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In this supplement, we give an estimator of the intrinsic part in Σ using A-SPCA, asymptotic

results for A-SPCA under a milder assumption than (A-ii), comparisons between TSPCA and

RSPCA, examples of the strongly spiked eigenstructures, asymptotic properties of the conven-

tional PCA, an R-code for A-SPCA and proofs of the theoretical results in the main work

together with additional theoretical results and the proofs. The equation numbers and the

mathematical symbols used in the supplement are the same as those which are made reference

to in the main document.

Appendix A: Estimation of the intrinsic part in the

covariance matrix

In this section, we consider estimating the intrinsic part, Σ1 =
∑m

s=1 λshsh
T
s .

Fan, Liao and Mincheva (2013) proposed a covariance matrix estimation



Kazuyoshi Yata and Makoto Aoshima

procedure called the POET. The key point of this procedure is the estima-

tion of Σ1. However, they considered an estimation based on (λ̂j, ĥj)s such

that the estimation does not hold consistency properties unless δ/λm =

o(1). See Proposition A.2 in Section A.2. We apply A-SPCA to the esti-

mator of Σ1.

A.1 Estimation of scaled PC directions

Let βj = λ
1/2
j hj for j = 1, ...,m. Note that ∥βj∥2 = λj for j = 1, ...,m. Let

β̃j = λ̃
1/2
j h̃j∗ for j = 1, ...,m. By combining Proposition 1 and Theorem 1,

we have the following result.

Corollary A.1. Assume (A-i), (A-ii), and (C-i) to (C-iii). Under (⋆), it

holds for j = 1, ...,m that ∥β̃j−βj∥2/λj = OP (ηj+n
−1) = oP (1) as d→ ∞

and n→ ∞.

Let β̂j = λ̂
1/2
j ĥj for j = 1, ...,m.

Proposition A.1. Assume (A-i) and (C-i). Then, it holds for j = 1, ...,m

that ∥β̂j − βj∥2/λj = δ/λj +OP (n
−1) as d→ ∞ and n→ ∞.

Therefore, β̂j does not hold consistency unless δ/λj = o(1). In contrast,

β̃j holds consistency even when δ/λj → ∞.
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A.2 Estimation of Σ1

The conventional estimator of Σ1 is given by Σ̂1 =
∑m

s=1 β̂sβ̂
T

s . Let ∥ · ∥F

be the Frobenius norm.

Proposition A.2. Assume (A-i) and (C-i). Then, it holds that

∥Σ̂1−Σ1∥2F = mδ2+2
m∑
s=1

λsδ{1+oP (1)}+OP (λ
2
1/n) as d→ ∞ and n→ ∞.

Here, λm is the smallest non-zero eigenvalue ofΣ1. In addition, λ1δ/λ
2
m ≥

δ/λm and tr(Σ2)/d ∈ (0,∞) as d→ ∞ under (C-ii). Therefore, from (2.3),

we have consistency under the conditions in Proposition A.2 in the sense

that ∥Σ̂1 − Σ1∥2F = oP (λ
2
m) if λ1δ/λ

2
m = o(1). However, the consistency

does not hold unless δ/λm approaches 0.

Here, we consider the following estimator of Σ1 using A-SPCA:

Σ̃1 =
m∑
s=1

β̃sβ̃
T

s .

See Section S2 in Aoshima and Yata (2018) for a consistent estimator of m.

Theorem A.1. Assume (A-i), (A-ii), and (C-i) to (C-iii). Under (⋆), it

holds that

∥Σ̃1 −Σ1∥2F = OP

(
λ21n

−1 +
m∑
s=1

λ2sηs

)
as d→ ∞ and n→ ∞.

Thus, under the conditions in Theorem A.1, we have consistency in the
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sense that

∥Σ̃1 −Σ1∥2F = oP (λ
2
m) (A.1)

if n−1(λ21/λ
2
m) = o(1) and

∑m
s=1(λ

2
s/λ

2
m)ηs = o(1). Further, if lim supd→∞

λ1/λm <∞, then (A.1) holds under the conditions in Theorem A.1. There-

fore, Σ̃1 holds the consistency even when δ/λm → ∞.

