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Supplementary Material

This Supplementary Material contains four auxiliary lemmas in Section S1 and their proofs in

Section S6-S9, as well as the proofs of Lemmas 1-2 in Sections S2-S3 and the proof of Theorems

1-2 in Sections S4-S5. Additionally, two figures about the real data analysis are provided in

Section S10. For convenience, in the following, we use C and c to denote some positive constants

which can vary from expression to expression.

S1 Auxiliary Lemmas

Lemma S1.1. For any given node a ∈ (1, . . . , p), take any subset S ⊂ [−a].

Then (X−a,Ya)
d
=
(
(X−a)swap(S),Ya

)
. Here, (X−a)swap(S) is obtained from

X−a by swapping the X
(t)
j and X̃

(t)

j for all 1 ≤ t ≤ k with j ∈ S.

Lemma S1.2. For any a ∈ {1, . . . , p}, conditional on (|Wa,j|, j ∈ [−a]),

the signs of the null Wa,j, j ∈ [−a]\NEa are i.i.d. coin flips.
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Lemma S1.3. For any target FDR level q ∈ (0, 1), the estimated edge

set Ê obtained by the multiple graphical knockoff filter with the true preci-

sion matrices {Ω(t)}kt=1 satisfies the exact FDR control, that is FDR(Ê) =

E
[
(|Ê ∩ Ec|)/(|Ê| ∨ 1)

]
≤ q.

Lemma S1.4. Assume that Conditions 1-2 hold, the smallest eigenvalue

of 2diag(s
(t)
a ) − diag(s

(t)
a )Ω

(t)
−adiag(s

(t)
a ) is uniformly bounded from below by

some positive constant for all 1 ≤ a ≤ p, 1 ≤ t ≤ k. Let β̂
aug

a (θ) be

the solution of (2.5) with the knockoff matrices constricting based on θ, λ =

ξ+1
ξ−1

[
k+2υ log(p)+2

√
υk log(p)

n(1−τ)

]1/2
, τ 2 = 8(υ log(p)+log(k))/n = o(1), and υ > 2

for some constant. Define Ta = {1, . . . , 2p}\{a, (a + p)}, la = |NEa|, and

Θ =
{
{Γ(t)

−a}1≤a≤p,1≤t≤k : max1≤a≤p,1≤t≤k ∥Γ(t)
−a −Ω

(t)
−a∥2 ≤ Cbn

}
. If lm =

o(n/ log(p)), then

sup
θ∈Θ

∑
j∈Ta

∥β̂
aug

a(j)(θ)− βaug
a(j)∥2 = O(laλ) (S1.1)

holds simultaneously for all 1 ≤ a ≤ p with probability at least 1− p−cυ for

some positive constant cυ, where β
aug
a =

(
(β(1)

a )⊤, (0)⊤, . . . , (β(k)
a )⊤, (0)⊤

)⊤
.

Remark 1. Slightly different from the main body, for convenience, here-

after, we use β̂
aug

a(j)(θ) to uniformly represent the regression coefficients cor-

responding to the original variables and the knockoff variables. We divide

the whole regression coefficient vector β̂
aug

a (θ) into 2(p−1) groups, indexed
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by Ta = {1, . . . , 2p}\{a, (a+ p)}. For 1 ≤ j ≤ p, β̂
aug

a(j)(θ) = β̂a(j)(θ) and for

p ≤ j ≤ 2p, β̂
aug

a(j)(θ) = β̃a(j−p)(θ), which are defined in (2.6).

S2 Proof of Lemma 1

In view of (2.6), we can see that the statistic Wa,j(θ) is only determined

by the estimator β̂
aug

a (θ). Note that the HGSL solution β̂
aug

a (θ) is a global

minimizer of the objective function (2.5) with the knockoff matrices con-

stricting based on θ, which can be equivalently formulated as

β̂
aug

a (θ) = arg min
baug∈R2(p−1)k

{
k∑

t=1

√
(b̈

(t)′
U

(t)
−a(θ)b̈

(t) − 2V
(t)
−a(θ)b̈

(t)
) + λ

(∑
j∈Ta

∥D1/2

a(j)(θ)b
aug
(j) ∥2

)}
,

where Ta = {1, . . . , 2p}\{a, (a+p)},U(t)
−a(θ) = [X

(t)
−a, X̃

(t)

−a(θ)]
⊤[X

(t)
−a, X̃

(t)

−a(θ)]/n,

and V
(t)
−a(θ) = [X

(t)
−a, X̃

(t)

−a(θ)]
⊤X(t)

a /n. For simplicity, we use notation b̈
(t)

denotes ((b(t))⊤, (b̃
(t)
)⊤)⊤ defined in (2.5). For j ≤ p, Da(j)(θ) = Da(j)

defined in equation (2.5), and for j > p, Da(j)(θ) = D̃a(l)(θ) with l = j − p

defined in equation (2.5). Note that the tth entry of Da(j)(θ) is equal to

n
n(t)U

(t)
j (θ) for all j ∈ Ta, 1 ≤ t ≤ k. Thus, Da(j)(θ) can be completely rep-

resented by U−a(θ) = (U
(1)
−a(θ), . . . ,U

(k)
−a(θ)) since n/n(t) is a fixed positive

constant.

Obviously, we can see that β̂
aug

a (θ) depends on the data (X−a(θ),Ya)

only through U−a(θ) and V−a(θ) =
(
V

(1)
−a(θ), . . . ,V

(k)
−a(θ)

)
. Recall that
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Ha(θ) = (U−a(θ),V−a(θ)). From the above analysis, we can conclude that

for the statistic vector Wa(θ), it only depends on Ha(θ). Considering the

whole statistics {Wa(θ), 1 ≤ a ≤ p}, since the zeros has no influence in the

knockoff procedure, we can write the statistics matrix as

W1(θ)

W2(θ)

. . .

Wp(θ)


= g(H(θ)).

Further, note that the threshold vector T(θ) is completely determined

by the whole statistics {Wa(θ), 1 ≤ a ≤ p}. By the process of obtaining the

estimated edge set, it’s obvious to see that the estimated Ê(θ) identified by

our procedure with the given sequence of precision matrices θ depends only

on H(θ). Thus, we have completed the proof of Lemma 1.

S3 Proof of Lemma 2

Recall that A∗
a(θ) is the support of knockoff statistics Wa(θ). Thus, the

threshold vector
(
T̂1(θ), . . . , T̂p(θ)

)
depends only on {Wa,j(θ), j ∈ Aa}pa=1

as A∗
a(θ) ⊂ Aa. By equation of (2.6), it shows that

Wa,j(θ) = ∥β̂a(j)(θ)∥2 − ∥β̃a(j)(θ)∥2,
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with

β̂
aug

a (θ) = arg min
c∈R2(p−1)k

{
k∑

t=1

Qtθ(c
(t)) + λ

(∑
j∈Ta

∥D1/2
a(j)(θ)c(j)∥2

)}
(S3.1)

where

Qθt(c
(t)) =

∥X(t)
a − [X

(t)
−a, X̃

(t)

−a(θ)]c
(t)∥2√

n
.

Here, we use the notation c(t) denotes the subvector corresponding to the

tth class and c(l) represents its subvector corresponding to the lth group.

The notation of D1/2
a(j)(θ) is the same as that in the proof of Lemma 1.

