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In this supplement, we provide the detailed proofs of lemmas and theorems omitted from the body of this

paper, and some simulation and real data studies with figures.

S1 Dual problem: Proof of Theorem 1.

Proof. Note that (
∑l

m=1 Ψ2
jm)1/2 = ‖(Ψj)1:l‖2 = max{〈A·,l,Ψj〉, s.t. ‖A1:l,l‖2 ≤

1,Al+1:j,l = 0}. The optimization problem (2.8) can be written as

min
Ψj

{ρ
2
‖Ψj − Zj‖2

2 + λ2

j−1∑
l=1

‖(Ψj)1:l‖2}

= min
Ψj

{max
A
{ρ

2
‖Ψj − Zj‖2

2 + λ2

j−1∑
l=1

〈A·,l,Ψj〉}}, s.t. ‖A1:l,l‖2 ≤ 1,Al+1:j,l = 0,

= max
A
{min

Ψj

{ρ
2
‖Ψj − Zj‖2

2 + λ2

j−1∑
l=1

〈A·,l,Ψj〉}}, s.t. ‖A1:l,l‖2 ≤ 1,Al+1:j,l = 0,

(S1.1)



where the last equality is due to Bien et al. (2016). Now the inner minimization

in (S1.1) is a quadratic optimization problem and has explicit solution Ψj = Zj −

λ2

∑j−1
l=1 A·,l/ρ. Inserting this into (S1.1) leads to

max
A
{ρ

2
‖λ2

ρ

j−1∑
l=1

A·,l‖2
2 + λ2

j−1∑
l=1

ZT
j A·,l −

λ2
2

ρ
‖
j−1∑
l=1

A·,l‖2
2,

s.t. ‖(A1:l,l)‖2 ≤ 1,Al+1:j,l = 0}, for l = 1, . . . , j − 1,

which is equivalent to

min
A
‖Zj −

λ2

ρ

j−1∑
l=1

A·,l‖2
2, s.t. ‖(A1:l,l)‖2 ≤ 1,Al+1:j,l = 0, for l = 1, . . . , j − 1,

that is the dual function of (2.8).

S2 Convergence in Frobenius norm: Proof of Theorem 2.

To show this, we first establish two lemmas, which can be found in Lam and Fan

(2009). Lemma S2.1 provides inequalities involving the operator and the Frobenius

norms, and Lemma S2.2 provides the approximation error rate between sample

variance and true variance.

Lemma S2.1. Let A and B be real matrices such that the product AB is defined.

Then

σmin(A)‖B‖F ≤ ‖AB‖F ≤ σmax(A)‖B‖F .

Specifically, if A = (aij), then |aij| ≤ σmax(A) for each i, j.

Lemma S2.2. Let S be a sample covariance matrix based on a random sample



Yi = (Yi1, . . . , Yim)T, i = 1, . . . , n, where E(Yi) = 0, cov(Yi) = Σ. Let Yij ∼ Fj,

where Fj is the cumulative distribution function (cdf) of Yij. Let Gj be the cdf of

Y 2
ij and it satisfies

max
1≤j≤m

∫ ∞
0

exp(ψt)dGj(t) <∞, for all ψ ∈ (0, ψ0),

where ψ0 > 0 is a constant. Assume that logm/n = o(1) and that Σ has its eigen-

values uniformly bounded when n→∞. Then, for constant matrices A and B with

bounded σmax(A), σmax(B), we have that maxi,j |{A(S−Σ)B}ij| = Op(
√

logm/n).

Remark S2.1. The conditions on Yij in Lemma S2.2 are the same as those used in

Bickel and Levina (2008) for relaxing the normality assumption. Proofs of Lemma

S2.1 and Lemma S2.2 can be found in Lam and Fan (2009).

Proof. Part 1. We first prove the first half of the theorem. The objective function

(2.3) is a biconvex function of W−1 and L at any fixed λ. At a fixed λ, let (Ŵ−1, L̂)

be a local minimum of Q(W−1,L,λ). Define

A ≡ {∆ : ∆ ∈ RK×K ,∆ = ∆T, ‖∆‖F = Mr1n},

and

B ≡ {∆ : ∆ ∈ RJ×J ,∆j,j′ = 0, for j′ > j, (∆ + L)j,j > 0, ‖∆j,1:j‖2 = NJ−1/2r2n},

where M,N > 0 are sufficiently large constants. For any ∆ ∈ B, let ∆j ≡ ∆j,1:j.

Then ‖∆‖2
F =

∑J
j=1 ‖∆j‖2

2 = N2r2
2n, so ‖∆‖F = Nr2n for any ∆ ∈ B. Define

η1 = η2 ≡ (logm/n)1/2, r1n ≡ η1

√
K, r2n ≡ η2

√
J . Note that r1n → 0, r2n → 0



under the assumptions of Theorem 2. Let C ⊆ A × B, for each fixed ∆1 ∈ A, and

∆2 ∈ B, denote C∆1 ≡ {∆2 ∈ B|(∆1,∆2) ∈ C} and C∆2 ≡ {∆1 ∈ A|(∆1,∆2) ∈ C}.

Below, we will show that

P ( inf
∆1∈C∆2

{Q(W−1 + ∆1,L + ∆2,λ)} > Q(W−1,L + ∆2,λ))→ 1, (S2.1)

and

P ( inf
∆2∈C∆1

{Q(W−1 + ∆1,L + ∆2,λ)} > Q(W−1 + ∆1,L,λ))→ 1. (S2.2)

We consider proving (S2.1) first. The objective function (2.3) leads to (KJ)−1{Q(W−1+

∆1,L + ∆2,λ)−Q(W−1,L + ∆2,λ)} = T1 + T2 + T3, where

T1 ≡ −
1

K
(log |W−1 + ∆1| − log |W−1|) +

1

K
tr(W∆1),

T2 ≡
λ1

K
{‖vec(W−1 + ∆1)‖1 − ‖vec(W−1)‖1},

T3 ≡
1

nKJ

n∑
i=1

tr{YT
i ∆1Yi(L + ∆2)T(L + ∆2)} − 1

K
tr(W∆1).

Let f(s) ≡ log |W−1 + s∆1|. Appendix I of Yu and Bien (2017) showed that the

first and second derivatives of f(s) are respectively f ′(s) = tr{(W−1 + s∆1)−1∆1},

and f ′′(s) = −vec(∆1)T{(W−1 + s∆1)−1 ⊗ (W−1 + s∆1)−1}vec(∆1). By Taylor’s

expansion at s = 0, we can obtain that log |W−1 + ∆1| − log |W−1| = tr(W∆1) −

vec(∆1)T
{∫ 1

0
(1− s)(W−1 + s∆1)−1 ⊗ (W−1 + s∆1)−1ds

}
vec(∆1). Thus,



T1 =
1

K
vec(∆1)T

{∫ 1

0

(1− s)(W−1 + s∆1)−1 ⊗ (W−1 + s∆1)−1ds

}
vec(∆1)

≥ 1

K
‖vec(∆1)‖2

2λmin

{∫ 1

0

(1− s)(W−1 + s∆1)−1 ⊗ (W−1 + s∆1)−1ds

}
≥ 1

K
‖vec(∆1)‖2

2

∫ 1

0

(1− s) min
0≤s≤1

λ2
min{(W−1 + s∆1)−1}ds

≥ 1

2K
‖vec(∆1)‖2

2 min
0≤s≤1

λ2
min{(W−1 + s∆1)−1}

≥ 1

2K
‖vec(∆1)‖2

2 min{λ−2
max(W−1 + ∆̃) : ‖∆̃‖F ≤Mr1n, ∆̃ = ∆̃T},

where λmin(A) and λmax(A) denote the minimum and maximum eigenvalues of a

generic real square matrix A. Note that W−1 is positive definite and ‖∆̃‖F =

o(1), hence W−1 + ∆̃ is also positive definite. Therefore, following Lemma S2.1,

λ−2
max(W−1 + ∆̃) ≥ {σmax(W−1) + σmax(∆̃)}−2 ≥ 1/{2σ2

max(W−1)} for sufficiently

large n, hence

T1 ≥
1

4K
‖∆1‖2

Fσ
2
min(W) =

1

4K
M2r2

1nσ
2
min(W). (S2.3)