Appendix B: Asymptotic results for A-SPCA under a

milder assumption than (A-ii)

We consider the following assumption instead of (A-ii):

(A-ii’) lim sup
d→∞

E(x8i(j),2) <∞ for all j; and lim sup
d→∞

E{(xi(j),2zij′)8} <∞

for all j and j′ = 1, ...,m.

Note that (A-ii) implies (A-ii’). Also, if xi(j),2s and zij′s are independent,

the second condition of (A-ii’) is met under the first condition of (A-ii’)

and lim supd→∞E(z8ij′) <∞ for all j. We consider the following divergence

condition instead of (⋆):

(⋆’)
d

n4
= o(1) as d→ ∞ and n→ ∞.

Note that (⋆’) holds even when d/n→ ∞.

Proposition B.1. After replacing (A-ii) and (⋆) with (A-ii’) and (⋆’), the

results in Theorems 1, 2, A.1 and Corollaries 1, A.1 are still justified.
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Appendix C: Comparisons between TSPCA and RSPCA

In this section, we present several comparisons between threshold-based

SPCA (TSPCA) and regularized SPCA (RSPCA).

C.1 Asymptotic property

The key of A-SPCA is the following asymptotic property for the PC-

direction by the NR method:

h̃j = {1 + oP (1)}hj + ṽj as d→ ∞ and n→ ∞, (C.1)

where hT
j ṽj = 0; i.e., the coefficient of hj in h̃j is asymptotically 1. See (2.6)

for additional details. However, to the best of my knowledge, the estimation

of PC-directions by RSPCAs does not hold such a result. Based on (C.1), we

can obtain accurate results for the PC-directions by a thresholded method

without requiring threshold values. See Section 3.1 for further details. Thus

the threshold-based estimation has a significant theoretical advantage over

RSPCAs.
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C.2 Computational cost

Zou and Hastie (2006) considered an RSPCA under high-dimensional set-

tings. The first g PC-directions estimated as follows: Let B1 = (β1, ...,βg)

and B2 be d × g matrices. They considered the following optimization

problem:

(B̂1, B̂2) = argmin
B1,B2

n∑
i=1

∥xi −B2B
T
1 xi∥2 + ψ

g∑
j=1

∥βj∥2 +
g∑

j=1

ψj∥βj∥1

subject to BT
2B2 = Ig,

where ψ and ψjs are tuning parametors, ∥βj∥1 is the L1 norm of βj, and

B̂1 = (β̂1, ..., β̂g). Then, β̂j/∥β̂j∥ is the estimator of hj for j = 1, ..., g.

They also expressed the computational cost of the RSPCA as

O{T (dnJ + J3)} when d > n,

where J is the number of nonzero coefficients in the PC-directions and T

is the number of iterations before convergence. See Section 3.5 in Zou and

Hastie (2006) for further details. On the other hand, by using the singular

value decomposition of X −X, the computational cost of the TSPCA by

(1.5) becomes O(dn). The computational cost of the A-SPCA by the R-code

in Appendix F is also O(dn). We note that because A-SPCA is a TSPCA, it

does not require iterations before convergence. Overall, TSPCAs are easier

to handle than RSPCAs in terms of computational complexity.
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Here, we compared the computational cost of the A-SPCA with that

of the RSPCA proposed by Zou and Hastie (2006) for the (S-i) and (S-ii)

settings in Section 4. We used the R-code of the RSPCA in the “elas-

ticnet”, which is available from CRAN (https://cran.r-project.org/

web/packages/elasticnet). We set K = 2 and para=c(0.05,0.05) in the

R-code and calculated the ratios of computational costs for the RSPCA

over the A-SPCA by 2000 iterations for both settings, with the results in-

dicating lower computational costs for the latter, as shown in Fig. C.1.

