Statistica Sinica: Supplement

ADAPTIVE BLOCK BANDING PRECISION MATRIX
ESTIMATION FOR MULTIVARIATE

LONGITUDINAL DATA

Chunhui Liang!, Wenqing Ma? and Yanyuan Ma3

U Tianjin University of Commerce
2 Capital Normal University

3 The Pennsylvania State University
Supplementary Material

In this supplement, we provide the detailed proofs of lemmas and theorems omitted from the body of this

paper, and some simulation and real data studies with figures.

S1  Dual problem: Proof of Theorem 1.

Proof. Note that (3,,_; ¥2, )2 = [[(¥))1ll2 = max{(A.;, ¥}), st. [Apyl. <

1, A1, = 0}. The optimization problem (2.8) can be written as

7—1
P
min{ 7 || ¥; — Z;l13 4+ 22> I1(®5)1ll2}
! =1

j—1
. p
:I%ljn{mgx{gH‘I’j = Zjll5 + A ;(A.J, Uit st [[Avglls <1, A0 =0,
j—1

—mgx{%ijn{g”‘l’j —Zll3+ X2 Y (AL TN st Al €1, Ay =0,

=1

(S1.1)



where the last equality is due to Bien et al. (2016). Now the inner minimization

in (S1.1) is a quadratic optimization problem and has explicit solution ¥; = Z; —
A2 Zf:_ll A ;/p. Inserting this into (S1.1)) leads to

-1

Ao A2

max {2122 A3+ 2e D 2T AL - 22D AR,
P =1 =1 P =1

S.t. ”(Al:l,l)||2 S 17Al+1:j,l = O}, fOI‘ l = 1, . ,j — 1,

which is equivalent to

. Aa 3~ |
min |Z; ?2 DAL st (Av)ll2 €1, Apyy =0, forl=1,...,j -1,
=1

that is the dual function of (2.8). O

S2 Convergence in Frobenius norm: Proof of Theorem 2.

To show this, we first establish two lemmas, which can be found in [Lam and Fan
(2009). Lemma provides inequalities involving the operator and the Frobenius
norms, and Lemma provides the approximation error rate between sample

variance and true variance.

Lemma S2.1. Let A and B be real matrices such that the product AB is defined.
Then

Tmin(A) || Bllr < [[AB]r < omax(A)|| B[
Specifically, if A = (a;;), then |a;j| < omax(A) for each i, j.

Lemma S2.2. Let S be a sample covariance matrix based on a random sample



Y, = (Ya,....Yin)", i = 1,...,n, where E(Y;) = 0, cov(Y;) = X. Let YVi; ~ F},
where Fj is the cumulative distribution function (cdf) of Yi;. Let G be the cdf of

Yz? and 1t satisfies

max /00 exp(Yt)dG;(t) < oo, for all v € (0,y),
0

1<j<m

where 1y > 0 is a constant. Assume that logm/n = o(1) and that % has its eigen-

values uniformly bounded when n — oo. Then, for constant matrices A and B with
bounded oumax(A), Omax(B), we have that max; j |{A(S —X)B};;| = O,(\/logm/n).

Remark S2.1. The conditions on Y;; in Lemma are the same as those used in
Bickel and Levina (2008)) for relaxing the normality assumption. Proofs of Lemma

and Lemma can be found in Lam and Fan (2009).

Proof. Part 1. We first prove the first half of the theorem. The objective function
(2.3) is a biconvex function of W~ and L at any fixed X. At a fixed A, let (W1, L)

be a local minimum of Q(W~! L, ). Define
A={A: A e RFF A=A |AllF = Mr,},
and
B={A:AcR” A;j; =0, for i > j (A+1L);; > 0,11l = NT 21y},

where M, N > 0 are sufficiently large constants. For any A € B, let A; = Aj ..
Then [|Al% = Z;’zl I1A;|I2 = N?r3,, so ||Allr = Nrg, for any A € B. Define

=1 = (logm/n)l/Q, T = 771\/F, Top = 772\/7. Note that ry, — 0, r9, — 0



under the assumptions of Theorem 2. Let C C A x B, for each fixed A; € A, and
Ay € B, denote Ca, = {Ay € B|(A1,Az) € C} and Ca, = {A1 € A|(A1,A) € C}.

Below, we will show that

P(Algf QW'+ ALL+ A0} > QW L+ Ay A) — 1, (S2.1)
and
P(, inf {QW +ALL+A3 N} > QW+ AL A)) — 1. (S2.2)

We consider proving (S2.1]) first. The objective function (2.3) leads to (K J) ' {Q(W 1+

AL+ Ay, )\) — Q(Wil,L + AQ,)\)} =T, +T5 + T3z, where
1 B o
T, = —?(log (W™ + Ay —log|W™]) + ?tr(WAl),

T = %{Hve(r(W1 + Al = [lvee(W ]I},
Ts= —— Ztr{YTA Yi(L+ A0)"(L+ Ay)} — %tr(WAl).

