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In this supplement, we give an estimator of the intrinsic part in X using A-SPCA, asymptotic
results for A-SPCA under a milder assumption than (A-ii), comparisons between TSPCA and
RSPCA, examples of the strongly spiked eigenstructures, asymptotic properties of the conven-
tional PCA, an R-code for A-SPCA and proofs of the theoretical results in the main work
together with additional theoretical results and the proofs. The equation numbers and the
mathematical symbols used in the supplement are the same as those which are made reference

to in the main document.

Appendix A: Estimation of the intrinsic part in the

covariance matrix

In this section, we consider estimating the intrinsic part, 3y = >, )\Shshz.

Fan, Liao and Mincheva (2013) proposed a covariance matrix estimation
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procedure called the POET. The key point of this procedure is the estima-
tion of ;. However, they considered an estimation based on (\;, h;)s such
that the estimation does not hold consistency properties unless 6/\,, =
o(1). See Proposition A.2 in Section A.2. We apply A-SPCA to the esti-

mator of 2.

A.1 Estimation of scaled PC directions

Let 8, = /\;/th for j = 1,...,m. Note that ||3,|*> = \; for j = 1,...,m. Let
Bj = X;/Qﬁj* for j = 1,...,m. By combining Proposition 1 and Theorem 1,
we have the following result.
Corollary A.1. Assume (A-i), (A-ii), and (C-i) to (C-iii). Under (), it
holds for j =1,...,m that ||[~3]-—[3j|]2/)\j = Op(nj+nt)=o0p(1) asd =
and n — oo.

Let Bj = 5\]1-/2ﬁj for j=1,...,m.
Proposition A.1. Assume (A-i) and (C-i). Then, it holds for j =1,....,m
that ||Bj —B,l?/A; =9/A; +Op(n~") as d — oo and n — .

Therefore, ,@j does not hold consistency unless 6 /\; = o(1). In contrast,

B, holds consistency even when §/\; — oo.
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A.2 Estimation of X
- o AT
The conventional estimator of ¥, is given by X1 =>""" 3,8, . Let || - ||r
be the Frobenius norm.

Proposition A.2. Assume (A-i) and (C-i). Then, it holds that

12— |2 = mo®>+2 Z A0{140p(1)}+O0p(N2/n) as d — oo and n — oo.

s=1

Here, A, is the smallest non-zero eigenvalue of 3. In addition, A\;d/ A?n >
d/Am and tr(Xs)/d € (0,00) as d — oo under (C-ii). Therefore, from (2.3),
we have consistency under the conditions in Proposition A.2 in the sense
that |2, — 31]|2 = 0p(A2) if \i6/A2 = o(1). However, the consistency
does not hold unless §/\,, approaches 0.

Here, we consider the following estimator of 3; using A-SPCA:
21 = Z /83/85 :
s=1
See Section S2 in Aoshima and Yafal (2018) for a consistent estimator of m.

Theorem A.1. Assume (A-i), (A-ii), and (C-i) to (C-iii). Under (x), it

holds that

||i1 -3 = Op()\%n_l + Z)\ins) as d — 0o and n — 00.
s=1

Thus, under the conditions in Theorem A.1, we have consistency in the
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sense that

1= = 213 = 0p(A2) (A1)
if n7H(A}/AZ) = o(1) and Y7 (A2/AZ)ns = o(1). Further, if limsup,_,,
A1/ A < 00, then (B holds under the conditions in Theorem A.1. There-

fore, 3 holds the consistency even when 6/\,,, — oo.

Appendix B: Asymptotic results for A-SPCA under a

milder assumption than (A-ii)

We consider the following assumption instead of (A-ii):

(A-ii’) limsup E(zj;,) < oo forall j; and limsup E{(z;(j)22:)°} < 00

d—o0 d—o0

for all j and j' =1, ..., m.
Note that (A-ii) implies (A-ii’). Also, if x;(;)2s and z;s are independent,
the second condition of (A-ii’) is met under the first condition of (A-ii’)

and limsup,_, ., E(2;,) < oo for all j. We consider the following divergence

condition instead of (*):
d

(x’) -z =o(1) asd— oo and n — 0.
n

Note that (x’) holds even when d/n — oo.
Proposition B.1. After replacing (A-ii) and (x) with (A-ii’) and (x’), the

results in Theorems 1, 2, A.1 and Corollaries 1, A.1 are still justified.
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Appendix C: Comparisons between TSPCA and RSPCA

In this section, we present several comparisons between threshold-based
SPCA (TSPCA) and regularized SPCA (RSPCA).

