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This Supplementary Material contains four auxiliary lemmas in Section S1 and their proofs in
Section S6-S9, as well as the proofs of Lemmas 1-2 in Sections S2-S3 and the proof of Theorems
1-2 in Sections S4-S5. Additionally, two figures about the real data analysis are provided in
Section S10. For convenience, in the following, we use C and ¢ to denote some positive constants

which can vary from expression to expression.

S1 Auxiliary Lemmas

Lemma S1.1. For any given node a € (1,...,p), take any subset S C [—al.
Then (X_4,V,) 4 ((X_a)swap(s),ya). Here, (X_g)swap(s) s obtained from

X_, by swapping the Xg»t) and iét) foralll <t <k withjels.

Lemma S1.2. For any a € {1,...,p}, conditional on (|W,,|, j € [—a]),

the signs of the null W, ;, j € [—a]\NE, are i.i.d. coin flips.
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Lemma S1.3. For any target FDR level ¢ € (0,1), the estimated edge
set E obtained by the multiple graphical knockoff filter with the true preci-
sion matrices {QYF_ | satisfies the exact FDR control, that is FDR(E) =

E|(EnE/(EI V)| <q.

Lemma S1.4. Assume that Conditions 1-2 hold, the smallest eigenvalue

of Qdiag( ) — dzag( )Q( ) diag(s )) is uniformly bounded from below by

(6) be

the solution of (2.5) with the knockoff matrices constricting based on 0, A =

~aug

some positive constant for all 1 < a < p, 1 <t < k. Let 3,

1/2
& [m”bg(iif_% WHes) | 72— 8(ulog(p) +log(k)/n = o1), and v > 2

for some constant. Define T, = {1,...,2p\{a, (a + p)}, lo = |NE,|, and

Ity S R Iy S E il

o(n/log(p)), then

e = {{F—a}l<a<p 1<t<k - MaX]<a<p,1<t<k HF(t) Q(_tB;HQ < Obn}~ ]f Ly =

i > 1Bui(0) = Ball2 = O(laN) (S1.1)

]672

holds simultaneously for all 1 < a < p with probability at least 1 — p= for

-
some positive constant c,,, where 3" = <([3(1))T, 07T, ..., (B™T, (O)T> :

Remark 1. Slightly different from the main body, for convenience, here-
after, we use Ba(j (0) to uniformly represent the regression coefficients cor-
responding to the original variables and the knockoff variables. We divide

the whole regression coefficient vector Bzug(é) into 2(p — 1) groups, indexed
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To=A{L....2p}\{a, (a+p)}. For 1 <j <p, B,;(0) = By (6) and for

~aug

p<3j<2p, B,;(0)= Ea(j_p)(ﬁ), which are defined in (2.6).

S2 Proof of Lemma 1

In view of (2.6), we can see that the statistic W, ;(#) is only determined
by the estimator Bzug(ﬁ). Note that the HGSL solution Bzug(ﬁ) is a global
minimizer of the objective function (2.5) with the knockoff matrices con-

stricting based on #, which can be equivalently formulated as

~aug

_ )’ (t) (t) (t) 1/2 aug
B, (0) = argbdugERz(p e {Z \/ b UuY A )+ A <Z D, ()b ||2> }

JETa

where 7, = {1,..., 2p}\{a, (a+p)}, U (0) = (X, X" )]/ [X 9, X" ()] /m,

and V) (9) = x®, X"

denotes ((b™)T, (B(t)

(0)] XY /n. For simplicity, we use notation b
)T)T defined in (2.5). For j < p, Dy(;y(0) = Dy
defined in equation (2.5), and for j > p, Dy;(0) = f)a(l)(e) withl =75 —p
defined in equation (2.5). Note that the tth entry of D,;)(6) is equal to
nZ)U 2 (0) for all j € 7o, 1 <t < k. Thus, Dy(;y() can be completely rep-

resented by U_,(0) = (U(,lg(e), ., u®

—a

(6)) since n/n® is a fixed positive
constant.
Obviously, we can see that Bzug(ﬁ) depends on the data (X_,(6),Va)

only through U_o(8) and V_,(8) = (V(_lg(e),...,v(’“

—a

(0)) . Recall that
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H,(0) = (U_4(0),V_,(0)). From the above analysis, we can conclude that
for the statistic vector W,(#), it only depends on H,(¢). Considering the
whole statistics {W,(#),1 < a < p}, since the zeros has no influence in the

knockoff procedure, we can write the statistics matrix as

Wi (6)

Further, note that the threshold vector T() is completely determined
by the whole statistics {W,(6),1 < a < p}. By the process of obtaining the
estimated edge set, it’s obvious to see that the estimated E (0) identified by
our procedure with the given sequence of precision matrices 6 depends only

on H(#). Thus, we have completed the proof of Lemma 1.

