
LOCALIZING MULTIVARIATE CAVIAR

Supplementary Material

Without loss of generality in Sections S1–S3 we assume that the interval of interest

is the whole observed data set, i.e. I = [1, T ]. For this reason we neglect the index “I”

where applies, for instance, L(θ̃) instead of LI(θ̃I).

S1 Proof of Lemma 2.1

Denote,

g̃t(θ) = gt(θ)−
∑

i

∇qit(θ∗)1c[Yit ≤ qit(θ)],

where for Ft−1–measurable Z we set 1c[Yit ≤ Z] = 1[Yit ≤ Z]− P(Yit ≤ Z | Ft−1). Since

qit(θ) are Ft−1–measurable, we obviously have Eg̃t(θ) = λt(θ). For any two θ,θ′ ∈ Θ

consider the decomposition,

gt(θ)− gt(θ′) =
∑

i

{∇qit(θ)−∇qit(θ′)}ψτi
(Yit − qit(θ))

+
∑

i

∇qit(θ∗) {P[Yit ≤ qit(θ) | Fit]− P[Yit ≤ qit(θ′) | Fit]}

+
∑

i

∇qit(θ∗) {1c[Yit ≤ qit(θ)]− 1c[Yit ≤ qit(θ′)]} ,

and, similarly, the difference g̃t(θ)− g̃t(θ∗) has only two first terms in this decomposition.

In the proof of Theorem 2 of WKM it is shown that with Assumption 2.3

∥g̃t(θ)− g̃t(θ′)∥ ≤ D2(np+ f0D1)∥θ − θ′∥.

Let us fix some unit γ ∈ Rp and apply Theorem 1 of Merlevède et al. (2009) to the

sum ∑
t γ⊤{g̃t(θ)− g̃t(θ′)}. Since by Assumption 2.4 it holds α(k) ≤ exp(−ck), we have

a Hoeffding-type inequality for each x ≥ 0,

γ⊤
{∑

t

g̃t(θ)− λt(θ)− g̃t(θ′) + λt(θ′)
}
> C1∥θ − θ′∥(

√
xT + x log2 T ) (S1.1)

with probability ≥ 1 − C2e
−x, where C1 and C2 only depend on γ. Further we apply
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Theorem 2.2.27 of Talagrand (2014) to get for any x ≥ 0

P
(

sup
θ∈Θ : ∥θ−θ∗∥≤r

∥∥∥∥∥∑
t

g̃t(θ)− λt(θ)− g̃t(θ′) + λt(θ′)
∥∥∥∥∥ > LA(r, x)

)
≤ LC2e

−x,

where A(r, x) =
√
Tγ2(rB1, ∥ · ∥)

√
x + (log2 T )γ1(rB1, ∥ · ∥)x, with L being a generic

constant, B1 is a unit ball in Rp, and γ1,2(T, ∥ · ∥) are Talagrand gamma-functional,

precisely, see Definition 2.2.18 in Talagrand (2014). In the case of finite dimensional

space, we have γ1,2(rB1(0), ∥ · ∥) ≤ rC, where C = C(p) only depends on the dimension.

We therefore can rewrite the above inequality,

P
(

sup
θ∈Θ : ∥θ−θ∗∥≤r

∥∥∥∥∥∑
t

g̃t(θ)− λt(θ)− g̃t(θ′) + λt(θ′)
∥∥∥∥∥ > Cr(

√
xT + x log2 T )

)
≤ e−x,

where C is a positive constant and only depends on n and γ, and x ≥ 1.

Consider a δ-net {θ1, . . . ,θN} of the set Θ0(r), so that for each θ ∈ Θ0(r) there is

j = 1..N with ∥θ − θj∥ ≤ δ. It is known that there is such a set with logN ≤ Cp log r
δ

elements. By Bernstein-type inequality, Theorem 2 in Merlevède et al. (2009), it holds∥∥∥∥∥∑
t

∑
i

∇qit(θ∗)(1c[Yit ≤ qit(θk)]− 1c[Yit ≤ qit(θ∗)])
∥∥∥∥∥ ≤ C{

√
rT
√

x + logN

+(log T )2(x + logN)},

uniformly for all k = 1, . . . , N with probability at least 1−e−x, and the constant only de-

pend on n, γ. Here we use the fact that the terms 1c[Yit ≤ qit(θ)] are centred conditioned

on Ft−1, while ∇qit(θ) are Ft measurable.