C.1 Asymptotic property

The key of A-SPCA is the following asymptotic property for the PC-

direction by the NR method:

ﬁj ={1+o0p(1)}th;+v; asd— oo and n — oo, (C.1)

where h]Tf)j = 0; i.e., the coefficient of h; in il,j is asymptotically 1. See (2.6)
for additional details. However, to the best of my knowledge, the estimation
of PC-directions by RSPCAs does not hold such a result. Based on (1), we
can obtain accurate results for the PC-directions by a thresholded method
without requiring threshold values. See Section 3.1 for further details. Thus

the threshold-based estimation has a significant theoretical advantage over

RSPCAs.
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C.2 Computational cost

Zou_and Hastfie (2006) considered an RSPCA under high-dimensional set-
tings. The first g PC-directions estimated as follows: Let By = (84, ..., 3,)
and By be d x g matrices. They considered the following optimization

problem:

n g g9
(B, By) =argmin » _||@; — BBz, |* + ¢ Y |81 + Y 45118511
7=1 j=1

B1,B2 ',
subject to By By = I,

where ¢ and ;s are tuning parametors, ||3,||; is the L1 norm of 3;, and
B, = (Bl,...,Bg). Then, BJ/HBJH is the estimator of h; for j = 1,...,¢.

They also expressed the computational cost of the RSPCA as
O{T(dnJ + J*)} when d > n,

where J is the number of nonzero coefficients in the PC-directions and 7T’
is the number of iterations before convergence. See Section 3.5 in Zon and
Hasfid (2006) for further details. On the other hand, by using the singular
value decomposition of X — X, the computational cost of the TSPCA by
(1.5) becomes O(dn). The computational cost of the A-SPCA by the R-code
in Appendix F is also O(dn). We note that because A-SPCA is a TSPCA, it
does not require iterations before convergence. Overall, TSPCAs are easier

to handle than RSPCAs in terms of computational complexity.
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Here, we compared the computational cost of the A-SPCA with that
of the RSPCA proposed by Zou_and Hasfid (2008) for the (S-i) and (S-ii)
settings in Section 4. We used the R-code of the RSPCA in the “elas-
ticnet”, which is available from CRAN (https://cran.r-project.org/
web/packages/elasticnet). We set K = 2 and para=c(0.05,0.05) in the
R-code and calculated the ratios of computational costs for the RSPCA
over the A-SPCA by 2000 iterations for both settings, with the results in-
dicating lower computational costs for the latter, as shown in Fig. .
We emphasize that the RSPCA and TSPCA by (1.5) heavily depend on
threshold (tuning) values determined by specific cross-validation or infor-
mation criteria. In contrast, because the A-SPCA does not depend on any
threshold (tuning) values, it quickly obtains an accurate result at a lower

computational cost.

Appendix D: Examples of the strongly spiked eigen-

structures

We provide examples of (C-1) and (C-iii).

First, we consider an intraclass correlation model given by

L, =fBal, + (1 —a)1,1)), (D.1)


https://cran.r-project.org/web/packages/elasticnet
https://cran.r-project.org/web/packages/elasticnet
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Figure C.1: The ratios of the computational costs for the RSPCA over the A-SPCA
for (S-1) Ng(0,%), d = 2° (s = 6,...,12), n = [d*/?], where X has \; = d?/3, Ay = d'/?,
and A\3 = --- = Ay = 1 together with h; = (1,0,...,0)7 and hy = (0,1,0,...,0)T,
and for (S-ii) N4(0,%), d = 2° (s = 6,...,12), n = [d'/?], where ¥ has \; ~ d*/3
and Ay ~ d'/? together with h; = (1,...,1,...,0)7, whose [d*/®] elements are 1 and

hy = (0,...,0,1,...,1,0,...,0)”, whose [d'/?] elements are 1.
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where o € (0,1) and 5 (> 0) are fixed constants. For the model, Ayax(T'y) =
B{(1 —a)q+ a} and the other eigenvalues are af. If ¥ = T'y, (C-i) and (C-
iii) with (m, k1.) = (1,d) are satisfied because h; = d~/21; when X = T'y.
Then, h; is a non-sparse vector in the sense that all elements of h; are
nonzero.

Next, we consider the following model.

I, O O
=1 or, O |- (D.2)
O O 9

where di > dy > d3 > 0, dy + dy + d3 = d and €24, is a ds-dimensional

non-negative definite matrix. If
dy > d"?, Apax(Qa,) /dz — 0, and {Apax(Qay) }2/tr(Q23,) — 0 as d — oo,

(C-1) and (C-iii) with (m, k1., kox) = (2,d1,ds) are met from the fact that

hy = (d; 15,0, ..,0)" and hy = (0, ...,0,d, /*17% 0, ...,0)7.