We define SW−1 ≡ {(l, l′) : W−1
l,l′ 6= 0, l, l′ ∈ {1, · · · , K}} and ScW−1 ≡ {(l, l′) :

W−1
l,l′ = 0, l, l′ ∈ {1, · · · , K}}. Let the cardinality of SW−1 be |SW−1 | = w+K. Be-

cause ‖vec(W−1)‖1 = ‖vec{(W−1)SW−1}‖1, and ‖vec(W−1 +∆1)‖1 = ‖vec{(W−1 +

∆1)SΩ
}‖1 +‖vec{(∆1)S(c)

W−1
}‖1, following the triangle inequality, and w = O(K), we

get



T2 =
λ1

K
[‖vec{(W−1 + ∆1)SΩ

}‖1 + ‖vec{(∆1)S(c)

W−1
}‖1 − ‖vec{(W−1)SW−1}‖1]

≥λ1

K
[‖vec{(∆1)Sc

W−1
}‖1 − ‖vec{(∆1)SW−1}‖1]

≥λ1

K
‖vec{(∆1)Sc

W−1
}‖1 −

λ1

K
(w +K)1/2‖∆1‖F

≥λ1

K
‖vec{(∆1)Sc

W−1
}‖1 −

λ1√
K
‖∆1‖F . (S2.4)

Note that the above inequality of T2 always holds for any λ1 > 0. Write T3 =

A+B + C, where

A ≡ 1

nKJ

n∑
i=1

tr(YT
i ∆1YiL

TL)− 1

K
tr(W∆1),

B ≡ 1

nKJ

n∑
i=1

{tr(YT
i ∆1YiL

T∆2) + tr(YT
i ∆1Yi∆

T
2 L)},

C ≡ 1

nKJ

n∑
i=1

tr(YT
i ∆1Yi∆

T
2 ∆2).

Using tr(A) = tr(AT) and tr(AB) = tr(BA) for any square matrices A and B,

then we get tr(YT
i ∆1YiL

T∆2) = tr{(∆T
2 L)(YT

i ∆1Yi)} = tr(YT
i ∆1Yi∆

T
2 L). Hence

we obtain

B = 2
n∑
i=1

tr(YT
i ∆1YiL

T∆2)/(nKJ).

From tr(YT
i ∆1YiL

T∆2) = vec(Yi)
Tvec(∆1YiL

T∆2) = vec(Yi)
T(∆T

2 L⊗∆1)vec(Yi) =

tr{(∆T
2 L⊗∆1)vec(Yi)vec(Yi)

T}, and E{vec(Yi)vec(Yi)
T} = cov{vec(Yi)} = R⊗

W, we have E{tr(YT
i ∆1YiL

T∆2)} = tr{(∆T
2 L⊗∆1)(R⊗W)} = tr(∆T

2 LR)tr(∆1W).



By law of large numbers, we get

B

2
=

1

KJ
tr(∆T

2 LR)tr(∆1W){1 + op(1)}.

Noting that W is positive definite, we get |tr(∆1W)| ≤ λmax(W)
√
K‖∆1‖F . Simi-

larly, we also have

|tr(∆T
2 LR)| ≤ λmax(R)

√
J‖∆T

2 L‖F ≤ λmax(R)
√
Jσmax(L)‖∆2‖F ,

where the last inequality is due to Lemma S2.1. Note that ∆2 ∈ B, so ‖∆2‖F =

Nr2n. Thus,

|B|
2
≤(KJ)−1/2σmax(L)λmax(W)λmax(R)‖∆1‖F‖∆2‖F{1 + op(1)}

=(KJ)−1/2σmax(L)λmax(W)λmax(R)‖∆1‖FNr2n{1 + op(1)}

=Op{(KJ)−1/2‖∆1‖Fη2

√
J}

=Op(η1‖∆1‖F/
√
K), (S2.5)

where the last equality is due to Assumption C1 and η1 � η2. Similarly, replacing

L with ∆2 in treating B, we get



|C| ≤ 1

KJ
λmax(W)

√
KMr1nλmax(R)

√
Jσmax(∆2)‖∆2‖F{1 + op(1)}

≤ 1

KJ
λmax(W)

√
KMr1nλmax(R)

√
J‖∆2‖2

F{1 + op(1)}

≤(KJ)−1/2λmax(W)λmax(R)MN2r1nr
2
2n{1 + op(1)}

=Op{(KJ)−1/2‖∆1‖F r2nη2

√
J}

=op(η1‖∆1‖F/
√
K), (S2.6)

where the last equality is due to Assumption C1, η1 � η2 and r2n = o(1). Finally,

|A| = | 1
K

tr{( 1

nJ

n∑
i=1

YiL
TLYT

i −W)∆1}|

≤ 1

K
|

∑
(s,t)∈SW−1

(
1

nJ

n∑
i=1

YiL
TLYT

i −W)s,t(∆1)t,s|

+
1

K
|

∑
(s,t)∈Sc

W−1

(
1

nJ

n∑
i=1

YiL
TLYT

i −W)s,t(∆1)t,s|

≤ 1

K
max
s,t
|( 1

nJ

n∑
i=1

YiL
TLYT

i −W)s,t|[‖vec{(∆1)SW−1}‖1 + ‖vec{(∆1)Sc
W−1
}‖1]

≤ 1

K
max
s,t
|( 1

nJ

n∑
i=1

YiL
TLYT

i −W)s,t|[(w +K)1/2‖∆1‖F + ‖vec{(∆1)Sc
W−1
}‖1]

≤max
s,t
|( 1

nJ

n∑
i=1

YiL
TLYT

i −W)s,t|[
1√
K
‖∆1‖F +

1

K
‖vec{(∆1)Sc

W−1
}‖1] (S2.7)

for sufficiently large n, where the lastly equality is due to w = O(K) in Assumption

C1. Note that E(Yi) = 0, cov{vec(Yi)} = R ⊗W, and
∑n

i=1 vec(Yi)vec(Yi)
T/n

is the sample covariance matrix of vec(Yi). Under Assumption C3, using Lemma



S2.2, we can obtain that

max
s,t
|{

n∑
i=1

vec(Yi)vec(Yi)
T/n−R⊗W}s,t| = Op{(logm/n)1/2}.

In Lemma S2.2, letting A = B = L⊗ IK , following Assumption C2, we know that

σmax(L⊗ IK) is bounded, then, (L⊗ IK){
∑n

i=1 vec(Yi)vec(Yi)
T/n−R⊗W}(LT⊗

IK) =
∑n

i=1 vec(YiL
T)vec(YiL

T)T/n− IJ ⊗W, and

max
s,t
|{

n∑
i=1

vec(YiL
T)vec(YiL

T)T/n− IJ ⊗W}s,t| = Op{(logm/n)1/2}.

