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1. Proofs of Theoretical Results

Proof of Propositions 1 and 2

Proof. We first prove Proposition 1. If there are two non-zero elements in a row of H, say

Hik, Hil > 0, then their product would be a positive quantity. However since the columns of H

are orthonormal,
∑

i HikHil = 0. This would require the product Hi′kHi′l to be negative for

some other i′. However, this is not possible since all the elements of H are non-negative as well.

Now we prove Proposition 2. Suppose the OSNTF as defined in Equation (2.2) is not

unique and there is another order K factorization of A as A = H ′S′H ′T . Then H ′ = HQ and

S′ = RTSR where QRT = I. Moreover, if rank(A) is K, then both H and H ′ span the same

subspace and must be related through an orthogonal change of basis matrix. Consequently,

this is the only source of non-uniqueness. However for OSNTF even this ambiguity of an

orthogonal matrix is not possible due to the orthogonality and non-negativity constraints except

for permutation matrices. If HQ is a solution, then HQ must have orthonormal columns, i.e.,

(HQ)THQ = I which implies QTQ = I. However, except Q = I or a permutation matrix, at
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least one element of Q must be negative in order for it to be an orthogonal matrix (Ding et al.,

2006). However, if an element of Q, say Qkl, is negative, then (HQ)il =
∑

k HikQkl < 0 for all

rows i of H such that the only non-zero element in the row is in the kth place (note that such

a row always exists, since no column of the rank K matrix H can be all 0’s). This will make

HQ contain at least one negative element, which violates the non-negativity constraint. Hence

the factorization is unique up to permutations.

Upper bound on mis-clustering rate

Recovery in noiseless case

The next lemma shows that the procedure OSNTF can recover the class assignments perfectly

from the population adjacency matrix or the Laplacian matrix generated by the stochastic block

model. Hence even though for any given matrix both proving the existence and evaluation of

exact OSNTF is NP hard, if we know that the matrix is formed according to the stochastic

block model, the factorization can recover true class assignments.

Lemma 1. Define the matrix Q = (ZTZ) ∈ RK×K , which is a diagonal matrix with strictly

positive entries. The solutions to the OSNTF of A and Lτ are [H̄ = ZQ−1/2, S̄ = Q1/2BQ1/2]

and [H̄L = ZQ−1/2, S̄L = Q1/2BL,τQ
1/2], unique up to a permutation matrix P respectively.

Moreover,

H̄i = H̄j ⇐⇒ Zi = Zj ,

where H̄i and Zi are ith rows of H̄ and Z respectively. Equivalently,

argmax
k

H̄ik = argmax
k

H̄jk ⇐⇒ argmax
k

Zik = argmax
k

Zjk.
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The previous lemma shows that OSNTF of rank K applied to the population adjacency or

the Laplacian matrix of an SBM obtains factors [H̄, S̄] such that any two rows of H̄ are equal if

and only if the corresponding rows are equal in Z. Now assigning rows to communities on the

basis of the largest entry in H̄ as in Equation (2.4) effectively means doing the same on rows

of Z, which by definition will result into correct community assignments. However due to the

ambiguity in terms of a permutation matrix P , the community labels can be identified only up

to a permutation.

We now prove a parallel result on recovery of class assignments from the population adja-

cency and Laplacian matrices of DCSBM.

Lemma 2. Define the matrices Q = (ZTΘ2Z), QL = (ZTΘZ) ∈ RK×K , which are di-

agonal matrices with strictly positive entries. The solutions of OSNTF of A and Lτ are

[H̄ = ΘZQ−1/2, S̄ = Q1/2B′Q1/2] and [H̄L = Θ1/2ZQ
−1/2
L , S̄L = Q

1/2
L B

′
L,τQ

1/2
L ], unique

up to a permutation matrix P, respectively. Moreover,

argmax
k

H̄ik = argmax
k

H̄jk ⇐⇒ argmax
k

Zik = argmax
k

Zjk.

Note for the DCSBM, the H̄ OSNTF extracts does not have the same row for all nodes

in the same community. However, the community detected from H̄ by finding the location of

the maximum value in the row is the same for all nodes in the same community. Therefore, the

OSNTF still accurately estimates the community labels.