Appendix E: Asymptotic properties of the conventional

PCA

Let v; = >0 (25 — 2j)?/(n — 1) for all j, where z; = > 1" | z;;/n. For the

=1

conventional PCA, we obtain the following results from Proposition 2 and
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(S6.1) in Aoshima and Yafa (2UIR).
Proposition E.1 (Aoshima and Yata, 2018). Assume that (A-i) and (C-1).

It holds for j =1,...,m that

; ) )
=v; + >\— + Op(nil) =1+ )\— + Op(nil/Q) and
J J

> >
<SS

Angle(hj, h;) = Arccos( + Op(nl/Q)) as d — oo and n — oo.

1+0/)
(E.1)

Remark E.1. Equation (ET) is equivalent to

hy by = (1+6/3,) 72 + 0p(n™"2) or

J

Iy = Byl =2{1 = (1+8/3) 72} + Op(n™72).
Yafa and Aoshimal (2012) proposed the noise-reduction (NR) method-
ology to reduce the bias term; it was introduced using a geometric repre-
sentation of high-dimensional noise.

Appendix F: R-code for the A-SPCA

We give the following R-code for A-SPCA:

Input ASPCA(X,r);d (> 2) by n (> 4) matrix X as X = (x4, ..., z,), and

r € [2, min{d,n — 2}| (the number of components to be computed).
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Output values[j]: The estimator of the j-th eigenvalue by A-SPCA (the
NR method).

vectors[, j|: The estimator of the j-th PC direction by A-SPCA.

ASPCA <— function (X, r){
d <— dim(X)[1]
n <— dim(X)[2]
q <~ min(n-2, d, 1)
X <— sweep(X, 1, apply (X, 1, mean), '—7)
X0 <~ X
svd) <— svd (X0 / (n—1)"(1/2), nu = q, nv = q)
sval <— svd08$d[1:q]
svec <— svd0$v[,1:q]
trSd <— norm (X0, "F”)"2 / (n—1)
nrmval <— numeric(q)
nrmvec <— matrix(0, d, q)
aspca <— matrix(0, d, q)
for (i in 1:q){
nrmval [i] <— sval[i] 2 — ( trSd
— sum(sval[1:1]72)) / (n—i-1)

nrmvec|, 1] <— X %% svec[, 1]
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/ sqrt((n—1) * nrmval[i])
ord <— order (abs(nrmvec[, i]), decreasing=T)
cri <— 0
for (j in 1:d){
cri <— cri + nrmvec|ord[j], i]"2
aspca[ord[j], 1] <— nrmvec[ord[j], 1]
if (cri >= 1){

break

}

return(list (values=nrmval, vectors=aspca))

Remark F.1. One can calculate the shrinkage PC direction fNij with a
given constant w; € (0, 1] by using the above code after replacing “cri >=

17 with “cri >= w;”.
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Appendix G: Proofs

Throughout all the proofs, we assume g = 0 for the sake of simplicity. Let

w; = (21, -, 20)T /(0 — )2 and @; = |Ju;]| "u; for all 5. From (S6.1) to
(56.5) in Appendix B of [Aoshima and Yata (2018), under (A-i) and (C-i),

we have that as d — oo and n — oo

Ni/As = wil® + Op(n™") = 14 Op(n~'/?)
and '&]Tuj =1+0p(nt) forj=1,..,m; (G.1)

@ju; = Op(n~ " min{1, A /A;}) for j # j' (< m). (G2)

Note that [Ju;||*> = v; + Op(n™') as n — oo for j = 1,...,m. Let P, =
I, — 1,17 /n. Note that 174; = 0 and P,a; = @; when )\; > 0 since

17Sp1,, = 0. Also, when j\j > 0, note that

d
(X = X)it; = X Py = Xa; = (n— 1) M\ haula;  (G3)
s=1

Let Zij(j),x = ZijTi(j7),2 fOI“j = 1, ceey TN j/

=1,...,d and all 7. Let zj(), =
S Zijn e/ m and @0 = (T1(),25 s Tn(in2)’ /(0 — Y2 forj=1,..,m;

J'=1,...d

Proof of Lemma 1. Assume (A-i), (A-ii), (C-i), (C-ii) and (x). Let w;g) =

m?(jm — 0(j)2 and W) = >4 wy(;)/n for all ¢, j. From (A-ii) and (C-ii),
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we note that

E{exp(ta?,)}
. . i(5),2
limsup E1 exp(tw;;)) = limsup

d—oo { ( (j))} d—o0 eXp<t0(j),2)

for |t| < t; and all j. Then, from (A-ii), for any ¢ > 0 satisfying t = o(1) as

d — oo and n — 0o, we have that as d — oo and n — oo
P(|Zjn2] > t) < 2exp(—nt* /1) for all j,;'; and (G.4)
P(|w| > t) < 2exp(—nt® /1) for all j. (G.5)
for some fixed constants ¢; > 0 and ¥y > 0. Refer to Section 2.1.3 in