S3 Proof of Lemma 2

Recall that A%() is the support of knockoff statistics W, (6). Thus, the
threshold vector <T\1(9), . ,fp(Q)) depends only on {W,;(0),j € A.}._,

as A% (f) C A,. By equation of (2.6), it shows that

Was (0) = 1Bagiy (@)l = 1B (0)]l2:
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with

B, () =arg min {Z Qo(c) + A (Z ID.5() j)”2>} (53.1)

CeR2(p—1)k
€ Jj€Ta

where

S (1)
IX© — XY X ()],

a?’ —a

Qor(c) = NG

Here, we use the notation c) denotes the subvector corresponding to the

tth class and c(;) represents its subvector corresponding to the [th group.

The notation of Di{; (0) is the same as that in the proof of Lemma 1.
When we restrict ourselves to a sequence of subset {A,(0)}._; that

satisfies A, D A*(f) for all 1 < a < p, let BZE‘I)(Q) be the subvector of

~>au,

B, g(6) consists of components indexed by J, with J, = A, U {A, + p}.

~au

To prove this lemma it’s sufficient to prove that BZ?;)(H) =<, g(t9) since

~aug

Ba Ji)(9> = 0 that doesn’t work for the knockoff procedure, where

k
c0-umm, {Saton or(Siotzon))

beRr2iAalk I
with the same A\ and 6 as in (S3.1). Here

X — [X 4., X4, (0)]bY]

Aa (1 (®)
@y (b) = NG

We can see that by equation (S3.1) it shows that for any b € R~k
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~aug

and b # B2 (0),

k O ® g >® aug
3 I [x_a,xaw)]% )", (B, 0) HQH<ZHDI/2 )”2>

k t) ® <O (t)
HXgL - [X—mea(g)]b ||2 1/2
<> NG A (D IDSObgll2 |- (S3.2)
t=1 J€Ta
13

Then we claim that for any ¢ € RIJalk,

J€Ta

Fox® — X(t)’)z(t) 0 3" o))", 3" 0))"]" 2 1/2 aug
3 I = DX X0 OB 0. B 0T (ZHD/ ()”2>

k (t) ) ~

X0~ x9X5 @), Y2 (g

R TR
t=1 ]6-.75,

where k is the order of j in J,. Otherwise, if there exists (Aja(ga) € RIJalk

k O ® F® ~ ()
X5 — X, X, (0)]Chzy ()12 ( 12
> D 0 [ DD 0)Cay (0112
t \/ﬁ j€Ta )

_k () X(j)vx() 0 ~(t) 0 T’ ~(t) oNTIT 2 1 2 aug
- B~ X R OB 00, B0 (ZHD/ (N,Q)

Then, let C (T\Jo) = 0 it holds that

k (t) ™ X <
Z 1X® - x* \/ﬁ ( )IC, ( )P ) (Z HDl/z .)(Q)HQ>
p— ]6721

(t)

k ® _x® 3 aug
- 0 XX (@)]5% OB O Tl | (Z 20 )||2>,
— J€Ta

which contradicts equation (S3.2). Thus, we can conclude that (I@Z(Ja) 0)) =

jeja

<
J€Ta

~aug

¢, (0). This guarantees that Ex(H(6)) and E4(H4()) are identical and

thus concludes the proof of Lemma 2.
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S4 Proof of Theorem 1

~ ~

Let A%(6) be the support of knockoff statistic vector W,(6). Define set
A, (6) = A%() U A*(6). Tt follows from Condition 4 that the cardinality
of Xa(é) is bounded by d. Hereafter we write ﬁa(é) as A, for notational
simplicity. Additionally, we use A to denote the set of {A,}7_,.

Recall the definitions of I 4 as in (3.14). Define the event
Enp = {Hﬁ(e) € ]Iﬁ} N {HA\(QO) S HA\} .

It’s obvious that H z(6y) € I;. We only need to prove that with the prob-
ability at least 1 — p=

max |[Hz () — Hy (6)]l2 = o(1), (S4.1)

1<a<p

which entails that P(&;,) < p~®. Then, according to Lemma S1.3, we have
FDR(H 3(6y)) = FDR(H) < ¢q. Combining with the Condition 5, the rest
of the proof is similar to the proof of theorem 1 in Fan et al. (2020) with
Tnp = P~ %, s0 we have omitted it.

Now we will focus on the proof of equation (S4.1). For convenience,
in the following, we will abbreviate H 7 (6p) to Hz , U%(GO) to UE? and

a

VY (6) to VY. Similarly, we abbreviate H (9) to Hg , U (8) to U

a
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and V%l(g) to Vi% By the definition of H 3 (), we have

max |[Hz, — Hz,[l

— oW g® oW M\ _ (11 (k) (1) @v
— max (UAG,...,UAa,VAa,...,VAa> <Uja,...,Uga,Vﬁa,...,Vﬁa 2

: () i (t)
. t ~ t
< mnax, (Z 105, - U .+ > IVZ - V&iuz)
- \t=l t=1
g®? ®) G ®

< Ao — A A T .
=k (1<a2%}it<k“UAa U let, _max [V, =VZ (34.2)

US>
USSPt

USSP,V

The error bounds of maxi<,<pi<i<k ||UA %) |l2. Recalling the

definition of U%) , we have

~ () = () =(t) (t) ~ (%)

