ) is continuous at θ(0) with respect to the distance d(·, ·).
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S3. PROOF OF THEOREM 3.1

Proof. Let θ(n) = (vec(V (n))′, σ2,(n), α(n))′ be a sequence of parameter vec-

tors such that θ(n) → θ(0) as n → ∞ with respect to the distance d(·, ·).

Let W (n) = ((V (n))′, (α(n))′)′ and W = (V ′, α′)′. In this case, we can re-

parametrize the probability density function by f(x; θ) = f(x;W,σ2). Ac-

cording to the definition of d(·, ·), we have minτ max1≤k≤K ‖W (n)
τ(k)−W

(0)
k ‖ →

0 and σ2,(n) → σ2,(0) as n→∞. Under Assumption 3.1, φr(x;V (n)π, σ2,(n)Ir) ≤

(2πεσ0 )−r/2. Then by the dominated convergence theorem, f(x; θ(n)) →

f(x; θ)|W=W (n),σ2=σ2,(0) as σ2,(n) → σ2,(0). In the following, we will show

f(x; θ)|W=W (n),σ2=σ2,(0) → f(x; θ(0)) as minτ max1≤k≤K ‖W (n)
τ(k) −W

(0)
k ‖ → 0.

Since φr(x;µ, σ2,(0)Ir) is continuous with respect to µ, for any ε > 0,

there exists δ1 > 0 such that for any ‖µ1 − µ2‖ ≤ δ1, |φr(x;µ1, σ
2,(0)Ir) −

φr(x;µ2, σ
2,(0)Ir)| < ε/2. Let Ṽ (0) = (V

(0)
1 − V (0)

K , V
(0)
2 − V (0)

K , . . . , V
(0)
K−1 −

V
(0)
K ). Then Ṽ (0) is invertible if and only if (111′K , (V

(0))′)′ is invertible and

det(Ṽ (0)) = det((111′K , (V
(0))′)′). For the above ε > 0, there exists δ2 > 0

such that for any ‖α − α̃‖ < δ2, |f(π;α) − f(π; α̃)| < | det(Ṽ (0))|ε/2. Let

δ0 = min(δ1, δ2)/
√
K. Since minτ max1≤k≤K ‖W (n)

τ(k) − W
(0)
k ‖ → 0, there

exist Nε ∈ N+ such that for any n ≥ Nε, there exists a permutation τn,δ0

such that max1≤k≤K ‖W (n)
τn,δ0 (k)

−W (0)
k ‖ ≤ δ0.

In fact, τn,δ0 is free of δ0 when δ0 is sufficiently small. For any δ, δ̃ ∈

(0,mink1 6=k2 ‖W
(0)
k1
−W (0)

k2
‖/2) such that δ̃ < δ, we denote τn,δ and τn,δ̃ as
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S3. PROOF OF THEOREM 3.1

defined in the preceding paragraph. For any permutation τ 6= τn,δ, there

exists a k = 1, . . . , K such that τ(k) 6= τn,δ(k). Since τn,δ is a surjection on

{1, . . . , K}, there exists k′ 6= k such that τn,δ(k
′) = τ(k). Then

‖W (0)
k −W

(n)
τ(k)‖ = ‖W (0)

k −W
(n)
τn,δ(k′)

‖ ≥ ‖W (0)
k −W

(0)
k′ ‖ − ‖W

(0)
k′ −W

(n)
τn,δ(k′)

‖

> ‖W (0)
k −W

(0)
k′ ‖ − δ > ‖W

(0)
k −W

(0)
k′ ‖/2 > δ̃.

Thus τ 6= τn,δ̃. Then we have τn,δ̃ = τn,δ. Then we can omit δ0 in τn,δ0 and

write τn for short for δ0 ∈ (0,mink1 6=k2 ‖Wk1 −Wk2‖/2).

It can be easily derived from max1≤k≤K ‖W (n)
τn(k)

− W
(0)
k ‖ ≤ δ0 that

max1≤k≤K ‖V (n)
τn(k)
−V (0)

k ‖ ≤ δ0 < δ1 and ‖α(n)
τn −α‖ <

√
Kδ0 < δ2. Then for

any π ∈ SK−1,

‖V (n)
τn π − V (0)π‖ ≤

K∑
k=1

‖V (n)
τn(k)
− V0,k‖π(k) ≤ δ1.

Let π̃ = (π1, π2, . . . , πK−1)
′. Then V (0)π = VK + Ṽ (0)π̃. Notice that the

probability density function f(x; θ) is invariant under permutations of the

columns of W . It follows that

|f(x;W (n), σ2,(0))− f(x;W (0), σ2,(0))| = |f(x;W (n)
τn , σ

2,(0))− f(x;W (0), σ2,(0))|

≤
∫
|φr(x;V (n)

τn π, σ2,(0)Ir)− φr(x;V (0)π, σ2,(0)Ir)|f(π, α(n))dπ

+

∫
φr(x;V

(0)π, σ2,(0)Ir)|f(π, α(n))− f(π, α(0))|dπ

≤ ε

2
+
ε|det(Ṽ (0))|

2

∫
φr(x;V

(0)π, σ2,(0)Ir)dπ
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S3. PROOF OF THEOREM 3.1

≤ ε

2
+
ε|det(Ṽ (0))|

2

∫
φr(x− VK ; Ṽ (0)π̃, σ2,(0)Ir)dπ̃

=
ε

2
+
ε|det(Ṽ (0))|

2
| det(Ṽ (0))|−1

∫
φr(x− VK ;u, σ2,(0)Ir)du ≤ ε/2 + ε/2 = ε.

The claim follows immediately.

Lemma S3.2. Under model identifiability, EX∼f(x;θ∗)[log f(X; θ)] attains

its maximum uniquely at the equivalence class with representative θ∗.