We emphasize that the RSPCA and TSPCA by (1.5) heavily depend on

threshold (tuning) values determined by specific cross-validation or infor-

mation criteria. In contrast, because the A-SPCA does not depend on any

threshold (tuning) values, it quickly obtains an accurate result at a lower

computational cost.

Appendix D: Examples of the strongly spiked eigen-

structures

We provide examples of (C-i) and (C-iii).

First, we consider an intraclass correlation model given by

Γq = β(αIq + (1− α)1q1
T
q ), (D.1)

https://cran.r-project.org/web/packages/elasticnet
https://cran.r-project.org/web/packages/elasticnet


Kazuyoshi Yata and Makoto Aoshima

Figure C.1: The ratios of the computational costs for the RSPCA over the A-SPCA

for (S-i) Nd(0,Σ), d = 2s (s = 6, ..., 12), n = ⌈d1/2⌉, where Σ has λ1 = d2/3, λ2 = d1/2,

and λ3 = · · · = λd = 1 together with h1 = (1, 0, ..., 0)T and h2 = (0, 1, 0, ..., 0)T ,

and for (S-ii) Nd(0,Σ), d = 2s (s = 6, ..., 12), n = ⌈d1/2⌉, where Σ has λ1 ≈ d2/3

and λ2 ≈ d1/2 together with h1 = (1, ..., 1, ..., 0)T , whose ⌈d2/3⌉ elements are 1 and

h2 = (0, ..., 0, 1, ..., 1, 0, ..., 0)T , whose ⌈d1/2⌉ elements are 1.
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where α ∈ (0, 1) and β (> 0) are fixed constants. For the model, λmax(Γq) =

β{(1−α)q+α} and the other eigenvalues are αβ. If Σ = Γd, (C-i) and (C-

iii) with (m, k1∗) = (1, d) are satisfied because h1 = d−1/21d when Σ = Γd.

Then, h1 is a non-sparse vector in the sense that all elements of h1 are

nonzero.

Next, we consider the following model.

Σ =


Γd1 O O

O Γd2 O

O O Ωd3

 , (D.2)

where d1 > d2 > d3 > 0, d1 + d2 + d3 = d and Ωd3 is a d3-dimensional

non-negative definite matrix. If

d2 ≥ d1/2, λmax(Ωd3)/d2 → 0, and {λmax(Ωd3)}2/tr(Ω2
d3
) → 0 as d→ ∞,

(C-i) and (C-iii) with (m, k1∗, k2∗) = (2, d1, d2) are met from the fact that

h1 = (d
−1/2
1 1T

d1
, 0, ..., 0)T and h2 = (0, ..., 0, d

−1/2
2 1T

d2
, 0, ..., 0)T .

Appendix E: Asymptotic properties of the conventional

PCA

Let vj =
∑n

i=1(zij − z̄j)
2/(n − 1) for all j, where z̄j =

∑n
i=1 zij/n. For the

conventional PCA, we obtain the following results from Proposition 2 and
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(S6.1) in Aoshima and Yata (2018).

Proposition E.1 (Aoshima and Yata, 2018). Assume that (A-i) and (C-i).

It holds for j = 1, ...,m that

λ̂j
λj

= vj +
δ

λj
+OP (n

−1) = 1 +
δ

λj
+OP (n

−1/2) and

Angle(ĥj,hj) = Arccos

(
1√

1 + δ/λj
+OP (n

−1/2)

)
as d→ ∞ and n→ ∞.

(E.1)

Remark E.1. Equation (E.1) is equivalent to

ĥ
T

j hj = (1 + δ/λj)
−1/2 +OP (n

−1/2) or

∥ĥj − hj∥2 = 2{1− (1 + δ/λj)
−1/2}+OP (n

−1/2).

Yata and Aoshima (2012) proposed the noise-reduction (NR) method-

ology to reduce the bias term; it was introduced using a geometric repre-

sentation of high-dimensional noise.