Furthermore, taking into account part (iii) of Assumption 2.4 we can use Theorem 5.2

from Boucheron et al. (2005) to get that for any i = 1, . . . , n

|{t : εit ∈ [a, b]}| ≤ Tf0(b− a) + C
√
Tf0(b− a)x + Cx

with probability at least 1−4e−x uniformly over all intervals, with some universal constant

C. By definition, for any θ ∈ Θ0(r) there is some k such that |git(θ)− git(θk)| ≤ D1δ for

each i, t. Therefore, the amount of indices i, t, for which the values of 1[Yit − qit(θ)] and

1[Yit − qit(θk)] differ is bounded by C(Tδ +
√
Tδx + x), constant C does not depend on

T, x, r and δ. We come to the conclusion that choosing δ = rT−1/2, on the intersection
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of the events listed above it holds,∥∥∥∥∥∑
t

∑
i

∇qit(θ∗){1[Yit ≤ qit(θ)]− 1[Yit ≤ qit(θk)]}
∥∥∥∥∥ ≲ T 1/2r +

√
T 1/2rx + x.

Putting the inequalities together we get the result.

S1.1 Proof of Proposition 2.1

The claim follows directly from a slightly flexible version, which we are using for the

consistency of bootstrap estimator as well.

Lemma S1.1. Let Assumptions 2.1-2.5 hold on the interval I. Then there are positive

constants T0, a0 such that whenever |I| ≥ T0, a ≤ a0 and x ≤ |I| the following implication

takes place with probability ≥ 1− 6e−x. Each θ ∈ Θ that satisfies,

LI(θ)− LI(θ∗) ≥ −|I|a

satisfies as well

∥θ − θ∗∥ ≤
√
a/b+ C0

√√√√x + log |I|
|I|

,

where the positive constants b, C0 do not depend on |I| and x.

First, we present a uniform bound for the score. Similar to (S1.1) it holds ∥∇ζ(θ∗)∥ ≤

C(
√

xT + x log2 T ) with probability ≥ 1− e−x, while by Lemma 2.1 we have, with prob-

ability ≥ 1− e−x, that

sup
θ∈Θ0

∥∇ζ(θ)−∇ζ(θ∗)∥ ≤ C(
√
T
√

x + log T + x log2 T ),

using the fact that the set Θ0 is bounded. Using a simple triangle inequality we have,

∥∇ζI(θ)∥ ≤ C(
√
T
√

x + log T + x log2 T ) (S1.2)

with probability ≥ 1− 2e−x uniformly for each θ ∈ Θ0, with C not depending on T, x.

Next we present a technical lemma, that shows quadratic deviation of the expectation

of log-likelihood in the neighbourhood of true parameter. The resulting inequality is akin

to condition (Lr) of Spokoiny (2017).

3



Lemma S1.2. Suppose Assumptions 2.1-2.3 and 2.5 hold. Then, there are positive con-

stants r0, b that do not depend on |I|, such that for each θ ∈ Θ satisfying ∥θ − θ∗∥ ≥ r

it holds ELI(θ)− ELI(θ∗) ≤ −b|I|(r2 ∧ r2
0).

The proof of this lemma is postponed to Section S5.

Proof of Lemma S1.1. By (S1.2) we have for x ≤ |I|,

1
|I|

ELI(θ)− 1
|I|

ELI(θ∗) ≥ LI(θ)− LI(θ∗)− ∥θ − θ∗∥ sup
θ∈Θ
∥∇ζI(θ)∥

≥ −a− C2∥θ − θ∗∥|I|−1/2
√

x + log |I|

≥ −a0 − C2R|I|−1/2
√

x + log |I|

with probability at least 1− 2e−x. By Lemma S1.2 this implies,

b∥θ − θ∗∥2 ≤ a+ C2∥θ − θ∗∥|I|−1/2
√

x + log |I|,

and it is left to notice that x2 ≤ α+ βx implies x ≤
√
α+ β. Additionally, L(θ̃) ≥ L(θ∗)

pointwise, thus the deviation bound for the estimator takes place.

S2 Proof of Proposition 2.2

First of all, by Proposition 2.1 , it holds with probability ≥ 1−7e−x that ∥θ̃−θ∗∥ ≤ r0 =

C0

√
T−1(x + log T ). Applying Lemma 2.1 with this radius, we get that with probability

≥ 1− 13e−x additionally this holds for each θ ∈ Θ0(r0):

1√
T

∥∥∥∥∥∑
t

gt(θ)− λt(θ)− gt(θ∗) + λt(θ∗)
∥∥∥∥∥ ≲ δT,x = (x + log T )3/4

T 1/4 . (S2.3)

With θ = θ̃ and using ∑t gt(θ̃) = 0, ∑t λt(θ∗) = 0 we get,∥∥∥∥∥√TQ(θ̃ − θ∗)− 1√
T

∑
t

gt(θ∗)
∥∥∥∥∥ ≲ δT,x.