Uniform convergence of objective function

Although OSNTF can perfectly recover Z from the population adjacency matrix A and the

population Laplacian matrix L, in practice we do not observe A or L. Instead we observe the

sample version (or perturbed version) of A, the sample adjacency matrix A.
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The regularized sample adjacency matrix Aτ and sample Laplacian matrix Lτ may not

have exact OSNTFs. In that case, let the optimization problem in (2.3) or equivalently in (2.6),

obtain a solution [Ĥ, Ŝ] as OSNTF of Aτ . The matrix approximating Aτ is then Â = ĤŜĤT

and we assign the nodes to the communities using the matrix Ĥ.

We denote the objective function in the optimization problem of (2.6) as F (Aτ , H) =

∥HTAτH∥F . This is a function of the regularized adjacency matrix Aτ and the factor ma-

trix H. We can define a corresponding “population” version of this objective function with

the population adjacency matrix as F (A, H) = ∥HTAH∥F . The corresponding observed and

population versions for the Laplacian matrix are defined by F (Lτ , H) = ∥HTLτH∥F and

F (L, H) = ∥HTLτH∥F , respectively. The next lemma, which is an intermediate result, shows

two uniform convergences. We show that for any H ∈ HN×K
+ , the difference between F (Aτ , H)

and F (A, H) and that between F (Lτ , H) and F (Lτ , H) are bounded in high probability.

Lemma 3. For any H ∈ HN×K
+ , there exists a constant c1(r1) > 0, such that we have with

probability at least 1− n−r1

|F (Aτ , H)− F (A, H)| ≤ c1K∆3/2, (11)

and there exists a constant c2(r2) > 0, such that we have with probability at least 1− o(1),

|F (Lτ , H)− F (Lτ , H)| ≤ c2K√
∆

. (12)

Characterizing mis-clustering lemmas

Although OSNTF can perfectly recover Z from A, in practice we obtain the matrix Ĥ ∈

HN×K
+ from the observed adjacency matrix A instead of obtaining H̄. Consequently, community
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assignment using the largest entry in each row of Ĥ as in Equation (2.4) will lead to some error.

We quantify the error through a measure called mis-clustering rate which, given a ground truth

community assignment and a candidate community assignment, computes the proportion of

nodes for which the assignments do not agree. Let ē denote the ground truth and ê denote a

candidate assignment. Then we define the mis-clustering rate r = 1
N

infΠ dH(ē,Π(ê)), where

Π(·) is a permutation of the labels and dH(·, ·) is the Hamming distance between two vectors.

The next result relates the error with the difference of the matrices Ĥ and H̄ for SBM.

Lemma 4. Let Z be the true community assignment matrix for a network generated from the

stochastic block model and Q = ZTZ. Let (Ĥ, Ŝ) be the factorization of the adjacency matrix

as in (2.3). Then any mis-clustered node i must satisfy

∥Ĥi − H̄iP∥ >
1√

Nmax

, (13)

where Ĥi and H̄i denote the ith row of the matrices Ĥ and H̄, respectively, P is a permutation

matrix, and Nmax = maxk∈{1,...,K} Qkk, i.e., the population of the largest block. This is also a

necessary condition for mis-clustering node i in OSNTF of the Laplacian matrix.

For DCSBM we again prove a lemma connecting the event of mis-clustering with the

difference between matrices Ĥ and H̄, and matrices ĤL and H̄L for A and L respectively .

Lemma 5. For a network generated from the DCSBM with parameter (Θ, Z,B) as in Equation

(3.8), let (Ĥ, Ŝ) be the factorization of the adjacency matrix as in (2.2). Then a necessary

condition for any node i to be mis-clustered is

∥Ĥi − H̄iP∥ ≥ m, (14)

where m = mini∈{1,...,N} θi/
√

(ZTΘ2Z)kk with k being the community to which the node i truly

belongs. The corresponding necessary condition for the OSNTF in Laplacian matrix is

∥ĤL,i − H̄L,iP∥ ≥ m′, (15)
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with m′ = mini∈{1,...,N}
√

θi/(ZTΘZ)kk.