When we restrict ourselves to a sequence of subset {Aa(θ)}pa=1 that

satisfies Aa ⊃ A∗
a(θ) for all 1 ≤ a ≤ p, let β̂

aug

a(Ja)(θ) be the subvector of

β̂
aug

a (θ) consists of components indexed by Ja with Ja = Aa ∪ {Aa + p}.

To prove this lemma it’s sufficient to prove that β̂
aug

a(Ja)(θ) = ζ̂
aug

a (θ) since

β̂
aug

a(J c
a )
(θ) = 0 that doesn’t work for the knockoff procedure, where

ζ̂
aug

a (θ) = arg min
b∈R2|Aa|k

{
k∑

t=1

QAa
θt (b

(t)) + λ

(∑
j∈Ja

∥D1/2
a(j)(θ)b(j)∥2

)}
,

with the same λ and θ as in (S3.1). Here

QAa
θt (b

(t)) =
∥X(t)

a − [XAa , X̃Aa(θ)]b
(t)∥2√

n
.

We can see that by equation (S3.1) it shows that for any b ∈ R2(p−1)k
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and b ̸= β̂
aug

a (θ),

k∑
t=1

∥X(t)
a − [X

(t)
−a, X̃

(t)

−a(θ)][(β̂
(t)

a (θ))⊤, (β̃
(t)

a (θ))⊤]⊤∥2√
n

+λ

(∑
j∈Ta

∥D1/2
a(j)(θ)β̂

aug

a(j)(θ)∥2

)

<
k∑

t=1

∥X(t)
a − [X

(t)
−a, X̃

(t)

−a(θ)]b
(t)∥2√

n
+ λ

(∑
j∈Ta

∥D1/2
a(j)(θ)b(j)∥2

)
. (S3.2)

Then we claim that for any c ∈ R|Ja|k,

k∑
t=1

∥X(t)
a − [X

(t)
Aa
, X̃

(t)

Aa
(θ)][(β̂

(t)

a,Aa
(θ))⊤, (β̃

(t)

a,Aa
(θ))⊤]⊤∥2√

n
+λ

(∑
j∈Ja

∥D1/2
a(j)(θ)β̂

aug

a(j)(θ)∥2

)

<
k∑

t=1

∥X(t)
a − [X

(t)
Aa
, X̃

(t)

Aa
(θ)]c(t)∥2√

n
+ λ

(∑
j∈Ja

∥D1/2
a(j)(θ)c(k)∥2

)
,

where k is the order of j in Ja. Otherwise, if there exists Ĉa(Ja) ∈ R|Ja|k

k∑
t=1

∥X(t)
a − [X

(t)
−a, X̃

(t)

−a(θ)]Ĉ
(t)

a(Ja)(θ)∥2√
n

+ λ

(∑
j∈Ja

∥D1/2
a(j)(θ)Ĉa(j)(θ)∥2

)

<
k∑

t=1

∥X(t)
a − [X

(t)
−a, X̃

(t)

−a(θ)][(β̂
(t)

a,Aa
(θ))⊤, (β̃

(t)

a,Aa
(θ))⊤]⊤∥2√

n
+λ

(∑
j∈Ja

∥D1/2
a(j)(θ)β̂

aug

a(j)(θ)∥2

)

Then, let Ĉa(Ta\Ja) = 0 it holds that

k∑
t=1

∥X(t)
a − [X

(t)
−a, X̃

(t)

−a(θ)]Ĉ
(t)

a (θ)∥2√
n

+ λ

(∑
j∈Ta

∥D1/2
a(j)(θ)Ĉa(j)(θ)∥2

)

<

k∑
t=1

∥X(t)
a − [X

(t)
−a, X̃

(t)

−a(θ)][(β̂
(t)

a (θ))⊤, (β̃
(t)

a (θ))⊤]⊤∥2√
n

+λ

(∑
j∈Ta

∥D1/2
a(j)(θ)β̂

aug

a(j)(θ)∥2

)
,

which contradicts equation (S3.2). Thus, we can conclude that (β̂
aug

a(Ja)(θ)) =

ζ̂
aug

a (θ). This guarantees that EF(H(θ)) and EA(HA(θ)) are identical and

thus concludes the proof of Lemma 2.
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S4 Proof of Theorem 1

Let A∗
a(θ̂) be the support of knockoff statistic vector Wa(θ̂). Define set

Âa(θ̂) := A∗
a(θ̂) ∪ A∗

a(θ0). It follows from Condition 4 that the cardinality

of Âa(θ̂) is bounded by d. Hereafter we write Âa(θ̂) as Âa for notational

simplicity. Additionally, we use Â to denote the set of {Âa}pa=1.

Recall the definitions of IA as in (3.14). Define the event

Enp =
{
HÂ(θ̂) ∈ IÂ

}
∩
{
HÂ(θ0) ∈ IÂ

}
.

It’s obvious that HÂ(θ0) ∈ IÂ. We only need to prove that with the prob-

ability at least 1− p−cδ

max
1≤a≤p

∥HÂa
(θ̂)−HÂa

(θ0)∥2 = o(1), (S4.1)

which entails that P(Ec
np) ≤ p−cδ . Then, according to Lemma S1.3, we have

FDR(HÂ(θ0)) = FDR(H) ≤ q. Combining with the Condition 5, the rest

of the proof is similar to the proof of theorem 1 in Fan et al. (2020) with

πnp = p−cδ , so we have omitted it.

Now we will focus on the proof of equation (S4.1). For convenience,

in the following, we will abbreviate HÂa
(θ0) to HÂa

, U
(t)

Âa
(θ0) to U

(t)

Âa
and

V
(t)

Âa
(θ0) to V

(t)

Âa
. Similarly, we abbreviate HÂa

(θ̂) to ĤÂa
, U

(t)

Âa
(θ̂) to Û

(t)

Âa
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and V
(t)

Âa
(θ̂) to V̂

(t)

Âa
. By the definition of HÂa

(θ̂), we have

max
1≤a≤p

∥ĤÂa
−HÂa

∥2

= max
1≤a≤p

∥∥∥(Û(1)

Âa
, . . . , Û

(k)

Âa
, V̂

(1)

Âa
, . . . , V̂

(k)

Âa

)
−
(
U

(1)

Âa
, . . . ,U

(k)

Âa
,V

(1)

Âa
, . . . ,V

(k)

Âa

)∥∥∥
2

≤ max
1≤a≤p

(
k∑

t=1

∥Û
(t)

Âa
−U

(t)

Âa
∥2 +

k∑
t=1

∥V̂
(t)

Âa
−V

(t)

Âa
∥2

)

≤k

(
max

1≤a≤p,1≤t≤k
∥Û

(t)

Âa
−U

(t)

Âa
∥2 + max

1≤a≤p,1≤t≤k
∥V̂

(t)

Âa
−V

(t)

Âa
∥2
)

(S4.2)

Thus, we can see that it is sufficient to deduce the bounds of max1≤a≤p,1≤t≤k ∥Û
(t)

Âa
−

U
(t)

Âa
∥2 and max1≤a≤p,1≤t≤k ∥V̂

(t)

Âa
−V

(t)

Âa
∥2.