0% — v, = X Xa X Xaym - X XL XLm|
=0 @
B 0 (X" (XA -X3,)/n
- OIS TEA = L 3O \TF®
(X;) (X2, XA )/n [(Xgz,) XA (Xﬁa) XZ/m )
w7, 2P <o =0 120 —@) 0
<2 | (X)X g, - Xz)/n|| +|[(X5,) Xz, - (X5,) X5,)/n
2 2
::2Aat + Bat (S43>

where

~(t) =t =@ <) T ()
Aut = X)X g X2/l andBat—H[(X;NX,@—<X,za>TXﬁa]/n

2

= () =@
Here, the notation X 3 is the abbreviation of Xz (6).
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Recalling the knockoff generation process (2.5), for the original data

matrix X(_tzl, the ideal knockoff matrix and the approximate knockoff matrix

constructed using the estimated precision matrices can be represented as

%0 _xO00 4 Z0BO and X —XUEY 4 Z0B

a a a

(®)

respectively, where Z[(f) is a random matrix whose rows are i.i.d copies of
N(0,I,_1) and independent of X" cV=1,, —diag{s&t)}ﬂgi and (Ajff) =
1, — ding{si) 100, BY = (2ding{sl} - diag{sé”}ﬂ(fldiag{sé”})1/2,
and ES) = (Qdiag{s((f)} - diag{sgt)}ﬁ(jldiag{sgt)n 1/2.

For convenience, denote by

L =~ (t)
G = I<atpis H_(XE? )TXE? |2, Go= max ||C, —CY|,,
<alp,1<t<k TN a a 1<a<pl<t<k
— 1 O \NTrz (1) - ~ (1) )
G3 B 1§ag’%§t§k HE(XA\G) ZﬁaH% G4 - 1§aglpfll)ét§k HBa - Ba H27

and G5 = maxlgagnlgtgk ||%(Z(t)

Trz(t) ® :
ﬁa) ZA\(LHQ. Here Z7% is the submatrix of

7" with the columns in A,. By a more elaborate derivation, we have

1 = () ~(t)
~(XE) T (Xg, ~X3,)

max

UL S0

< GGy + G3Gy,
2

1

max -
1<a<p,1<t<k M

=) _ =) ~(t) (1)
Xi) Xa, - (Xz,) X5,

2

< G1G5 + 2G3G9Gy + G5G5 + 2G1Gy + 2G3Gy,
Combining with formula (S4.3), we can conclude that

max
1<a<p,1<t<k

o g

< 4G1Gy + 4G3Gy + G1 G2 + G5G2 + 2G5GoGl.
2
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Thus, in the following, we will deduce the upper bounds of G, Gg, G3, G4
and G5 respectively.

The upper bounds of G, G3, Gs.

It follows from Cauchy’s interlace theorem and Condition 1 that

1/M1 S Amin(z(t)) S )\min(zg\i’ﬁa) S /\max(Ei%hA\a) S /\maX(E(t)) S Ml

holds uniformly for any 1 < a < p, 1 <t < k. By Remark 5.40 in Vershynin

(2010), it yields that with probability at least 1 — 2pk exp(—cn)

G = max @ L(X(t) )TX(t)
VT caspi<i<k n ||n® A7 AL )
(t) (t)
n (t) n 2
< S < )
S nax )\maX(EAa,Aa) +— max{m,n;} < C (S4.4)

where 17, = Cl\/m + 1 with (' is a positive constant. Under Condition
4 and Condition 2 that d < n and n < n®, we have 5, = O(1), which
entails the last inequality.

Correspondingly, with probability at least 1 — 2pk exp(—cn)

n®

1
S max{m,;} < C  (S4.5)
2

10\ T
0 X3) 23,

)
G3 = max n

USSP, x>

since E[ﬁ(X@ )TZE?] = 0. Similarly, with probability at least 1—2pk exp(—cn)

Aa

)
G5 =  max -

USSP, Lt

L (7070

()
n 2
n®) A A, < n (1 + ma’X{nh 771}) < C,

2

(S4.6)

since B[4 (Z®)TZ®] =1,

n(t)
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The upper bounds of G, and G,.
Since the vector s’ is chosen such that E_a7_a—2_1diag{s§)} is positive
semidefinite, we have

max ||S((1t)||oo <2 max )\maX(E(t) ) < 2/\max(§](t)) < 2M,

—a,—a

1<a<p,1<t<k 1<a<p,1<t<k

where the second inequality follows form Cauchy’s interlace theorem and
the last inequality is due to Condition 1. Therefore, under Conditions 1

and 3, we have with probability at least 1 — p~?