Proof. Since log x ≤ 2(
√
x− 1) for x ≥ 0, we have

EX∼f(x;θ∗)[log f(X; θ)]− EX∼f(x;θ∗)[log f(X; θ∗)]

= EX∼f(x;θ∗)
[
log

f(X; θ)

f(X; θ∗)

]
≤ 2EX∼f(x;θ∗)

[√
f(X; θ)

f(X; θ∗)
− 1

]

= 2

∫ √
f(x; θ)f(x; θ∗)dx− 2 = −2

∫
[
√
f(x; θ)−

√
f(x; θ∗)]2dx ≤ 0.

It can be seen that EX∼f(x;θ∗)[log f(X; θ)] = EX∼f(x;θ∗)[log f(X; θ∗)] if and

only if f(x; θ) = f(x; θ∗) for all x. Under the model identifiability, this

implies θ and θ∗ are equivalent, which gives the claim.

In the following, we will prove Theorem 3.1.

Proof. Under Assumptions 3.1 and 3.2, for θ∗ = (vec(V ∗)′, σ2,∗, α∗)′ with

(111′K , (V
∗)′)′ invertible, log f(·; θ) is continuous at θ∗ with respect to the

distance d(·, ·) by Lemma S3.1. On the other hand, since φr(x;V π, σ2Ir) ≤
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S3. PROOF OF THEOREM 3.1

(2πεσ0 )−r/2, f(x; θ) ≤ (2πεσ0 )−r/2. Then for any sufficiently small ball U ,

E[sup
θ∈U

log f(x; θ)] ≤ −r/2 log(2πεσ0 ) <∞.

According to Theorem 5.14 in Van der Vaart (2000), the MLE θ̂n satisfies

for any ε > 0, P({d(θ̂n, θ
∗) > ε} ∩ {θ̂n ∈ H}) → 0 as n → ∞. This gives

the first claim in Theorem 3.1.

Next, we consider the second claim. By the first claim, for any ε > 0,

P(d(θ̂n, θ
∗) > ε)→ 0 as n→∞. Since d(θ̂n, θ

∗) = minτ max1≤k≤K ‖Ŵn,τ(k)−

W ∗
k ‖+ |σ̂2

n − σ2,∗|, we have

P(min
τ

max
1≤k≤K

‖Ŵn,τ(k) −W ∗
k ‖ > ε)→ 0 and P(|σ̂2

n − σ2,∗| > ε)→ 0.

The first limit in the above gives

P(∃τn,ε such that max
1≤k≤K

‖Ŵn,τn,ε(k) −W ∗
k ‖ ≤ ε)→ 1. (S3.5)

In the following we will show τn,ε is free of ε when ε is sufficiently small. For

ε1, ε2 ∈ (0,mink1 6=k2 ‖Wk1 −Wk2‖/2) such that ε2 < ε1, let τn,ε1 , τn,ε2 be the

two sequences of permutations as defined in the above. For any permutation

τ 6= τn,ε1 , there exists a k = 1, . . . , K such that τ(k) 6= τn,ε1(k). Since τn,ε1

is a surjection on {1, . . . , K}, there exists k′ 6= k such that τn,ε1(k
′) = τ(k).

Then

‖W ∗
k − Ŵτ(k)‖ = ‖W ∗

k − Ŵτn,ε1 (k
′)‖ ≥ ‖W ∗

k −W ∗
k′‖ − ‖W ∗

k′ − Ŵτn,ε1 (k
′)‖

> ‖W ∗
k −W ∗

k′‖ − ε1 > ‖W ∗
k −W ∗

k′‖/2 > ε2.
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S4. PROOF OF THEOREM 3.2

It gives τn,ε2 = τn,ε1 . Thus we can omit ε in τn,ε in (S3.5). Let τn be the se-

quence of permutations defined in (S3.5). Let θ̂n,τn = (vec(V̂n,τn)′, σ̂2
n, α̂n,τn)′.

Then

‖θ̂n,τn − θ∗‖ = {‖vec(V̂n,τn)′ − vec(V ∗)′‖2 + (σ̂2
n − σ̂2)2 + ‖α̂n,τn − α∗‖2}1/2

=

{
K∑
k=1

‖Ŵn,τn(k) −W ∗
k ‖2 + (σ̂2

n − σ̂2)2

}1/2

≤ {K max
1≤k≤K

‖Ŵn,τn(k) −W ∗
k ‖2 + (σ̂2

n − σ̂2)2}1/2

≤
√

2{
√
K max

1≤k≤K
‖Ŵn,τn(k) −W ∗

k ‖+ |σ̂2
n − σ̂2|}

≤
√

2Kd(θ̂n,τn , θ
∗).

In the above inequalities, we use the fact x2 + y2 ≤ 2(x + y)2 for x, y ≥ 0.

Thus we have for any ε > 0, P(‖θ̂n,τn − θ∗‖ > ε) ≤ P(d(θ̂n, θ
∗) > ε/

√
2K),

which proves the second claim in Theorem 3.1.

S4. Proof of Theorem 3.2

We first provide two lemmas from Lemma 7.6 and Theorem 5.39 in Van der

Vaart (2000), and prove Theorem 3.2 based on these two lemmas.

Lemma S4.1. For every θ in an open subset of Rk, let pθ be a µ-probability

density. Assume that the map θ 7→ sθ(x) =
√
pθ(x) is continuously differ-

entiable for every x. If the elements of the matrix Iθ =
∫

(ṗθ/pθ)(ṗ
′
θ/pθ)pθdµ

13



S4. PROOF OF THEOREM 3.2

are well defined and continuous in θ, then the map θ 7→ √p
θ

is differentiable

in quadratic mean such that∫
[
√
pθ+h −

√
pθ − h′l̇θ

√
pθ/2]2dµ = o(‖h‖2), h→ 0,

with l̇θ given by ṗθ/pθ.