The error bounds of max1≤a≤p,1≤t≤k ∥Û
(t)

Âa
− U

(t)

Âa
∥2. Recalling the

definition of U
(t)

Âa
, we have∥∥∥Û(t)

Âa
−U

(t)

Âa

∥∥∥
2
=

∥∥∥∥[X(t)

Âa
,
̂̃
X

(t)

Âa
]⊤[X

(t)

Âa
,
̂̃
X

(t)

Âa
]/n− [X

(t)

Âa
, X̃

(t)

Âa
]⊤[X

(t)

Âa
, X̃

(t)

Âa
]/n

∥∥∥∥
2

=

∥∥∥∥∥∥∥∥
 0 (X

(t)

Âa
)⊤(
̂̃
X

(t)

Âa
− X̃

(t)

Âa
)/n

(X
(t)

Âa
)⊤(
̂̃
X

(t)

Âa
− X̃

(t)

Âa
)/n [(

̂̃
X

(t)

Âa
)⊤
̂̃
X

(t)

Âa
− (X̃

(t)

Âa
)⊤X̃

(t)

Âa
]/n


∥∥∥∥∥∥∥∥
2

≤2

∥∥∥∥(X(t)

Âa
)⊤(
̂̃
X

(t)

Âa
− X̃

(t)

Âa
)/n

∥∥∥∥
2

+

∥∥∥∥[( ̂̃X(t)

Âa
)⊤
̂̃
X

(t)

Âa
− (X̃

(t)

Âa
)⊤X̃

(t)

Âa
]/n

∥∥∥∥
2

=:2Aat +Bat (S4.3)

where

Aat = ∥(X(t)

Âa
)⊤(
̂̃
X

(t)

Âa
−X̃

(t)

Âa
)/n∥2, andBat =

∥∥∥∥[( ̂̃X(t)

Âa
)⊤
̂̃
X

(t)

Âa
− (X̃

(t)

Âa
)⊤X̃

(t)

Âa

]
/n

∥∥∥∥
2

.

Here, the notation
̂̃
X

(t)

Âa
is the abbreviation of

̂̃
X

(t)

Âa
(θ̂).
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Recalling the knockoff generation process (2.5), for the original data

matrix X
(t)
−a, the ideal knockoff matrix and the approximate knockoff matrix

constructed using the estimated precision matrices can be represented as

X̃
(t)

−a = X
(t)
−aC

(t)
a + Z(t)

a B(t)
a and

̂̃
X

(t)

−a = X
(t)
−aĈ

(t)

a + Z(t)
a B̂

(t)

a .

respectively, where Z(t)
a is a random matrix whose rows are i.i.d copies of

N(0, Ip−1) and independent of X
(t)
−a, C

(t)
a = Ip−1−diag{s(t)a }Ω(t)

−a and Ĉ
(t)

a =

Ip−1 − diag{s(t)a }Ω̂
(t)

−a, B(t)
a =

(
2diag{s(t)a } − diag{s(t)a }Ω(t)

−adiag{s
(t)
a }
)1/2

,

and B̂
(t)

a =
(
2diag{s(t)a } − diag{s(t)a }Ω̂

(t)

−adiag{s
(t)
a }
)1/2

.

For convenience, denote by

G1 = max
1≤a≤p,1≤t≤k

∥ 1
n
(X

(t)

Âa
)⊤X

(t)

Âa
∥2, G2 = max

1≤a≤p,1≤t≤k
∥Ĉ

(t)

a −C(t)
a ∥2,

G3 = max
1≤a≤p,1≤t≤k

∥ 1
n
(X

(t)

Âa
)⊤Z

(t)

Âa
∥2, G4 = max

1≤a≤p,1≤t≤k
∥B̂

(t)

a −B(t)
a ∥2,

and G5 = max1≤a≤p,1≤t≤k ∥ 1
n
(Z

(t)

Âa
)⊤Z

(t)

Âa
∥2. Here Z

(t)

Âa
is the submatrix of

Z(t)
a with the columns in Âa. By a more elaborate derivation, we have

max
1≤a≤p,1≤t≤k

∥∥∥∥ 1n(X(t)

Âa
)⊤(
̂̃
X

(t)

Âa
− X̃

(t)

Âa
)

∥∥∥∥
2

≤ G1G2 +G3G4,

max
1≤a≤p,1≤t≤k

1

n

∥∥∥∥( ̂̃X(t)

Âa
)⊤
̂̃
X

(t)

Âa
− (X̃

(t)

Âa
)⊤X̃

(t)

Âa

∥∥∥∥
2

≤ G1G
2
2 + 2G3G2G4 +G5G

2
4 + 2G1G2 + 2G3G4,

Combining with formula (S4.3), we can conclude that

max
1≤a≤p,1≤t≤k

∥∥∥Û(t)

Âa
−U

(t)

Âa

∥∥∥
2
≤ 4G1G2 + 4G3G4 +G1G

2
2 +G5G

2
4 + 2G3G2G4.
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Thus, in the following, we will deduce the upper bounds of G1, G2, G3, G4

and G5 respectively.

The upper bounds of G1, G3, G5.

It follows from Cauchy’s interlace theorem and Condition 1 that

1/M1 ≤ λmin(Σ
(t)) ≤ λmin(Σ

(t)

Âa,Âa
) ≤ λmax(Σ

(t)

Âa,Âa
) ≤ λmax(Σ

(t)) ≤ M1

holds uniformly for any 1 ≤ a ≤ p, 1 ≤ t ≤ k. By Remark 5.40 in Vershynin

(2010), it yields that with probability at least 1− 2pk exp(−cn)

G1 = max
1≤a≤p,1≤t≤k

n(t)

n

∥∥∥∥ 1

n(t)
(X

(t)

Âa
)⊤X

(t)

Âa

∥∥∥∥
2

≤n(t)

n
max

1≤a≤p,1≤t≤k
λmax(Σ

(t)

Âa,Âa
) +

n(t)

n
max{η1, η21} ≤ C (S4.4)

where η1 = C1

√
d/n(t) +1 with C1 is a positive constant. Under Condition

4 and Condition 2 that d < n and n ≍ n(t), we have η1 = O(1), which

entails the last inequality.

Correspondingly, with probability at least 1− 2pk exp(−cn)

G3 = max
1≤a≤p,1≤t≤k

n(t)

n

∥∥∥∥ 1

n(t)
(X

(t)

Âa
)⊤Z

(t)

Âa

∥∥∥∥
2

≤ n(t)

n
max{η1, η21} ≤ C (S4.5)

since E[ 1
n(t) (X

(t)

Âa
)⊤Z

(t)

Âa
] = 0. Similarly, with probability at least 1−2pk exp(−cn)

G5 = max
1≤a≤p,1≤t≤k

n(t)

n

∥∥∥∥ 1

n(t)
(Z

(t)

Âa
)⊤Z

(t)

Âa

∥∥∥∥
2

≤ n(t)

n

(
1 + max{η1, η21}

)
≤ C,

(S4.6)

since E[ 1
n(t) (Z

(t))⊤Z(t)] = I.
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The upper bounds of G2 and G4.