In addition,
∑n

i=1 YiL
TLYT

i /n− JW is the sum of the diagonal K ×K blocks of∑n
i=1 vec(YiL

T)vec(YiL
T)T/n− IJ ⊗W , therefore, we have

max
s,t
|{

n∑
i=1

YiL
TLYT

i /(nJ)−W}s,t|

≤ max
s,t
|{

n∑
i=1

vec(YiL
T)vec(YiL

T)T/n− IJ ⊗W}s,t| = Op{(logm/n)1/2}.

Combining these results, we obtain

|A| ≤ Op

(
{logK/(nK)}1/2‖∆1‖F +

1

K
(logK/n)1/2‖vec{(∆1)ScΩ}‖1

)
= Op

(
η1√
K
‖∆1‖F +

η1

K
‖vec{(∆1)ScΩ}‖1

)
.

Noting that η1 � η2, thus, there exists a constant C1 so that

|T3| = |A+B + C| ≤ C1

(
η1√
K
‖∆1‖F +

η1

K
‖vec{(∆1)ScΩ}‖1

)



with probability tending to 1. Now setting λ1 = C1η1, we have

T1 + T2 − |T3| ≥
1

4K
M2r2

1nσ
2
min(W) +

λ1

K
‖vec{(∆1)ScΩ}‖1 −

λ1√
K
‖∆1‖F

−C1η1√
K
‖∆1‖F −

C1η1

K
‖vec{(∆1)ScΩ}‖1

≥
{

1

4K
σ2

min(W)M − 2C1

K

}
Mr2

1n > 0

with probabiity tending to 1, where the last equality holds as long as the constant

M satisfies M > 8C1/σ
2
min(W). This proves (S2.1).

Next, we consider (S2.2). Define p(L) ≡
∑J

j=2 p(Lj). Noting that L and ∆2

are lower triangular matrices, hence log |L + s∆2| =
∑J

j=1 log(Lj,j + s(∆2)j,j). By

Taylor’s expansion of log |L + s∆2| as a function of s at s = 0, we obtain

log |L + s∆2| − log |L| =
J∑
j=1

(∆2)j,j
Lj,j

s−
J∑
j=1

(∆2)2
j,j

2{Lj,j + s̃(∆2)j,j}2
s2,

where s̃ ∈ (0, s). Then, we have

log |L + ∆2| − log |L| = tr(L−1∆2)−
J∑
j=1

(∆2)2
j,j/[2{Lj,j + s̃(∆2)j,j}2].

Thus, (2.3) leads to (KJ)−1{Q(W−1 + ∆1,L + ∆2,λ) − Q(W−1 + ∆1,L,λ)} =

I1 +B + I2 + I3 + I4, where B is defined as same as in T3, and

I1 ≡
1

J

J∑
j=1

(∆2)2
j,j/{Lj,j + s̃(∆2)j,j}2,

I2 ≡
2

J
tr(

1

nK

n∑
i=1

YT
i W−1YiL

T∆2 − L−1∆2),



I3 ≡
1

nKJ

n∑
i=1

tr{YT
i (W−1 + ∆1)Yi∆

T
2 ∆2},

I4 ≡
λ2

J
{p(L + ∆2)− p(L)}.

Due to r2n = o(1) and Assumption condition C2, for any j ∈ {1, · · · , J} and any

s̃ ∈ (0, 1), we have |(L + s̃∆2)j,j| ≤ σmax(L + s̃∆2) ≤ 2σmax(L) ≤ 2τ1 for sufficiently

large n. Thus,

I1 =
1

J

J∑
j=1

(∆2)2
j,j

{Lj,j + s̃(∆2)j,j}2
≥
∑J

j=1(∆2)2
j,j

4Jτ 2
1

. (S2.8)

Following similar derivation of (S2.5), we have

|B| ≤2(KJ)−1/2σmax(L)λmax(W)λmax(R)‖∆1‖F‖∆2‖F{1 + op(1)}

=2(KJ)−1/2σmax(L)λmax(W)λmax(R)‖∆2‖FMr1n{1 + op(1)}

=Op{(KJ)−1/2‖∆2‖Fη1

√
K}

=Op{η2‖∆2‖F/
√
J}. (S2.9)

Next, we consider I2. Let SL ≡ {(l, l′) : Ll,l′ 6= 0, l, l′ ∈ {1, · · · , J}}, S(c)
L ≡ {(l, l′) :

Ll,l′ = 0, l > l′, l, l′ ∈ {1, · · · , J}}, and let v ≡ |SL|−J , where |SL| is the cardinality

of SL. We have



|I2| =
2

J
|tr{( 1

nK

n∑
i=1

YT
i W−1YiL

T − L−1)∆2}|

=
2

J
|

J∑
t=1

t∑
j=1

(
1

nK

n∑
i=1

YT
i W−1YiL

T − L−1)t,j(∆2)j,t|

≤ 2

J
max
t,j
|( 1

nK

n∑
i=1

YT
i W−1YiL

T − L−1)t,j|{
∑

(l,l′)∈SL

|(∆2)l,l′ |+
∑

(l,l′)∈ScL

|(∆2)l,l′ |}.

(S2.10)

Recall that E(Yi) = 0, and cov{vec(Yi)} = R ⊗ W, hence cov{vec(YT
i )} =

W ⊗ R, and we know that
∑n

i=1 vec(YT
i )vec(YT

i )T/n is the sample covariance

matrix of vec(YT
i ). Under Assumption C3, using Lemma S2.2, we can obtain that

maxs,t |{
∑n

i=1 vec(YT
i )vec(YT

i )T/n −W ⊗ R}s,t| = Op{(logm/n)1/2}. Let A ≡

W−1⊗ IJ and B ≡ IK ⊗LT, under Assumption C2, σmax(A) and σmax(B) both are

bounded. Following Lemma S2.2, we can obtain that maxt,j |{A(
∑n

i=1 vec(YT
i )vec(YT

i )T/n−

W ⊗R)B}t,j| = Op{(logm/n)1/2}. In addition,

A(
n∑
i=1

vec(YT
i )vec(YT

i )T/n−W⊗R)B =
n∑
i=1

vec(YT
i W−1)vec(LYT

i )T/n−IK⊗L−1,

which has its K diagonal J × J blocks summing to
∑n

i=1 YT
i W−1YiL

T/n−KL−1,

thus, maxt,j |( 1
nK

∑n
i=1 YT

i W−1YiL
T−L−1)t,j| ≤ maxt,j |{A(

∑n
i=1 vec(YT

i )vec(YT
i )T/n−

W⊗R)B}t,j| = Op{(logm/n)1/2}. Incorporating |SL| = v+ J = O(J) in Assump-

tion C1, we have

|I2| ≤ Op

(
η2√
J
‖∆2‖F +

η2

J
‖vec{(∆2)ScL}‖1

)
. (S2.11)



Hence

|B|+ |I2| =Op

(
η2√
J
‖∆2‖F

)
+Op

(
η2√
J
‖∆2‖F +

η2

J
‖vec{(∆2)ScL}‖1

)
≤C2

(
η2√
J
‖∆2‖F +

η2

J
‖vec{(∆2)ScL}‖1

)
(S2.12)

for some constant C2 with probability tending to 1. We next inspect I3. Because

‖∆1‖F = o(1), W−1 is positive definite, W−1 +∆1 is positive definite for sufficiently

large n. Following Lemma S2.1, we have

I3 =
1

nKJ

n∑
i=1

‖(W−1 + ∆1)1/2Yi∆
T
2 ‖2

F ≥ λmin(W−1 + ∆1)
1

nKJ

n∑
i=1

‖Yi∆
T
2 ‖2

F .