Lemma S4.2. Under Assumptions 3.1 and 3.2, the map θ 7→
√
f(x; θ) is

differentiable in quadratic mean at θ∗.

Proof. We will first prove f(x; θ) is continuously differentiable for every x

at θ∗ with respect to the L2 distance on RrK+K+1. It can be derived that

∇V φr(x;V π, σ2Ir) = (σ2)−1(x− V π)π′φr(x;V π, σ2Ir).

For a matrix A = (aj1j2), let ‖A‖∞,∞ = maxj1,j2 |aj1j2| and ‖A‖∞ =

maxj1
∑

j2
|aj1j2|. For a vector a = (a1, a2, . . . , al)

′, let ‖a‖∞ = maxi |ai|

and ‖a‖1 =
∑

i |ai|. Since the parameter space H is compact, ‖V ‖∞ ≤ C0

for a positive constant C0. Let V = (v1, v2, . . . , vr)
′. Then for π ∈ SK−1,

‖V π‖∞ = ‖(v′1π, v′2π, . . . , v′rπ)′‖∞ = max
i
|v′iπ| ≤ max

i
‖vi‖1 = ‖V ‖∞ ≤ C0.

Thus we have, for π ∈ SK−1,

(σ2)−1‖(x− V π)π′‖∞,∞φr(x;V π, σ2Ir)

≤ (σ2)−1‖x− V π‖∞φr(x;V π, σ2Ir) ≤ (εσ0 )−1(2πεσ0 )−r/2(‖x‖∞ + ‖V π‖∞)

≤ (εσ0 )−1(2πεσ0 )−r/2(‖x‖∞ + C0), (S4.6)
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In a neighborhood of V with respect to the L2 distance, it can be shown from

(S4.6) that sup ‖f(π;α)∇V φr(x;V π, σ2Ir)‖∞,∞ ≤ (εσ0 )−1(2πεσ0 )−r/2(‖x‖∞+

C0)f(π;α) which is integrable. By the dominated convergence theorem,

f(x; θ) is differentiable with respect to V and we can take the differentiation

under the integral. Then

∇V f(x; θ) =

∫
∇V φr(x;V π, σ2Ir)f(π;α)dπ

= (σ2)−1
∫

(x− V π)π′φr(x;V π, σ2Ir)f(π;α)dπ. (S4.7)

According to (S4.6), by the dominated convergence theorem, it can also be

seen that ∇V f(x; θ) is continuous about V and σ2. On the other hand, for

any α and α̃ such that |f(π;α)− f(π; α̃)| < ε, we have

‖∇V f(x;V, σ2, α)−∇V f(x;V, σ2, α̃)|‖∞,∞

≤ (εσ0 )−1(‖x‖∞ + C0)ε

∫
φr(x;V π, σ2Ir)dπ

≤ (εσ0 )−1(‖x‖∞ + C0)| det(Ṽ )|−1ε, (S4.8)

where the last inequality holds if Ṽ = (V1 − Vk, V2 − VK , . . . , VK−1 − VK) is

invertible. Under Assumption 3.2, ∇V f(x; θ) is continuous at θ∗.

Analogously, by the dominated convergence theorem, we can obtain the

derivatives of f(x; θ) with respect to σ2 and α. Let G1(α) = (ψ(α1), . . .,

ψ(αK))′ and G2(π) = (log π1, . . . , log πK)′ where ψ(·) is the digamma func-

15
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tion. Then it can be derived that

∇σ2f(x; θ) =

∫ (
‖x− V π‖2

2(σ2)2
− r

2σ2

)
φr(x;V π, σ2Ir)f(π;α)dπ, (S4.9)

∇αf(x; θ) =

∫
[ψ(‖α‖1)−G1(α) +G2(π)]φr(x;V π, σ2Ir)f(π;α)dπ,

(S4.10)

where ‖α‖1 =
∑K

k=1 |αk|. It can be shown similarly as ∇V f(x; θ) that

∇σ2f(x; θ) and ∇αf(x; θ) is continuous at θ∗. Hence f(x; θ) is continuously

differentiable at θ∗ for every x.

In the next, we will show elements of the Fisher information matrix

Iθ =
∫
∇θf(x; θ)∇′θf(x; θ)/f(x; θ)dx are well defined and continuous in θ.

From (S4.7), we have

∇vec(V )f(x; θ) = (σ2)−1
∫
π ⊗ (x− V π)φr(x;V π, σ2Ir)f(π;α)dπ, (S4.11)

where ⊗ represents the Kronecker product. Under Assumption 3.1,

‖∇vec(V )f(x;V, σ2, α)‖∞ ≤ (εσ0 )−1(‖x‖∞ + C0)f(x; θ)

=: b1(x)f(x; θ). (S4.12)

Recall that V = (v1, . . . , vr)
′ = (V1, V2, . . . , VK). Notice that

|x′V π| ≤
∑
i,k

|xiVk(i)πk| =
∑
i

|xi|
∑
k

|Vk(i)πk|

≤
∑
i

|xi|
∑
k

|Vk(i)| ≤ ‖x‖1‖V ‖∞ and

‖V π‖2 = ‖(v′1π, . . . , v′rπ)′‖2 =
∑
i

(v′iπ)2

16
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≤
∑
i

‖vi‖21 ≤ rmax
i
‖vi‖21 = r‖V ‖2∞. (S4.13)

Thus we have

‖x− V π‖2 = ‖x‖2 − 2x′V π + ‖V π‖2 ≤ ‖x‖2 + 2‖x‖1‖V ‖∞ + r‖V ‖2∞

≤ ‖x‖2 + 2C0‖x‖1 + rC2
0 .