~ @)
Gy = max [|(C, —CY)
1<a<p,1<t<k
< max  |sO)e max OV @9, <0b,  (S47)
1<a<p,1<t<k 1<a<p,1<t<k

It follows from the definitions of B{Y) and ﬁg) that (BY)? — (ﬁg))z =

diag{sc(f)}(ﬂ(_tz — ﬁ(fl)diag{s,(f)} and thus by Condition 3 it holds that with

probability at least 1 — p~°

A(t) 2 . (t) 2
1§agzl>fll}ét§k”(B“ ) <Ba ) H2
< max OIS max 00 -00 L <Ch (548)
1<a<p,1<t<k 1<a<p,1<t<k

This, together with the fact that (ﬁff))Q = (BY)24+[(B
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that

Muind (BY)?} 2 X (BY)?} + A (B )? — (BY)?}

®)

>Anin{(BY)"} = Anax {(BY)? = (B, )°} = Auin{ (BY)*} — C,

(S4.9)

holds uniformly for all 1 <a <p, 1 <t < k.
Recall that (BY)? = 2diag{sgt)} — diag{sg)}Q(fidiag{sg)}. The as-
: (o My 1 O1o0) 1 (t) :
sumption that Ay, (2diag{s.’} — diag{sa’ } Q. diag{ss’}) > C3 uniformly

forall 1 <a <p, 1<t <k with some constant C3 > 0 implies that
)‘min{(B((zt))Q} > CB

holds uniformly over 1 < a < p, 1 <t < k. This, together with (S4.9) and
()

a

the assumption that b, — 0 as n — oo, yields that )\min{(ﬁ )2} > C3/2

holds uniformly over 1 < a < p, 1 <t < k for all n large enough. Thus,

it follows from Lemma 2.2 in Schmitt (1992) that with probability at least

1—p_‘5

Gi= max |BY -BY,<C max (B

1<a<p,1<t<k 1<a<p,1<t<k

Il S L

)? = (BY)?[ls < Cuby.
(S4.10)
The last inequality is given by (S4.8). Therefore, in view of these results of

(S4.4),(54.5),(54.6),(S4.7), and (S4.10), we can conclude that with proba-
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bility at least 1 — 6pk exp(—cn) — 2p~°

< Cb, (S4.11)

max
1<a<p,1<t<k

UA _UA\

a

H = (1) (®)

all2

t
The error bounds of maxi<,<pi1<i<k [|V3, — V%) ||l2. Recalling the

definition of V z , we have that

v v 1w =0 5 ® _ Li® O 70
1<aSpI<t<h IVa, = Val:= 1<agpI<tch n[Xﬁ Xz n[XAa Xal' X 2
1 20— 1 120 -
= — (X, —X5)TXP| < - (t)
1Sagilﬂ}étﬁk (XAa Aa) Xa 5 lﬁagllﬁ}étﬁk n (X.Aa XA ) @ |y

1 1
S— max ||X((lt)||2\/ G1G2+ — max ||X((Zt)||2\/ G5G4.

/N 1<a<p,I<t<k /N 1<a<p1<t<k

Since we have already deduced bounds of G, G5, G4, and G5, we only need
to deduce the bounds of max;<,<p1<t<k \/LEHXS)HQ in the following.

Under Condition 1, since ||XY|y/00 ~ X%nm) for any 1 < a < p
with o) denoting the (a,a)th entry of »®  applying the following tail
probability bound with ¢ = 1/2 for the chi-squared distribution with n()

degrees of freedom

(—n"/32)

2o < XD a/va® < 200

holds with probability at least 1 — 2exp(—n®/32).

gives that
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By Condition 1 that the eigenvalues of ) are within the interval
[1/My, My], we have 1/M; < at(fa) < M, for any 1 < a < p. Since n = O(n®)
by Condition 2, it follows that for sufficiently large n, with probability at

least 1 — 2exp(—n/32),

||X n® \/7 \[

Thus, we conclude that with the probability at least 1 — 2pk exp(—n/32)

1%, Il < C. (S4.12)

Combining these results (S4.4), (54.6), (54.7),(S4.10), and (S4.12), we
can deduce that with the probability at least 1 — 4pk exp(—cn) — 2p~° —

2pk exp(—n/32)

max ||\A7%1 - V%) ll2 < Chb,. (54.13)

USSP, Lt

y (S4.2), (S4.11) and (S4.13), we can conclude that with probability at

least 1 — 10pk exp(—cn) — 4p~° — 2pk exp(—n/32)

max ||H —Hz [|2 < Ckb,

1<a<p

for some positive constants C. Since log(p) = o(n), there exits some posi-
tive constant cs such that p=% > 10pk exp(—cn) + 4p~° + 2pk exp(—n/32).

Further, as kb, = o(1) assumed in the theorem, it holds that with the



S5. PROOF OF THEOREM 2

probability at least 1 — p=

max HHAa —Hz [l2 = 0o(1),

1<a<p

which completes the proof of Theorem 1.

S5 Proof of Theorem 2

By Lemma S1.4, we have that with the probability at least 1 — p~“

sup 3 1Bag (6) = il < Cilh (5.1)

jETa

holds simultaneously for all 1 < a < p, where \ = C,\[%g(p)]l/ 2 with
Cy > 0 some constant and () is some positive constant. For the nota-
tional simplicity, hereafter we write W, ;(#) which are constructed based on
B.°(0) as W, ;.

Let |VuVa,(1)| > ... > |Wa7(p,1)| be the ordered knockoff statistics ac-

cording to magnitude. Denote by j* the index such that \W%(]*)

=T,(0).
Then, by the definition of T,(0), it holds that —T,(0) < W Gy < 0. As
in the proof of Theorem 3 in Fan et al. (2020), it’s sufficient to consider the
two case of Wa,(j*ﬂ) =0and —T,(0) < Way(j*ﬂ) < 0 separately.