Because the relation tr(Yi∆
T
2 ∆2Y

T
i ) = vec(Yi)

T(∆T
2 ∆2⊗IK)vec(Yi) = tr{(∆T

2 ∆2⊗

IK)vec(Yi)vec(Yi)
T}, by law of large numbers,

1

nKJ

n∑
i=1

‖Yi∆
T
2 ‖2

F = tr{(∆T
2 ∆2 ⊗ IK)(R⊗W)}

=
1

KJ
tr(∆T

2 ∆2R)tr(W){1 + op(1)}.

Note further that tr(∆T
2 ∆2R) = ‖∆2L

−1‖2
F ≥ σ2

min(L−1)‖∆2‖2
F , thus,

I3 ≥ J−1λmin(W−1 +∆1)λmin(W)σ2
min(L−1)‖∆2‖2

F = cσ2
min(L−1)‖∆2‖2

F/J, (S2.13)

where c ≡ λmin(W−1 + ∆1)λmin(W) > 0. Lastly, we consider I4. Recall that the

jth row of L has bandwidth dj, hence Lj,l = 0 for 1 ≤ l < j − dj. Then, we have

p(L) =
∑J

j=2

∑j−1
l=1 (

∑l
m=1 L

2
j,m)1/2 =

∑J
j=2

∑j−1
l=j−dj(

∑l
m=j−dj L

2
j,m)1/2.



Thus,

p(L + ∆2)− p(L) =
J∑
j=2

j−1∑
l=1

(
l∑

m=1

(L + ∆2)2
j,m)1/2 − p(L)

=
J∑
j=2

j−dj−1∑
l=1

(
l∑

m=1

(L + ∆2)2
j,m)1/2 +

J∑
j=2

j−1∑
l=j−dj

(
l∑

m=1

(L + ∆2)2
j,m)1/2 − p(L)

≥
J∑
j=2

j−dj−1∑
l=1

|(L + ∆2)j,l|+
J∑
j=2

j−1∑
l=j−dj

{
l∑

m=j−dj

(L + ∆2)2
j,m}1/2 −

J∑
j=2

j−1∑
l=j−dj

(
l∑

m=j−dj

L2
j,m)1/2

≥
J∑
j=2

j−dj−1∑
l=1

|(∆2)j,l| −
J∑
j=2

j−1∑
l=j−dj

{
l∑

m=j−dj

(∆2)2
j,m}1/2, (S2.14)

where the last inequality comes from triangle inequality. Using Cauchy’s inequality,

we have

2λ2

j−1∑
l=j−dj

{
l∑

m=j−dj

(∆2)2
j,m}1/2 ≤ djλ

2
2a+

j−1∑
l=j−dj

l∑
m=j−dj

(∆2)2
j,m/a

= djλ
2
2a+

j−1∑
m=j−dj

(j −m)(∆2)2
j,m/a

≤ djλ
2
2a+ dj

j−1∑
m=j−dj

(∆2)2
j,m/a.

Letting a = maxj dj/{cσ2
min(L−1)}, recalling that v =

∑J
j=2 dj, we get

λ2

J∑
j=2

j−1∑
l=j−dj

{
l∑

m=j−dj

(∆2)2
j,m}1/2 ≤ a

2
λ2

2v + max
j

(dj)
J∑
j=2

j−1∑
m=j−dj

(∆2)2
j,m

2a

= a
2
λ2

2v +
cσ2

min(L−1)

2
‖(∆2)‖2

F .

Combining with (S2.14), noting that ScL = {(j, l) : 2 ≤ j ≤ J, 1 ≤ l ≤ j − dj − 1},



we have

I4 ≥
λ2

J

 J∑
j=2

j−dj−1∑
l=1

|(∆2)j,l| −
J∑
j=2

j−1∑
l=j−dj

{
l∑

m=j−dj

(∆2)2
j,m}1/2


≥λ2

J
‖vec{(∆2)ScL}‖1 −

1

J
(
a

2
λ2

2v +
cσ2

min(L−1)

2
‖∆2‖2

F ). (S2.15)

Note that this inequality holds for any λ2 > 0. Let λ2 ≡ C2η2. Collecting the

results in (S2.8),(S2.12),(S2.13) and (S2.15), we get

1

KJ
{Q(W−1 + ∆1,L + ∆2,λ)−Q(W−1 + ∆1,L,λ)}

≥ 1

4Jτ 2
1

J∑
j=1

(∆2)2
j,j −

C2η2√
J
‖∆2‖F −

C2η2

J
‖vec{(∆2)ScL}‖1

+
cσ2

min(L−1)

J
‖∆2‖2

F +
λ2

J
‖vec{(∆2)ScL}‖1 −

a

2J
λ2

2v −
cσ2

min(L−1)

2J
‖∆2‖2

F

=
1

4Jτ 2
1

J∑
j=1

(∆2)2
j,j −

C2η2√
J
Nr2n +

cσ2
min(L−1)

2J
N2r2

2n −
av

2J
C2

2η
2
2

≥ { c
2J
σ2

min(L−1)N2 − C2

J
N − avC2

2

2J2
}r2

2n > 0

with probability tending to 1, where the lastly equality holds for sufficiently large

constant N . Thus (S2.2) is shown. Given (S2.1) and (S2.2), since Q(W−1,L,λ) is

biconvex in W−1 and L, for sufficiently large constants M and N , there exists a local

minimum (Ŵ−1, L̂) in the set {W−1 + ∆1 : ‖∆1‖F ≤Mr1n} × {L + ∆2 : (∆2)i,j =

0, for j > i, (∆2)j,j > 0, ‖(∆2)j‖2 ≤ NJ−1/2r2n}. Hence, ‖Ŵ−1 − W−1‖F =

Op(r1n), ‖L̂j − Lj‖2 = Op(J
−1/2r2n) and ‖L̂ − L‖F = Op(r2n). Further, there

exists a constant D1 so that



‖R̂−1 −R−1‖F = ‖L̂TL̂− LTL‖F

≤ ‖(L̂T − LT)L̂‖F + ‖LT(L̂− L)‖F

≤ σmax(L̂)‖L̂T − LT‖F + σmax(LT)‖L̂− L‖F

≤ D1‖L̂− L‖F .

The last inequality is based on the following analysis. We can write L̂ = L + ∆2,

where ∆2 is lower triangular and ‖∆2‖F ≤ Nr2n = o(1). Then there exists x with

‖x‖ = 1, so that

σ2
max(L̂) = σ2

max(L + ∆2) = xT(L + ∆2)T(L + ∆2)x

= xTLTLx + xTLT∆2x + xT∆T
2 Lx + xT∆T

2 ∆2x

≤ σ2
max(L) + σ2

max(∆2) + 2{(xTLTLx)(xT∆T
2 ∆2x)}1/2

≤ σ2
max(L) + σ2

max(∆2) + 2σmax(L)σmax(∆2)

≤ σ2
max(L) + ‖∆2‖2

F + 2σmax(L)‖∆2)‖F

= σ2
max(L) + o(1) ≤ 2σ2

max(L)

for sufficiently large n. Thus, we have ‖R̂−1 −R−1‖F = Op(r2n). In addition,



‖Σ̂−1 −Σ−1‖F

= ‖(R̂−1 −R−1)⊗ (Ŵ−1 −W−1) + (R̂−1 −R−1)⊗W−1 + R−1 ⊗ (Ŵ−1 −W−1)‖F

≤ ‖(R̂−1 −R−1)⊗ (Ŵ−1 −W−1)‖F + ‖(R̂−1 −R−1)⊗W−1‖F + ‖R−1 ⊗ (Ŵ−1 −W−1)‖F

= ‖R̂−1 −R−1‖F‖Ŵ−1 −W−1‖F + ‖R̂−1 −R−1‖F‖W−1‖F + ‖R−1‖F‖Ŵ−1 −W−1‖F .