Let f(s) = log|[W~!+ sA;|. Appendix I of |[Yu and Bien (2017) showed that the
first and second derivatives of f(s) are respectively f/(s) = tr{(W™1 +sA;)" 1A},
and f"(s) = —vec(A)T{{(W™! + sA;) ' @ (W 4+ sA;)"1hvec(A;). By Taylor’s
expansion at s = 0, we can obtain that log |[W~! + A;| —log |[W™!| = tr(WA,;) —

vec(A)T {fo (1—8)(W+sA) oW+ sAl)_lds} vec(Ay). Thus,



Ty = %VGC(AOT {/01(1 —s) (W l4+sA) o (Wt sAl)lds} vec(Ay)

> %Hvec(Al)Hg)\mm {/01(1 —s) (W l4+sA) o (Wt sAl)lds}
> vl [ 1= ) gin N (W 450 s

> o lvee(ADI3 min A2, (W + 580) ')

o L e i (A (W 4 &) [ < M & = AT,

2K

where Apin(A) and Apay(A) denote the minimum and maximum eigenvalues of a
generic real square matrix A. Note that WL is positive definite and [|A]p =
o(1), hence W~ + A is also positive definite. Therefore, following Lemma
A2 (W4 A) > {0max(W™) + omax(A)}72 > 1/{202, (W1)} for sufficiently

max

large n, hence

1
Tl > _HA1HF mln(W) = EMQTln mm(W)' <S23)

We define Sw-1 = {(I,I') : Wi # 0,1,I' € {1,--- ,K}} and Sgy = {(,1') -
W,y =0,0,I'e{1,--- ,K}}. Let the cardinality of Sw-1 be |Sw-1| = w + K. Be-
cause [[vec(W™ 1)1 = [[vec{(W)s_, }HI1, and [[vec(W " +Ay) [y = [[vec{(W~!

Aq)sy Hi+ HVGC{(Al)S&Ll}Hl’ following the triangle inequality, and w = O(K), we

get



T :%[Hvec{(wl + A)so i + [lvee{(An) g Hii = [[vec{ (W) sy, Hli

Z%[HV%{(AQ%W}M — [[vec{(A1)sy 1 Hil

A A

> 20 vee{(A1)sg,_, i — e + )27

> vee{(An)se. Hh — 1A (52.4)
K wo IR

Note that the above inequality of Ty always holds for any A\; > 0. Write T3 =

A+ B+ C, where

Z" 1
— T T
A = m o~ tr(Y,L AlYZL L) - Etr(WAIL
1 n
B = m i:E 1 {tr(Y;FAlYlLTA2> + tr(Y;FAlYZA;FL)},
— § T T
C = m — tr(Yz AlYiAQ Ag)

Using tr(A) = tr(AT) and tr(AB) = tr(BA) for any square matrices A and B,
then we get tr(Y;rAlYZLTA2) = tI‘{(AgL)(Y;FAlYZ)} = tr(Y?AlYZAgL) Hence
we obtain

B=2) tr(Y/AYL"Ay)/(nKJ).

i1
From tr(YFA; Y, LTAy) = vec(Y;)Tvec(A; Y, LTAy) = vee(Y;) T (ATL®A, )vee(Y;) =
tr{(ATL ® Aq)vec(Y;)vec(Y;)T}, and E{vec(Y;)vec(Y;)T} = cov{vec(Y;)} =R ®

W, we have E{tr(YIA;Y;LTAy)} = tr{(ATL®A)(R®W)} = tr(ATLR)tr(A;W).



By law of large numbers, we get

B 1 T
5 = 7 MATLR)(A W){1 +0,(1)}.

Noting that W is positive definite, we get [tr(A;W)| < Apax(W)VE|Ay||p. Simi-

larly, we also have
]tr(A;FLR)] < )‘maX(R%/jHAFQFLHF < )‘maX(R)\/ijaX<L>“A2"Fa

where the last inequality is due to Lemma [S2.1] Note that Ay € B, so ||Aq|lr =

Nry,. Thus,

Bl (B 1) 200 (L) A (W) A (R A [ ]| Aol {1+ 0,(1)}

:<KJ>_1/2‘7max(L))‘maX(W)AmaX(R) [A1][F N2 {1 + 0p(1)}
=0, {(K.J)7 2| Ay|| pmV/ T}

=0y (|2 || r/VE), (52.5)

where the last equality is due to Assumption C1 and 7; =< 7,. Similarly, replacing

L with A, in treating B, we get



1

O] < 57 M WOV E M7t s ROV T (B2) [ el {1+ 0,(1)
< N (WIVE M A ROV g 11+ 0,(1)}

<(KD) ™Y Ao (W) Amax (R)M N%r1,72 {1 + 0,(1)}
:Op{(KJ)_1/2HA1 HFTan2\/j}

—op(m | A |l p/ V), (S2.6)
where the last equality is due to Assumption C1, n; < 79 and 79, = o(1). Finally,

|A] = |—tr{ ZY L'LY! — WA Y|

IN
=| =

Y S YT - Wy

nJg <
(s,t)GSW,1 =1

1 n
Y VLTI - WA

(5:)€85, i=1

7 nax I(n—J ;YiLTLY? = Wsallllvee{(A1)sy, o Hin + llvec{(As)se, 1]

+
==

1 n
max |(— Y YLTLY! = W) [(w + K) 2| A [ + [[vee{(Ar)sg, -, ]

i=1

1 — 1
< max| — ZYiLTLYiT — lF + E”VGC{(A1>%—1}||1] (S2.7)

Wmﬁﬁm

for sufficiently large n, where the lastly equality is due to w = O(K) in Assumption
C1. Note that E(Y;) = 0, cov{vec(Y;)} = R® W, and >} | vec(Y;)vec(Y;)T/n

is the sample covariance matrix of vec(Y;). Under Assumption C3, using Lemma



[S2:2] we can obtain that
max \{Z vee(Y;)vee(Y:)" /n — R @ W}, = O,{(logm/n)"/?}.

In Lemma [S2.2] letting A = B = L ® I, following Assumption C2, we know that
Omax(L ® I ) is bounded, then, (L®@Ix){> ", vec(Y;)vec(Y;)'/n—ROWHL"®

Ir) = >, vee(Y,L)vec(Y,LY)" /n —1; ® W, and

max \{Z vee(Y; LT vec(Y. LN /n — I, @ W, | = O, {(logm/n)*/?}.