Proofs of the lemmas

Proof of Lemma 1

Proof. We have by definition of the stochastic block model,

A = ZBZT , ZTZ = QK×K , det(B) ̸= 0,

where Q is a diagonal matrix whose diagonal elements {Q11, . . . , QKK} are the population of

the different blocks. Clearly an OSNTF of order K applied to the matrix A will not yield the

matrices Z and B, since ZTZ ̸= I. However, notice that

A = ZBZT = Z(ZTZ)−1/2(ZTZ)1/2B(ZTZ)1/2(ZTZ)−1/2ZT = H̄S̄H̄T , (16)

where H̄ = Z(ZTZ)−1/2 = ZQ−1/2 and S̄ = (ZTZ)1/2B(ZTZ)1/2 = Q1/2BQ1/2. Since we

assume all the communities in the stochastic block model have at least one member, all the

elements of the diagonal matrix Q are strictly positive quantities. Hence both the square root

matrix Q1/2 and its inverse exist and are well defined. Clearly, H̄T H̄ = I and H̄, S̄ ≥ 0. Hence,

[H̄, S̄] is an OSNTF of rank K for A. Any other OSNTF of rank K for the matrix A is unique

up to a permutation matrix P by Proposition 2. Therefore H̄i = H̄j =⇒ Zi = Zj .

For the result on L, we have,

L = ZBLZ
T = ZQ−1/2Q1/2BLQ

1/2Q−1/2ZT . (17)

Hence, following the preceding argument, an OSNTF of rank K applied to the matrix L will

recover the factor matrices as H̄L = ZQ−1/2 and S̄L = Q1/2BLQ
1/2 unique up to a permutation

matrix P . Since Q1/2 and Q−1/2 exist, ZiQ
−1/2 = ZjQ

−1/2 ⇐⇒ Zi = Zj in both cases.
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For Lτ we can present the same arguments by noting that Lτ under SBM can be written as

Lτ = Z(BL + ∆
n
)ZT .

Proof of Lemma 2

Proof. The population adjacency matrix of the DCSBM, as in Equation (3.8), is

A = ΘZBZTΘ

= ΘZ(ZTΘ2Z)−1/2(ZTΘ2Z)1/2B(ZTΘ2Z)1/2(ZTΘ2Z)−1/2ZTΘ

= H̄S̄H̄T , (18)

where H̄ = ΘZ(ZTΘ2Z)−1/2 = ΘZQ−1/2 and S̄ = (ZTΘ2Z)1/2B(ZTΘ2Z)1/2 = Q1/2BQ1/2.

Note that the matrix Q = (ZTΘ2Z) = (ΘZ)T (ΘZ) ∈ RK×K , is a diagonal matrix. Clearly

all the elements are strictly positive and hence the matrix admits both a square root and an

inverse. We compute

H̄T H̄ = (ZTΘ2Z)−1/2(ZTΘ2Z)(ZTΘ2Z)−1/2 = I,

and H̄, S̄ ≥ 0. Hence, [H̄, S̄] is an OSNTF of rank K for A under DCSBM. Any other OSNTF

of rank K for the matrix A is unique up to a permutation matrix P by Proposition 2.

Since both Q1/2 and Q−1/2 exist, we have ZiQ
−1/2 = ZjQ

−1/2 if and only if Zi = Zj .

Moreover, since Zi contains only one non-zero element, say at position k, and Q is a diagonal

matrix, (ZQ−1/2)i also has only one non-zero element, whose position within the row is also k.

Now,

argmax
k

H̄ik = argmax
k

θi(ZQ−1/2)ik = argmax
k

(ZQ−1/2)ik

Hence, nodes i and j will be assigned to the same community if and only if Zi = Zj .
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Similarly for L, we have

L = Θ1/2ZBLZ
TΘ1/2

= Θ1/2Z(ZTΘZ)−1/2(ZTΘZ)1/2BL(Z
TΘZ)1/2(ZTΘZ)−1/2ZTΘ1/2

= H̄LS̄LH̄
T
L , (19)

where H̄L = Θ1/2Z(ZTΘZ)−1/2 = Θ1/2ZQ
−1/2
L and S̄L = (ZTΘZ)1/2BL(Z

TΘZ)1/2 = Q
1/2
L BLQ

1/2
L .