It is shown in WKM (see formula (24)) that for each θ ∈ Θ,

∥∥∥∥∥∑
t∈I

λt(θ)−
∑
t∈I

λt(θ∗) + |I|Q(θ − θ∗)
∥∥∥∥∥ ≤ C2|I|∥θ − θ∗∥2, (S2.4)
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with C2 is a positive constant and does not depend on the interval length.

Similar to the proof of Theorem 2.3 in Spokoiny (2017), introducing the error of

quadratic approximation of log-likelihood near the true parameter and provided (S2.4)

and (S2.3), one can show that the square root of log-likelihood ratio is approximated with

the same rate, i.e.
∣∣∣√2L(θ)− 2L(θ∗)− ∥ξ∥

∣∣∣ ≤ δT,x. Scaling x ← x + log 13 provides the

result.

S3 Proof of Proposition 3.1

Similar to the original likelihood,

ζ◦(θ) = L◦(θ)− E◦L◦(θ) =
∑

t

(wt − 1)ℓt(θ)

denotes the stochastic part of the likelihood in the bootstrap world.

Lemma S3.1. Suppose Assumptions 2.2, 2.3 and 3.1 hold, for each x ≥ 1 with probability

≥ 1− 4e−x w.r.t. to the data, the probability of

sup
θ∈Θ(r)

1
T 1/2

∥∥∥∥∥∑
t

(wt − 1){gt(θ)− gt(θ∗)}
∥∥∥∥∥ ≤ ♢♭(T, r, x)

conditioned on the data is at least 1− 3e−x, where

♢♭(T, r, x) = C3
(
r ∨
√
r + T−1/4{(rx)1/2 ∨ (rx)1/4}+ T−1/2x

)√
x + log T ,

with a positive constant C3 not depending on T, r, x.

Proof. The proof is similar to that of Lemma 2.1.

Corollary S3.1. For x ≤
√
T it holds with probability at least 1− 6e−x,

P◦
(

sup
θ∈Θ
∥∇ζ◦(θ)∥ ≤ C5T

1/2
√

x + log T
)
≤ 1− 5e−x,

where C5 is a positive constant and does not depend on T, x.

Now we are ready to state the global concentration result for the bootstrap estimator.
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Proposition S3.1. Suppose Assumptions 2.2-2.5 and 3.1 hold. Then, on a set of prob-

ability at least 1 − 12e−x it holds with probability at least 1 − 5e−x conditioned on the

data,

∥θ̃◦ − θ∗∥ ≤ C

√
x + log T

T
.

Proof. Denote r = ∥θ̃◦ − θ∥. Using Corollary S3.1 and the fact that L◦(θ̃◦) ≥ L◦(θ∗),

we have that on the event of probability at least 1 − 6e−x w.r.t. data, with probability

at least 1− 5e−x conditioned on the data,

L(θ̃)− L(θ∗) ≥ L◦(θ̃◦)− L◦(θ∗)− ∥θ̃◦ − θ∗∥ × sup ∥∇ζ◦(θ)∥

≥ −C5T
1/2r

√
x + log T .

Using Proposition 2.1, we have additionally that on the other event of probability 1−6e−x

it holds r ≲
√
r
√

x+log T
T

+
√

x+log T
T

, which yields the result.

The rest can be accomplished using linear approximation of the score. Similar to the

original likelihood, with r0 = ∥θ̃ − θ∗∥ ∨ ∥θ̃◦ − θ∗∥ it follows from (S2.4),∥∥∥∥∥∑
t

λt(θ̃
◦)−

∑
t

λt(θ̃) + TQ2(θ̃◦ − θ̃)
∥∥∥∥∥ ≤ 2C2Tr

2
0.

Here, ∑t λt(θ) stands for the expectation of gradient of the likelihood. With help

of Proposition 2.1 we first replace it with just the gradient, then, using Lemma S3.1 we

replace it with the gradient of bootstrap likelihood. This finally leads to the proof of the

proposition.