Since the vector s
(t)
a is chosen such thatΣ−a,−a−2−1diag{s(t)a } is positive

semidefinite, we have

max
1≤a≤p,1≤t≤k

∥s(t)a ∥∞ ≤ 2 max
1≤a≤p,1≤t≤k

λmax(Σ
(t)
−a,−a) ≤ 2λmax(Σ

(t)) ≤ 2M1

where the second inequality follows form Cauchy’s interlace theorem and

the last inequality is due to Condition 1. Therefore, under Conditions 1

and 3, we have with probability at least 1− p−δ

G2 = max
1≤a≤p,1≤t≤k

∥(Ĉ
(t)

a −C(t)
a )∥2

≤ max
1≤a≤p,1≤t≤k

∥s(t)a ∥∞ max
1≤a≤p,1≤t≤k

∥Ω̂
(t)

−a −Ω
(t)
−a∥2 ≤ Cbn (S4.7)

It follows from the definitions of B(t)
a and B̂

(t)

a that (B(t)
a )2 − (B̂

(t)

a )2 =

diag{s(t)a }(Ω(t)
−a− Ω̂

(t)

−a)diag{s
(t)
a } and thus by Condition 3 it holds that with

probability at least 1− p−δ

max
1≤a≤p,1≤t≤k

∥(B̂
(t)

a )2 − (B(t)
a )2∥2

≤ max
1≤a≤p,1≤t≤k

∥s(t)a ∥2∞ · max
1≤a≤p,1≤t≤k

∥Ω(t)
−a − Ω̂

(t)

−a∥2 ≤ Cbn. (S4.8)

This, together with the fact that (B̂
(t)

a )2 = (B(t)
a )2+[(B̂

(t)

a )2−(B(t)
a )2], yields
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that

λmin{(B̂
(t)

a )2} ≥λmin{(B(t)
a )2}+ λmin{(B̂

(t)

a )2 − (B(t)
a )2}

≥λmin{(B(t)
a )2} − λmax{(B(t)

a )2 − (B̂
(t)

a )2} ≥ λmin{(B(t)
a )2} − Cbn

(S4.9)

holds uniformly for all 1 ≤ a ≤ p, 1 ≤ t ≤ k.

Recall that (B(t)
a )2 = 2diag{s(t)a } − diag{s(t)a }Ω(t)

−adiag{s
(t)
a }. The as-

sumption that λmin(2diag{s(t)a } − diag{s(t)a }Ω(t)
−adiag{s

(t)
a }) ≥ C3 uniformly

for all 1 ≤ a ≤ p, 1 ≤ t ≤ k with some constant C3 > 0 implies that

λmin{(B(t)
a )2} ≥ C3

holds uniformly over 1 ≤ a ≤ p, 1 ≤ t ≤ k. This, together with (S4.9) and

the assumption that bn → 0 as n → ∞, yields that λmin{(B̂
(t)

a )2} ≥ C3/2

holds uniformly over 1 ≤ a ≤ p, 1 ≤ t ≤ k for all n large enough. Thus,

it follows from Lemma 2.2 in Schmitt (1992) that with probability at least

1− p−δ

G4 = max
1≤a≤p,1≤t≤k

∥B̂
(t)

a −B(t)
a ∥2 ≤ C max

1≤a≤p,1≤t≤k
∥(B̂

(t)

a )2 − (B(t)
a )2∥2 ≤ C4bn.

(S4.10)

The last inequality is given by (S4.8). Therefore, in view of these results of

(S4.4),(S4.5),(S4.6),(S4.7), and (S4.10), we can conclude that with proba-
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bility at least 1− 6pk exp(−cn)− 2p−δ

max
1≤a≤p,1≤t≤k

∥∥∥Û(t)

Âa
−U

(t)

Âa

∥∥∥
2
≤ Cbn (S4.11)

The error bounds of max1≤a≤p,1≤t≤k ∥V̂
(t)

Âa
−V

(t)

Âa
∥2. Recalling the

definition of VÂa
, we have that

max
1≤a≤p,1≤t≤k

∥V̂
(t)

Âa
−V

(t)

Âa
∥2 = max

1≤a≤p,1≤t≤k

∥∥∥∥ 1n [X(t)

Âa
,
̂̃
X

(t)

Âa
]⊤X(t)

a − 1

n
[X

(t)

Âa
, X̃

(t)

Âa
]⊤X(t)

a

∥∥∥∥
2

= max
1≤a≤p,1≤t≤k

∥∥∥∥ 1n( ̂̃X(t)

Âa
− X̃

(t)

Âa
)⊤X(t)

a

∥∥∥∥
2

≤ max
1≤a≤p,1≤t≤k

1

n

∥∥∥∥( ̂̃X(t)

Âa
− X̃

(t)

Âa
)

∥∥∥∥
2

∥∥∥X(t)
a

∥∥∥
2

≤ 1√
n

max
1≤a≤p,1≤t≤k

∥X(t)
a ∥2

√
G1G2 +

1√
n

max
1≤a≤p,1≤t≤k

∥X(t)
a ∥2

√
G5G4.

Since we have already deduced bounds of G1, G2, G4, and G5, we only need

to deduce the bounds of max1≤a≤p,1≤t≤k
1√
n
∥X(t)

a ∥2 in the following.

Under Condition 1, since ∥X(t)
a ∥2/σaa ∼ χ2

(n(t))
for any 1 ≤ a ≤ p

with σ
(t)
aa denoting the (a, a)th entry of Σ(t), applying the following tail

probability bound with t = 1/2 for the chi-squared distribution with n(t)

degrees of freedom

P{|
χ2
(n(t))

n(t)
− 1| ≥ 1/2} ≤ 2 exp(−n(t)/32)

gives that √
1

2
σ(t)
aa ≤ ∥X(t)

a ∥2/
√
n(t) ≤

√
3

2
σ(t)
aa

holds with probability at least 1− 2 exp(−n(t)/32).



ZHOU ET AL.

By Condition 1 that the eigenvalues of Σ(t) are within the interval

[1/M1,M1], we have 1/M1 ≤ σ
(t)
aa ≤ M1 for any 1 ≤ a ≤ p. Since n = O(n(t))

by Condition 2, it follows that for sufficiently large n, with probability at

least 1− 2 exp(−n/32),

∥X(t)
a ∥2√
n

=
∥X(t)

a ∥2√
n(t)

√
n(t)

n
≤
√

n(t)

n

√
3

2
σ(t)
aa ≤ C.

Thus, we conclude that with the probability at least 1− 2pk exp(−n/32)

max
1≤a≤p,1≤t≤k

∥X(t)
a ∥2√
n

≤ C. (S4.12)

Combining these results (S4.4), (S4.6), (S4.7),(S4.10), and (S4.12), we

can deduce that with the probability at least 1 − 4pk exp(−cn) − 2p−δ −

2pk exp(−n/32)

max
1≤a≤p,1≤t≤k

∥V̂
(t)

Âa
−V

(t)

Âa
∥2 ≤ Cbn. (S4.13)

By (S4.2), (S4.11) and (S4.13), we can conclude that with probability at

least 1− 10pk exp(−cn)− 4p−δ − 2pk exp(−n/32)

max
1≤a≤p

∥ĤÂa
−HÂa

∥2 ≤ Ckbn,

for some positive constants C. Since log(p) = o(n), there exits some posi-

tive constant cδ such that p−cδ > 10pk exp(−cn) + 4p−δ + 2pk exp(−n/32).

Further, as kbn = o(1) assumed in the theorem, it holds that with the
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probability at least 1− p−cδ

max
1≤a≤p

∥ĤÂa
−HÂa

∥2 = o(1),

which completes the proof of Theorem 1.