We note that the matrix QL = ZTΘZ ∈ RK×K is also a diagonal matrix with strictly positive

diagonal entries and hence both square root and inverse are well defined. Since H̄T
L H̄L = I and

H̄L, S̄L ≥ 0, [H̄L, S̄L] is an OSNTF of rank K for the matrix L. As before, this is unique up to

a permutation matrix P .

The proof for the second part is identical to the previous case with A.

Proof of Lemma 3

Proof. We have for any H ∈ HN×K
+ ,

|F (Aτ , H)− F (A, H)|

= |∥HTAτH∥2F − ∥HTAH∥2F |

= |(∥HTAτH∥F − ∥HTAH∥F )2 + 2(∥HTAτH∥F − ∥HTAH∥F )(∥HTAH∥F )|

≤ (∥HTAτH∥F − ∥HTAH∥F )2 + 2∥HTAH∥F |(∥HTAτH∥F − ∥HTAH∥F )|,

where the equality in the third line follows because (a2 − b2) = (a − b)2 + 2b(a − b). Next, we

bound the two terms in the last line above separately. First, we use the following result from

Theorem 2.1 in Le et al. (2017). For any C′ > 0, there exists a C dependent on C′ such that

∥Aτ −A∥2 ≤ C
√
∆,
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with probability at least 1− n−C′
.

For the first term we have

(∥HTAτH∥F − ∥HTAH∥F )2 ≤ ∥HT (Aτ −A)H∥2F

≤ K∥HT (Aτ −A)H∥22

≤ K∥HT ∥22∥H∥22∥(Aτ −A)∥22

≤ K∥(Aτ −A)∥22 ≤ KC1∆.

with probability at least 1 − n−C′
. The second line follows due to the fact that (HTAτH −

HTAH) is a K × K matrix and the equivalence of norm relation, ∥X∥F ≤
√

rank(X)∥X∥2.

The third line is due to the property of spectral norm that ∥ABC∥2 ≤ ∥A∥2∥B∥2∥C∥2, while

the fourth line follows from Theorem 2.1 of Le et al. (2017) as mentioned above, and the fact

that ∥H∥22 = λmax(H
TH) = λmax(IK) = 1.

Now the second term can be bounded with probability at least 1− n−C′
2 as follows:

2∥HTAH∥F |(∥HTAτH∥F − ∥HTAH∥F )|

≤ 2
√
K∥HTAH∥2|(∥HTAτH −HTAH∥F )|

≤ 2C2

√
K∆

√
K
√
∆ = C3K∆3/2,

since λmax(A) ≤ ∆. Therefore combing the two terms we have

|F (Aτ , H)− F (A, H)| ≤ C4K∆3/2

with probability at least 1− n−C′
3 for some constant C4 which depends on C′

3.

Similarly, for the objective function on the regularized Laplacian matrix, we have the

following result. From Theorem 1.2 in Le et al. (2017) with τ = 2∆, we have the result

∥Lτ − Lτ∥2 ≤ C√
∆

9



with probability at least 1− o(1) for some constant C. Then we have for any H ∈ HN×K
+ ,

|F (Lτ , H)− F (Lτ , H)| ≤ KC1
1

∆
+KC2

√
1

∆
≤ KC3√

∆

with probability 1− o(1), since λmax(L) ≤ 1.

Proof of Lemma 4

Proof. Since Ĥ ∈ HN×K
+ , by Proposition 1, each row of Ĥ has at most one non-zero element.

If H̄ik = (ZQ−1/2P )ik > 0, then a correct assignment for row i would require Ĥik > 0. This

implies if node i is incorrectly assigned, then

∥Ĥi − H̄i∥2 = ∥Ĥi − ZiQ
−1/2P∥2 = ∥Ĥi∥2 + ∥ZiQ

−1/2P∥2

≥ ∥ZiQ
−1/2P∥2 =

1

Qkk
≥ 1

Nmax
.

Hence, every mis-clustered node i must have ∥Ĥi − ZiQ
−1/2P∥ at least as large as 1√

Nmax
.