Case 1. Consider the case of —T,(0) < W jo41) < 0. In this case,
from the definition of threshold T,(0), we have

YAl b Wy < -TO}

IE(6)| V1 P
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Using the same argument as in Lemma 6 of Fan et al. (2020) together

with Lemma S1.4, we can prove from Condition 7 that [E(8)] > M,|E]|

with asymptotic probability one. This leads to |{j € {1,...,p}, Wa,j <

—T.(0)}| > (M| E|q)/(cyp) — v — 1 with the same probability. Moreover,
~aug

when W; < ~T,(0), we have B, (0)lls — 1Boa (@)l < ~Tu(6), and

HBZ?;+I))(Q>”2 > T,(0). Using equation (S5.1), we obtain

~aug au ~aug
Cilad 2 ) 1Bugy@) = Boifl2= >~ 1Bagin @)ll2

J€Ta {5:W, ;<—Ta}

> Tul{j : Way < =To(0)}]
Combining these results leads to Cil,A > T,(0)((¢M4|E|)/(cyp) — 1 — 7).
According to Condition 8 that |E| > apl,, , we have

T,(0) < CilaAeyp < CilimAcy
qMy|E| — pcy — pyey, — qMyal,, —cy — e,

for large enough n since v,, — 0o as n — o0.

In light of Equation (S5.1), we derive

~aug au ~aug al ~aug
Cilad = 3 1Boy (@) -85l = = 1B (0) = BiSl + 1Bas s (©)2]

Jj€Ta JE[—d]
~aug au ~aug
> 3 1B = Bl + 1B O]
JENELN(NEq ()¢
~aug au ~aug
> > 1B ) - Bl + 1B O — Tu(®)]

JENELN(NE, (6))e
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~aug

. ~aug . T .

since B,y @)l > [BL50)a — Tu(6) when j € (NE,(6))°. Using the
triangle inequality and noting that [|8,}[l2 > v,A/C) for j € NE,, we can
conclude that

CilaA = > (18,5 l2=Ta(0)) = (Vn X/ CA=T4(0))[NE,(NE, ().
JENELN(NEq(0))°

Thus, it follows that

INE,NNE(0)] . [NE,N (NEq(6))°] C)\ 20,

la lo = A /Oy —Ta(0) T uChy

uniformly over all § € © since T,(6) < v,A/(2C))

v

Case 2. Consider the case of W, js+1) = 0. In this case, by the

definition of T,(6)
v+ |.] : Wad < 0|
E(9)

< q/cyp-
If |5 : Ww’ < 0] > 2C,C\¢,l,v, Y, then using the same argument as in (S5.2),
we can also obtain that 7;,(0) < v,A/(2C)), and the rest proof is the same

as in Case 1. On the other hand, if |5 : Wa,j < 0] < 2C,Creylav,t we have

INE, () N NE,| = |supp(W,) N NE,| — |{j : Wa; < 0} N NE,|
> |supp(W,) N NE,| — 2C,Che, Loyt (S5.3)

since 1\/@&(0) = supp(W,)\{j : W,; < 0}. Let us now focus on [supp(W,)N

NE,|. We observe that

v

supp(W,) D {1,...,p\La (S5.4)
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where £, = {1 < j <p: le(lf)(ﬁ) = 0}. Meanwhile, note that in view of
Equation (S5.1) we have with probability at least 1 — p=©

~aug au “2ug au,
CilaA > sup Z ||5a(j)(9) - 5(1(]5)“2 2 sup Z ||/6a(j)(9) - 5,1(]5)“2

66@ j€Ta 96@ jELLNNE,

. aug . aug
= Z ||/8a(j)||2 > LN NEa|jr€I}\}I{]la ||18a(j)||2‘

jELLNNE,

By Condition 6 , we can further deduce from the above inequality that
|L. NNE,| < G0y, M,
which together with [NE,| = [, entails that
[({1,...,p}\La) NNEG| > (1 = CiChv, 'l

Combining this result with Equations (S5.4) yields

%

lsupp(Wo) NNE,| > |({1,...,p}\La) NNE,| > (1 — C,Cyv; Y )l,.  (S5.5)

Thus, in view of inequalities Equations (S5.3) and (S5.5), with probability

at least 1 — p~® it holds uniformly over all 1 < a < p that

INE, (6) N NE,|

a

Z 1-—- CZCAVT:I - QCZC)\CWVJI

for all 6 € ©.
Combining the above two scenarios, we have shown that with asymp-

totic probability one, uniformly over all 1 < a < p it holds that with
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probability at least 1 — p~¢,

INE,(6) N NE,|

a

>1-Cv !

n

for all # € ©, where C' is some positive constant. Since

~ 1L _ 1
[E(0)NE| > 5 ) INE,NNE,(0)]  and \El—§;|NEar,

a=1

then it entails that with probability at least 1 — p=

BO)NE| | ¥, NE,ONEO) | X0, L~ Cln) | 2C
|E| N §:1 |NEa| N ];:1 la o Vp '

This along with the assumption P{g € ®} > 1 — p~% in Condition 3 gives

that

~

ENE(6)
|E|

~

ENE®)
|E]

~

Power(E(0)) = E >E hc ©| P{ c O}

>[1-Cr' l1-p ™) (1=p ") >1-Cr' —p®+o(y,") =1

for some positive constant ¢s, which concludes the proof of Theorem 2.