S5 Proof of Theorem 2

By Lemma S1.4, we have that with the probability at least 1− p−cυ

sup
θ∈Θ

∑
j∈Ta

∥β̂
aug

a(j)(θ)− βaug
a(j)∥2 ≤ Cllaλ, (S5.1)

holds simultaneously for all 1 ≤ a ≤ p, where λ = Cλ[
k+log(p)

n
]1/2 with

Cλ > 0 some constant and Cl is some positive constant. For the nota-

tional simplicity, hereafter we write Wa,j(θ) which are constructed based on

β̂
aug

a (θ) as W̆a,j.

Let |W̆a,(1)| ≥ . . . ≥ |W̆a,(p−1)| be the ordered knockoff statistics ac-

cording to magnitude. Denote by j∗ the index such that |W̆a,(j∗)| = Ta(θ).

Then, by the definition of Ta(θ), it holds that −Ta(θ) < W̆a,(j∗+1) ≤ 0. As

in the proof of Theorem 3 in Fan et al. (2020), it’s sufficient to consider the

two case of W̆a,(j∗+1) = 0 and −Ta(θ) < W̆a,(j∗+1) < 0 separately.

Case 1. Consider the case of −Ta(θ) < W̆a,(j∗+1) < 0. In this case,

from the definition of threshold Ta(θ), we have

γ + 1 + |{j ∈ {1, . . . , p}, W̆a,j ≤ −Ta(θ)}|
|Ê(θ)| ∨ 1

>
q

cγp
.
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Using the same argument as in Lemma 6 of Fan et al. (2020) together

with Lemma S1.4, we can prove from Condition 7 that |Ê(θ)| ≥ M4|E|

with asymptotic probability one. This leads to |{j ∈ {1, . . . , p}, W̆a,j ≤

−Ta(θ)}| > (M4|E|q)/(cγp) − γ − 1 with the same probability. Moreover,

when W̆a,j ≤ −Ta(θ), we have ∥β̂
aug

a(j)(θ)∥2 − ∥β̂
aug

a(j+p)(θ)∥2 ≤ −Ta(θ), and

∥β̂
aug

a(j+p)(θ)∥2 ≥ Ta(θ). Using equation (S5.1), we obtain

Cllaλ ≥
∑
j∈Ta

∥β̂
aug

a(j)(θ)− βaug
a(j)∥2 ≥

∑
{j:W̆a,j≤−Ta}

∥β̂
aug

a(j+p)(θ)∥2

≥ Ta|{j : W̆a,j ≤ −Ta(θ)}|.

Combining these results leads to Cllaλ ≥ Ta(θ)((qM4|E|)/(cγp) − 1 − γ).

According to Condition 8 that |E| ≥ αplm , we have

Ta(θ) ≤
Cllaλcγp

qM4|E| − pcγ − pγcγ
≤ Cllmλcγ

qM4αlm − cγ − γcγ
≤ νnλ/(2Cλ) (S5.2)

for large enough n since νn → ∞ as n → ∞.

In light of Equation (S5.1), we derive

Cllaλ ≥
∑
j∈Ta

∥β̂
aug

a(j)(θ)−βaug
a(j)∥2 =

∑
j∈[−a]

[
∥β̂

aug

a(j)(θ)− βaug
a(j)∥2 + ∥β̂

aug

a(j+p)(θ)∥2
]

≥
∑

j∈NEa∩(N̂Ea(θ))c

[
∥β̂

aug

a(j)(θ)− βaug
a(j)∥2 + ∥β̂

aug

a(j+p)(θ)∥2
]

≥
∑

j∈NEa∩(N̂Ea(θ))c

[
∥β̂

aug

a(j)(θ)− βaug
a(j)∥2 + ∥β̂

aug

a(j)(θ)∥2 − Ta(θ)
]
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since ∥β̂
aug

a(j+p)(θ)∥2 ≥ ∥β̂
aug

a(j)(θ)∥2 − Ta(θ) when j ∈ (N̂Ea(θ))
c. Using the

triangle inequality and noting that ∥βaug
a(j)∥2 ≥ νnλ/Cλ for j ∈ NEa, we can

conclude that

Cllaλ ≥
∑

j∈NEa∩(N̂Ea(θ))c

(∥βaug
a(j)∥2−Ta(θ)) ≥ (νnλ/Cλ−Ta(θ))|NEa∩(N̂Ea(θ))

c|.

Thus, it follows that

|NEa ∩ N̂Ea(θ)|
la

= 1− |NEa ∩ (N̂Ea(θ))
c|

la
≥ 1− Clλ

λνn/Cλ − Ta(θ)
≥ 1− 2Cl

νnCλ

uniformly over all θ ∈ Θ since Ta(θ) ≤ νnλ/(2Cλ)

Case 2. Consider the case of W̆a,(j∗+1) = 0. In this case, by the

definition of Ta(θ)

γ + |j : W̆a,j < 0|
Ê(θ)

≤ q/cγp.

If |j : W̆a,j < 0| > 2ClCλcγlaν
−1
n , then using the same argument as in (S5.2),

we can also obtain that Ta(θ) ≤ νnλ/(2Cλ), and the rest proof is the same

as in Case 1. On the other hand, if |j : W̆a,j < 0| ≤ 2ClCλcγlaν
−1
n we have

|N̂Ea(θ) ∩ NEa| = |supp(W̆a) ∩ NEa| − |{j : W̆a,j < 0} ∩ NEa|

≥ |supp(W̆a) ∩ NEa| − 2ClCλcγlaν
−1
n (S5.3)

since N̂Ea(θ) = supp(W̆a)\{j : W̆a,j < 0}. Let us now focus on |supp(W̆a)∩

NEa|. We observe that

supp(W̆a) ⊃ {1, . . . , p}\La (S5.4)
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where La = {1 ≤ j ≤ p : β̂
aug

a(j)(θ) = 0}. Meanwhile, note that in view of

Equation (S5.1) we have with probability at least 1− p−cυ

Cllaλ ≥ sup
θ∈Θ

∑
j∈Ta

∥β̂
aug

a(j)(θ)− βaug
a(j)∥2 ≥ sup

θ∈Θ

∑
j∈La∩NEa

∥β̂
aug

a(j)(θ)− βaug
a(j)∥2

=
∑

j∈La∩NEa

∥βaug
a(j)∥2 ≥ |La ∩ NEa| min

j∈NEa

∥βaug
a(j)∥2.

By Condition 6 , we can further deduce from the above inequality that

|La ∩ NEa| ≤ ClCλν
−1
n la,

which together with |NEa| = la entails that

|({1, . . . , p}\La) ∩ NEa| ≥ (1− ClCλν
−1
n )la.

Combining this result with Equations (S5.4) yields

|supp(W̆a) ∩ NEa| ≥ |({1, . . . , p}\La) ∩ NEa| ≥ (1− ClCλν
−1
n )la. (S5.5)

Thus, in view of inequalities Equations (S5.3) and (S5.5), with probability

at least 1− p−cυ it holds uniformly over all 1 ≤ a ≤ p that

|N̂Ea(θ) ∩ NEa|
la

≥ 1− ClCλν
−1
n − 2ClCλcγν

−1
n

for all θ ∈ Θ.

Combining the above two scenarios, we have shown that with asymp-

totic probability one, uniformly over all 1 ≤ a ≤ p it holds that with
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probability at least 1− p−cυ ,

|N̂Ea(θ) ∩ NEa|
la

≥ 1− Cν−1
n

for all θ ∈ Θ, where C is some positive constant. Since

|Ê(θ) ∩ E| ≥ 1

2

p∑
a=1

|NEa ∩ N̂Ea(θ)| and |E| = 1

2

p∑
a=1

|NEa|,

then it entails that with probability at least 1− p−cυ

|Ê(θ) ∩ E|
|E|

≥
∑p

a=1 |NEa ∩ N̂Ea(θ)|∑p
a=1 |NEa|

≥
∑p

a=1 la(1− C/νn)∑p
a=1 la

≥ 1− 2C

νn
.