S4 Proof of Theorem 1

W.l.o.g. we have an interval I = {1, . . . , T} and a set of break points S(I) ⊂ I to be

considered. Let us denote T = α0T with α0 > 0 from the conditions of the theorem. We

have by Proposition 2.2 that, with probability at least 1−e−x, it holds for each s ∈ S(I),
∣∣∣LAI,s

(θ̃AI,s
)− LAI,s

(θ∗)− ∥ξAI,s
∥2/2

∣∣∣ ≤ ♢, ∣∣∣LBI,s
(θ̃BI,s

)− LBI,s
(θ∗)− ∥ξBI,s

∥2/2
∣∣∣ ≤ ♢,∣∣∣LI(θ̃I)− LI(θ∗)− ∥ξAI

∥2/2
∣∣∣ ≤ ♢,
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where ♢ = CT−1/4(x + log T + log(1 + 2|S(I)|))3/4, implying

∣∣∣LAI,s
(θ̃AI,s

) + LBI,s
(θ̃BI,s

)− LI(θ̃I)− (∥ξAI,s
∥2 + ∥ξBI,s

∥2 − ∥ξI∥2)/2
∣∣∣ ≤ 3♢.

By definition, |I|1/2ξI = |AI,s|1/2ξAI,s
+ |BI,s|1/2ξBI,s

, therefore for α = |AI,s|/|I| and

β = |BI,s|/|I| = 1− α we have,

∥ξAI,s
∥2 + ∥ξBI,s

∥2 − ∥ξI∥2 = ∥ξAI,s
∥2 + ∥ξBI,s

∥2 − ∥α1/2ξAI,s
+ β1/2ξBI,s

∥2

= β∥ξAI,s
∥2 + α∥ξBI,s

∥2 − 2α1/2β1/2ξ⊤
AI,s

ξBI,s

= ∥β1/2ξAI,s
− α1/2ξBI,s

∥2

Obviously, similar expansion holds for the bootstrap counterpart, so that denoting

SI,s = 1√
|I|


√√√√ |BI,s|
|AI,s|

∑
t∈AI,s

Q−1gt(θ∗)−

√√√√ |AI,s|
|BI,s|

∑
t∈BI,s

Q−1gt(θ∗)
 ,

S◦
I,s = 1√

|I|


√√√√ |BI,s|
|AI,s|

∑
t∈AI,s

Q−1wtgt(θ∗)−

√√√√ |AI,s|
|BI,s|

∑
t∈BI,s

Q−1wtgt(θ∗)
 ,

we have

∣∣∣∣max
s
TI,s −max

s
∥SI,s∥2

∣∣∣∣ ≤ 3♢,
∣∣∣∣max

s
T ◦

I,s −max
s
∥S◦

I,s∥2
∣∣∣∣ ≤ 3♢. (S4.5)

For a single break point s ∈ S(I) by Azuma-Hoeffding inequality for all x > 0 it holds,

P
(
∥SI,s∥ ≲ 1 +

√
x
)
≥ 1− e−x,

so that it holds with probability ≥ 1− e−x,

max
s
∥SI,s∥ ≲

√
log T +

√
x, max

s
∥S◦

I,s∥ ≲
√

log T +
√

x.

Additionally, for each A ⊂ I the covariance

Var◦(ξ◦
A) = 1

|A|
∑
t∈A

Q−1gt(θ∗)gt(θ∗)⊤Q−1.

is concentrated near Σ = Var(Q−1g1(θ∗)) = Q−1V 2Q−1, e.g. by Azuma-Hoeffding

P
(
∥Var◦(ξ◦

A)− Σ∥ ≲
√

1 + x
|A|

)
≥ 1− e−x,
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so that taking into account (13) , it holds with probability ≥ 1 − e−x that for each

A = AI,s or A = BI,s with s ∈ S(I),

∥Var◦(ξ◦
A)− Σ∥ ≲

√
log T + x

T
. (S4.6)

Now we want to use Lemma S7.2 with n = T . Since δ > 1 by Assumption 2.4 , we

can choose c2, c
′ > 0 such that (1 + δ)/2− (1 + 2δ)c2 > 1 + c′. Then, we can have a, ϵ > 0

such that a+ ϵ < 1
2 − 2c2 and c2 + (1 + δ)a > 1 + c′. Setting b = a+ γ + ϵ, we have that

1− b− γa < −c′, b <
1
2 − c2, b− a > c2.