So that, we have

(KJ)−1/2‖Σ̂−1 −Σ−1‖F

≤ (KJ)−1/2{Op(r1nr2n) +Op(r2n)
√
Kσmax(W

−1) +Op(r1n)
√
Jσmax(R

−1)}

≤ σmax(W−1)Op(r2n/
√
J) + σmax(R−1)Op(r1n/

√
K)

= Op{(logm/n)1/2}.

Thus, ‖Σ̂−1 −Σ−1‖F = Op{(m logm/n)1/2}.

Part 2. We now prove the second part of the theorem, where vec(Yi) ∼

N(0,R⊗W). We set η1 ≡ {logK/(nJ)}1/2, η2 ≡ {log J/(nK)}1/2. Obviously, η1 �

η2, and r1n ≡ η1

√
K, r2n ≡ η2

√
J satisfy r1n → 0, r2n → 0 under the assumption in

the second half of the theorem. At a fixed λ, let (Ŵ−1, L̂) be a local minimum of

Q(W−1,L,λ). DefineA and B as Part 1. Let C ⊆ A×B, for each fixed ∆1 ∈ A, and

∆2 ∈ B, denote C∆1 ≡ {∆2 ∈ B|(∆1,∆2) ∈ C} and C∆2 ≡ {∆1 ∈ A|(∆1,∆2) ∈ C}.

To show the result, we need to show that (S2.1) and (S2.2) hold. Firstly, we

consider proving (S2.1). Following the same derivation as in Part 1, we have the

same decomposition (KJ)−1{Q(W−1 + ∆1,L + ∆2,λ) − Q(W−1,L + ∆2,λ)} =



T1 + T2 + T3 = T1 + T2 + A + B + C, where T1, T2 have the same lower bounds as

in (S2.3), (S2.4), and |A|, |B|, |C| have the same upper bounds as in (S2.7), (S2.5),

(S2.6). Since vec(Yi) ∼ N(0,R⊗W) and R−1 = LTL, we have cov{vec(YiL
T)} =

IJ ⊗W, and vec(YiL
T) ∼ N(0, IJ ⊗W), which implies that the J columns of

YiL
T are independent with each other and identically distributed normal random

vectors with covariance matrix W. Noting that
∑n

i=1 YiL
TLYT

i /(nJ) is the sample

covariance matrix of an aribitary column of YiL
T, under Assumption C3, using

Lemma S2.2, we get maxs,t |{
∑n

i=1 YiL
TLYT

i /(nJ)−W}s,t| = Op[{logK/(nJ)}1/2].

Inserting these results to (S2.7), we obtain

|A| ≤ Op

(
η1√
K
‖∆1‖F +

η1

K
‖vec{(∆1)ScΩ}‖1

)
.

Thus, there exists a constant C1 so that

|T3| = |A+B + C| ≤ C1

[
η1√
K
‖∆1‖F +

η1

K
‖vec{(∆1)ScΩ}‖1

]

with probability tending to 1. Now set λ1 = C1η1, we have

T1 + T2 − |T3| ≥
1

4K
M2r2

1nσ
2
min(W) +

λ1

K
‖vec{(∆1)ScΩ}‖1 −

λ1√
K
‖∆1‖F

−C1η1√
K
‖∆1‖F −

C1η1

K
‖vec{(∆1)ScΩ}‖1

≥
{

1

4K
σ2

min(W)M − 2C1

K

}
Mr2

1n > 0

with probabiity tending to 1, where the last equality holds as long as the constant

M satisfies M > 8C1/σ
2
min(W). This proves (S2.1).

Next, we consider (S2.2). The same derivation as in Part 1 leads to the



same decomposition (KJ)−1{Q(W−1 + ∆1,L + ∆2,λ) − Q(W−1 + ∆1,L,λ)} =

I1+B+I2+I3+I4, where I1, I3, I4 have the same lower bounds as in (S2.8), (S2.13),

(S2.15), and |B| has the same upper bound as in (S2.9). Next, we consider I2. Recall

that vec(Yi) ∼ N(0,R⊗W), and W−1 = W−1, we have cov[vec{(W−1)1/2Yi}] =

R ⊗ IK , and vec{(W−1)1/2Yi} ∼ N(0,R ⊗ IK). which implies that the K rows

of (W−1)1/2Yi are independent with each other and identically distributed nor-

mal random vectors with covariance matrix R. Further,
∑n

i=1 YT
i W−1Yi/(nK) is

the sample covariance matrix of each row of (W−1)1/2Yi. Under Assumption C3,

using Lemma S2.2, we can obtain that maxs,t |{
∑n

i=1 YT
i W−1Yi/(nK) −R}s,t| =

Op[{log J/(nK)}1/2]. Further setting A = IJ and B = LT in Lemma S2.2 leads to

maxs,t |{
∑n

i=1 YT
i W−1YiL

T/(nK)−L−1}s,t| = Op[{log J/(nK)}1/2]. Incorporating

this result into (S2.10) leads to the same upper bounded as (S2.11). Similar as in

Part 1, we now let λ2 ≡ C2η2 to obtain (KJ)−1{Q(W−1+∆1,L+∆2,λ)−Q(W−1+

∆1,L,λ)} > 0 with probability tending to 1, where the lastly equality holds for suf-

ficiently large constant N . Thus (S2.2) is shown. Given (S2.1) and (S2.2), since

Q(W−1,L,λ) is biconvex in W−1 and L, for sufficiently large constants M and N ,

there exists a local minimum (Ŵ−1, L̂) in the set {W−1 + ∆1 : ‖∆1‖F ≤ Mr1n} ×

{L + ∆2 : (∆2)i,j = 0, for j > i, (∆2)j,j > 0, ‖(∆2)j‖2 ≤ NJ−1/2r2n}. Hence,

‖Ŵ−1 −W−1‖F = Op(r1n), ‖L̂j − Lj‖2 = Op(J
−1/2r2n) = Op[{log J/(nK)}1/2]

and ‖L̂ − L‖F = Op(r2n). Further, the same derivation as in Part 1 leads to

‖R̂−1 −R−1‖F = Op(r2n) and



(KJ)−1/2‖Σ̂−1 −Σ−1‖F ≤ σmax(W−1)Op(r2n/
√
J) + σmax(R−1)Op(r1n/

√
K)

= Op[max{{log J/(nK)}1/2, {logK/(nJ)}1/2}].

Thus, ‖Σ̂−1 −Σ−1‖F = Op[max{(J log J/n)1/2, (K logK/n)1/2}].

S3 Uniqueness of the precision matrix estimator BKS

Proof of Lemma 1. Define

L(τ,Vj,Lj;ϑ,φ,A) ≡ −2 log τ+
1

nK
‖Vj‖2

2+ϑ(τ−Ljj)+
1

nK
〈φ,Vj−Y∗·,1:jLj〉+λ2

j−1∑
l=1

〈A·,l,Lj〉.