This along with the assumption P{θ̂ ∈ Θ} ≥ 1 − p−δ in Condition 3 gives

that

Power(Ê(θ̂)) = E

[
E ∩ Ê(θ̂)

|E|

]
≥ E

[
E ∩ Ê(θ̂)

|E|
|θ̂ ∈ Θ

]
P{θ̂ ∈ Θ}

≥
[
1− Cν−1

n

]
(1− p−cυ)(1− p−δ) ≥ 1− Cν−1

n − p−c̃δ + o(ν−1
n ) → 1

for some positive constant c̃δ, which concludes the proof of Theorem 2.

S6 Proof of Lemma S1.1

Recalling the expressions of X−a and Ya, it yields that

(X−a,Ya) =



X
(1)
−a X̃

(1)

−a X(1)
a

X
(2)
−a X̃

(2)

−a X(2)
a

. . . . . .
...

X
(k)
−a X̃

(k)

−a X(k)
a


,
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and

(
(X−a)swap(S),Ya

)
=



[X
(1)
−a, X̃

(1)

−a]swap(S) X
(1)
a

[X
(2)
−a, X̃

(2)

−a]swap(S) X
(2)
a

. . .
...

[X
(k)
−a, X̃

(k)

−a]swap(S) X
(k)
a


.

Since X(1), . . . ,X(k) are independent, it implies that
(
[X

(t)
−a, X̃

(t)

−a],X
(t)
a

)
are

independent over t from 1 to k. Thus, to prove the claim, it suffices to show

that
(
[X

(t)
−a, X̃

(t)

−a],X
(t)
a

)
d
=
(
[X

(t)
−a, X̃

(t)

−a]swap(S),X
(t)
a

)
, which trivially follows

from the proof of Lemma 3.2 in Candès et al. (2018). Thus, we omitted it

here.

S7 Proof of Lemma S1.2

For any given a ∈ (1, . . . , p), we can write the statistics Wa = f (X−a,Ya)

for some function f . Let ϵ = (ϵ1, . . . , ϵp) be a sequence of independent

random variables such that ϵj = ±1 with probability 1/2 if j ∈ [−a] \NEa,

and ϵj = 1 otherwise. To prove the claim, it suffices to establish that

Wa
d
= ϵ⊙Wa,

where⊙ denotes pointwise multiplication, i.e. ϵ⊙Wa = (ϵ1Wa,1, . . . , ϵpWa,p).

Now, let S = {j : ϵj = −1}. Obviously, S ⊂ [−a]\NEa. In view of

(2.6), it’s easy to see the statistic Wa,j satisfies the flip-sign property, that
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is, when we swap the columns X
(t)
j and X̃

(t)

j for all 1 ≤ t ≤ k simultaneously

in the matrix X−a, the sign of Wa,j will switch. Then we have

ϵ⊙Wa = f
(
(X−a)swap(S),Ya

)
.

According to Lemma S1.1, it implies that

Wa = f (X−a,Ya)
d
= f

(
(X−a)swap(S),Ya

)
= ϵ⊙Wa,

which completes the proof of Lemma S1.2.

S8 Proof of Lemma S1.3

It follows from our Lemma S1.2 that Wa = (Wa,j, j ∈ [−a]) enjoys the

sign-flip property on NEc
a for each a ∈ {1, . . . , p}. Thus, we can use Lemma

C.4 in Li and Maathuis (2021) to prove these pairs of (γ, cγ) = (1, 1.93) and

(γ, cγ) = (0.01, 102) satisfying

E

[
#{j /∈ NEa,Wa,j ≥ T̂a}

γ +#{j /∈ NEa,Wa,j ≤ −T̂a}

]
≤ cγ. (S8.1)

In addition, note that the global thresholds is obtained by solving the

formula (2.8). If feasible thresholds do not exist, we set T̂ = (+∞, . . . ,+∞).

Then the FDR is 0 because no edges can be selected. Thus the inequality
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FDR ≤ q holds. If feasible thresholds exist, we have

FDR = E

[
|Ê ∩ Ec|
|Ê| ∨ 1

]
≤ E

[∑p
a=1#{j /∈ NEa,Wa,j ≥ T̂a}

|Ê| ∨ 1

]

=

p∑
a=1

E

[
γ +#{j ∈ [−a],Wa,j ≤ −T̂a}

|Ê| ∨ 1

#{j /∈ NEa,Wa,j ≥ T̂a}
γ +#{j ∈ [−a],Wa,j ≤ −T̂a}

]

≤
p∑

a=1

E

[
γ +#{j ∈ [−a],Wa,j ≤ −T̂a}

|Ê| ∨ 1

#{j /∈ NEa,Wa,j ≥ T̂a}
γ +#{j /∈ NEa,Wa,j ≤ −T̂a}

]

≤ q

cγp

p∑
a=1

E

[
#{j /∈ NEa,Wa,j ≥ T̂a}

γ +#{j /∈ NEa,Wa,j ≤ −T̂a}

]
(S8.1)

≤ q,

where the penultimate inequality follows from the property of the threshold

vector and the last inequality is due to (S8.1). Therefore, the FDR of our

procedure is controlled, which completes the proof of Lemma S1.3.

S9 Proof of Lemma S1.4

Recalling equation (2.5), the estimated regression coefficient by HGSL with

the knockoff matrix based on θ can be written as

β̂
aug

a (θ) = arg min
c∈R2(p−1)k

{
k∑

t=1

Qtθ(c
(t)) + λ

(∑
j∈Ta

∥D1/2
a(j)(θ)c(j)∥2

)}

where

Qθt(c
(t)) =

∥X(t)
a − [X

(t)
−a, X̃

(t)

−a(θ)]c
(t)∥2√

n
.

Before proving (S1.1), we first define an event Ba, that

Ba =

{
maxj∈Ta ∥D

−1/2
Ea D−1/2

a(j) (θ)X⊤
(j)(θ)Ea∥2

√
n

≤ λ
ξ − 1

ξ + 1

}
,
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where Ta = {1, . . . , 2p}\{a, (a + p)}, DEa be the k × k diagonal matrix

with tth diagonal entry the squared l2 norm of the error vector E(t)
a for

1 ≤ t ≤ k, and X(j)(θ) is an N × k submatrix of X−a(θ) given by columns

corresponding to the jth group.

Note that combined with knockoff matrices, there are 2(p− 1) group in

X−a(θ). For convenience, we index them by Ta = {1, . . . , 2p}\{a, (a + p)}

according to the corresponding index of variables and knockoff variables.

Specifically, for the index 1 ≤ j ≤ p, it corresponds to the original variable

Xj. For the index j ∈ (p+1, . . . , 2p), it corresponds to the knockoff variable

X̃j−p. Thus, for j ≤ p, Da(j)(θ) = Da(j), and for j > p, Da(j)(θ) = D̃a(l)(θ)

with l = j − p, as defined in equation (2.5).

Using the same proof technique as Lemma D.6 in Ren et al. (2019),

we can prove that this event Ba holds with probability at least 1 − 3p1−υ.