Wainwright] (2019) for the details of this results. Then, from (G4), it holds

that for j =1,...,m,

d d
> P{zigel = e ogd)' 7y <> " 2d 0,

=1 j'=1
so that

Zine = Op{(n"logd)"/?} for all j, j". (G.6)
Similar to (G@), from (G3), we can claim that

w() = Op{(n~"logd)"/*}

for all j, so that

n

Y wia/n=ogpa{l +op(1)} forall j. (G.7)

=1
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From (GH) and (G0), we have that
u;fpzc(j/),g = Op{(n_1 log d)1/2} for j =1,...,m, and all j’; and
[2)21%/0(j),2 = 14 0p(1) for all 5. (G.8)

Here, from (IG), there exists a unit random vector €; such that 'L‘Ljrsj =0

and
;= {1+ O0p(n"")}i; +e; x Op(n~'?) for j=1,...,m. (G.9)

Note that ||u,|| = 14+0p(1) as n — oo for j = 1,...,m. Then, by combining

(G), (GR) and (GA), we have for j = 1,...,m, that
5\»71/23:6,)7211]- = Op{()\j_ln’l log d)'/?} for all j'. (G.10)

J

On the other hand, from (GI) and (G=3), we have for j = 1, ..., m, that

A X, T-1/2 - 1/2 ST A
1 5\] 1/2 = /\j Z/\j, ||uj/||hj/uj,uj
{(n—1)A;} j'=1

= h;{1+0p(n"")}

, m )\1/2’1]/
-2 J’ . A1

Note that o1 < oy and o(jmy = Z;’}Zl )\jlh?,(j,,) for all j”, so that

XL = O(orln) = O(1) (G.12)

J (")
for all j” and j' = 1,...,m. Also, note that {(n — 1)5\j}*1/2A2X'&j =

X;l/z(w(l)g,...,az(dm)T'&j. Then, from (G33), by combining (GI0) and
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(G1), we have for j = 1,...,m, that
hign = hign + Op{(A\;'n""logd)'/?} for all 5.

It concludes the result.

]

Proof of Theorem 1. Assume (A-i), (A-ii), (C-i) to (C-iii) and (). We first

consider the proof for hy,. We assume |hiay| = -+ > |hi(q)| for the sake of

simplicity. From Lemma 1 and (C-iii), it holds for all j’, that

, |h1(j')!}>

;L%(j/) = h%(]/) + op <h01(k1*) HlaX{’hOl(kl*)
as d — oo and n — oco. Then, we have that
h%(]) = h%(J){l + 0p<1)} for j = 1, ey ]{71*, and
higy = Mg +op(hlyg,.,) for j =k +1,...d.
From ;)1 = >0/ Ayh3 5, (C-ii) and (C-iii), we note that
Alh%(j) € (0,00) asd — oo for j =1,...,k1,; and

hig =0 for j=ku+1,...d.

Also, we note that

ki, — oo and kj./Ajy € (0,00) asd— oo for j' =1,...,m.

(G.13)

(G.14)

(G.15)

Let h171 = (h1(1)7 ceey h’l(/ﬂ*)) 0, ceey O)T and h172 = (O, ceey 0, hl(kl*Jrl), ceey hl(d))T.

From ,/°hy = 0, we note that £)/*h,; = —5,*hy,, so that b | Sohy, =
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higzghl,g < A1 2])*Amax (B2) = mAmy1. Here, we have that

E k1« h - 2 B h{122h1’1 B
Z 1(s) U1 T(s),2 =0 m— O(mAms1/n) and
s=1

kl*
E( D @)
s=1

Then, by using Markov’s inequality, for any ¢ > 0, we have that P{] 251:1 ha(s)

2
) = O(h{5sh11) = O(mAmi1).

Xu{w(s)ﬂ\Q > c(mAmy1/n)} < E{(Zfil hl(s)u{w(s),z)Z}”/(ﬂl)\mﬂc) =

O(c™Y) and P(|| 58 by 2l> > emidmar) = O(c™Y), so that

kl* kl*
Z hl(s)ur{w(s)ﬂ = OP(\/ 771)\m+1/n) and Z hi) (s 2|| = Op(VMmAms1).
s=1 s=1

(G.16)
By combining (G), (GY) and (IG1d), we have that

R Ao Xy oy 1/2
e = XY il e = Op(nn %) = Op(m + 07",
{(n = 1A }12 ;