The matrix H̄L = ZQ−1/2 is the same for OSNTF in Laplacian matrix as it is for OSNTF in

adjacency matrix, and hence the necessary condition for mis-clustering is also ∥ĤL,i−H̄L,iP∥ ≥

1
Nmax

.

Proof of Theorem 1

Proof. Using Lemma 4, the mis-clustering rate rA has the following relationship:

∥Ĥ − H̄P∥2F =
∑
i

∥Ĥi − H̄iP∥2 ≥
∑

i: i is mis-clustered

∥Ĥi − H̄iP∥2 ≥ NrA
Nmax

.

Now let S1 = ĤTAĤ and A1 = ĤS1Ĥ
T . Then F (A, H̄) = ∥H̄TAH̄∥2F = ∥S̄∥2F and

F (A, Ĥ) = ∥ĤTAĤ∥2F = ∥S1∥2F . Moreover, [Ĥ, S1] is an exact OSNTF of the matrix A1.

From the discussion in Section 2, the columns of H̄ and Ĥ span reducing subspaces of A

and A1 respectively. We can then look at the matrix A as a perturbed version of the matrix
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A1 and use the Davis-Kahan Perturbation Theorem (Davis and Kahan, 1970) to relate the

difference between the subspaces R(Ĥ) and R(H̄) with the difference between A1 and A. In

the next proposition we first reproduce the perturbation theorem mentioned in Theorem 3.4,

Chapter 5 of Stewart and Sun (1990) in terms of canonical angles between subspaces. Note

that for any matrix A, Λ(A) denotes the set of its eigenvalues. For two subspaces E and F , the

matrix Θ(E ,F) is a diagonal matrix that contains the canonical angles between the subspaces in

the diagonal. See Stewart and Sun (1990) and Vu and Lei (2013) for more details on canonical

angles. We use sinΘ(E ,F) to denote the matrix that applies sine on every element of Θ(E ,F).

Proposition 1. (Stewart and Sun, 1990) Let the columns of HN×K
1 span a reducing subspace

of the matrix B, and let the spectral resolution of B beHT
1

HT
2

B(H1, H2) =

K1 0

0 K2

 , (110)

where (H1, H2) is an orthogonal matrix with H1 ∈ RN×K , and K1 ∈ RK×K and K2 ∈

R(N−K)×(N−K) are real symmetric matrices. Let X ∈ RN×K be the analogous quantity of

H1 in the perturbed matrix B, i.e., X has orthonormal columns and there exists a real sym-

metric matrix M ∈ RK×K such that BX = XM . Define R = BX − XM = (B − B)X. If

δ = minλ1∈Λ(K2),λ2∈Λ(M) |λ1 − λ2| > 0, then

∥ sinΘ(R(H1),R(X))∥F ≤ ∥R∥F
δ

≤ ∥B −B∥F
δ

.

To use the proposition in our context, let B = A1, B = A, H1 = Ĥ, X = H̄. Then we have

K1 = S1 and M = S̄. Since S1 contains all the non-zero eigenvalues of A1 (Section 3.1), in this

case Λ(K2) contains only 0’s. On the other hand Λ(M) contains all the non-zero eigenvalues of

A. Consequently, δ = minλ1∈Λ(K2),λ2∈Λ(M) |λ1 − λ2| = λA.
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By Proposition 2.2 of Vu and Lei (2013) there exists a K dimensional orthogonal matrix

O such that

1

2
∥Ĥ − H̄O∥2F ≤ ∥ sinΘ(R(Ĥ),R(H̄))∥2F ≤ ∥A−A1∥2F

(λA)2
. (111)

Next note that,

∥A −A1∥2F = ∥A∥2F + ∥A1∥2F − 2tr(AA1)

= ∥S̄∥2F + ∥S1∥2F − 2tr(AĤĤTAĤĤT )

= ∥S̄∥2F + ∥S1∥2F − 2tr(ĤTAĤĤTAĤ)

= ∥S̄∥2F + ∥S1∥2F − 2tr(S1S1)

= ∥S̄∥2F − ∥S1∥2F

= ∥H̄TAH̄∥2F − ∥ĤTAĤ∥2F

= F (A, H̄)− F (A, Ĥ).