=1

In addition, >, Y,L*LY}/n — JW is the sum of the diagonal K x K blocks of

Sor vee(Y,LT)vec(Y, L") /n — 1, ® W | therefore, we have

max ) YL'LY] /(n]) = W}

i=1

< max |{Z vee(Y LT )vec(Y.LT)T /n — 1; @ W1, | = O,{(logm/n)"/?}.

=1

Combining these results, we obtain

Al < ({10gK/(nK)}1/2||A1IIF+K(logK/n)l/QHveC{( 1)sg

= O (Lol + Lect Byl )

Noting that n; =< 1y, thus, there exists a constant C so that

T3] =[A+B+C[<Cy (\/_HA1|\F+ lvec{(A1)ss



with probability tending to 1. Now setting \; = Cyn;, we have

A
T+ T, — T3] > Mz?“m 2in(W) + EIHVGC{(Al)sSg} I — \/—||A1||F

4K
Cin Cin
\/1—1 A — [l(lﬂVeC{(Al)Sg}Hl
1, 201 .
D {Eamin(W)M — ?} Mrln >0

with probabiity tending to 1, where the last equality holds as long as the constant
M satisfies M > 8Cy/o2,,(W). This proves (52.1).

Next, we consider (S2.2). Define p(L) = Z;.]:2p(Lj). Noting that L and A,
are lower triangular matrices, hence log|L + sA,| = Z}']:1 log(L;; + s(Az);;). By

Taylor’s expansion of log |L 4+ sA,| as a function of s at s = 0, we obtain

J J 2
(A2);; (A2)j; 2
log |L + sAq| — log |L| = E g — g 7 s,
i Lij 4 2Ly, +5(A2);1

j=1
where 5 € (0,s). Then, we have
J
log [L + Ag| — log |L| = tr(L ™" Ag) = > (A9)3,/12{L;; + 5(A2);;}7)-
7j=1

Thus, (2.3) leads to (KJ) " "{Q(W™ + A, L+ Ay, A) — QW' + A, LA} =

I+ B+ I+ I3 + 14, where B is defined as same as in T3, and

J
1
L = jz (Az) ”/{L J: +S(A2>]J}
7j=1
2 1
[2 = jtr(—K ZY?WilYiLTAQ — LilAz),

i=1



_ 1 - T -1 T
[3 = m ; tr{Yl (W -+ Al)YzAQ AQ}?

I, = )\—;{p(L +Ay) — p(L)}.

Due to 79, = o(1) and Assumption condition C2, for any j € {1,---,J} and any

s € (0,1), we have |(L4+35A2); ;| < 0max(L +5A2) < 204ax(L) < 27 for sufficiently

large n. Thus,

J J
As)2 . ~ (A)?.
=1 (Ba),; ;> 2 22)“. (92.8)
S Ly + 5(Ra) ) 4y
Following similar derivation of ([S2.5)), we have
‘B’ S2([(‘])71/2‘7max(L))‘max(VV))‘maX(R)HA1HFHA2HF{1 + Op(l)}

=2(K )" 010 (L) Mnax (W) A (R) [ Ao | M1, {1 + 0, (1)}
=0 {(K1) 72| 2|l e VK
=Op {112 Dol /V/ T} (52.9)

Next, we consider I. Let S, = {(I,l') : Ly # 0,1,I' € {1,---,J}}, Sr(f) ={(,1):
Liy=0,1>0,1,I' e{l,---,J}}, and let v = |Sp| — J, where |Sy,| is the cardinality

of &;,. We have



|f2|_—|tr{ ZyTw Y, LT —L ALY

J t
:%ZZ nK ZYTW YL - L) (Ag) ]

t=1 j=1

2 1
Zmax|(— > YVIWIYLT =L Y0 (Aol + D (Ao}

i=1 (L,I")eSy (1,1)ese

n

(S2.10)

Recall that E(Y;) = 0, and cov{vec(Y;)} = R ® W, hence cov{vec(Y])} =
W ® R, and we know that Y  vec(Y;)vec(Y])T/n is the sample covariance
matrix of vec(Y}). Under Assumption C3, using Lemma , we can obtain that
maxg; [{> 1, vec(Y )vec(YF)T/n — W @ R}ys| = Op{(logm/n)t/?}. Let A =
W 1®I;and B = Ix ® LT, under Assumption C2, 0.c(A) and 0.y (B) both are
bounded. Following Lemma[S2.2] we can obtain that max; ; [{A (X", vec(Y [ )vec(Y)T /n—
W ® R)B}. ;| = O,{(logm/n)"/?}. In addition,
A(i vee(Y; Jvec(Y] )T /n—-WeR)B = i vec(Y; W Hvec(LY} )" /n—Tx@L ™,

i=1 i=1
which has its K diagonal J x J blocks summing to >, | YWY, LT /n — KL,
thus, max; ; [(== >0 YIW Y, LT-L™), ;| < max,; [{AC, vee(Y ] )vec(Y])T /n—
W ® R)B}, | = O,{(logm/n)'/?}. Incorporating S| = v+ J = O(J) in Assump-

tion C1, we have

L] <0, ( fHAzHﬁ—Hvec{(Az>sv}H1>- (s2.11)



Hence

)

H > (S2.12)

1B +|1.] =0, ( \/—HAzHF) ( P al + 2 ecf(Ar)s

<c ( P Balle + el (Ba)s

for some constant Cy with probability tending to 1. We next inspect I3. Because
|A1]|F = o(1), W™t is positive definite, W'+ A is positive definite for sufficiently

large n. Following Lemma [S2.1] we have

DY AL > Ay Y.AT|2

Because the relation tr(Y;AT A YT) = vec(Y;) T (AT Ay @Ik )vec(Y;) = tr{ (AT Ay®

I )vec(Y;)vec(Y;)'}, by law of large numbers,

1 n
—= > IY:dlE = u{(AjA o TR W)}
=1

_ Kijtr(A AsR)tr(W){L + 0,(1)}.