From (S4.9), it can be derived that

‖∇σ2f(x; θ)‖∞ ≤ [(‖x‖2 + 2C0‖x‖1 + rC2
0)/εσ0 + r]/(2εσ0 )f(x; θ)

=: b2(x)f(x; θ). (S4.14)

Then we deal with ∇αf(x; θ). Since ψ(·) is a continuous function in R+,

under Assumption 3.1, there exists a positive constant Mα > 0 such that

|ψ(‖α‖1)| ≤ Mα and maxk |ψ(αk)| ≤ Mα. Thus ‖ψ(‖α‖1) − G1(α)‖∞ ≤

2Mα. On the other hand, we have∫
G2(π)φr(x;V π, σ2Ir)f(π;α)dπ =

e−
x′x
2σ2

(2πσ2)r/2

∫
e
x′V π
σ2
− ‖V π‖

2

2σ2 f(π;α)G2(π)dπ,

f(x; θ) =
1

(2πσ2)r/2
e−

x′x
2σ2

∫
e
x′V π
σ2
− ‖V π‖

2

2σ2 f(π;α)dπ.

Thus

f(x; θ)−1
∫
G2(π)φr(x;V π, σ2Ir)f(π;α)dπ =

∫
e
x′V π
σ2
− ‖V π‖

2

2σ2 f(π;α)G2(π)dπ∫
e
x′V π
σ2
− ‖V π‖

2

2σ2 f(π;α)dπ
.

Under Assumption 3.1, according to (S4.13),

exp

{
−C0‖x‖1

εσ0
− rC2

0

2εσ0

}
≤ exp

{
x′V π

σ2
− ‖V π‖

2

2σ2

}
≤ exp

{
C0‖x‖1
εσ0

}
.

17
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Then we have

0 ≤ −f(x; θ)−1
∫
G2(π)φr(x;V π, σ2Ir)f(π;α)dπ

≤ exp

{
C0‖x‖1
εσ0

+
C0‖x‖1
εσ0

+
rC2

0

2εσ0

}∫
−f(π;α)G2(π)dπ

= exp

{
2C0‖x‖1

εσ0
+
rC2

0

2εσ0

}
[ψ(‖α‖1)−G1(α)],

where the last equality holds by using the exponential family differential

identities. Let C1 = 2C0/ε
σ
0 and C2 = rC2

0/(2ε
σ
0 ). Then

0 ≤ −f(x; θ)−1
∫
G2(π)φr(x;V π, σ2Ir)f(π;α)dπ ≤ 2Mα exp{C1‖x‖1 + C2}.

By considering the form of ∇αf(x; θ) in (S4.10), we are able to obtain its

bound as follows,

‖∇αf(x; θ)‖∞ ≤ 2Mα[exp{C1‖x‖1 + C2}+ 1]f(x; θ) =: b3(x)f(x; θ).

(S4.15)

According to (S4.12), (S4.14) and (S4.15), if letting b(x) = max{b1(x), b2(x),

b3(x)}, we can obtain the upper bound for ∇θf(x; θ) by ‖∇θf(x; θ)‖∞ ≤

b(x)f(x; θ). Then

‖∇θf(x; θ)∇′θf(x; θ)‖∞/f(x; θ) ≤ b2(x)f(x; θ).

By the definition of b2(x), it can be seen that
∫
b2(x)f(x; θ) <∞. Thus el-

ements of the matrix Iθ =
∫
∇θf(x; θ)∇′θf(x; θ)/f(x; θ)dx are well defined.

Moreover, notice that b2(x)φr(x;V π, σ2Ir)f(π;α) ≤ (2πεσ0 )−r/2b2(x)f(π;α)

which is integral with respect to π and x. By the dominated convergence

18



S4. PROOF OF THEOREM 3.2

theorem, Iθ is continuous in V and σ2. The continuity of Iθ at α∗ can

be obtained similarly as in (S4.8). From Lemma S4.1, θ 7→
√
f(x; θ) is

differentiable in quadratic mean at θ∗.

Lemma S4.3. Under Assumptions 3.1 and 3.2, there exists a measurable

function ˙̀(x) with EX∼f(x;θ∗)[ ˙̀2(X)] < ∞ such that for every θ1 and θ2 in

a neighborhood of θ∗,

| log f(x; θ1)− log f(x; θ2)| ≤ ˙̀(x)‖θ1 − θ2‖.

Proof. By the mean value theorem, for any θ1, θ2 ∈ H,

log f(x; θ1)− log f(x; θ2) = ∇′θ log f(x; θ)|θ=ξ(θ1 − θ2)

= f(x; ξ)−1∇′θf(x; θ)|θ=ξ(θ1 − θ2),

where ξ is some point between θ1 and θ2. In the proof of Lemma S4.2, we

have obtained that ‖∇θf(x; θ)‖∞ ≤ b(x)f(x; θ) where EX∼f(x;θ∗)[b2(X)] <

∞. Thus

| log f(x; θ1)− log f(x; θ2)| ≤ f(x; ξ)−1‖∇θf(x; θ)|θ=ξ‖∞‖θ1 − θ2‖1

≤ b(x)‖θ1 − θ2‖1 ≤ b(x)
√
rK +K + 1‖θ1 − θ2‖ =: ˙̀(x)‖θ1 − θ2‖,

where EX∼f(x;θ∗)[ ˙̀2(X)] ≤ (rK + K + 1)EX∼f(x;θ∗)[b2(X)] < ∞. Now the

claim has been proved.

In the following, we provide the proof of Theorem 3.2.

19



S4. PROOF OF THEOREM 3.2

Proof. By the second claim in Theorem 3.1, we obtained a sequence of MLE

{θ̂n,τn} such that θ̂n,τn is a consistent estimator for θ∗ with respect to the

L2 distance. By Lemma S4.2, under Assumptions 3.1 and 3.2, the model

{f(·, θ), θ ∈ H} is differentiable in quadratic mean at θ∗. By Lemma S4.3,

under Assumptions 3.1 and 3.2, there exists a measurable function ˙̀(x)

with EX∼f(x;θ∗)[ ˙̀2(X)] <∞ such that for every θ1 and θ2 in a neighborhood

of θ∗,

| log f(x; θ1)− log f(x; θ2)| ≤ ˙̀(x)‖θ1 − θ2‖.