This means that taking q = ⌈T a⌉ and r = ⌈T b⌉ and Dn ≲
√

log n by Assumption 3.1 ,

the conditions of Lemma S7.2 are satisfied. Moreover, by (S4.6) we have ∆ ≲
√

log T/T

with probability ≥ 1− 1/(2T ), so that for each t, y ∈ R

∣∣∣∣P(max
s
∥SI,s∥ > t)− P(max

s
∥S◦

I,s∥ > t+ y)
∣∣∣∣ ≲ T−c∧c′ + |y| log1/2 T. (S4.7)

Thus, for |y| ≤ 6♢ taken for x = C log T , we have for each t, y ∈ R

sup
t

∣∣∣∣P(max
s
TI,s > t+ y)− P(max

s
T ◦

I,s > t)
∣∣∣∣ ≲ T−c∧c′ + |y| log1/2 T

with probability ≥ 1− 1/T .

S5 Proof of Lemma S1.2

Note that integrating the inequality (S2.4) with Q = ∑n
i=1 Efit(0)∇qit(θ∗)[∇qit(θ∗)]⊤, we

get second-order approximation in the neighbourhood of θ∗,∣∣∣∣ 1T EL(θ)− 1
T

EL(θ∗) + ∥Q(θ − θ∗)∥2/2
∣∣∣∣ ≤ C∥θ − θ∗∥3,

therefore we get that for ∥θ − θ∗∥ > r and r ≤ r0 = λmin(Q2)/(4C) we have

1
T

EL(θ)− 1
T

EL(θ∗) < −blocr
2, bloc = λmin(Q2)/4.
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Next, notice that if a r.v. Z has τ quantile 0, then for δ > 0

Eρτ (Z + δ)− Eρτ (Z) = E(Z + δ)(τ − 1[Z + δ ≤ 0])− EZ(τ − 1[Z ≤ 0])

= δE(τ − 1(Z ≤ δ) + 1[Z ∈ (−δ, 0)]) + EZ1(Z ∈ (−δ, 0))

= E(Z + δ)1(Z ∈ (−δ; 0))

≥ δ

2E1(Z ∈ (−δ/2; 0))

≥
fδ

2

(
δ

2 ∧ δ0

)
,

and by analogy same bound takes place for Eρτ (Z − δ)− Eρτ (Z). Therefore,

−Eℓt(θ) + Eℓt(θ∗) ≤ E
n∑

i=1

f |qit − q∗
it|

2

(
|qit − q∗

it|
2 ∧ δ0

)
,

where due to (7), the right-hand side is bounded by fδ(δ ∧ δ0)/4 with δ = δ(r0). Setting

bglob = fδ(δ∧δ0)/(4r2
0), we get that the required inequality is satisfied with b = bloc∧bglob.

S6 Proof of Corollary 3.1

Let z(α) denotes (1−α)-quantile of the test T , and z◦(α) is that of T ◦ with respect to the

bootstrap probability (here for convenience we write the confidence level in the brackets).

Since P(X + Y > a + b) ≤ P(X > a) + P(Y ≥ b) for arbitrary random variables X, Y

and real numbers a, b, we have for each δ ∈ (0;α)

P(T > z◦(α)) ≤P(T > z(α + δ)) + P(z◦(α) ≤ z(α + δ))

=α + δ + P(z◦(α) ≤ z(α + δ)),

P(T > z◦(α)) ≥P(T > z(α− δ))− P(z◦(α) ≥ z(α− δ))

=α− δ − P(z◦(α) ≥ z(α− δ)).

(S6.8)

Furthermore,

P(z◦(α) ≥ z(α− δ)) = P {P◦(T ◦ > z(α− δ)) ≥ α} ,

P(z◦(α) ≤ z(α + δ)) = P {P◦(T ◦ > z(α + δ)) ≤ α} .
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By Theorem 1 , we have that on a set of probability ≥ 1− 1/T ,

sup
t
|P (T > t)− P ◦(T ◦ > t)| ≤ CT−c.

Taking δ = 2CT−c and t = z(α− δ) we have,

P ◦(T ◦ > z(α− δ)) ≤ α− δ + CT−c < α

and in a similar way,

P ◦(T ◦ > z(α + δ)) ≥ α + δ − CT−c > α.

Thus, with this choice of δ it holds,

P(z◦(α) ≤ z(α + δ)) ≤ 1/T, P(z◦(α) ≥ z(α− δ)) ≤ 1/T,

which via (S6.8) concludes the proof.

S7 Technical tools

One contribution of our paper is that we use the multiplier bootstrap technique to con-

struct the critical values, which is model-free and data-driven, see Spokoiny and Zhilova

(2015). Theory 1 in main text ensures that the distribution of the bootstrap statistics

T ◦
I mimics the unknown distribution of the original test statistics TI , hence we can con-

struct critical values for TI by using the multiplier bootstrap statistics, see (14). Here we

present some technical tools in order to prove Theorem 1 in part S4. Basically Lemma

S7.2 is used to prove Theorem 1 in part S4, while Lemma S7.1 is used to derive Lemma

S7.2.