Note further that tr(ATAR) = [|A L7132 > 0 1Az ||%, thus,

mm(

I > T AW+ AD) Apin (W) o2, (LY | A5 =

min

“OIAE/ T, (S2.13)

mln(

where ¢ = Apin(W™ + A Anin(W) > 0. Lastly, we consider I;. Recall that the

jth row of L has bandwidth d;, hence L;; = 0 for 1 <1 < j —d;. Then, we have

p(L)ZZ;Lz {11(2 L2 )1/222] ZZl]d(Zm]sz )1/2'



Thus,

J Jj—dj-1 | J -1 l

=) > Q@AY Y (D LAy, = p(L)
j=2 I=1 m=1 Jj=2 l=j—d; m=1
J Jj—dj—1 J  j-1 l j—1

= DD D RN R S S U W ¢ PR L ST Z L)
j=2 =1 j=2 l=j—d; m=j—d, =2 I=j— d] m=j—
J j—dj—1 J o j-1 !

>y (Aa)jul =Y D> L > (893,112 (S2.14)
j=2 =1 j=2 l=j—d; m=j—d,

where the last inequality comes from triangle inequality. Using Cauchy’s inequality,

we have

l

j—1
dj/\§a+ Z Z (Ag)im/(l

2 S (B <
l=j—d; m=j—d; l_j_dj m=j—d;
m=j— d]
7—1
S dj/\§a+dj Z (Az)im/a.
m=j—d;

Letting a = max; d;/{co2;,(L™")}, recalling that v = ijz d;, we get

min (

Jj—1 j—1

! J
a (AQ)Q'm
) N R DY L, +m?><(dj) X et

j=2m=j—d,

J
AQZ

Jj=2 l=j—d; m:]—d]

= $23u + a2 (A,)]2.

Combining with (S2.14)), noting that Sf = {(j,1) : 2 <j < J,1 <1 <j—d; — 1},



we have

Jj—d; l

nx} iz'%l'—ZZ{Z !

j=2 j=2l=j—d; m=j—d;

co?

A 1. a (L1
272||VGC{(A2)S£}H1 — 3(5)\311 - %HAQH%) (52.15)

Note that this inequality holds for any Ay > 0. Let Ay = Csm,. Collecting the

results in ((52.8)),(52.12)),(S2.13]) and (S2.15)), we get

1
K—J{Q(V\F1 + AL L+ A X)) — QW+ A LA}

J
1 C C
3 (A2)2; — 22| Agflp — 2 vec] (M) }

=m0 J :

+ ol A+ 22 e (Ag)sg gy — DT
- o sz; 02\/? Nrgy + —Caiigf]Ll)N2T§n - ﬁ02 2
> (rhnLIN - EN - D

with probability tending to 1, where the lastly equality holds for sufficiently large
constant N. Thus is shown. Given (S2.1) and -, since Q(W~1 L, A) is

biconvex in W~ and L, for sufficiently large constants M and N, there exists a local
minimum (W‘l,f) in the set {W™' + Ay : |Allp < Mri,} x {L+ Ag: (Ag);; =
0, for j > i,(A2);; > 0,[(A2)slla < NJV2ry,}. Hence, [W' — W ||p =
Op(r1n), IL; — Ll = Op(J"Y?ry,) and |L — L||p = Op(ra,). Further, there

exists a constant D so that



IR'—RYr = |L'L-LTL|r
< LT = LYL||p + |LY@L - L)||r
< Omax (D)LY = LT 7 + 0unan (L)L — L

< Di|[L—Lp.

The last inequality is based on the following analysis. We can write L=L+ Ao,
where A, is lower triangular and ||Aq||r < N7y, = o(1). Then there exists x with

|x|| = 1, so that

-~

o2 (L) = o2 (L+Ay)=x"(L+A)TL+ Ay)x

max

= x'LTLx + x"LTAsx + xTAJLx + x A Apx

< 07 (L) + 00 (A2) + 2{ (x "L Lx) (x"AJ Aox) }/2
< U;ax(L) + UrznaX(AQ) + 2‘7maX(L)0maX<A2)

IN

Fmax (L) + 1 A2 + 200max (L) [ A2) | 7

= Onax(L) +0(1) < 207, (L)

max

for sufficiently large n. Thus, we have |[R™! — Ry = O,(r2,). In addition,



[P >
= [R'"-RHOW ' '—-WH+R'-RHOW ' +R '@ (W' - W)|p
< JRT-RH@W ' -W I+ |[R'-RHOW I p+|R '@ (W -W)|x

IR =R p[W =W o+ R = RYp[W e + R 6| W = W

So that, we have

(KD IS =27,
< (KJ)_1/2{OP(T1NT2H) + Op(r%)\/?amaz (W_l) + Op(“ﬂ)ﬁama:v(R_l)}
< O (W )00/ V) + O (RO, (10 VK

= O,{(logm/n)"?}.

Thus, ||[£71 — =7Yp = O,{(mlogm/n)*/2}.