Furthermore, if θ∗ is an inner point of H and the Fisher information matrix

Iθ∗ is nonsingular, by Theorem 5.39 in Van der Vaart (2000),

√
n(θ̂n,τn − θ∗) = I−1θ∗

1√
n

n∑
i=1

∇θ log f(Xi; θ
∗) + oP (1),

where the explicit form of∇θ log f(x; θ) = (∇′vec(V ) log f(x; θ),∇σ2 log f(x; θ),

∇′α log f(x; θ))′ can be derived by (S4.9), (S4.10) and (S4.11) such that

∇vec(V ) log f(x; θ) =
1

σ2f(x; θ)
Eπ∼Dir(α)[π ⊗ (x− V π)φr(x;V π, σ2Ir)],

∇σ2 log f(x; θ) =
1

2(σ2)2f(x; θ)
Eπ∼Dir(α)[‖x− V π‖2φr(x;V π, σ2Ir)]−

r

2σ2
,

∇α log f(x; θ) = ψ(‖α‖1)−G1(α) +
1

f(x; θ)
Eπ∼Dir(α)[G2(π)φr(x;V π, σ2Ir)].

In particular,
√
n(θ̂n,τ − θ∗) is asymptotically normal with mean zero and

covariance matrix I−1θ∗ .

Below, we derive the explicit form of the Fisher information matrix. By
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definition, the Fisher information matrix Iθ can be formulated as

Iθ = −EX∼f(x;θ)[∇θθ log f(X; θ)] = −
∫
f(x; θ)∇θθ log f(x; θ)dx.

Thus we need to derive the Hessian matrix of log f(x; θ). According to

(S4.9), (S4.10) and (S4.11) in Lemma S4.2, by some tedious algebra, we

can obtain that

∇vec(V ),vec(V ) log f(x; θ)

=
1

f(x; θ)(σ2)2
Eπ∼Dir(α)[(ππ

′)⊗ {(x− V π)(x− V π)′}φr(x;V π, σ2Ir)]

− 1

f(x; θ)σ2
Eπ∼Dir(α)[(ππ

′)⊗ Irφr(x;V π, σ2Ir)]

− 1

f(x; θ)2
M1(x; θ)M ′

1(x; θ),

∇vec(V ),σ2 log f(x; θ)

=
1

2f(x; θ)(σ2)3
Eπ∼Dir(α)[‖x− V π‖2π ⊗ (x− V π)φr(x;V π, σ2Ir)]

− 1

f(x; θ)σ2
M1(x; θ)− 1

f(x; θ)2
M1(x; θ)M2(x; θ),

∇vec(V ),α log f(x; θ)

=
1

f(x; θ)σ2
Eπ∼Dir(α)[π ⊗ (x− V π)φr(x;V π, σ2Ir)G

′
2(π)]

− 1

f(x; θ)2
M1(x; θ)M ′

3(x; θ),

∇σ2,σ2 log f(x; θ)

=
r

2(σ2)2
+

1

4f(x; θ)(σ2)4
Eπ∼Dir(α)[‖x− V π‖4φr(x;V π, σ2Ir)]
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− 2

f(x; θ)σ2
M2(x; θ)− 1

f(x; θ)2
M2

2 (x; θ),

∇σ2,α log f(x; θ)

=
1

2f(x; θ)(σ2)2
Eπ∼Dir(α)[‖x− V π‖2φr(x;V π, σ2Ir)G

′
2(π)]

− 1

f(x; θ)2
M2(x; θ)M ′

3(x; θ) and

∇α,α log f(x; θ)

= ψ(1)(‖α‖1)−G3(α) +
1

f(x; θ)
Eπ∼Dir(α)[φr(x;V π, σ2Ir)G2(π)G′2(π)]

− 1

f(x; θ)2
M3(x; θ)M ′

3(x; θ).

It can be derived that∫∫
‖x− V π‖2φr(x;V π, σ2Ir)f(π;α)dπdx

=

∫∫
‖u‖2φr(u; 000, σ2Ir)f(π;α)dπdu = rσ2 and∫∫
π ⊗ (x− V π)φr(x;V π, σ2Ir)f(π;α)dπdx

=

∫∫
(π ⊗ u)φr(u; 000, σ2Ir)f(π;α)dπdu = 000.

Analogously, we have∫∫
‖x− V π‖4φr(x;V π, σ2Ir)f(π;α)dπdx = (r2 + 2r)(σ2)2,∫∫

‖x− V π‖2π ⊗ (x− V π)φr(x;V π, σ2Ir)f(π;α)dπdx = 000 and∫∫
π ⊗ (x− V π)φr(x;V π, σ2Ir)G

′
2(π)f(π;α)dπdx = 000.
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Moreover, we can obtain that∫∫
(ππ′)⊗ Irφr(x;V π, σ2Ir)f(π;α)dπdx = Eπ∼Dir(α)[(ππ

′)⊗ Ir] and∫∫
(ππ′)⊗ {(x− V π)(x− V π)′}φr(x;V π, σ2Ir)f(π;α)dπdx

= σ2Eπ∼Dir(α)[(ππ
′)⊗ Ir].

By using the exponential family differential identities, Eπ∼Dir(α)(log πk) =

ψ(αk) − ψ(‖α‖1) and Cov(log πk1 , log πk2) = ψ(1)(αk1)δk1k2 − ψ(1)(‖α‖1)

where ψ(1)(·) is the trigamma function and δk1k2 = I{k1 = k2}. Then it

can be derived that∫∫
‖x− V π‖2φr(x;V π, σ2Ir)G2(π)f(π;α)dπdx = rσ2[G1(α)− ψ(‖α‖1)]

and

∫∫
φr(x;V π, σ2Ir)G2(π)G′2(π)f(π;α)dπdx = G4(α).