Appendix F: R-code for the A-SPCA

We give the following R-code for A-SPCA:

Input ASPCA(X, r); d (≥ 2) by n (≥ 4) matrix X as X = (x1, ...,xn), and

r ∈ [2,min{d, n− 2}] (the number of components to be computed).
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Output values[j]: The estimator of the j-th eigenvalue by A-SPCA (the

NR method).

vectors[, j]: The estimator of the j-th PC direction by A-SPCA.

ASPCA <− function (X, r ){

d <− dim(X) [ 1 ]

n <− dim(X) [ 2 ]

q <− min(n−2, d , r )

X <− sweep(X, 1 , apply (X, 1 , mean) , ’− ’ )

X0 <− X

svd0 <− svd (X0 / (n−1)ˆ(1/2) , nu = q , nv = q)

s va l <− svd0$d [ 1 : q ]

svec <− svd0$v [ , 1 :q ]

trSd <− norm(X0 , ”F” )ˆ2 / (n−1)

nrmval <− numeric (q)

nrmvec <− matrix (0 , d , q)

aspca <− matrix (0 , d , q)

for ( i in 1 :q){

nrmval [ i ] <− s va l [ i ] ˆ2 − ( trSd

− sum( s va l [ 1 : i ] ˆ 2 ) ) / (n−i −1)

nrmvec [ , i ] <− X %∗% svec [ , i ]
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/ sqrt ( ( n−1) ∗ nrmval [ i ] )

ord <− order (abs ( nrmvec [ , i ] ) , d e c r ea s ing=T)

c r i <− 0

for ( j in 1 : d){

c r i <− c r i + nrmvec [ ord [ j ] , i ] ˆ2

aspca [ ord [ j ] , i ] <− nrmvec [ ord [ j ] , i ]

i f ( c r i >= 1){

break

}

}

}

return ( l i s t ( va lue s=nrmval , v e c t o r s=aspca ) )

}

Remark F.1. One can calculate the shrinkage PC direction h̃jω with a

given constant ωj ∈ (0, 1] by using the above code after replacing “cri >=

1” with “cri >= ωj”.
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Appendix G: Proofs

Throughout all the proofs, we assume µ = 0 for the sake of simplicity. Let

uj = (z1j, ..., znj)
T/(n− 1)1/2 and u̇j = ∥uj∥−1uj for all j. From (S6.1) to

(S6.5) in Appendix B of Aoshima and Yata (2018), under (A-i) and (C-i),

we have that as d→ ∞ and n→ ∞

λ̃j/λj = ∥uj∥2 +OP (n
−1) = 1 + OP (n

−1/2)

and ûT
j u̇j = 1 + OP (n

−1) for j = 1, ...,m; (G.1)

ûT
j′uj = OP (n

−1/2 min{1, λj′/λj}) for j ̸= j′ (≤ m). (G.2)

Note that ∥uj∥2 = vj + OP (n
−1) as n → ∞ for j = 1, ...,m. Let P n =

In − 1n1
T
n/n. Note that 1T

n ûj = 0 and P nûj = ûj when λ̂j > 0 since

1T
nSD1n = 0. Also, when λ̂j > 0, note that

(X −X)ûj = XP nûj = Xûj = (n− 1)1/2
d∑

s=1

λ1/2s hsu
T
s ûj. (G.3)

Let zij(j′),x = zijxi(j′),2 for j = 1, ...,m; j′ = 1, ..., d and all i. Let z̄j(j′),x =∑n
i=1 zij(j′),x/n and x(j′),2 = (x1(j′),2, ..., xn(j′),2)

T/(n− 1)1/2 for j = 1, ...,m;

j′ = 1, ..., d.