Part 2. We now prove the second part of the theorem, where vec(Y;) ~
N(0,R®W). Weset n; = {log K/(nJ)}/2, n, = {log J/(nK)}/2. Obviously, n; <
7o, and ry, = nlx/F , Top = 172\/7 satisfy r1, — 0, 5, — 0 under the assumption in
the second half of the theorem. At a fixed A, let (\/7\\7_1, i) be a local minimum of
Q(W~1 L, X\). Define Aand B as Part 1. Let C C AxB, for each fixed A; € A, and
Ay € B, denote Ca, = {Ay € B|(A1,Ay) € C} and Ca, = {A; € A|(A1,Ay) € C}.
To show the result, we need to show that and hold. Firstly, we
consider proving . Following the same derivation as in Part 1, we have the

same decomposition (KJ) " H{QW™ + A;, L+ Ay, A) — QWL L+ Ay N} =



Ti+T,+T5=T,+T1T,+ A+ B+ C, where T1,T5 have the same lower bounds as

in (S2.3), (S2.4), and |A|,|B], |C| have the same upper bounds as in (S2.7)), (S2.5),
(S2.6)). Since vec(Y;) ~ N(0,R® W) and R™! = LTL, we have cov{vec(Y,L")} =
I; ® W, and vec(Y;LT) ~ N(0,1I; ® W), which implies that the J columns of
Y,L"' are independent with each other and identically distributed normal random
vectors with covariance matrix W. Noting that >, Y;LTLY/(n.J) is the sample
covariance matrix of an aribitary column of Y,;L™, under Assumption C3, using
Lemma we get max,, |[{> 1, Y,LTLY}/(nJ) =W}, = O,[{log K/(nJ)}2].

Inserting these results to (S2.7)), we obtain

141 < 0, (Il + Rlvect (B ).

Thus, there exists a constant C; so that

[Tl = 1A+ B+ C1 < Cr | oAl + Bvec((A1)s
Wi
with probability tending to 1. Now set \; = C'n;, we have

1 A
T+ Ty =T 2 M2, 0n,(W) + 2 [vee{ (Ar)sg Hh - \/—HA a

4K
C C
el = S Ivec{ (An)sg Hls
1 9 204 2
e {Eamin(W)M — 7} Mrln >0

with probabiity tending to 1, where the last equality holds as long as the constant

M satisfies M > 8C /o2, (W). This proves ([S2.1]).

Next, we consider (S2.2). The same derivation as in Part 1 leads to the



same decomposition (KJ) " H{Q(W™ + A L+ Ay, A) — QW™ + A LA} =
I+ B+ I+ 13+14, where Iy, I3, I, have the same lower bounds as in , ,
(S2.15), and | B has the same upper bound as in (S2.9). Next, we consider I>. Recall
that vec(Y;) ~ N(0,R® W), and W' = W~ we have cov|[vec{(W1)/2Y;}] =
R ® Iy, and vec{(W™H)¥2Y;} ~ N(0,R ® Ix). which implies that the K rows
of (W H/2Y; are independent with each other and identically distributed nor-
mal random vectors with covariance matrix R. Further, > "' | YWY, /(nK) is
the sample covariance matrix of each row of (W~1)¥/2Y;. Under Assumption C3,
using Lemma we can obtain that max,, [{d_ 1, YW Y,/(nK) — R},,| =
O,[{log J/(nK)}'/?]. Further setting A = I, and B = LT in Lemma leads to
max, [{dr, YIW=YY,LT/(nK) — L'}, = O,[{log J/(nK)}'/?]. Incorporating
this result into leads to the same upper bounded as . Similar as in
Part 1, we now let Ay = Cy1p to obtain (KJ) " H{Q(W1+A, L+Ay, A)—Q(W 1+
Ay,L,;A)} > 0 with probability tending to 1, where the lastly equality holds for suf-
ficiently large constant N. Thus is shown. Given and , since
Q(W~1 L, \) is biconvex in W~! and L, for sufficiently large constants M and N,
there exists a local minimum (V/\\Fl, i) in the set {W=1+ Ay : [|Ay]|lr < Mry,} x
{L+ Ay (Ay)iy = 0, for j > 4,(Ay)j; > 0,][(A2)]la < NJV%r,,}. Hence,
W = Wllr = Oyr), Iy = Lylle = O 2ra0) = O,[{log J/(nE)}?)
and |L — L||p = O,(r2n). Further, the same derivation as in Part 1 leads to

IR —R™Y|p = Op(rs,) and



(I =27 € 0maxW )0 (ran/ V) + Omax(RT)Op(r1/VE)

= Oy[max{{log J/(nK)}'"? {log K/(nJ)}"/*}].

Thus, ||[£7! — 7Y p = O,[max{(J log J/n)'/2, (K log K /n)"/2}]. O

S3  Uniqueness of the precision matrix estimator BKS

Proof of Lemma 1. Define

j—1
L<T7 V]uL]7197 ¢7A) — _210g7—+ ||V ||2+19<T LJ]) <¢7V]_Y*,13L]>+)\2 Z<A117L]>
=1

Note that ming ~or,eri f (L;) can be equivalently written as the minimization
problem

Tl;I/llIIlJ [qransai{L(T V,;, L0, ¢, A)}]. (S3.1)

To solve ([S3.1)), consider the dual function

g(0,¢,A) = min L(1,V;,L;;0,¢,A)

7,V;,L;
1
= min{- 210g7+197}+mm{ 2 IVills + —= (8, Vi)}

. 1 . it
+ Hﬁljn{—ﬁij - n—K<¢»Y.,1:ij‘> + A2 ;(A-,z, L;)}
1
= IV > 0){2log(¥/2) + 2} — I(¥ < 0)oo — —H¢H§
—1

1
—I(—ve; — —Yi¢+ AQZA [ £ 0



where I(+) is the indicator function. Then, (S3.1)) is equivalent to the dual problem

11911¢a§{ g(9, ¢, A)}, which is equivalent to

. 1
min{-2logd + —ll¢l2} (53.2)

under the constraints ¥ > 0, [[Ayyllz < 1, Ay, = 0, and Je; + Y ,0/(nK) =
A2 ?:_11 A ;forany [ =1,...,7 — 1. Note that the primal-dual relation requires

the optimal solution to satisfy

~

Ljy=7=2/9, ¢=-2V,=-2Y" L, (S3.3)