(G.17)
Note that |k h;| = [h],h;| < ny/* for j > 2. Then, from (GID), it holds
that

hi A X,

{(n —1)A\ }1/2 =1 —m){1+O0p(n~ ")} + Op(v/m/n)

=1+ O0p(m +n1). (G.18)

From (GI1) and (GOIR), it holds that

k1«
> il =1+ Op(m +n"). (G.19)

s=1
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We note that E(30" 2, ) = O(X M 0(92/n) = O(k./n) and E(3

|25 2]|*) = O(k1.). Then, from (GI) and (GIH), we have that AT zkl*

(@) yu1)? = Op(1/n) and A7 3700 (@] o1 /n7Y2)2 < ATH S0 |2 2] /n
= Op(1/n), where g, is defined in (GJ). Thus it holds that
MM @2 B 2) @) = Op(1/n). (G.20)

Let &1 = (:El(j),l,...,xn(j%l)T/(n — 1)Y2 for all j. From (GII), (GI2)

and (GI4), it holds that

kl*
A @013 s @) = (s o g2 = OP(ZM)*)

s=1

= Op(1/n).  (G.21)

From (GZZ0) and (GZ0), it holds that 3" (hy — hu)? = Op(1/n).

Then, from (GIY), it holds that

k1«

Zhus Z{ I = h)? + 2k hags) — b}
=1+ O0p(m +n71). (G.22)

Let D = {j| hiugyy = 0 for j = 1,...,d}, D1 = {j| hiugjy = 0 for j = 1,..., k1. },
Dy = {Jj| ﬁl*(j) =0 for j =k +1,...,d} and D, = {k1. + 1,...,d}. From

(GI3) and (C-iii), it holds that

79 . )
V< min A3,
1(5) GE{T b} 1(4)

(G.23)
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with probability tending to 1. Here, we assume

liminf P(k; > ki) >0 and  liminf P(k; < ky,) > 0

d—00,n—00 d—00,n—00

for the sake of simplicity. Then, from (G=23), we have that
D =D, CD, and ilol(fcl) S {711(]61*_,_1), . ill(d)} if /;;1 > kl*, and

with probability tending to 1. If ky > ki, from (2.3), Lemma 1 and (G=24),

we have that
1< ||hu|? <1+ ﬁil(iﬁ) =14 Op(hig, 1) + A 'n""logd)
=1+ O0p(m +n1). (G.25)

Note that Y p\p, M < Deep, M = m. Also, from (GZ24), note
that 3, cpp, By = IRl = Yo k3, with probability tending to 1 if

ki > k.. Then, if ky > ky,, from (G222) and (G=Z3), we have that

Z B%(s) = Op(nl + n_l) and

s€D\D2
~ 1/2 ~ 1/2
> o)< (X #a) (X )
SGD*\D2 SGD*\DQ SED*\D2

= Op{n*(m +n"HY?} = Op(m +n7Y),  (G.26)

so that from (GTY),

k1«
hihi =) hghi+ Y highe =1+0p0n+n").  (G.27)

s=1 s€D:\D2
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When k; < ky,, from (G=24), we note that ]|h1*H2+ZS€D1 =0 hf(s
with probability tending to 1. Then, from |h..|? > 1, (GIR) and (G=X2)

if l:cl < k14, we have that

k1
> bl Zhl(s —[lPw]* <> iy —1=0p(m +n")
s=1

s€Dq
and > |hyghigl = Y higfl+op(1)} =O0p(m+n"). (G.28)
s€eDq s€D1y
Thus from (GI9) and (G=22), if ky < ky,, we have that
kl*
hihy. =Y highie — > highie = 1+ Op(m +n")
s=1 s€Dy
k1«
and ||hy.? = Zhl(s > bl =1+0p(m+n). (G.29)
s€Dy

If P(ky < ki) = o(1) or P(ky > ki.) = o(1), we can obtain (G=Z5) and

(GZZ0) or (G29). Thus from (G23), (G27) and (G29), we can conclude

the results for hq,. As for iLj* with 7 > 2, we obtain the results similarly.

It concludes the results of Theorem 1. OJ

Proof of Corollary 1. Assume (A-i) and (A-ii), (C-i) to (C-iii) and ().
From Theorem 1, we can claim the first result of Corollary 1. Next, we
consider the second result of Corollary 1. Note that |h hy| = |(h;

h;)hj| < ||hj. — h;|| for j < j' (< m). Thus from the first result of

Corollary 1, it holds that as d — co and n — oo

il;khj’ = Op(v/nj +n7") = Op(1 2402 dor j < (Sm). (G.30)
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Here, we consider the case of ﬁg*hl. We assume |hyy| > -+ > |hog| for
the sake of simplicity. Let his. = (hia), ..o, Bi(ks,), 0, ..., 0)F. Similar to

(G13a), we note that

W =0 fors=1,...d;j" =1,...,m. (G.31)

J J
From (GT8) and (G3T), it holds that [[hya.]* < Y202 B3, = O(Aa/\),
so that
hi 0.2k 20 < [P 2o Amax (B2) = O(Ama1da/A1).