Proof of Lemma 1. Assume (A-i), (A-ii), (C-i), (C-ii) and (⋆). Let wi(j) =

x2i(j),2 − σ(j),2 and w̄(j) =
∑n

i′=1wi′(j)/n for all i, j. From (A-ii) and (C-ii),
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we note that

lim sup
d→∞

E
{
exp(twi(j))

}
= lim sup

d→∞

E
{
exp(tx2i(j),2)

}
exp(tσ(j),2)

<∞

for |t| ≤ t1 and all j. Then, from (A-ii), for any t > 0 satisfying t = o(1) as

d→ ∞ and n→ ∞, we have that as d→ ∞ and n→ ∞

P (|z̄j(j′),x| ≥ t) ≤ 2 exp(−nt2/ψ1) for all j, j ′; and (G.4)

P (|w̄(j)| ≥ t) ≤ 2 exp(−nt2/ψ2) for all j. (G.5)

for some fixed constants ψ1 > 0 and ψ2 > 0. Refer to Section 2.1.3 in

Wainwright (2019) for the details of this results. Then, from (G.4), it holds

that for j = 1, ...,m,

d∑
j′=1

P{|z̄j(j′),x| ≥ (2ψ1n
−1 log d)1/2} ≤

d∑
j′=1

2d−2 → 0,

so that

z̄j(j′),x = OP{(n−1 log d)1/2} for all j, j ′. (G.6)

Similar to (G.6), from (G.5), we can claim that

w̄(j) = OP{(n−1 log d)1/2}

for all j, so that

n∑
i=1

x2i(j),2/n = σ(j),2{1 + oP (1)} for all j. (G.7)
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From (G.6) and (G.7), we have that

uT
j x(j′),2 = OP{(n−1 log d)1/2} for j = 1, ...,m, and all j′; and

∥x(j),2∥2/σ(j),2 = 1 + oP (1) for all j. (G.8)

Here, from (G.1), there exists a unit random vector εj such that u̇T
j εj = 0

and

ûj = {1 +OP (n
−1)}u̇j + εj ×OP (n

−1/2) for j = 1, ...,m. (G.9)

Note that ∥uj∥ = 1+oP (1) as n→ ∞ for j = 1, ...,m. Then, by combining

(G.1), (G.8) and (G.9), we have for j = 1, ...,m, that

λ̃
−1/2
j xT

(j′),2ûj = OP{(λ−1
j n−1 log d)1/2} for all j′. (G.10)

On the other hand, from (G.1) and (G.2), we have for j = 1, ...,m, that

A1Xûj

{(n− 1)λ̃j}1/2
= λ̃

−1/2
j

m∑
j′=1

λ
1/2
j′ ∥uj′∥hj′u̇

T
j′ûj

= hj{1 +OP (n
−1)}

+OP{(nλj)−1/2} ×
m∑

j′=1( ̸=j)

λ
1/2
j′ hj′

max{1, λj′/λj}
. (G.11)

Note that σ(j′′),1 ≤ σ(j′′) and σ(j′′),1 =
∑m

j′=1 λj′h
2
j′(j′′) for all j

′′, so that

λ
1/2
j′ hj′(j′′) = O(σ

1/2
(j′′)) = O(1) (G.12)

for all j′′ and j′ = 1, ...,m. Also, note that {(n − 1)λ̃j}−1/2A2Xûj =

λ̃
−1/2
j (x(1),2, ...,x(d),2)

T ûj. Then, from (G.3), by combining (G.10) and
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(G.11), we have for j = 1, ...,m, that

h̃j(j′) = hj(j′) +OP{(λ−1
j n−1 log d)1/2} for all j′.

It concludes the result.