Thus, the above constraints are equivalently written as

2 2 * x T — N > -~
_Z_ej + n_KY~,EjY.,1;ij + Ao Z A, =0, [[Aylle<1,An =0.
Ji =1

Following the combination of f (ij) = L(7, ‘7, ij; @, $, K) and the primal-dual re-

lations, we can obtain that

p(L;) = (A L)) (53.4)

Assume that there exists [, where (ij)u # 0, but jAXuJ =+ (f;j)ltl/H(ij)llez, then

(fj,A.,Q < ||(f,j)1:l\|2. For all I" # [, the Cauchy-Schwartz inequality leads to

<f‘ja;&-,l’> < ||(Ej>1;l’||2. Thus,

j—1 j—1
p(Ly) =) I(@)alla > Y (Lj, AL,
=1 =1



which is a contradiction. Therefore, ;&1;“ = (ij)l;l/H(flj)lleg for (ij)u #0. Of
course we still have ||;‘;1:l,z|| < 1 as required originally. Thus, we have shown that
solving under the original constraints is equivalent to solving under
the constraints stated in Lemma 1. We now see that is also irrelevant to
these constrains. Thus, we can ignore and directly obtain the equivalence
stated in Lemma 1.

In the above analysis, we have shown that given \/7\\7*1, let ij be a solution
of the optimal problem miny -or ers f(L;), then there exists some A, so that
ij and A satisfy (3.2) and (3.3). We now construct one specific A as follows.
For |l = j—d;,-,j—1, let Apyy = (L)1a/)(L)1allas Arprgy = 0. For | =
1,---,7 — c@ — 1, let Kl,l = —2YflTYf1:jij/nK/\2, and let all other components
of ;&.J be 0. Next, we will show that when )y is sufficiently large, A satisfies

H;&l:l,lH2<1fOI‘l:1,---’j_l_gi\j'

n

1 . _
il = Hﬁ > (Y)W (Ya)y (L — Ly + L) |

=1

N 1 * * T
‘)\QAU/2| — ‘ ﬁY’}TY’l]L

=Y el (YL, (W =W + W)(Y,).15(L; — Ly + L)

< ST (YT, (W — W (Y, 4y (Ty — L)

I 1:j
nk —
1 & B ~
+|ﬁzelT(Yi)T1:jW (Vi) 1Ty = L)l + [ — Zel W(Y,). 5L,
i=1

(93.5)

where e; € R, with its [th element 1 and all other elements 0. We inspect the first



term in (S3.5)) first. Following the law of large numbers,

Ztr{el V(W = WH(Y0).y (L~ L))
Zvec{ )Y Tvee{ (W = W)(Y.).15(L; — Ly)e )
Z vee{(Y3).15} "{(L; — Ly)el }T @ (W — W )vee{(Y,). 1,5}
-1 ; tr([{(L; — Ly)ef }T @ (W' = W)vee{(Y,). 15 vee{(Yy).1,,}")
—tr[{(L; — Ly)ef Y Ryyj1y @ (W — W HWI{1 + 0,(1)}

—tr[{(L; — Ly)e] } Ryl r{ (W' = W)W H1 +0,(1)}. (53.6)

Following Theorem 2, we have || L;—L;||» = O,{(log m/n)"/2} and |[W 1= W1 || » =
O, {(K Tog m/m)"2}, 50 we have [tr{(E — L)l } Rl = (B~ L) Ragnel <
/\maX(th,l;j)H(ij — L)|l2 = O,{(logm/n)'/?}, where the last equation is due to
1L~ Ljll2 = Oy {(logm/n)"}, and [tr{ (W = W)W} < h (W)VE W -

W = O,{K(logm/n)/?}. Thus,

Zel DT (W™ = W) (Y)).15(L; — Lj)| = O,(logm/n).  (S3.7)

We now treat the second term in ([S3.5). Note that e Ry,;1.;L; = (RLY),; =

(L7');; = 0 for I < j. Thus, following the same derivation as in (S3.6)), for I < j,



we get

1 o - -
== el () Ty (W = W)(Y)).a Ly
=1

=tr[{L;ef } Ry ]tr{ (W™ — W HWH1 + 0,(1)}

=tr(ef LTR 1) tr{(W™! = W YW1 + 0,(1)} = 0. (S3.8)

We now consider the third term in (S3.5)). Because E(Y;) = 0, and Var{vec(Y})} =

W ® R, we have Var{vec(Y](W~1)"/?)} =1® R, Lemma leads to
max {3 vee(YF)vec(Y T n — W & R},o| = Oy log m/n)! 2}
’ i=1

For A = W' ®1I, and B = Ig;, we have A{> " vec(Y)vec(Y)T/n — W ®
RIB=n"13"" vec(Y/ W Hvec(Y)T — Ix ® R, with its K size J x J diagonal
blocks summing to n 'Y ", YWY, — KR. Thus, Lemma also yields
max,, [{> 1, YIWYY,)/(nK) — R}.,| = O,{(logm/n)'/?}. Theorem 2 ensures
IT; = L[l = Op{(logm/n)"/2}, hence |ef Ruyj1i (L — Ly)| < omax(R) Ly = Ly 2 =

O,{(logm/n)'/?}. Combining these results, we get

1 _ =
nk > el (Y)W (Ya).ay (L — L)
=1

1 - . .
<le/ = > (Y)W Y)y — Ragag HIy — Ly)| + e Ruyju (L — L)

=1

=0,(j*1ogm/n) + O,{(logm/n)"/?}. (S3.9)



For the last term in (S3.5),

Y el (Y)W (Y) L
=1
<le/{(nK)™" > (Y)W (Yi) 15 — Ruyag Yl + |6/ Rajay L]

i=1
n

< max {(nK)! Z(Yi)T SW Y0 1 — R bl 1111

=1

=0,{(d; + 1)(logm/n)*/?}, (S3.10)

where the last inequality used e/ R,.;1.;L; = 0, and the last equality used ||L;|lo =

di +1 and |L;;| < omax(L) = O(1) for any j —d; < I < j. Inserting (S3.7),

(53.8), (53.9) and (S3.10) into (S3.5)), noting that max; d; = O(1) in Assumption

C1, under the condition in Theorem 2 that Jlogm/n = o(1), we obtain |)\22u/2| =
0,{5*?1logm/n + (logm/n)"?} = O,{(log m/n)/?}. Now for Ay = C(logm/n)'/?,
where C' is a sufficiently large constant, we have \glﬂ < 1 for sufficiently large n.