S6 Proof of Lemma S1.1

Recalling the expressions of X, and ), it yields that

x" X0, X
x? X%, X

(X—mya) = )
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and

e AeY)
[X(l) Xfu.]swap(s) X((Ll)

—a?

S (2)
[ngm X—a]swap(S) X¢(12)

((X-a)swap(s), Va) =

< (k)
[X(,kg’)(fa]swap(s) X((Lk)

Since XM, ..., X® are independent, it implies that ([X(t) )~((_tl], Xfp) are

—a’

independent over t from 1 to k. Thus, to prove the claim, it suffices to show

—a —a’ —a

that ([Xit;,f(“)],xgﬂ) £ (X X(t’]swap(s),xgﬂ) , which trivially follows
from the proof of Lemma 3.2 in Candes et al. (2018). Thus, we omitted it

here.

S7 Proof of Lemma S1.2

For any given a € (1,...,p), we can write the statistics W, = f (X_q4, Va)
for some function f. Let € = (e1,...,€,) be a sequence of independent
random variables such that ¢; = £1 with probability 1/2 if j € [—a] \ NE,,

and €; = 1 otherwise. To prove the claim, it suffices to establish that
d
W,=€eoO W,

where ® denotes pointwise multiplication, i.e. W, = (eWy1,...,6,Wa,).
Now, let S = {j : ¢, = —1}. Obviously, S C [-a]\NE,. In view of

(2.6), it’s easy to see the statistic W, ; satisfies the flip-sign property, that
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is, when we swap the columns Xg-t) and )~(§-t) for all 1 <t < k simultaneously

in the matrix X_,, the sign of W, ; will switch. Then we have

eOW, = f ((X—a)swap(S)vya) .

According to Lemma S1.1, it implies that

W, = f (X—aa ya) i f ((X—a)swap(S)a ya) =€ Waa

which completes the proof of Lemma S1.2.

S8 Proof of Lemma S1.3

It follows from our Lemma S1.2 that W, = (W, ;, 7 € [—a]) enjoys the
sign-flip property on NE¢ for each a € {1,...,p}. Thus, we can use Lemma
C.4 in Li and Maathuis (2021) to prove these pairs of (v, ¢,) = (1,1.93) and
(7,¢y) = (0.01,102) satisfying

#ENE, Way 2T} | _
Y + #{.7 ¢ NEaa Wa,j S _Ta} -

» (S8.1)

In addition, note that the global thresholds is obtained by solving the
formula (2.8). If feasible thresholds do not exist, we set T = (+0o, .. ., +00).

Then the FDR is 0 because no edges can be selected. Thus the inequality
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FDR < ¢ holds. If feasible thresholds exist, we have

EnNE* P i ¢ NE,, W, > T,
FDR E | | S E a=1 #{j g/\ ) — }
E]v1 |E| V1
_ ZE Y+ # € —al Wy < -T}  #{j ¢ NE, W, > T}
I |E|V1 v+ #{j € [—al,We; < —To} |
- ZE v+ #G € o Wy < —To}  #{j € NE, W, > T}
a |E| V1 ’7_’_#{] ¢ NEmWa,j < _Ta}_
P ; ST (S8.1)
<9 N g #{J GE NE,, Wa,; 2 Ta} 2y
Cyp a=1 Y + #{] ¢ NEaa Wa,j S _Ta}

where the penultimate inequality follows from the property of the threshold
vector and the last inequality is due to (S8.1). Therefore, the FDR of our

procedure is controlled, which completes the proof of Lemma S1.3.

S9 Proof of Lemma S1.4

Recalling equation (2.5), the estimated regression coefficient by HGSL with

the knockoff matrix based on 0 can be written as

~aug 1/2
B. (0)=arg min {Z Quo(c!”) + A (Z HDa(j>(9)C(j>|\z> }
7€Ta
where
> (1)
IX® — XY, X (0))cD

vn
Before proving (S1.1), we first define an event B,, that
maxjer, Dy, "D, () X7 (6)Eall PN
vn T E+1

Qor(c) =

B, =
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where T, = {1,...,2p}\{a, (a + p)}, Dg, be the k x k diagonal matrix
with tth diagonal entry the squared [, norm of the error vector E((lt) for
1 <t <k, and &(;(0) is an N x k submatrix of X_,(#) given by columns
corresponding to the jth group.

Note that combined with knockoff matrices, there are 2(p — 1) group in
X_,(0). For convenience, we index them by 7, = {1,...,2p}\{q, (a + p)}
according to the corresponding index of variables and knockoff variables.
Specifically, for the index 1 < 7 < p, it corresponds to the original variable
X;. For the index j € (p+1,...,2p), it corresponds to the knockoff variable
)Afj_p. Thus, for j < p, D) (0) = Dag, and for j > p, Dy (0) = Dyqy(0)
with [ = j — p, as defined in equation (2.5).