Conditional on the events {
⋂

1≤a≤p Ba} and θ ∈ Θ, the proof of Lemma

S1.4 is similar to that of Theorem 3.1 in Ren et al. (2019). We will simplify

the same parts as that in the proof of Theorem 3.1 in Ren et al. (2019), and

emphasize the additional proof techniques and steps that needed to deal

with the barriers causing by the estimated precision matrices.

Refer to the proof of Theorem 3.1 in Ren et al. (2019). Denote by

β̄
aug
a = D1/2

a (θ)βaug
a , ˆ̄β

aug

a (θ) = D1/2
a (θ)β̂

aug

a (θ), and △̄a =
ˆ̄βaug
a (θ)− β̄

aug
a . In
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what follows, we establish all results in terms of △̄a. As pointed in Ren et al.

(2019) this does not affect our result much since our Condition 1 and the

fact of (X
(t)
l )⊤X

(t)
l /(Σ

(t)
0 )l,l ∼ χ2(n(t)) and (X̃

(t)

l )⊤X̃
(t)

l /(Σ
(t)
0 )l,l ∼ χ2(n(t)),

together with an application of Lemma E.1 of Ren et al. (2019) and the

union bound, entail that with probability at least 1− 2pk exp(−n/32),

M1/2 ≤ (X
(t)
l )⊤X

(t)
l /n(t) ≤ 3M1/2 and M1/2 ≤ (X̃

(t)

l )⊤X̃
(t)

l /n(t) ≤ 3M1/2

holds simultaneously for all 1 ≤ l ≤ p, 1 ≤ t ≤ k.

Recalling the knockoff generation process (2.3), for the original data

matrix X
(t)
−a, the ideal knockoff matrix and the approximate knockoff matrix

constructed using some given precision matrices θ can be represented as

X̃
(t)

−a = X
(t)
−aC

(t)
a + Z(t)

a B(t)
a and X̃

(t)

−a(θ) = X
(t)
−aC

(t)
a (θ) + Z(t)

a B(t)
a (θ).

respectively, where Z(t)
a is a random matrix whose rows are i.i.d copies

of N(0, Ip−1) and independent of X
(t)
−a, C

(t)
a = Ip−1 − diag{s(t)a }Ω(t)

−a and

C(t)
a (θ) = Ip−1−diag{s(t)a }Γ(t)

−a,B
(t)
a =

(
2diag{s(t)a } − diag{s(t)a }Ω(t)

−adiag{s
(t)
a }
)1/2

,

and B(t)
a (θ) =

(
2diag{s(t)a } − diag{s(t)a }Γ(t)

−adiag{s
(t)
a }
)1/2

.

According to Lemma B.1 in Kaul et al. (2019), we have with the prob-

ability at least 1− p−c for some positive constant c

max
1≤a≤p,1≤t≤k

∥(C(t)
a (θ)−C(t)

a )⊤(X
(t)
−a)

⊤X
(t)
−a(C

(t)
a (θ)−C(t)

a )/n(t)∥∞

≤ max
1≤a≤p,1≤t≤k

∥(C(t)
a (θ)−C(t)

a )⊤Σ−a,−a(C
(t)
a (θ)−C(t)

a )∥∞ + C
√
log(p)/n(t)
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Since θ ∈ Θ, by Condition 1 and equations (S4.7), we have

max
1≤a≤p,1≤t≤k

∥(C(t)
a (θ)−C(t)

a )⊤Σ−a,−a(C
(t)
a (θ)−C(t)

a )∥∞

≤ max
1≤a≤p,1≤t≤k

∥C(t)
a (θ)−C(t)

a ∥22∥Σ∥2 ≤ Cbn,

which shows that with the probability at least 1− p−c

max
1≤a≤p,1≤t≤k

∥(C(t)
a (θ)−C(t)

a )⊤(X
(t)
−a)

⊤X
(t)
−a(C

(t)
a (θ)−C(t)

a )/n(t)∥∞ = O(bn+dn),

where dn =
√
log(p)/n(t).

Using the same technique, combining with the result of (S4.10), we can

prove that with the probability at least 1− p−c

max
1≤a≤p,1≤t≤k

∥(C(t)
a (θ)−C(t)

a )⊤(X
(t)
−a)

⊤Z
(t)
−a(B

(t)
a (θ)−B(t)

a )/n(t)∥∞ = O(dn),

and with the probability at least 1− p−c

max
1≤a≤p,1≤t≤k

∥(B(t)
a (θ)−B(t)

a )⊤(Z
(t)
−a)

⊤Z
(t)
−a(B

(t)
a (θ)−B(t)

a )/n(t)∥∞ = O(bn+dn).

By the expression of triangle inequality, we can derive

max
1≤a≤p,1≤t≤k

∥(X̃
(t)

−a(θ))
⊤X̃

(t)

−a(θ)/n
(t) − (X̃

(t)

−a)
⊤X̃

(t)

−a/n
(t)∥∞

≤ max
1≤a≤p,1≤t≤k

∥(C(t)
a (θ)−C(t)

a )⊤(X
(t)
−a)

⊤X
(t)
−a(C

(t)
a (θ)−C(t)

a )/n(t)∥∞

+ 2 max
1≤a≤p,1≤t≤k

∥(C(t)
a (θ)−C(t)

a )⊤(X
(t)
−a)

⊤Z
(t)
−a(θ)−B(t)

a )/n(t)∥∞

+ max
1≤a≤p,1≤t≤k

∥(B(t)
a (θ)−B(t)

a )⊤(Z
(t)
−a)

⊤Z
(t)
−a(B

(t)
a (θ)−B(t)

a )/n(t)∥∞
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Then, we can conclude that

max
1≤l≤p,1≤t≤k

|(X̃
(t)

l (θ))⊤X̃
(t)

l (θ)/n(t)−(X̃
(t)

l )⊤X̃
(t)

l /n(t)| = O(bn+
√
log(p)/n(t))

holds with probability at least 1− 3p−c. It entails that for sufficiently large

n there is a positive constant M̃1 that

M̃1/2 ≤ (X̃
(t)

l (θ))⊤X̃
(t)

l (θ)/n(t) ≤ 3M̃1/2 (S9.1)

holds uniformly over 1 ≤ l ≤ p,1 ≤ t ≤ k with probability at least 1 −

3p−c − 2pk exp(−n/32) since bn = o(1) and log(p) = o(n). Therefore, △

and △̄ are of the same order componentwise and globally.

Using the same techniques as the Step 1 of the proof of Theorem 3.1

in Ren et al. (2019), we can obtain that for all 1 ≤ a ≤ p,

∑
l∈Ta/NEa

∥△̄a(l)∥2 ≤ ξ
∑
l∈NEa

∥△̄a(l)∥2. (S9.2)

Further, under Conditions 1-2 and the fact thatX(t)′

a X(t)
a /(Σ

(t)
0 )a,a ∼ χ2(n(t))

and E(t)′

a E(t)
a /ω

(t)
aa ∼ χ2(n(t)), by Lemma D.7 in Ren et al. (2019) it holds

that with the probability at least 1− 4k exp(−n/32),

k∑
t=1

∥X̄ (t)
−a(θ)△̄

(t)
a ∥2

nζt
≥ 1√

6M1M2

k∑
t=1

∥X̄ (t)
−a(θ)△̄

(t)
a ∥2

n
(S9.3)

where X̄ (t)
−a(θ) = X (t)

−a(θ)(D
(t)
a (θ))−1/2 and ζt = Qt

(
ˆ̄βaug(t)
a (θ)

)
+Qt

(
β̄

aug(t)
a

)
.