Also we have

F (A, H̄)− F (A, Ĥ) ≤ F (A, H̄)− F (A, Ĥ) + F (A, Ĥ)− F (A, H̄)

≤ |F (A, H̄)− F (A, H̄)|+ |F (A, Ĥ)− F (A, Ĥ)|

≤ 2CK∆3/2,

where the first inequality follows from the fact that F (A, Ĥ) ≥ F (A, H̄), since Ĥ maximizes

the function F (A,H). Hence from Equation (111) we have with probability at least 1− n−r1 ,

1

2
∥Ĥ − H̄P∥2F ≤ 2CK∆3/2

(λA)2
.

Consequently,

rA ≤ Nmaxc1K∆3/2

N(λA)2
,
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for some constant c1 with probability at least 1− n−r1 .

The result for rL follows by repeating the same arguments. We have

rL ≤ c2NmaxK

N(λL∆)2
√
∆
,

for some constant c2 with probability at least 1− o(1).

Proof of Lemma 5

Proof. Following the previous arguments for the case of SBM in Lemma 4, if node i is incorrectly

assigned, then

∥Ĥi − H̄iP∥2 = ∥Ĥi − θiZiQ
−1/2P∥2 = ∥Ĥi∥2 + ∥θiZiQ

−1/2P∥2

≥ ∥θiZiQ
−1/2P∥2 =

θ2i
(ZTΘ2Z)kk

≥ m2.

For OSNTF of the Laplacian matrix, this necessary condition for mis-clustering becomes

∥ĤL,i − H̄L,iP∥2 = ∥Ĥi − θ
1/2
i ZiQ

−1/2
L P∥2 ≥ θi

(ZTΘZ)kk
≥ (m′)2.

Proof of Theorem 2

Proof. The proof follows similar arguments as in the proof of Theorem 1. From Lemma 5, we

have

∥Ĥ − H̄P∥2F ≥ NrAm
2.

Further, we have from the proof of Theorem 1,

∥Ĥ − H̄P∥2F ≤ 4c1K∆3/2

(λA)2
.
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Then combining the two results, we have

rA ≤ 4c1K∆3/2

Nm2(λA)2
,

with probability at least 1− n−r1 , for some constants c1, r1 > 0.

Similarly, for the case of rL, from Lemma 5 we have ∥ĤL−H̄LP∥2F ≥ NrL(m
′)2. Therefore

the result follows: rL ≤ 4c2K

Nm2(λL∆ )2
√
∆
, with probability at least 1 − o(1) for some constant

c2 > 0.

2. Additional Tables and Figures

Number of simulations different methods perform the best

In Tables S1 and S2, we report the number of times out of 90 repetitions the different algorithms

returned the best correct clustering rate for various scenarios.

Average density Reg. OSNTF OSNTF Spectral Reg. Spectral SCOREplus SBM refine DCBM refine

0.025 52 13 0 0 11 6 8

0.027 44 29 0 0 10 5 2

0.029 48 29 0 0 5 6 2

0.031 47 35 0 0 2 4 2

0.033 56 26 0 0 1 6 1

0.036 45 34 0 0 1 6 4

Table S1: Number of cases a method returned the best correct clustering

rate out of 90 simulations for different (low) average densities
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Degree Heterogeneity Reg. OSNTF OSNTF Spectral Reg. Spectral SCOREplus DCBM refine

1.8 8 67 1 6 2 6

1.9 2 77 1 5 2 3

2.0 0 87 0 0 0 3

2.1 2 84 1 0 0 3

2.2 1 84 2 0 0 3

2.3 0 87 2 1 0 0

2.4 0 89 1 0 0 0

2.5 0 84 4 1 1 0

Table S2: Number of cases a method returned the best correct clustering

rate out of 90 simulations for different extents of degree heterogeneity

Simulation for computing time

We plot the computing time taken by OSNTF and Regularized OSNTF along with other meth-

ods with increasing number of nodes N in Figure S1. We find that OSNTF has a higher

computational cost compared to non-iterative methods like SCOREplus and regularized spec-

tral clustering, and the computational cost is comparable to the iterative methods like SBM

refine and DCBM refine. As N increases, the computational cost for the iterative methods,

including that of OSNTF, increases quite a bit.
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Figure S1: Comparison of computing time for various methods
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