Let X1, . . . , Xn ∈ Rd be a martingale difference sequence (MDS) with coefficients bk,

and set

σ2(q) = max
j=1,...,d

max
I

Var
(
q−1/2∑

i∈I

Xij

)
,

σ2(q) = min
j=1,...,d

min
I

Var
(
q−1/2∑

i∈I

Xij

)
,
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where maxI ,minI are taken with respect to the subsets I ⊂ [1, n] of form I = [i+1, . . . , i+

q]. Let additionally, with probability one

|Xij| ≤ Dn, 1 ≤ i ≤ n; 1 ≤ j ≤ p.

Denote the statistics,

Ť = max
j=1,...,d

n−1/2
n∑

i=1
Xij, (S7.9)

and let Y̌ = (Y̌1, . . . , Y̌d)⊤ be normal with zero mean and covariance EY̌ Y̌ ⊤ = Σ :=
1
n

∑n
i=1 EXiX

⊤
i .

Theorem S7.1 (Chernozhukov et al. (2013), Theorem B.1). Suppose there are positive

constants r, q such that r+ q ≤ n/2 and for some positive constants c1, C1, 0 < c2 < 1/4,

c1 ≤ σ(q) ≤ σ(q) ∨ σ(r) ≤ C1 for each i = 1, . . . , n, j = 1, . . . , d, it holds (r/q) log2 d ≤

C1n
−c2, and

max
{
qDn log1/2 d, rDn log3/2 d,

√
qDn log7/2 d

}
≤ C1n

1/2−c2 .

Then, there are positive constants c, C that only depend on c1, c2, C1, such that

sup
t

∣∣∣∣P(Ť < t)− P(max
j≤d

Y̌j < t)
∣∣∣∣ ≤ Cn−c + 2(n/q − 1)br.

Suppose we have another MDS X ′
1, . . . , X

′
n, from which we construct a similar to

(S7.9) statistic Ť ′. Suppose, the sequence has β-mixing coefficients bounded by the same

values bk and the values of the vectors bounded a.s. by the same Dn. Finally, let us

set Σ′ = 1
n

∑n
i=1 EXiX

⊤
i . Combining the result above with Gaussian comparison and

anti-concentration we get the following corollary.

Lemma S7.1. Suppose there are positive constants q, r such that q+r < n/2, and positive

constants c1, C1, 0 < c2 < 1/4 such that c1 ≤ σ(q) ≤ σ(q) ∨ σ(r) ≤ C1 holds for both

(Xi) and (X ′
i). Let |Σjk − Σ′

jk| ≤ ∆ for each j, k = 1, . . . , d. Then under conditions of

Theorem S7.1 it holds for each t, δ ∈ R,
∣∣∣P(Ť > t+ δ)− P(Ť ′ > t)

∣∣∣ ≤ C∆1/3 log2/3 p+ C|δ| log1/2 p+ Cn−c + 2(n/q − 1)br,

where positive constants c, C > 0 only depend on c1, c2, C1.

Proof. Simply apply Theorem S7.1, together with Theorem 2 of Chernozhukov et al.

(2015) and Theorem 1 of Chernozhukov et al. (2017).
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Let now X1, . . . , Xn ∈ Rp be a martingale difference sequence, with β-mixing coeffi-

cients bk and Var(Xi) = V . We need to bring the statistics

T̂ = max
s∈S

1√
n

∥∥∥∥∥∥
√
n− s
s

s∑
i=1

Xi −
√

s

n− s

n∑
i=s+1

Xi

∥∥∥∥∥∥
into the above form. Following Zhilova (2015) we consider the following approximation.

Let Gϵ be an ϵ-net of the unit sphere in Rp, such that for each a ∈ Rp it holds,

(1− ϵ)∥a∥ ≤ max
γ∈Gϵ

γ⊤a ≤ (1 + ϵ)∥a∥.

Let Gϵ = {γ1, . . . ,γ |Gϵ|} be fixed and set,

[X]Gϵ = (γ⊤
1 X, . . . ,γ

⊤
|Gϵ|X) ∈ R|Gϵ|,

and having S = {s1 < s2 < · · · < s|S|} set for each i = 1, . . . , n a stacked vector,

X̃i =
(
αn,s1(i)[Xi]⊤Gϵ

, . . . , αn,s|S|(i)[Xi]⊤Gϵ

)⊤
∈ R|S|×|Gϵ|,

αn,s(i) = sign(s− i+ 1/2)
(
n− s
s

)sign(s−i+1/2)/2
,

which implies that

(1− ϵ)T̂ ≤ max
j

1√
n

n∑
i=1

X̃ij ≤ (1 + ϵ)T̂ .