Note that minLjj>0,Lj∈Rj f(Lj) can be equivalently written as the minimization

problem

min
τ,Vj ,Lj

[max
ϑ,φ,A
{L(τ,Vj,Lj;ϑ,φ,A)}]. (S3.1)

To solve (S3.1), consider the dual function

g(ϑ,φ,A) ≡ min
τ,Vj ,Lj

L(τ,Vj,Lj;ϑ,φ,A)

= min
τ
{−2 log τ + ϑτ}+ min

Vj

{ 1

nK
‖Vj‖2

2 +
1

nK
〈φ,Vj〉}

+ min
Lj

{−ϑLjj −
1

nK
〈φ,Y∗·,1:jLj〉+ λ2

j−1∑
l=1

〈A·,l,Lj〉}

= I(ϑ > 0){2 log(ϑ/2) + 2} − I(ϑ ≤ 0)∞− 1

4nK
‖φ‖2

2

−I(−ϑej −
1

nK
Y∗T·,1:jφ+ λ2

j−1∑
l=1

A·,l 6= 0)∞,



where I(·) is the indicator function. Then, (S3.1) is equivalent to the dual problem

max
ϑ,φ,A
{g(ϑ,φ,A)}, which is equivalent to

min
ϑ,φ,A
{−2 log ϑ+

1

4nK
‖φ‖2

2} (S3.2)

under the constraints ϑ > 0, ‖A1:l,l‖2 ≤ 1,Al+1:j,l = 0, and ϑej + Y∗T·,1:jφ/(nK) =

λ2

∑j−1
l=1 A·,l for any l = 1, . . . , j − 1. Note that the primal-dual relation requires

the optimal solution to satisfy

L̂jj = τ̂ = 2/ϑ̂, φ̂ = −2V̂j = −2Y∗·,1:jL̂j. (S3.3)

Thus, the above constraints are equivalently written as

− 2

L̂jj
ej +

2

nK
Y∗T·,1:jY

∗
·,1:jL̂j + λ2

j−1∑
l=1

Â·,l = 0, ‖Â1:l,l‖2 ≤ 1, Âl+1:j,l = 0.

Following the combination of f(L̂j) = L(τ̂ , V̂ , L̂j; ϑ̂, φ̂, Â) and the primal-dual re-

lations, we can obtain that

p(L̂j) =

j−1∑
l=1

〈Â·,l, L̂j〉. (S3.4)

Assume that there exists l, where (L̂j)1:l 6= 0, but Â1:l,l 6= (L̂j)1:l/‖(L̂j)1:l‖2, then

〈L̂j, Â·,l〉 < ‖(L̂j)1:l‖2. For all l′ 6= l, the Cauchy-Schwartz inequality leads to

〈L̂j, Â·,l′〉 ≤ ‖(L̂j)1:l′‖2. Thus,

p(L̂j) =

j−1∑
l=1

‖(L̂j)1:l‖2 >

j−1∑
l=1

〈L̂j, Â·,l〉,



which is a contradiction. Therefore, Â1:l,l = (L̂j)1:l/‖(L̂j)1:l‖2 for (L̂j)1:l 6= 0. Of

course we still have ‖Â1:l,l‖ ≤ 1 as required originally. Thus, we have shown that

solving (S3.2) under the original constraints is equivalent to solving (S3.2) under

the constraints stated in Lemma 1. We now see that (S3.2) is also irrelevant to

these constrains. Thus, we can ignore (S3.2) and directly obtain the equivalence

stated in Lemma 1.

In the above analysis, we have shown that given Ŵ−1, let L̂j be a solution

of the optimal problem minLjj>0,Lj∈Rj f(Lj), then there exists some Â, so that

L̂j and Â satisfy (3.2) and (3.3). We now construct one specific Â as follows.

For l = j − d̂j, · · · , j − 1, let Â1:l,l ≡ (L̂j)1:l/‖(L̂j)1:l‖2, Âl+1:j,l ≡ 0. For l =

1, · · · , j − d̂j − 1, let Âl,l ≡ −2Y∗T·,l Y∗,1:jL̂j/nKλ2, and let all other components

of Â·,l be 0. Next, we will show that when λ2 is sufficiently large, Â satisfies

‖Â1:l,l‖2 < 1 for l = 1, · · · , j − 1− d̂j.

|λ2Âl,l/2| =
∣∣∣∣ 1

nK
Y∗T·,l Y∗·,1:jL̂j

∣∣∣∣ = |{ 1

nK

n∑
i=1

(Yi)
T
·,1:jŴ

−1(Yi)·,1:j(L̂j − Lj + Lj)}l|

=| 1

nK

n∑
i=1

eT
l (Yi)

T
·,1:j(Ŵ

−1 −W−1 + W−1)(Yi)·,1:j(L̂j − Lj + Lj)|

≤| 1

nK

n∑
i=1

eT
l (Yi)

T
·,1:j(Ŵ

−1 −W−1)(Yi)·,1:j(L̂j − Lj)|

+| 1

nK

n∑
i=1

eT
l (Yi)

T
·,1:j(Ŵ

−1 −W−1)(Yi)·,1:jLj|

+| 1

nK

n∑
i=1

eT
l (Yi)

T
·,1:jW

−1(Yi)·,1:j(L̂j − Lj)|+ |
1

nK

n∑
i=1

eT
l (Yi)

T
·,1:jW

−1(Yi)·,1:jLj|,

(S3.5)

where el ∈ Rj, with its lth element 1 and all other elements 0. We inspect the first



term in (S3.5) first. Following the law of large numbers,

(n)−1

n∑
i=1

tr{eT
l (Yi)

T
·,1:j(Ŵ

−1 −W−1)(Yi)·,1:j(L̂j − Lj)}

=(n)−1

n∑
i=1

vec{(Yi)·,1:j}Tvec{(Ŵ−1 −W−1)(Yi)·,1:j(L̂j − Lj)e
T
l }

=(n)−1

n∑
i=1

vec{(Yi)·,1:j}T[{(L̂j − Lj)e
T
l }T ⊗ (Ŵ−1 −W−1)]vec{(Yi)·,1:j}

=(n)−1

n∑
i=1

tr([{(L̂j − Lj)e
T
l }T ⊗ (Ŵ−1 −W−1)]vec{(Yi)·,1:j}vec{(Yi)·,1:j}T)

=tr[{(L̂j − Lj)e
T
l }TR1:j,1:j ⊗ (Ŵ−1 −W−1)W]{1 + op(1)}

=tr[{(L̂j − Lj)e
T
l }TR1:j,1:j]tr{(Ŵ−1 −W−1)W}{1 + op(1)}. (S3.6)

Following Theorem 2, we have ‖L̂j−Lj‖2 = Op{(logm/n)1/2} and ‖Ŵ−1−W−1‖F =

Op{(K logm/n)1/2}, so we have |tr[{(L̂j−Lj)e
T
l }TR1:j,1:j]| = |(L̂j−Lj)

TR1:j,1:je| ≤

λmax(R1:j,1:j)‖(L̂j − Lj)‖2 = Op{(logm/n)1/2}, where the last equation is due to

‖L̂j−Lj‖2 = Op{(logm/n)1/2}, and |tr{(Ŵ−1−W−1)W}| ≤ λmax(W)
√
K‖Ŵ−1−

W−1‖F = Op{K(logm/n)1/2}. Thus,

|(nK)−1

n∑
i=1

eT
l (Yi)

T
·,1:j(Ŵ

−1 −W−1)(Yi)·,1:j(L̂j − Lj)| = Op(logm/n). (S3.7)

We now treat the second term in (S3.5). Note that eT
l R1:j,1:jLj = (RLT)l,j =

(L−1)l,j = 0 for l < j. Thus, following the same derivation as in (S3.6), for l < j,



we get

| 1

nK

n∑
i=1

eT
l (Yi)

T
·,1:j(Ŵ

−1 −W−1)(Yi)·,1:jLj|

=tr[{Lje
T
l }TR1:j,1:j]tr{(Ŵ−1 −W−1)W}{1 + op(1)}

=tr(eT
l LT

j R1:j,1:j)tr{(Ŵ−1 −W−1)W}{1 + op(1)} = 0. (S3.8)

We now consider the third term in (S3.5). Because E(Yi) = 0, and Var{vec(YT
i )} =

W ⊗R, we have Var{vec(YT
i (W−1)1/2)} = I⊗R, Lemma S2.2 leads to

max
s,t
|{

n∑
i=1

vec(YT
i )vec(YT

i )T/n−W ⊗R}s,t| = Op{(logm/n)1/2}.