Then, similar to (GI8)-(GI1), we can claim that

A0 A Xty oy & 1/2
Lol =S il e, = 0p(A?/(nA)V?). (G.32)
{(n —1D)A}1/2 ;

From (GIH) and (G33), we note that [hiy k| < S |hihjn| =

{Xa/(AiAj) 2} for j"(# 2) < m. Also, note that |h{,ho| = [(hy —
hi5.) hy| < m/?. Then, from (GZIT), we have that

T ~
hLQ*AlX’U,Q

. 1/2
{(n — 1)5\2}1/2 —OP(772 )
+0 (n)\ 1/2 1
p| () j”:%g) max{1, )\j///)\g}
=0p{my* + \?/(n\)V?. (G.33)

From (G332) and (G33), it holds that

k2
> hgoha = Op{ny” + 2 /(nA1) 2}, (G.34)
s=1
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Here, we assume

liminf P(ky > ky.) >0 and  liminf P(ky < ky,) > 0

d—00,n—00 d—00,n—00
for the sake of simplicity. Let G = {j| EQ*(J‘) =0forj=1,...,d}, G =
{j] howyy = 0for j =1,..,ka.}, Go = {j] howyy = 0 for j = kou + 1,...,d}

and G, = {kox + 1,...,d}. Then, similar to (G=24), we can claim that
G=GyCG, ifky>ko; and Go =G, if ky < ko, (G.35)

with probability tending to 1. If ks < ko, similar to (G2R), we can claim

that

Zh = Op(n, +n~') and

s€Gy

~T k2* ~ ~

Ro.hi = hihay — Y hawhags). (G.36)
s=1 s€G1

with probability tending to 1. From (GI3) and (GZ31), we note that
Yea By < X b3, = O(A2/A\). Then, from (GZ3B), if ky < ko,
it holds that

B ~ 1/2
Z [has)hags)| < (Z hl(s Z hg(s)) - OP{(H;/Q + n_1/2))\§/2/)\}/2}’

s€G1 s€G1 s€G1
so that from (GZ334) and (G338),

ko

~T ~ ~
h, h, = Z ha(syhags) — Z hy(syhasy = O {771/2 + )\;/2/(”)\1)1/2}- (G.37)
s=1

s€Gy



AUTOMATIC SPARSE PCA

If ky > ky., similar to (G=28), we can claim that

> hyy =Op(m+nh). (G.38)
$€G\G2
Then, by noting that > s \g, h? 1) < 1, it holds that
- 1/2
D hagha | < ( > b > ( > b, )
s€G+\G2 s€G«\G2 s€G«\G2
= Op{(ns +n~H/2}. (G.39)

Here, similar to (G=22), from (G=33), if ky > ks, we can claim that

k2«

ko
Z 3 =Y B =1+ Op(m+n"). (G.40)

Then, from (2.5), it holds that

k2*

D2 Ty = Wl = 3 = 63 (1-+ 00V} + Orloe + 7).

5:k2* +1

Thus from liminfy_ o tr(Xs)/d > 0, (GI5) and (GAQ), if ky > ke, Ao =

o(d) and 1, = o(n™1), we have that

Z hos(s) = (ks = ko) {tr(B2)/(dAon) H1 + 0p(1)} and

S§= k2*+1
kQ*

> bl =140pn™). (G.41)
s=1

Let #(A) denote the cardinality of the set A. Note that

H#(G\Gy) = ky — Ky,
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with probability tending to 1 if ky > ko,. From Zkz h2 ) = 1 and (GA1),
if ky > Koy, Ao = o(d) and 1, = o(n™1), it holds that ky — ks, = Op(As), 0

that from (GIH) and (G3R),

/2

Z hi(s)hags)

s€G:\G2

f( > h?<s>> ( > h2<s>

s€G+\G2 s€G+\G2

= Op{(A/A)"2(ma + 0712} (G.42)

From (2.3), note that A;/As = O(1) if liminfy o Ao/d > 0. Thus it holds

that

ny/% + A2 (nA) Y = 0ma?) it dlim inf nny > 0; and

—00,n—+00

m'? 4+ A%/ (nA)? = O(p,* +n7'2) if liminf Ap/d > 0. (G.43)

Thus from (G=34), (G=39), (G42) and (GZ3), if ky > ky,, we have that

k2«

~T
hy.hy = Zm o+ S huhag = Op{m + 0%/ (nA) ).
Seg*\QQ

(G.44)

If P(ky > ko) = o(1) or P(ky < ko) = 0(1), we can obtain (G=Z7) or
(GZ4). Thus from (G37) and (GZ4), we can conclude the second result
for fLQT*hl As for h Ly with §7 < g5 (4, 7) # (1,2), we obtain the result

similarly. From (G=30), we can claim the second result of Corollary 1.
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For the third result of Corollary 1, by noting that.