Recall that :&1:1,171 =0, so HKLUHQ < 1 for sufficiently large n. O]

Proof of Lemma 2. Consider the same objective function L(7, V;,L;; 0, ¢, A) as in
Lemma 1, which is jointly convex at (7, V;,L;), and it is strictly convex at 7 and
V. Therefore, the solution 7, i\/'j of minimizing the objective function is unique.
Thus, Ejj and Y_*’lzjij are also unique due to (S3.3). Assume that Ej and ij are
two solutions of minimizing the objective function f(L;), then f ( i)=1rf (INJj), hence

p(fj) = p(fj). Note that (S3.4) leads to

> (AL L) =p(L)) =pL;) =) (A, L) ZH Dl (83.11)



Since for any | < j — c/l\] — 1, Eﬂ = 0 and ||A\1:l,l||2 < 1 by the assumption of the

lemma, and HFAHJHQ < 1 in general, for (S3.11)) to hold, we must have (L;);;, = 0

for alllﬁj—c@—l. This means d; §&f\j. O

Proof of Theorem 3. Let Ej be another solution to ming, ~o,ers f(L;) with band-
width c@ Following Lemma 1, when A, = C(logm/n)/? and C is sufficiently large,

||1&1:l7l||2 <lforl < j— CT] — 1. By Lemma 2, (I}-)Lj_@_l = 0. Therefore, we

can write ij as f;j = (0T,4M)T, where v is a C/i\] + 1-dimensional parameter vector.

Subsequently, the objective function f(L;) can be equivalently written as

d.
. 1. ;
min  {-2logv; +n—KHY.,ﬁ’YHg+/\22||(’Y)1:z||2}-

d;+1
YERTT NG 4120 =1

Detailed calculation reveals that the Hessian matrices of the first and third terms
are non-negative definite, while the Hessian matrix of second term is 2Yf%Y_* 5 /nK,
which is strictly positive definite since Y* 5 has full column rank. Thus, we minimize

)

a strictly convex function of 4 hence the minimum 4 is unique. This indicates that

L, = ij, hence fj is unique. [

S4 Bandwidth recovery: Proof of Theorem 4.

Proof. Recall that d; is the true bandwidth of the jth row for the lower triangle
matrix L and j — d; — 1 is the number of zero elements in L;. Let L be the
solution for the optimization problem in (2.5) and let ij = i;{m. Let L and I~4j be
the corresponding constrained solution of (2.5) under the true bandwidth d;,j =

1,...,J. Because minimizing (2.5) is equivalent to the minimization problems in



Lemma 1, so fj and f;j both are the solutions described in Lemma 1. Following
Lemma 1, there exist A € R0~ and A € RI*U~Y 5o that (L;, A) and (L;, A)
both satisfy (3.2).
Next, we construct one specific A. We can verify that fj = (O;.F_dj_l,'?T)T,
where 4 € R%*! and is given as
- : 1 " 2
7 = argmin{—2logya, 11 + —[[Y7;_q,,7[2 + Ap(7)}-

R+

There exists B € R(d+1Dxd; guch that ]~3(l+1):(dj+1)7l =0, ]N31:l,l = (Y)1/||(F)1al]2 if

[(M)rallz # 0, [(F)ralla < 1, for 1 <1< dj, and

dj
Y 47 +A Y By=0. (S3.12)

=1

2 2
———es 1+ —YL
Fon R T

Forl=1,---,j—d;—1, we set ;‘;z’,z =0, forany ! # I’ and Al,l = —2(Yj‘lTYf1:jij)/(nK)\2).
Further, let x&,j—dj:j—l = (07, ]N3T)T € R7*%. We can verify that for | = j —
djv- =1 Avprge = 0, [Avylle < 1, and Ay = (Ty)1aa/I1(Ty) 1l when
(ij)u # 0. Following from , the constructed A and the constrained solution
L; satisfy (3.2). Now taking Ay = C'(logm/n)"/2 for a sufficiently large constant C,
we obtain HAUHQ <lforl=1,...,j—d;—1 following Lemma 1. Further, Theorem
3 ensures that flj is unique. Because fij, A and ij, A are both solutions defined in
Lemma 1, and H;&LUHQ <lforl=1,...,j—d;—1, by Lemma 2, c@ < d;. We next
prove that c?] =d; for all 7 =2,...,J by contradiction. Without loss of generality,

assume d; < d;. We have ||L; — L;||» = O,{(log m/n)"/2} by Theorem 2 and



R j=dj=1 i
IL; L3 = > L3+ | Lt — Lj|®
l=j—d; I=j—d;

by construction. Since minjea ... sy Mings;_qg; |Lji| > X2, we have

j—dj—1

j
DL —Lal* = L =L5 = Y [Lul* < ||y — Lyl = A3(d; — dj)
I=j—d; I=j—d;

< o, (logm) _ e, _Ej)logm <0

n n

for sufficiently large constant C', which is a contradiction. Thus, pr(sup, ]c@ —d;| =

0) — 1. O

S5 Examples.