Using the same proof technique as Lemma D.6 in Ren et al. (2019),
we can prove that this event B, holds with probability at least 1 — 3p'~v.
Conditional on the events {1, B.} and 6 € ©, the proof of Lemma
S1.4 is similar to that of Theorem 3.1 in Ren et al. (2019). We will simplify
the same parts as that in the proof of Theorem 3.1 in Ren et al. (2019), and
emphasize the additional proof techniques and steps that needed to deal
with the barriers causing by the estimated precision matrices.

Refer to the proof of Theorem 3.1 in Ren et al. (2019). Denote by

A

B = Di*(0)B, B."(6) = DY*(0)B, (6), and A, = By5(0) — B2 In
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what follows, we establish all results in terms of A,. As pointed in Ren et al.
(2019) this does not affect our result much since our Condition 1 and the
fact of (X{")TX["/(S)s ~ () and (X)X, /(£ ~ (),
together with an application of Lemma E.1 of Ren et al. (2019) and the

union bound, entail that with probability at least 1 — 2pk exp(—n/32),
Mi/2 < (XY XY /n® < 30, /2 and M2 < (X)X /n® < 30,2

holds simultaneously for all 1 <1 <p, 1 <t <k.
Recalling the knockoff generation process (2.3), for the original data

matrix X(t)

—a?’

the ideal knockoff matrix and the approximate knockoff matrix

constructed using some given precision matrices  can be represented as

X" X0t 4 zOBO and X (0) = XY.CW(9) + ZOBY (8).

- a a a

respectively, where Zflt) is a random matrix whose rows are i.i.d copies
of N(0,I,_1) and independent of x" cY =1, — diag{sg)}ﬂ(z and

c(g) = Ip_l—diag{sgf)}I‘(t) Bl = (2diag{s£f)} - diag{sgt)}Q(_tzLdiag{sg)})

a —a)

1/2

and BY(9) = (Qdiag{sg)} — diag{sfﬁ}I‘%diag{s&”})
According to Lemma B.1 in Kaul et al. (2019), we have with the prob-

ability at least 1 — p~¢ for some positive constant ¢

max _[[(C(0) - CO)T(XE)TXE(CP(0) — CP)/n

ULV

< _max _ [(CP(0) - CY) ' So-a(CL(0) = CP)llow + Cy/log(p) /n®

B iy S il

1/2
7
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Since 6 € ©, by Condition 1 and equations (S4.7), we have

max _ [(CP(0) - CP)TE_, _.(CP(0) — C)|

Ut =t

< _max _ [[CP(0) - CLI3IZll: < Cby,

USSP, L0

which shows that with the probability at least 1 — p~°

max _ [|(CP(6)-CP)T(X)TX(CP(0)-CP) /0| = O(by+d,),

1<a<p,1<t<k “ *

where d,, = \/log(p)/n®.
Using the same technique, combining with the result of (S4.10), we can

prove that with the probability at least 1 — p~°

max _ [[(COO) — ¢ T(XNTZY (BY(9) — BY)/n®)]| = O(dy),

USSP,V

and with the probability at least 1 — p~°

max _[|((BY(6)-BY)T(2Y) T2 (BY () -BY) /nV]|| . = O(b,+d,).

USSP, Lt

By the expression of triangle inequality, we can derive

< (t) o (t) ~ (t) ~ (t)
mas _((R0) 7K 0)/n0 - ®)TR 0

1<a<p,1<t<k

< _max _[(CPO) - CP) (X)) TX(CO0) - CP)/n]n

USSP, L0

+2 _max _ [(CP(0) - CP)T (X)) ZY,(6) - BY) /|

USSP, LSt

USSPyt
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Then, we can conclude that

<) T () T
max _ |(X;7(9)) "X, (0) /0" —(X;7) X, /0| = O+ log(p) /n®)

1<i<p,1<i<k
holds with probability at least 1 — 3p~°. It entails that for sufficiently large
n there is a positive constant Ml that

()

/2 < (X,(0)7X,”(0)/n" < 30,/2 (89.1)

holds uniformly over 1 < [ < p,1 < t < k with probability at least 1 —
3p~¢ — 2pkexp(—n/32) since b, = o(1) and log(p) = o(n). Therefore, A
and A are of the same order componentwise and globally.

Using the same techniques as the Step 1 of the proof of Theorem 3.1

in Ren et al. (2019), we can obtain that for all 1 < a < p,

> NAapllz <€) 18w le. (59.2)

1€Ta/NE, leENE,

Further, under Conditions 1-2 and the fact that X' X® / (E((f))w ~ x2(n®)
and E((f)/Egt)/wa(LQ ~ x*(n®), by Lemma D.7 in Ren et al. (2019) it holds
that with the probability at least 1 — 4k exp(—n/32),

IZLOA 1 Z”X OAL?