Ry Ry =h Ry, + (R — hy)"hy,

=hj hj. + hj kg, + (b — hy)" (b, — hy)

for j # j', from the second result of Corollary 1, it concludes the result. [

Proof of Proposition 3. From (G33), it holds that h h; = /\1/2 T /)\1/2

for j # j'. Thus from (GI) and (G22), we can conclude the result. O

Proof of Theorem 2. Assume (A-i), (A-ii), (C-i), (C-ii), (C-iii’) and (%). We
first consider the proof for hy,. We assume |hiy| > -+ > |hy)| for the

sake of simplicity. Similar to (GI3), we can claim that

hl(j 1(; {l+op(l)} forj=1,..,k,+r; and

h‘l(j = h%(]) + op (hgl(k1w+r1)) for j = klw + 7+ 17 ceuy d (G45)

as d — oo and n — oo. Similar to (GI4), from (C-iii’), we note for

j ' =1,...,m, that

Alh?(j) € (0,00) asd — oo for j =1, ..., k1, + 71;

and hf(j) =0\ forj=ky, +r+1,...d (G.46)
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Also, we note that
kj, — oo and kju,/(wjAy) € (0,00) as d — oo for j/ =1,...,m.
(G.47)
Then, from (GZ2H), we have that

w1 S ||h1w||2 S w1 + hil(k‘lw) =wi + O()\l_l) = wi + O(wl/k’lw) and

wi < [Jhrol® Swn + B2 g = wn+ Op(wn /). (G.48)

1w)
From (C-ii), all the elements of ¥, are bounded. Thus, from (GZ28) and
hiw = (hi)s - Pikin)s 05 -, 0)F, we note that hi, Zohy, = O(k%,/\1).
Then, similar to (GI8)-(GI1), from (GZ7), we can claim that

hl A, X,

eIy R Op (kAT Y?) = Op(wyin™/?). (G.49)
- 1

From (GZZ0), we note that [h7 k| = | 328 hyhje) = Ofkws/(AA)?}
for j =2,...,m. Then, from (GII) and (G4R), it holds that

hi A X,

h =hT hi {1+ Op(n™H)} + Op (kA tn =12
(i Da e 1{ p(n7)} + Op(kiA )

=W + Op(w1//€1w + wln_l/Q). <G50>

From (GZ9) and (G350), it holds that

k1w
Z higsyhas) = wi + Op(wi [k, +win™'?). (G.51)

s=1

From (G22), note that E(30 23, ,) = O(wihi/n) and (Y @) 2]?) =

O(wiA). Then, similar to (GZ0)-(GZZD), we have that $F« (higs) —

s=1
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hi(s))? = Op(wi/n), so that from (GZH)-(GZR) and (G3A),

k1w+r1 k1w ~ k1w+r1 _
Z M) = Z{ I — b))’ + 2haghis — b+ D bl
5:k1w+1
= w1 +Op(w1/k‘1w +w1n_1/2). (G52)

From (GA3), it holds that

max h2, . < min K2, G.53
je{kiw+ri+1,....d} 10) je{l,.. ki.+ri} 1(4) ( )

with probability tending to 1. Here, we assume

lim inf P(iﬁw > ki, +7"1> > (0 and lim inf P(l;lw < k1o +7”1) >0

d—00,n—00 d—00,n—00

for the sake of simplicity. Then, if k1 > ko + 71, from (GA1) and (G33),

it holds that

klw

~T ~

h1wh1w = Z hl(s)hl(s) =wi + Op(wl/lﬁw + w1n_1/2). (G54)
s=1

Let D, = {j| hiwg = 0for j =1, ki, +7} and G, = {j| hiwy =
0for j=1,..,k}. When k1o < ki, + 71, from (G313), we note that
Hﬁ1wH2+ZS€Dw ;Lf(s) S h2 ) with probability tending to 1. Then, if

s=1

k1, < ki +71, from (GZ3), (G48) and (G52), we have that 3 o<

s$€Gw
ZseDw B%(s) = Z§1w1+rl h2 Hi"lwn2 = Op(w1/k1y +win™'/?) and Zjegw

El(j)hl(j) = Zjegw 11 +op(1)}. Thus, if k1o < ki + 11, from (G51), it
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holds that
klw
1ohis = Zhl Vi) = Y haghigs)
Segw
= w1 + Op(wl/kflw —+ wln_l/Q). (G55)

If P(lz:lw < k1w + 1) = o(1) or P(lz:lw > ki, +11) = o(1), we can obtain
(G3H4) or (GHH). Thus from (GH4R), (GH4) and (G3HF), we can conclude
the result for illw. As for ﬁjw with 7 > 2, we obtain the results similarly.