In addition, since the facts of (A.27), (A.28), and (A.30) in the sup-

plementary materials of Ren et al. (2019) all hold here, using the same
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techniques of (A.31) in the supplementary materials of Ren et al. (2019),

we can prove that

k∑
t=1

∥X̄ (t)
−a(θ)△̄

(t)
a ∥2

nζt
≤ λ

(
3ξ − 1

ξ + 1
+ ξ

(ξ − 3)+
ξ + 1

) ∑
l∈NEa

∥△̄a(l)∥2, (S9.4)

Combining with the result of (S9.3), we can conclude that

k∑
t=1

∥X̄ (t)
−a(θ)△̄

(t)
a ∥2

n
≤ λ√

6M1M2

(
3ξ − 1

ξ + 1
+ ξ

(ξ − 3)+
ξ + 1

) ∑
l∈NEa

∥△̄a(l)∥2

(S9.5)

holds with the probability at least 1− 4k exp(−n/32).

For convenience, let

Cξ =
1√

6M1M2

(
3ξ − 1

ξ + 1
+ ξ

(ξ − 3)+
ξ + 1

)
.

which is shown in equation (S9.4). The inequality (S9.5) implies that with

the probability at least 1− 4k exp(−n/32)

k∑
t=1

(△̄(t)
a )⊤(X̄ (t)

−a(θ))
⊤X̄ (t)

−a(θ)△̄
(t)
a

n
≤ Cξλ

∑
l∈NEa

∥△̄a(l)∥2. (S9.6)

Following the same definition as that in Ren et al. (2019), let

κ(ξ,NEa) = inf
u̸=0

{√
|NEa|∥X̄−a(θ)u∥2√
n
∑

j∈NEa
∥u(j)∥2

: u ∈ Ψ(ξ,NEa)

}
,

where Ψ(ξ,NEa) = {u ∈ R2(p−1)k :
∑

j∈Ta/NEa
∥u(j)∥2 ≤ ξ

∑
j∈NEa

∥u(j)∥2}.

Since △̄a ∈ Φ(ξ,NEa) by (S9.2), we have

k∑
t=1

(△̄(t)
a )⊤(X̄ (t)

−a(θ))
⊤X̄ (t)

−a(θ)△̄
(t)
a

n
≥

κ2(ξ,NEa)
(∑

j∈NEa
∥△̄a(j)∥2

)2
|NEa|

(S9.7)
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Recall that for each given θ, the rows of X (t)
−a(θ) follow the Gaussian

distribution N(0,G(θ)), where

Ga(θ)

 Σ
(t)
−a,−a C(t)

a (θ)Σ
(t)
−a,−a

C(t)
a (θ)Σ

(t)
−a,−a C(t)

a (θ)Σ
(t)
−a,−aC

(t)
a (θ) +B(t)

a (θ)

 .

According to Condition 1 and the assumption in the theorem that the small-

est eigenvalue of 2diag{s(t)a }−diag{s(t)a }Ω(t)
−adiag{s

(t)
a } is uniformly bounded

from below by some positive constant for all 1 ≤ a ≤ p, 1 ≤ t ≤ k, we have

1/M6 ≤ λmin(G(t)
a (θ0)) ≤ λmax(G(t)

a (θ0)) ≤ M6

holds uniformly over 1 ≤ a ≤ p, 1 ≤ t ≤ k for some constant M6 > 1.

Moreover, by the triangle inequality we have

λmin(G(t)
a (θ)) ≥ λmin(G(t)

a (θ0)) + λmin(G(t)
a (θ)− G(t)

a (θ0))

≥ λmin(G(t)
a (θ0))− λmax(G(t)

a (θ)− G(t)
a (θ0)).

Since θ ∈ Θ, according to the equation (S4.7) and (S4.10) , we have

λmax(G(t)
a (θ) − G(t)

a (θ0)) ≤ Cbn holds uniformly over 1 ≤ a ≤ p, 1 ≤ t ≤ k.

Then for sufficiently large n, we can conclude that there exist some positive

constant M̃6 that

1/M̃6 ≤ λmin(G(t)
a (θ)) ≤ λmax(G(t)

a (θ)) ≤ M̃6.
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Thus, according to the Lemma D.5 in Ren et al. (2019) shows that

κ(ξ,NEa) > min
l,t


(

n(t)

(X
(t)
l (θ))⊤X

(t)
l (θ)

)1/2

∧

(
n(t)

(X̃
(t)

l (θ)⊤X̃
(t)

l (θ)

)1/2
 /(2M̃6)

1/2,

holds with probability at least 1 − 2k exp(−cn). Combining with result

of (S9.1), yields that with the probability at least 1 − 2pk exp(−n/32) −

2k exp(−cn) − 3p−c, κ(ξ,NEa) > Cκ, where Cκ is some positive constant.

This together with (S9.6) and (S9.7) yields that with the probability at

least 1− 2pk exp(−n/32)− 2k exp(−cn)− 4k exp(−n/32)− 3p−c(∑
j∈NEa

∥△̄a(j)∥2
)2

|NEa|
≤ Cλ

∑
l∈NEa

∥△̄a(l)∥2 (S9.8)

Thus it holds simultaneously for all 1 ≤ a ≤ p that

sup
θ∈Θ

∑
j∈NEa

∥△̄a(j)∥2 = O(laλ)

with the probability at least 1−2pk exp(−n/32)−2k exp(−cn)−4k exp(−n/32)−

3p−c. This together with (S9.1) and (S9.2) yields that

sup
θ∈Θ

∑
j∈Ta

∥△a(j)∥2 ≤ C sup
θ∈Θ

∑
j∈Ta

∥△̄a(j)∥

≤ (1 + ξ)C sup
θ∈Θ

∑
j∈NEa

∥△̄a(j)∥ = O(laλ)

holds simultaneously over 1 ≤ a ≤ p with the probability at least 1 −

2pk exp(−n/32)− 2k exp(−cn)− 4k exp(−n/32)− 3p−c.

Note that the above analysis is conditional on the event
⋂

1≤a≤p Ba.
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Since we have proven that P(Ba) > 1− 3p−υ+1, it easy to prove that

P(
⋂

1≤a≤p

Ba) ≥ 1− 3pp1−υ ≥ 1− p2−υ

Then, we can conclude that with probability at least 1− 2pk exp(−n/32)−

2k exp(−cn)− 4k exp(−n/32)− p2−υ − 3p−c

sup
θ∈Θ

∑
j∈Ta

∥△a(j)∥2 = O(laλ),

holds simultaneously for all 1 ≤ a ≤ p. Since log(p) = O(n), and υ > 2

defined in the lemma, then there exits some positive constant cυ such that

p−cυ > 2pk exp(−n/32)+2k exp(−cn)+4k exp(−n/32)+p2−υ+3p−c, which

completes the proof of Lemma S1.4.
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S10 The figures of real data analysis

Figure 1: Network structure of genes recovered by our method. The pink lines are the

edges identified by both our method and GFC method. Grey lines are identified only by

our method.
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Figure 2: Network structure of genes recovered by GFC method. The pink lines are the

edges identified by both GFC method and our method. Grey lines are identified only by

GFC method.
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