According to the above results, we have

−EX∼f(x;θ)[∇vec(V ),vec(V ) log f(x; θ)] =

∫
1

f(x; θ)
M1(x; θ)M ′

1(x; θ)dx,

−EX∼f(x;θ)[∇vec(V ),σ2 log f(x; θ)] =

∫
1

f(x; θ)
M1(x; θ)M2(x; θ)dx,

−EX∼f(x;θ)[∇vec(V ),α log f(x; θ)] =

∫
1

f(x; θ)
M1(x; θ)M ′

3(x; θ)dx,

−EX∼f(x;θ)[∇σ2,σ2 log f(x; θ)] = − r2

4(σ2)2
+

∫
1

f(x; θ)
M2

2 (x; θ)dx,

−EX∼f(x;θ)[∇σ2,α log f(x; θ)] =
r

2σ2
[ψ(‖α‖1)−G′1(α)]

+

∫
1

f(x; θ)
M2(x; θ)M ′

3(x; θ)dx and

−EX∼f(x;θ)[∇α,α log f(x; θ)] = G3(α)− ψ(1)(‖α‖1)−G4(α)
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+

∫
1

f(x; θ)
M3(x; θ)M ′

3(x; θ)dx.

Since Iθ = −EX∼f(x;θ)[∇θθ log f(X; θ)], the claims in Theorem 3.2 follow

immediately.

S5. Proof of Corollary 3.1

Proof. Let us consider the case when α1 = α2 = · · · = αK = ‖α‖1 /K for

Theorem 3.2. In this case, if ‖α‖1 →∞, f(π;α) will shrink to a point mass

function concentrating at 111K/K. Then f(x; θ) → φr(x;V 111K/K, σ
2Ir). It

can be derived that

M1(x; θ)→ (σ2)−1K−1111K ⊗ (x− V 111K/K)φr(x;V 111K/K, σ
2Ir),

M2(x; θ)→ 2−1(σ2)−2‖x− V 111K/K‖2φr(x;V 111K/K, σ
2Ir) and

M3(x; θ)→ − logK111Kφr(x;V 111K/K, σ
2Ir).

By the dominated convergence theorem, we have∫
f(x; θ)−1M1(x; θ)M ′

1(x; θ)→ (σ2)−1K−2111K111′K ⊗ Ir,∫
f(x; θ)−1M1(x; θ)M2(x; θ)→ 000,∫
f(x; θ)−1M1(x; θ)M ′

3(x; θ)→ 000,∫
f(x; θ)−1M2

2 (x; θ)→ 4−1(σ2)−2(r2 + 2r),∫
f(x; θ)−1M2(x; θ)M ′

3(x; θ)→ −2−1(σ2)−1r logK111K and
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∫
f(x; θ)−1M3(x; θ)M ′

3(x; θ)→ (logK)2111K111′K .

Plugging the above limits into the formula of the Fisher information matrix

in Theorem 3.2, we can obtain

−EX∼f(x;θ)[∇vec(V ),vec(V ) log f(x; θ)]→ (σ2)−1K−2111K111′K ⊗ Ir,

−EX∼f(x;θ)[∇vec(V ),σ2 log f(x; θ)]→ 000,

−EX∼f(x;θ)[∇vec(V ),α log f(x; θ)]→ 000 and

−EX∼f(x;θ)[∇σ2,σ2 log f(x; θ)]→ 2−1r(σ2)−2.

It can be shown that

G1(α)− ψ(‖α‖1) = Eπ∼Dir(α)[G2(π)]→ − logK111K and

G4(α) = Eπ∼Dir(α)[G2(π)G′2(π)]→ (logK)2111K111′K .

Moreover, by the definition of the trigamma function, ψ(1)(u) → 0 as u →

∞. Thus G3(α)− ψ(1)(‖α‖1)→ 0 as ‖α‖1 →∞. Hence

−EX∼f(x;θ)[∇σ2,α log f(x; θ)]→ 000 and − EX∼f(x;θ)[∇α,α log f(x; θ)]→ 000.

The claim in Corollary 3.1 has been proved.

S6. Proof of Theorem 3.3

Proof. Let ĥi = ‖Xi − X∗i ‖, ĥ = maxi ĥi and h̃ =
{∑n

i=1 ĥ
2
i /n
}1/2

. Then

ĥ ≥ h̃. Note that Zi = Xi −X∗i
iid∼ Nr(0, σ2Ir). Thus we have ‖Zi‖2/σ2 iid∼
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χ2(r). By Assumption 3.4, for any ε > 0, there exists a positive integer n

such that P(|σ̃2/σ2 − c2| > c2/2) ≤ ε/2. For such n, there exist M, M̃ > 0

such that P(3c2M/2 ≤ h̃2/σ2 ≤ c2M̃/2) ≥ 1− ε/2. Since

P(3c2M/2 ≤ h̃2/σ2 ≤ c2M̃/2)

= P(3c2M/2 ≤ h̃2/σ̃2 · σ̃2/σ2 ≤ c2M̃/2)

≤ P(M ≤ h̃2/σ̃2 ≤ M̃) + P(|σ̃2/σ2 − c2| > c2/2)

≤ P(M ≤ h̃2/σ̃2 ≤ M̃) + ε/2,

we have P(M ≤ h̃2/σ̃2 ≤ M̃) ≥ 1 − ε. Below, we prove maxk ‖Ṽk −

V ∗k ‖ ≤ C0h̃ for a constant C0 to be decided if M ≤ h̃2/σ̃2 ≤ M̃ holds by

contradiction. Define

∆̃i =

∫
x∈S̃

exp

{
− 1

2σ̃2
‖Xi − x‖2

}
dx and

∆i =

∫
x∈S∗

exp

{
− 1

2σ̃2
‖Xi − x‖2

}
dx.