For sake of simplicity assume, a−1 ≤ s/(n− s) ≤ a for each s ∈ S. Note that for each j

and |I| = q it holds for some γ that,

Var
(
q−1/2∑

i∈I

X̃ij

)
= Var

(
q−1/2∑

i∈I

γ⊤Xi

)
∈ [σmin(V ), σmax(V )].

Suppose, there is another MDS X ′
1, . . . , X

′
n with same mixing properties and set for each

interval I of observations,

V ′
I = 1

q

∑
i∈I

EX ′
i[X ′

i]⊤, |I| = q,

and assume that for each such I it holds,

∥V ′
I − V ∥ ≤ ∆I , ∆q = max

|I|=q
∆I .

Denote by analogy the test statistics T̂ ′ and the vectors X̃ ′
i. In what follows we assume

that the dimension p is constant and the size of S is growing with n. Moreover, assume

that |Xij|, |X ′
ij| ≤ Dn for each i, j and that T̂ , T̂ ′ ≤ An, all with probability ≥ 1− 1/n.
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Lemma S7.2. Suppose there are positive constants r, q such that r + q ≤ n/2 and for

some positive constants c1, C1 > 0, 0 < c2 < 1/4 such that c1 ≤ σmin(V ) ≤ σmax(V ) ≤ C1

for each i = 1, . . . , n, j = 1, . . . , d, it holds (r/q) log2 n ≤ C1n
−c2, and

max
{
qDn log1/2 n, rDn log3/2 n,

√
qDn log7/2 n

}
≤ C1n

1/2−c2 .

Moreover, assume ∆r,∆q ≤ c1/2. Then, for any C2 > 0 there are positive constants

c, C > 0 that only depend on c1, c2, C1, C2, such that for each t, δ ∈ R it holds,

∣∣∣P(T̂ > t+ δ)− P(T̂ ′ > t)
∣∣∣ ≤ C∆1/3 log2/3 n+ C(Ann

−C2 + |δ|) log1/2 n

+Cn−c + 2(n/q − 1)br,

where ∆ = maxs∈S{∆[1,s],∆(s,n],∆n}.

Proof. Take ϵ = n−C2 , then we can have log |Gϵ| ≲ log n, so that if d is dimension of X̃,

then log p ≲ log n. In order to apply Lemma S7.1 with δ = ϵAn + δ, it is left to bound

the covariance difference ∆. We have that (assuming s1 ≤ s2)

1
n

∑
i=1

nEX̃ijX̃ik = 1
n

n∑
i=1

as1,n(i)as2,n(i)γ⊤
1 EXiX

⊤
i γ2

= γ⊤
1

[
s1

n−s1
s1

n−s2
s2
− (s2 − s1) s1

n−s1
n−s2

s2
+ (n− s2) s1

n−s1
s2

n−s2

n
V

]
γ2,

while

1
n

∑
i=1

nEX̃ ′
ijX̃

′
ik = 1

n

n∑
i=1

sign(s1 − i+ 1/2)sign(s2 − i+ 1/2)γ⊤
1 EX ′

i[X ′
i]⊤γ2

= γ⊤
1

[
s1

n−s1
s1

n−s2
s2
V[1,s1] − (s2 − s1) s1

n−s1
n−s2

s2
V(s1,s2]

n

+
(n− s2) s1

n−s1
s2

n−s2
V(s2,n]

n

]
γ2.

Observe that (s2−s1)V(s1,s2] = nV[1,n]−s1V[1,s1]− (n−s2)V(s2,n]. Therefore, the difference

between two is bounded by,

|Σjk − Σ′
jk| ≤

a2s1

n
∥V[1,s1] − V ∥+ a2(n− s2)

n
∥V(s2,n] − V ∥+ a2∥V[1,n] − V ∥

≤ 2a2 max
s∈S
{∆[1,s],∆(s,n],∆n},

thus the statement follows.
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S8 Additional application results

This part we present additional application results. We consider two stock markets,

namely, the S&P 500 and DAX series. Daily index returns are obtained from Datastream

and our data cover the period from 3 January 2005 to 29 December 2017, in total 3390

trading days, see Figure S1. Table T1 collects the summary statistics.