It concludes the result of Theorem 2. OJ

Proofs of Corollary A.1 and Proposition A.1. For Corollary A.1, from The-
orem 1 and (G), under the conditions in Corollary A.1, we have that for
j=1,..,m, that ||,(~3] — B2/ N = villhg?+1 - QU;/QiLj;hj +Op(n71t) as
d — oo and n — oo. Then, by noting that vl/z =1/2+v;/24 Op(n1),
from Theorem 1, we can conclude the result in Corollary A.1.

For Proposition A.1, from Proposition 2 and (GI), under (A-i) and

(C-i), it holds for j = 1,...,m, that

ARy hy = MRy hy = X {0l 4+ Op(n ™)}

= \2{1/2 4+ v;/2 + Op(n~H)}. (G.56)

Then, from Proposition E.1, we can conclude the result in Proposition

Al [l



AUTOMATIC SPARSE PCA

Proofs of Theorem A.1 and Proposition A.2. We first consider the proof of
Theorem A.1. From Theorem 1, (G) and (GIH), under the conditions in

Theorem A.1, we have that for j =1, ..., m, that

18,8, — 8,877 =X{1+2(v; — 1)+ Op(n~" +1;)} + X2
—2X{1+ (v; — 1) + Op(n~" +n;)}

—0p{X(n"" + 1))} (G.57)

o T =T
as d — oo and n — oo. Note that [tr{(3;8; — ﬁjﬁf)(,ﬁjlﬁj, - ,6]/,3;)}| <
~ T ~ T ~ T ~ T
18,8, =B8] #1188, =By Byl r < 18,8, =B8] |:-+118,8;—B,;85 1%
for j # j'. Then, it holds that
~ m ~ ~T
121 = Sl <m Y 18,8, — BB
s=1
Thus from (GZ31), we can conclude the result in Theorem A.1.
For Proposition A.2, from Proposition E.1 and (GX58), under (A-i) and
(C-i), we have for j = 1,...,m, that ||3,8; — 8,872 = 2{1 + op(1)}6X; +
_ . 12T .
0% + Op(A3n~"). Here, from (G2) and (G3), it holds that A\;/“h; hy =
/\Jl-,/2u;‘c'&j = Op(A\/?/n'/?). Thus, we can conclude the result in Proposition

J/

A2 U

Proof of Proposition B.1. Assume (A-i), (C-i), (C-ii) and (*’). By using

Markov’s inequality, for any ¢ > 0, under (A-ii’), we have as d — oo and
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n — oo that

d d
> Pzl = cd B n'?) =3 " P(|zin.l* > Ed/nt)
i=

J'=1

|ZJ ) -8 .
< Z 78 =0(c") for j=1,..,m; and

d
> Pl el > cd/f) = ZP(HfBof)zIIS > *d)
j'=1

j'=1

d
E(ll@ [l -8
N A G

so that
Ziine = Op(d®/n'/?) for all j,j'; and
|22l = Op(d"/®) for all j.
Then, from (GII) and (GJ), it holds for j = 1,...,m, that
APl iy = Op{(A I 1dYYY?) for all .
Thus from (G33), by combining (GI0) and (GI), we have for j = 1,...,m,
that
hign = hign + Op{(A;'n1dY*)/?} for all j'. (G.58)

From (G35R), under (C-iii), it holds for j = 1,...,m and all j', that

il?(j’) = h?(]/) + op (hoj(kj*) n1ax{|h0j(kj*) s ’hﬂﬂ)’}) . (G59)
From (2.3), note that )\j_ldl/4 = o(1) for j = 1,...,m. Then, from (G32Y),

similar to the proofs of Theorem 1 and Corollary 1, we can obtain the
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results in Theorem 1 and Corollary 1 after replacing (A-ii) and (x) with
(A-ii’) and (). By using the results in Theorem 1 and Corollary 1, similar
to the proofs of Theorem A.1 and Corollary A.1, we can obtain the results
in Theorem A.1 and Corollary A.1 after replacing (A-ii) and (%) with (A-ii’)
and (x"). For Theorem 2, from (GX&ER), similar to the proofs of Theorem
2, we can obtain the result after replacing (A-ii) and (x) with (A-ii’) and

(%7). O
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