Then by Proposition 2.1,

`(Ṽ , σ̃2,111K) = −
n∑
i=1

log(∆̃i) + n log Vol(S̃) +
nr

2
log(σ̃2) + C and

`(V ∗, σ̃2,111K) = −
n∑
i=1

log(∆i) + n log Vol(S∗) +
nr

2
log(σ̃2) + C.

Thus we have

1

n
`(Ṽ , σ̃2,111K)− 1

n
`(V ∗, σ̃2,111K) = − 1

n

n∑
i=1

log

{
∆̃i/Vol(S̃)

∆i/Vol(S∗)

}
.
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If maxk ‖Ṽk − V ∗k ‖ > C0h̃, we will prove `(Ṽ , σ̃2,111K) > `(V ∗, σ̃2,111K) based

on the above equation in the following.

For any i ∈ Nk(ηn), we have ‖Xi−V ∗k ‖ ≤ ĥi+ηn. Then for any x ∈ Rr,

1

2
‖V ∗k − x‖2 − ĥ2i − η2n ≤ ‖Xi − x‖2 ≤ 2‖V ∗k − x‖2 + 2ĥ2i + 2η2n.

Thus we have

∆̃i ≤ exp

{
ĥ2i + η2n

2σ̃2

}∫
x∈S̃

exp

{
− 1

4σ̃2
‖V ∗k − x‖

2

}
dx =: exp

{
ĥ2i + η2n

2σ̃2

}
Ũk,

∆i ≥ exp

{
− ĥ

2
i + η2n
σ̃2

}∫
x∈S∗

exp

{
− 1

σ̃2
‖V ∗k − x‖

2

}
dx =: exp

{
− ĥ

2
i + η2n
σ̃2

}
Uk.

Then

log

{
∆̃i/Vol(S̃)

∆i/Vol(S∗)

}
≤ 3(ĥ2i + η2n)

2σ̃2
+ log

{
Ũk/Vol(S̃)

Uk/Vol(S∗)

}
.

First, we study the lower bound of Uk/Vol(S∗). Let Uniform(S∗) be the

uniform distribution over the simplex S∗ and C̃ = maxk EX∼Uniform(S∗)‖V ∗k −

X‖2. By the Jessen’s inequality, for any k = 1, 2, . . . , K,

Uk
Vol(S∗)

= EX∼Uniform(S∗) exp

{
− 1

σ̃2
‖V ∗k −X‖

2

}
≥ exp

{
− 1

σ̃2
EX∼Uniform(S∗)‖V ∗k −X‖2

}
≥ exp

{
− C̃
σ̃2

}
. (S6.16)

Second, we derive the upper bound of Ũk/Vol(S̃) and hence the upper

bound of {Ũk/Vol(S̃)}/{Uk/Vol(S∗)}. We start with the case S∗ ⊂ S̃.

Then if maxk ‖Ṽk − V ∗k ‖ > C0h̃, there exists k0 ∈ {1, 2, . . . , K} such that

‖Ṽk0−V ∗k0‖ > C0h̃. For such k0, there exists a positive constant C1 = O(C0)
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such that B(V ∗k0 , C1h̃) = {x ∈ Rr : ‖x− V ∗k0‖ ≤ C1h̃} ⊂ S̃. Then

Ũk0
Vol(S̃)

=
A1 + A2

B1 +B2

≤ max

(
A1

B1

,
A2

B2

)
, (S6.17)

where

A1 =

∫
x∈B(V ∗k0 ,C1h̃)

exp

{
− 1

4σ̃2

∥∥V ∗k0 − x∥∥2} dx, B1 = Vol{B(V ∗k0 , C1h̃)},

A2 =

∫
x∈S̃/B(V ∗k0 ,C1h̃)

exp

{
− 1

4σ̃2

∥∥V ∗k0 − x∥∥2} dx,B2 = Vol{S̃/B(V ∗k0 , C1h̃)}.

It can be derived that

A1

B1

≤ 2r/2Γ(r/2 + 1)

{
1− exp{−C2

1 h̃
2/σ̃2}

C2
1 h̃

2/σ̃2

}r/2

and

A2

B2

≤ exp
{
−C2

1 h̃
2/(2σ̃2)

}
,

where Γ(·) is the Gamma function. If h̃2/σ̃2 ≥ M , since (1 − e−x)/x is

decreasing when x ∈ (0,+∞), we have

A1

B1

≤ 2r/2Γ(r/2 + 1)

{
1− exp{−C2

1M}
C2

1M

}r/2
and

A2

B2

≤ exp

{
−C

2
1M

2

}
.

Thus

lim
C0→+∞

A1/B1 = lim
C0→+∞

A2/B2 = 0. (S6.18)

Combining (S6.16), (S6.23) and (S6.18), we have as C0 → +∞,

log

{
Ũk0/Vol(S̃)

Uk0/Vol(S∗)

}
≤

{
C̃

σ̃2
+ log max

(
A1

B1

,
A2

B2

)}
→ −∞. (S6.19)

If ‖Ṽk − V ∗k ‖ ≤ C0h̃, note that

Ũk =

∫
x∈S̃

exp

{
− 1

4σ̃2
‖V ∗k − x‖

2

}
dx ≤

∫
x∈S̃

dx = Vol(S̃). (S6.20)
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Thus we have

log

{
Ũk/Vol(S̃)

Uk/Vol(S∗)

}
≤ C̃

σ̃2
. (S6.21)

Then we derive the upper bound of {Ũk/Vol(S̃)}/{Uk/Vol(S∗)} under

the case S∗ ∩ S̃c 6= ∅. In this case, there exists k1 ∈ {1, 2, . . . , K} such that

V ∗k1 /∈ S̃. If ‖Ṽk1 − V ∗k1‖ ≤ C0h̃, we have

Ũk1 ≤ Vol(S̃) and log

{
Ũk1/Vol(S̃)

Uk1/Vol(S∗)

}
≤ C̃

σ̃2
. (S6.22)

according to (S6.20). If ‖Ṽk1 − V ∗k1‖ > C0h̃, there exists a positive constant

C2 = o(C0) such that B(Ṽk1 , C2h̃) = {x ∈ Rr : ‖x − Ṽk1‖ ≤ C2h̃} ⊂ S∗.