EEG example. In brain imaging studies, it is common practice to utilize electroen-
cephalography (EEG) on individuals. In this particular study, we used a public EEG
dataset from the UCI machine learning repository to illustrate the proposed model.
Each individual in the study had 64 electrodes placed on their scalp, and measure-
ments were collected at a frequency of 256 Hz (3.9ms epoch) per second for a spec-
ified duration. Consequently, the observations for each individual were represented
by a sequence of K = 64 vectors, each of length J = 256 time points. The EEG mea-
surements of the sth individual at time j can be denoted as Y;;. = (Y1, . . .YZ-jK)T,
representing a K-dimensional random vector. Here, ¢ ranges from 1 to n, and j
ranges from 1 to J. Let Y; denote the K x J random matrix associated with in-

dividual 7 over all time points. We assume that Yy,...,Y, are independent and



identically distributed (iid), which is commonly observed in EEG data research.
We now vectorize each Y; by forming vec(Y;) = (Y;,..., Y5 )T € RF/. In EEG
data, for 3, when the time points are closely spaced, it can be reasonable to assume
that the correlation matrix remains unchanged for the K positions, and only the
absolute signal strengths vary over time. Thus, we can express ZUY as rj W for
all j, [, where rj; represents a constant indicating the signal amplication at different
time points. For convenience, we define W as X1/ 311, where X ; represents
the entry at the (1,1) position of ¥. Based on the previous analysis, it follows
that X can be expressed as R ® W, where both R and W are positive definite
matrices. Consequently, the precision matrix 37! can be expressed as R"! @ W1,
In EEG research, the precision matrix is often of significant interest, as it captures
the conditional correlation structure. For instance, the entry (j, k) of 37! pertains
to the correlation between the jth and the hth components of the random vector
while conditioned on all other components. If the (j,h) entry is zero, it implies
conditional uncorrelation of the jth and the hth variables when the others taken
into account. Furthermore, an element of W~! represents the correlation between
two brain regions while considering the influence of other regions. When K is large,
it is commonly observed that only a few of these conditional correlations are non-
zero. Therefore, it is assumed that W~ exhibits sparsity. On the other hand, the
(4,1) element of R™! represents the correlation between the jth and the [th time
points while considering the effects from all other observed time points. When the
distance between j and [, denotes as |7 — [|, is large, the conditional correlation

tends to approach zero. Consequently, we assume R;ll =0, for all [j —1| > d, where



d represents a constant that limits the time difference and is typically much smaller
than J. As a result, R™! forms a J x J banded matrix with a bandwidth of d.
Multivariate Time Series example. In the field of multivariate time series
analysis, a response vector of interest, with a dimension of K, is measured repeatedly
at various time points. Foreach¢ = 1,...,n, let Y};. denote a K-dimensional random
vector at the jth time point for j = 1,...,J. Assuming an autoregressive process,

we have LI,IYil- = &;1., and

j—1
Lj,jYij- = — E leYil~ + €ijes j = 2, ey J. (8313)
=1
T
Here €. = (€j1,...,€ikx) represents the mean zero error vector, and we assume
cov(e;;.) = W. Let g; = (ei1.,...,€;y.) represent a K x J matrix. We assume

that €1, ..., &, are independent and identically distributed (iid). Consequently, the
expected value of vec(g;) is zero and the covariance of vec(g;) is represented by the
Kronecker product I; ® W. Furthermore, the autoregressive expression can
be rewritten in matrix form as Y,LT = g;, where Y; = (Yia.,.--, Yi) € REXT
and L is a lower triangle matrix with its (j,{) entry denotes as L;; for all 1 <
I <j<J. Let ¥ = cov{vec(Y;)}, it can be shown that (L ® Ix)S(LT @ Ix) =
cov{(L ® I)vec(Y;)} = cov{vec(Y;L")} = cov{vec(e;)} = I, ® W. Consequently,
we can deduce that 3 = (L'L)™' @ W. Let us consider the precision matrix 3!
of interest, where X! is defined as R™! ® W1, with R! denoting L™L. In case
where the autoregression process in has an order of d, the lower triangle
matrix L satisfies L;; = 0 for j — [ > d. Notably, d is significantly smaller than

J, which implies that R! is a banded matrix with bandwidth d. Furthermore,



it is commonly assumed that &; consists of white noise, resulting in W~! being a
diagonal matrix. However, for increased flexibility, we allow W~! to have a small

number of nonzero off-diagonal elements, thus making W~ sparse.

S6 Simulation and real data studies.

Figure 1: The true precision matrix for K = 20, J = 10 in Case 1 (left) and Case 2(right).



Figure 2: The boxplots of FN,; KL, TNR and TPR values for six estimators at K =20, J = 10,n =

100 in Case 1.
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Figure 3: The boxplots of FN, KL, TNR and TPR values for six estimators at K = 20,J = 10,n =

100 in Case 2.
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Figure 4: The ROC for six estimators at K = 20,J = 10,n = 100 in Case 1 (left) and Case 2

(right).
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Figure 5: Estimated precision matrix based on WBKS, BKS (upper left) and SMGM (upper
right). R™! (lower left) and W~! (lower right) by BKS.

Figure 6: The estimation of precision matrix in the temporal dimension (J=74) (left) and precision
matrix in the variable dimension (K=116) (right) obtained by BKS estimation.
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Figure 7: The estimation of precision matrix in the time dimension (J=74) (left) and precision
matrix in the variable dimension (K=116) (right) obtained by SMGM estimation.
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Figure 8: The estimation of correlation matrix in the time dimension (J=74) (left) and correlation
matrix in the variable dimension (K=116) (right) obtained by BKS estimation.
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