For A ≡ W−1 ⊗ IJ and B ≡ IKJ , we have A{
∑n

i=1 vec(YT
i )vec(YT

i )T/n −W ⊗

R}B = n−1
∑n

i=1 vec(YT
i W−1)vec(YT

i )T − IK ⊗R, with its K size J × J diagonal

blocks summing to n−1
∑n

i=1 YT
i W−1Yi − KR. Thus, Lemma S2.2 also yields

maxs,t |{
∑n

i=1 YT
i W−1Yi)/(nK) − R}s,t| = Op{(logm/n)1/2}. Theorem 2 ensures

‖L̂j −Lj‖2 = Op{(logm/n)1/2}, hence |eT
l R1:j,1:j(L̂j −Lj)| ≤ σmax(R)‖L̂j −Lj‖2 =

Op{(logm/n)1/2}. Combining these results, we get

| 1

nK

n∑
i=1

eT
l (Yi)

T
·,1:jW

−1(Yi)·,1:j(L̂j − Lj)|

≤|eT
l {

1

nK

n∑
i=1

(Yi)
T
·,1:jW

−1(Yi)·,1:j −R1:j,1:j}(L̂j − Lj)|+ |eT
l R1:j,1:j(L̂j − Lj)|

=Op(j
1/2 logm/n) +Op{(logm/n)1/2}. (S3.9)



For the last term in (S3.5),

|(nK)−1

n∑
i=1

eT
l (Yi)

T
·,1:jW

−1(Yi)·,1:jLj|

≤|eT
l {(nK)−1

n∑
i=1

(Yi)
T
·,1:jW

−1(Yi)·,1:j −R1:j,1:j}Lj|+ |eT
l R1:j,1:jLj|

≤max
s,t
|{(nK)−1

n∑
i=1

(Yi)
T
·,1:jW

−1(Yi)·,1:j −R1:j,1:j}s,t|‖Lj‖1

=Op{(dj + 1)(logm/n)1/2}, (S3.10)

where the last inequality used eT
l R1:j,1:jLj = 0, and the last equality used ‖Lj‖0 =

dj + 1 and |Lj,l| ≤ σmax(L) = O(1) for any j − dj ≤ l ≤ j. Inserting (S3.7),

(S3.8), (S3.9) and (S3.10) into (S3.5), noting that maxj dj = O(1) in Assumption

C1, under the condition in Theorem 2 that J logm/n = o(1), we obtain |λ2Âl,l/2| =

Op{j1/2 logm/n+ (logm/n)1/2} = Op{(logm/n)1/2}. Now for λ2 = C(logm/n)1/2,

where C is a sufficiently large constant, we have |Âl,l| < 1 for sufficiently large n.

Recall that Â1:l−1,l = 0, so ‖Â1:l,l‖2 < 1 for sufficiently large n.

Proof of Lemma 2. Consider the same objective function L(τ,Vj,Lj;ϑ,φ,A) as in

Lemma 1, which is jointly convex at (τ,Vj,Lj), and it is strictly convex at τ and

Vj. Therefore, the solution τ̂ , V̂j of minimizing the objective function is unique.

Thus, L̂jj and Y∗·,1:jL̂j are also unique due to (S3.3). Assume that L̂j and L̃j are

two solutions of minimizing the objective function f(Lj), then f(L̂j) = f(L̃j), hence

p(L̂j) = p(L̃j). Note that (S3.4) leads to

j−1∑
l=1

〈Â·,l, L̂j〉 = p(L̂j) = p(L̃j) =

j−1∑
l=1

〈Â·,l, L̃j〉 =

j−1∑
l=1

‖(L̃j)1:l‖2. (S3.11)



Since for any l ≤ j − d̂j − 1, L̂jl = 0 and ‖Â1:l,l‖2 < 1 by the assumption of the

lemma, and ‖Â1:l,l‖2 ≤ 1 in general, for (S3.11) to hold, we must have (L̃j)1:l = 0

for all l ≤ j − d̂j − 1. This means d̃j ≤ d̂j.

Proof of Theorem 3. Let L̃j be another solution to minLjj>0,Lj∈Rj f(Lj) with band-

width d̃j. Following Lemma 1, when λ2 = C(logm/n)1/2 and C is sufficiently large,

‖Â1:l,l‖2 < 1 for l < j − d̂j − 1. By Lemma 2, (L̃j)1:j−d̂j−1 = 0. Therefore, we

can write L̃j as L̃j = (0T,γT)T, where γ is a d̂j + 1-dimensional parameter vector.

Subsequently, the objective function f(Lj) can be equivalently written as

min
γ∈Rd̂j+1,γ

d̂j+1
>0

{−2 log γd̂j+1 +
1

nK
‖Y∗·,D̂γ‖

2
2 + λ2

d̂j∑
l=1

‖(γ)1:l‖2}.

Detailed calculation reveals that the Hessian matrices of the first and third terms

are non-negative definite, while the Hessian matrix of second term is 2Y∗T·,D̂Y∗·,D̂/nK,

which is strictly positive definite since Y∗·,D̂ has full column rank. Thus, we minimize

a strictly convex function of γ hence the minimum γ̂ is unique. This indicates that

L̃j = L̂j, hence L̂j is unique.

S4 Bandwidth recovery: Proof of Theorem 4.

Proof. Recall that dj is the true bandwidth of the jth row for the lower triangle

matrix L and j − dj − 1 is the number of zero elements in Lj. Let L̂ be the

solution for the optimization problem in (2.5) and let L̂j = L̂T
j,1:j. Let L̃ and L̃j be

the corresponding constrained solution of (2.5) under the true bandwidth dj, j =

1, . . . , J . Because minimizing (2.5) is equivalent to the minimization problems in



Lemma 1, so L̂j and L̃j both are the solutions described in Lemma 1. Following

Lemma 1, there exist Â ∈ Rj×(j−1) and Ã ∈ Rj×(j−1), so that (L̂j, Â) and (L̃j, Ã)

both satisfy (3.2).

Next, we construct one specific Ã. We can verify that L̃j = (0T
j−dj−1, γ̃

T)T,

where γ̃ ∈ Rdj+1 and is given as

γ̃ = argmin
γ∈Rdj+1

{−2 log γdj+1 +
1

nK
‖Y∗·,j−dj :jγ‖2

2 + λ2p(γ)}.

There exists B̃ ∈ R(dj+1)×dj , such that B̃(l+1):(dj+1),l = 0, B̃1:l,l = (γ̃)1:l/‖(γ̃)1:l‖2 if

‖(γ̃)1:l‖2 6= 0, ‖(γ̃)1:l‖2 ≤ 1, for 1 ≤ l ≤ dj, and

− 2

γ̃dj+1

edj+1 +
2

nK
Y∗T·,j−dj :jY

∗
·,j−dj :jγ̃ + λ2

dj∑
l=1

B̃·,l = 0. (S3.12)

For l = 1, · · · , j−dj−1, we set Ãl′,l ≡ 0, for any l 6= l′ and Ãl,l ≡ −2(Y∗T,l Y∗,1:jL̃j)/(nKλ2).