2005 2007 2009 2011 2013 2015 2017
-0.10

-0.05

0

0.05

0.10

DAX

2005 2007 2009 2011 2013 2015 2017

Time

-0.10

-0.05

0

0.05

0.10

S&P 500

Figure S1: Selected index return time series from 3 January 2005 to 29 December 2017
(3390 trading days).

Index Mean Median Min Max Std Skew. Kurt.
S&P 500 0.0002 0.0003 -0.0947 0.1096 0.0121 -0.3403 14.6949
DAX 0.0003 0.0007 -0.0743 0.1080 0.0137 -0.0406 9.2297

Table T1: Descriptive statistics for the selected index return time series from 3 January
2005 to 29 December 2017 (3390 trading days): mean, median, minimum (Min), maxi-
mum (Max), standard deviation (Std), skewness (Skew.) and kurtosis (Kurt.).

Figures S2 and S3 show the dynamics of estimated parameters with MV-CAViaR

model in rolling window estimation. Parameter estimates are indeed more volatile when

fitting the MV-CAViaR over shorter intervals (60 days), see e.g. More precisely, we
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display the estimated MV-CAViaR parameters β̂11, β̂12, β̂21, β̂22 in model (19) in rolling

window exercises from 1 January 2007 to 29 December 2017. The upper (lower) panel at

each figure shows the estimated parameter values if 60 (500) observations are included in

the respective window.
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Figure S2: Estimated parameters β̂11, β̂12, β̂21, β̂22 at quantile level τ = 0.05 for the
selected two stock markets from 1 January 2007 to 29 December 2017, with 60 (upper
panel) and 500 (lower panel) observations used in the rolling window exercises.

Figure S4 presents the time-varying coefficients γ21 and γ12 at quantile level τ = 0.01

and τ = 0.05 between DAX and S&P 500. γ21 denotes the tail effects of DAX from the

absolute return of S&P 500 while γ12 denotes the tail effects of S&P 500 from the absolute

return of DAX in equation (19). The blue lines show results of the conservative risk case

α = 0.8 and the red lines depict results of the modest risk case α = 0.9.
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Figure S3: Estimated parameters β̂11, β̂12, β̂21, β̂22 at quantile level τ = 0.01 for the
selected two stock markets from 1 January 2007 to 29 December 2017, with 60 (upper
panel) and 500 (lower panel) observations used in the rolling window exercises.
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Figure S4: Time-varying coefficients γ21 and γ12 at quantile level τ = 0.01 (upper panel)
and τ = 0.05 (lower panel) between DAX and S&P 500. The blue lines show results of
the conservative risk case α = 0.8 and the red lines depict results of the modest risk case
α = 0.9.

17



References

Boucheron, S., Bousquet, O. and Lugosi, G. (2005). Theory of classification: A survey of

some recent advances, ESAIM: probability and statistics 9: 323–375.

Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Testing many moment inequal-

ities, arXiv preprint arXiv:1312.7614 .

Chernozhukov, V., Chetverikov, D. and Kato, K. (2015). Comparison and anti-

concentration bounds for maxima of gaussian random vectors, Probability Theory and

Related Fields 162(1-2): 47–70.

Chernozhukov, V., Chetverikov, D. and Kato, K. (2017). Detailed proof of Nazarov’s

inequality, arXiv preprint arXiv:1711.10696 .

Merlevède, F., Peligrad, M., Rio, E. et al. (2009). Bernstein inequality and moderate

deviations under strong mixing conditions, High dimensional probability V: the Luminy

volume, Institute of Mathematical Statistics, pp. 273–292.

Spokoiny, V. (2017). Penalized maximum likelihood estimation and effective dimension,

Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, Vol. 53, Institut Henri

Poincaré, pp. 389–429.

Spokoiny, V. and Zhilova, M. (2015). Bootstrap confidence sets under model misspecifi-

cation, The Annals of Statistics 43(6): 2653–2675.

Talagrand, M. (2014). Upper and lower bounds for stochastic processes: modern methods

and classical problems, Vol. 60, Springer Science & Business Media.

Zhilova, M. (2015). Simultaneous likelihood-based bootstrap confidence sets for a large

number of models, arXiv preprint arXiv:1506.05779 .

18


	Proof of Lemma 2.1 
	Proof of Proposition 2.1 

	Proof of Proposition 2.2 
	Proof of Proposition 3.1 
	Proof of Theorem 1 
	Proof of Lemma S1.2
	Proof of Corollary 3.1 
	Technical tools
	Additional application results