Then

Ũk1
Vol(S̃)

=
Ã1 + Ã2

B̃1 + B̃2

≤ max

(
Ã1

B̃1

,
Ã2

B̃2

)
, (S6.23)

where

Ã1 =

∫
x∈B(Ṽk1 ,C2h̃)

exp

{
− 1

4σ̃2

∥∥V ∗k1 − x∥∥2} dx, B̃1 = Vol{B(Ṽk1 , C2h̃) ∩ S̃},

Ã2 =

∫
x∈S̃/B(Ṽk1 ,C2h̃)

exp

{
− 1

4σ̃2

∥∥V ∗k1 − x∥∥2} dx, B̃2 = Vol{S̃/B(Ṽk1 , C2h̃)}.

It can be derived that

Ã1

B̃1

≤ exp{−(C0 − C2)
2h̃2/4σ̃2} and

Ã2

B̃2

≤ exp
{
−C2

2 h̃
2/(2σ̃2)

}
.

If h̃2/σ̃2 ≥M , we have

max

(
Ã1

B̃1

,
Ã2

B̃2

)
≤ exp{−C2

0M} = o(1),
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where the last limit hold when C0 →∞. Hence

log

{
Ũk1/Vol(S̃)

Uk1/Vol(S∗)

}
≤

{
C̃

σ̃2
+ log max

(
Ã1

B̃1

,
Ã2

B̃2

)}
→ −∞. (S6.24)

For i ∈M, it can be derived that

∆̃i =

∫
x∈S̃

exp

{
− 1

2σ̃2
‖Xi − x‖2

}
dx ≤

∫
x∈S̃

dx = Vol(S̃).

Moreover, since

‖Xi − x‖2 ≤ 2‖X∗i − x‖2 + 2ĥ2i ≤ 4‖X∗i − V ∗k ‖2 + 4‖V ∗k − x‖2 + 2ĥ2i ,

by the Jessen’s inequality, we have

∆i

Vol(S∗)
= EX∼Uniform(S∗) exp

{
− 1

2σ̃2
‖Xi −X‖2

}
≥ exp

{
− 1

2σ̃2
EX∼Uniform(S∗)‖Xi −X‖2

}
≥ exp

{
− 1

2σ̃2
(4‖X∗i − V ∗k ‖2 + 2ĥ2i + 4EX∼Uniform(S∗)‖V ∗k −X‖2)

}
≥ exp

{
−2Č + ĥ2i + 2C̃

σ̃2

}
,

where Č = max1≤k 6=l≤K ‖V ∗k − V ∗l ‖2. Then

log

{
∆̃i/Vol(S̃)

∆i/Vol(S∗)

}
≤ 2Č + ĥ2i + 2C̃

σ̃2
. (S6.25)

Let K0 = {k = 1, 2, . . . , K : ‖Ṽk − V ∗k ‖ > C0ĥ} and K1 = {k =

1, 2, . . . , K : ‖Ṽk − V ∗k ‖ ≤ C0ĥ}. From (S6.19) – (S6.24) and (S6.25),

1

n
`(Ṽ , σ̃2,111K)− 1

n
`(V ∗, σ̃2,111K)

≥ − 1

n

∑
k∈K0

|Nk(ηn)|

{
C̃

σ̃2
+ log max

(
A1

B1

,
A2

B2

)}
− 1

n

∑
k∈K1

|Nk(ηn)|

(
C̃

σ̃2

)
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− |M|
n
· 2Č + 2C̃

σ̃2
− 1

n

K∑
k=1

∑
i∈Nk

3(ĥ2i + η2n)

2σ̃2
− 1

n

∑
i∈M

ĥ2i
σ̃2

= −2|M|Č
nσ̃2

− 3(h̃2 + η2n)

2σ̃2
− (n+ |M|)C̃

nσ̃2
− 1

n

∑
k∈K0

|Nk(ηn)| log max

(
A1

B1

,
A2

B2

)

≥ −2|M|Č
nσ̃2

− 3(h̃2 + η2n)

2σ̃2
− (n+ |M|)C̃

nσ̃2
− C̃

σ̃2
− c1rn

n
|K0| log max

(
A1

B1

,
A2

B2

)
.

Note that A1, A2, B1 and B2 in the above should be Ã1, Ã2, B̃1 and B̃2

as defined in (S6.24) and (S6.24) if Vk1 /∈ S. Here we unify the notation

for simplicity. When r is fixed, we have C̃/σ̃2 = O(1) and Č/σ̃2 = O(1).

Under the condition of h̃2/σ̃2 ≤ M̃ and log−1C0 = o(rn/n), if |K0| ≥ 1, we

have

1

n
`(Ṽ , σ̃2,111K)− 1

n
`(V ∗, σ̃2,111K)→ +∞.

This yields a contradiction to the definition of Ṽ and σ̃2. Hence maxk ‖Ṽk−

V ∗k ‖ ≤ C0h̃ ≤ C0ĥ. Then

P(max
k
‖Ṽk − V ∗k ‖ ≤ C0ĥ) ≥ P(max

k
‖Ṽk − V ∗k ‖ ≤ C0h̃)

≥ P(M ≤ h̃2/σ̃2 ≤ M̃) ≥ 1− ε.

This proves the claim.

S7. Proof of Theorem 3.4

Proof. The proof of Theorem 3.4 is similar with that of Theorem 3.3 if we

notice that Assumption 3.5 implies Assumption 3.3.
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