=1 né ~ V6MM, =1
where 225’2(0) = XQ(@)(DS)(H))*UQ and ¢; = @y (fi'il“g(”( )) +Q: <Baug )

In addition, since the facts of (A.27), (A.28), and (A.30) in the sup-

(39.3)

plementary materials of Ren et al. (2019) all hold here, using the same
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techniques of (A.31) in the supplementary materials of Ren et al. (2019),

we can prove that

0 ALY 36— 1
§:H né Fa (T EET) X ikl 0

leENE,

Combining with the result of (S9.3), we can conclude that

i XSO X (35—1 ) S ]
- n = VOM M, \ £+1 5 ?
(S9.5)

holds with the probability at least 1 — 4k exp(—n/32).

For convenience, let

1 (%1 (-3
Cg_\/m<£+1 e >

which is shown in equation (59.4). The inequality (S9.5) implies that with

the probability at least 1 — 4k exp(—n/32)

kRO 50 (T 50 oy A 0
ANTxD0)TxY(9)Al _
Z( ) (A5(0) A(0)2e CeA Y Da s (89.6)

t=1 IENE,

Following the same definition as that in Ren et al. (2019), let

VINE/| 2, (0)ul),
#(G NBa) = u#o{fzmanu])uz weVENE

where U(§,NE,) = {u € R**=D% 57, - o [ugllz < €3 ene, lug)ll2}-

Since A, € ®(¢,NE,) by (S9.2), we have

B 2
3~ BT RGO RUOL R NE) (Zene, 1 8e0 )
n - INE,|

t=1

(89.7)
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Recall that for each given 6, the rows of XSZ (0) follow the Gaussian

distribution N(0,G(0)), where

D crO=
Ga(0) |
clOzl . CPOEL,_.CO0)+BY(©)

According to Condition 1 and the assumption in the theorem that the small-
est eigenvalue of 2diag{s((f)} —diag{s,(f)}ﬂ(_tldiag{sg)} is uniformly bounded

from below by some positive constant for all 1 < a <p, 1 <t < k, we have
1/Ms < Anin(G (60)) < Amax(GL (60)) < Mg

holds uniformly over 1 < a < p, 1 <t < k for some constant Mg > 1.

Moreover, by the triangle inequality we have

Amin (GD(0)) > Anin (G (60)) + Amin (GP(0) — G (67))

Z )\min(gét)<90)) - )‘max(gcgt)(e) - gét)(go))-

Since # € O, according to the equation (S4.7) and (S4.10) , we have
Amax(g,(f)(e) — ff’(eo)) < Ob,, holds uniformly over 1 <a <p, 1 <t <k.
Then for sufficiently large n, we can conclude that there exist some positive

constant Mg that

—~

1/ Mg < Auin(GP(0)) < Amax(GP(6)) < M.
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Thus, according to the Lemma D.5 in Ren et al. (2019) shows that

n(® 12 n(®) v 17
K ,NEa min n 7 AN n n 2M6 1/27
(G NE) > ((XE (0)7X] ’(9)) (<X< 07X, ’<6>) o

holds with probability at least 1 — 2kexp(—cn). Combining with result

f (S9.1), yields that with the probability at least 1 — 2pkexp(—n/32) —
2k exp(—cn) — 3p~¢, k(§,NE,) > C,, where C, is some positive constant.
This together with (S9.6) and (S9.7) yields that with the probability at

least 1 — 2pk exp(—n/32) — 2k exp(—cn) — 4k exp(—n/32) — 3p~°

— 2
(ZjeNEa ||Aa(j)||2> i
INE,| <CA Y 12aplle (S9.8)

leNE,

Thus it holds simultaneously for all 1 < a < p that

sup 3 (Bl = OA)

ve S JENE,

with the probability at least 1—2pk exp(—n/32)—2k exp(—cn)—4k exp(—n/32)—
3p~¢. This together with (59.1) and (S9.2) yields that

Sup D 12l < Csup Y (| Ag |

O jeT. 0 jeT,

S@+Csup Y [ Agppll = Ola))

0O jeNE,

holds simultaneously over 1 < a < p with the probability at least 1 —
2pk exp(—n/32) — 2k exp(—cn) — 4k exp(—n/32) — 3p~°.

Note that the above analysis is conditional on the event [,,, Ba.
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Since we have proven that P(B,) > 1 — 3p~>*1 it easy to prove that

P(() Bu)=1-3pp' " >1—p""

1<a<p

Then, we can conclude that with probability at least 1 — 2pk exp(—n/32) —

2k exp(—cn) — 4k exp(—n/32) — p*~v — 3p~¢

sup Y [[ Byl = Ola),

06@ 7€Ta

holds simultaneously for all 1 < a < p. Since log(p) = O(n), and v > 2
defined in the lemma, then there exits some positive constant ¢, such that
p~ > 2pk exp(—n/32) +2k exp(—cn) +4k exp(—n/32) +p* =V +3p~¢, which

completes the proof of Lemma S1.4.
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S10 The figures of real data analysis
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Figure 1: Network structure of genes recovered by our method. The pink lines are the

edges identified by both our method and GFC method. Grey lines are identified only by

our method.
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Figure 2: Network structure of genes recovered by GFC method. The pink lines are the
edges identified by both GFC method and our method. Grey lines are identified only by

GFC method.
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