Further, let Ã·,j−dj :j−1 ≡ (0T, B̃T)T ∈ Rj×dj . We can verify that for l = j −

dj, · · · , j − 1, Ãl+1:j,l = 0, ‖Ã1:l,l‖2 ≤ 1, and Ã1:l,l = (L̃j)1:l,l/‖(L̃j)1:l,l‖2 when

(L̃j)1:l 6= 0. Following from (S3.12), the constructed Ã and the constrained solution

L̃j satisfy (3.2). Now taking λ2 = C(logm/n)1/2 for a sufficiently large constant C,

we obtain ‖Ãl,l‖2 < 1 for l = 1, . . . , j−dj−1 following Lemma 1. Further, Theorem

3 ensures that L̃j is unique. Because L̃j, Ã and L̂j, Â are both solutions defined in

Lemma 1, and ‖Ã1:l,l‖2 < 1 for l = 1, . . . , j−dj−1, by Lemma 2, d̂j ≤ dj. We next

prove that d̂j = dj for all j = 2, . . . , J by contradiction. Without loss of generality,

assume d̂j < dj. We have ‖L̂j − Lj‖2 = Op{(logm/n)1/2} by Theorem 2 and



‖L̂j − Lj‖2
2 =

j−d̂j−1∑
l=j−dj

L2
jl +

j∑
l=j−d̂j

|L̂jl − Ljl|2

by construction. Since minj∈{2,··· ,J}minl≥j−dj |Ljl| > λ2, we have

j∑
l=j−d̂j

|L̂jl − Ljl|2 = ‖L̂j − Lj‖2
2 −

j−d̂j−1∑
l=j−dj

|Ljl|2 ≤ ‖L̂j − Lj‖2
2 − λ2

2(dj − d̂j)

≤ Op

(
logm

n

)
− C2(dj − d̂j)

logm

n
< 0

for sufficiently large constant C, which is a contradiction. Thus, pr(supj |d̂j − dj| =

0)→ 1.

S5 Examples.

EEG example. In brain imaging studies, it is common practice to utilize electroen-

cephalography (EEG) on individuals. In this particular study, we used a public EEG

dataset from the UCI machine learning repository to illustrate the proposed model.

Each individual in the study had 64 electrodes placed on their scalp, and measure-

ments were collected at a frequency of 256 Hz (3.9ms epoch) per second for a spec-

ified duration. Consequently, the observations for each individual were represented

by a sequence of K = 64 vectors, each of length J = 256 time points. The EEG mea-

surements of the ith individual at time j can be denoted as Yij· ≡ (Yij1, . . . YijK)T,

representing a K-dimensional random vector. Here, i ranges from 1 to n, and j

ranges from 1 to J . Let Yi denote the K × J random matrix associated with in-

dividual i over all time points. We assume that Y1, . . . ,Yn are independent and



identically distributed (iid), which is commonly observed in EEG data research.

We now vectorize each Yi by forming vec(Yi) ≡ (YT
i1·, . . . ,Y

T
iJ ·)

T ∈ RKJ . In EEG

data, for Σ, when the time points are closely spaced, it can be reasonable to assume

that the correlation matrix remains unchanged for the K positions, and only the

absolute signal strengths vary over time. Thus, we can express Σ(jl) as rjlW for

all j, l, where rjl represents a constant indicating the signal amplication at different

time points. For convenience, we define W as Σ(11)/Σ1,1, where Σ1,1 represents

the entry at the (1, 1) position of Σ. Based on the previous analysis, it follows

that Σ can be expressed as R ⊗W, where both R and W are positive definite

matrices. Consequently, the precision matrix Σ−1 can be expressed as R−1⊗W−1.

In EEG research, the precision matrix is often of significant interest, as it captures

the conditional correlation structure. For instance, the entry (j, h) of Σ−1 pertains

to the correlation between the jth and the hth components of the random vector

while conditioned on all other components. If the (j, h) entry is zero, it implies

conditional uncorrelation of the jth and the hth variables when the others taken

into account. Furthermore, an element of W−1 represents the correlation between

two brain regions while considering the influence of other regions. When K is large,

it is commonly observed that only a few of these conditional correlations are non-

zero. Therefore, it is assumed that W−1 exhibits sparsity. On the other hand, the

(j, l) element of R−1 represents the correlation between the jth and the lth time

points while considering the effects from all other observed time points. When the

distance between j and l, denotes as |j − l|, is large, the conditional correlation

tends to approach zero. Consequently, we assume R−1
j,l = 0, for all |j− l| > d, where



d represents a constant that limits the time difference and is typically much smaller

than J . As a result, R−1 forms a J × J banded matrix with a bandwidth of d.

Multivariate Time Series example. In the field of multivariate time series

analysis, a response vector of interest, with a dimension ofK, is measured repeatedly

at various time points. For each i = 1, . . . , n, let Yij· denote aK-dimensional random

vector at the jth time point for j = 1, . . . , J . Assuming an autoregressive process,

we have L1,1yi1· = εi1·, and

Lj,jyij· = −
j−1∑
l=1

Ljlyil· + εij·, j = 2, . . . , J. (S3.13)

Here εij· = (εij1, . . . , εijK)
T

represents the mean zero error vector, and we assume

cov(εij·) = W. Let εi ≡ (εi1·, . . . , εiJ ·) represent a K × J matrix. We assume

that ε1, . . . , εn are independent and identically distributed (iid). Consequently, the

expected value of vec(εi) is zero and the covariance of vec(εi) is represented by the

Kronecker product IJ ⊗W. Furthermore, the autoregressive expression (S3.13) can

be rewritten in matrix form as YiL
T = εi, where Yi = (Yi1·, . . . ,YiJ ·) ∈ RK×J ,

and L is a lower triangle matrix with its (j, l) entry denotes as Lj,l for all 1 ≤

l ≤ j ≤ J . Let Σ ≡ cov{vec(Yi)}, it can be shown that (L ⊗ IK)Σ(LT ⊗ IK) =

cov{(L⊗ IK)vec(Yi)} = cov{vec(YiL
T)} = cov{vec(εi)} = IJ ⊗W. Consequently,

we can deduce that Σ = (LTL)−1 ⊗W. Let us consider the precision matrix Σ−1

of interest, where Σ−1 is defined as R−1 ⊗W−1, with R−1 denoting LTL. In case

where the autoregression process in (S3.13) has an order of d, the lower triangle

matrix L satisfies Lj,l = 0 for j − l > d. Notably, d is significantly smaller than

J , which implies that R−1 is a banded matrix with bandwidth d. Furthermore,



it is commonly assumed that εi consists of white noise, resulting in W−1 being a

diagonal matrix. However, for increased flexibility, we allow W−1 to have a small

number of nonzero off-diagonal elements, thus making W−1 sparse.

S6 Simulation and real data studies.

Figure 1: The true precision matrix for K = 20, J = 10 in Case 1 (left) and Case 2(right).
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Figure 2: The boxplots of FN, KL, TNR and TPR values for six estimators at K = 20, J = 10, n =
100 in Case 1.
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Figure 3: The boxplots of FN, KL, TNR and TPR values for six estimators at K = 20, J = 10, n =
100 in Case 2.
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Figure 4: The ROC for six estimators at K = 20, J = 10, n = 100 in Case 1 (left) and Case 2
(right).
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Figure 5: Estimated precision matrix based on WBKS, BKS (upper left) and SMGM (upper

right). R̂−1 (lower left) and Ŵ−1 (lower right) by BKS.

Figure 6: The estimation of precision matrix in the temporal dimension (J=74) (left) and precision
matrix in the variable dimension (K=116) (right) obtained by BKS estimation.
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Figure 7: The estimation of precision matrix in the time dimension (J=74) (left) and precision
matrix in the variable dimension (K=116) (right) obtained by SMGM estimation.
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Figure 8: The estimation of correlation matrix in the time dimension (J=74) (left) and correlation
matrix in the variable dimension (K=116) (right) obtained by BKS estimation.
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