Proof of Theorem 1. Assume (A-i), (A-ii), (C-i) to (C-iii) and (⋆). We first

consider the proof for h̃1∗. We assume |h1(1)| ≥ · · · ≥ |h1(d)| for the sake of

simplicity. From Lemma 1 and (C-iii), it holds for all j′, that

h̃21(j′) = h21(j′) + oP

(
ho1(k1∗) max{|ho1(k1∗)|, |h1(j′)|}

)
as d→ ∞ and n→ ∞. Then, we have that

h̃21(j) = h21(j){1 + oP (1)} for j = 1, ..., k1∗; and

h̃21(j) = h21(j) + oP
(
h2o1(k1∗)

)
for j = k1∗ + 1, ..., d. (G.13)

From σ(j),1 =
∑m

j′=1 λj′h
2
j′(j), (C-ii) and (C-iii), we note that

λ1h
2
1(j) ∈ (0,∞) as d→ ∞ for j = 1, ..., k1∗; and

h21(j) = O(λ−1
1 ) for j = k1∗ + 1, ..., d. (G.14)

Also, we note that

kj′∗ → ∞ and kj′∗/λj′ ∈ (0,∞) as d→ ∞ for j′ = 1, ...,m. (G.15)

Let h1,1 = (h1(1), ..., h1(k1∗), 0, ..., 0)
T and h1,2 = (0, ..., 0, h1(k1∗+1), ..., h1(d))

T .

From Σ
1/2
2 h1 = 0, we note that Σ

1/2
2 h1,1 = −Σ

1/2
2 h1,2, so that hT

1,1Σ2h1,1 =
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hT
1,2Σ2h1,2 ≤ ∥h1,2∥2λmax(Σ2) = η1λm+1. Here, we have that

E

{( k1∗∑
s=1

h1(s)u
T
1 x(s),2

)2}
= O

(
hT

1,1Σ2h1,1

n

)
= O(η1λm+1/n) and

E

(∥∥∥∥ k1∗∑
s=1

h1(s)x(s),2

∥∥∥∥2)
= O(hT

1,1Σ2h1,1) = O(η1λm+1).

Then, by using Markov’s inequality, for any c > 0, we have that P{|
∑k1∗

s=1 h1(s)

×uT
1 x(s),2|2 ≥ c(η1λm+1/n)} ≤ E{(

∑k1∗
s=1 h1(s)u

T
1 x(s),2)

2}n/(η1λm+1c) =

O(c−1) and P (∥
∑k1∗

s=1 h1(s)x(s),2∥2 ≥ cη1λm+1) = O(c−1), so that

k1∗∑
s=1

h1(s)u
T
1 x(s),2 = OP

(√
η1λm+1/n

)
and

∥∥∥∥ k1∗∑
s=1

h1(s)x(s),2

∥∥∥∥ = OP (
√
η1λm+1).

(G.16)

By combining (G.1), (G.9) and (G.16), we have that

hT
1,1A2Xû1

{(n− 1)λ̃1}1/2
= λ̃

−1/2
1

k1∗∑
s=1

h1(s)û
T
1 x(s),2 = OP (η

1/2
1 n−1/2) = OP (η1 + n−1).

(G.17)

Note that |hT
1,1hj| = |hT

1,2hj| ≤ η
1/2
1 for j ≥ 2. Then, from (G.11), it holds

that

hT
1,1A1Xû1

{(n− 1)λ̃1}1/2
= (1− η1){1 +OP (n

−1)}+OP

(√
η1/n

)
= 1 +OP (η1 + n−1). (G.18)

From (G.17) and (G.18), it holds that

k1∗∑
s=1

h1(s)h̃1(s) = 1 +OP (η1 + n−1). (G.19)
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We note that E(
∑k1∗

s=1 z̄
2
1(s),x) = O(

∑k1∗
s=1 σ(s),2/n) = O(k1∗/n) and E(

∑k1∗
s=1

∥x(s),2∥2) = O(k1∗). Then, from (G.1) and (G.15), we have that λ̃−1
1

∑k1∗
s=1

(xT
(s),2u1)

2 = OP (1/n) and λ̃
−1
1

∑k1∗
s=1(x

T
(s),2ε1/n

−1/2)2 ≤ λ̃−1
1

∑k1∗
s=1 ∥x(s),2∥2/n

= OP (1/n), where ε1 is defined in (G.9). Thus it holds that

λ̃−1
1 ∥(x(1),2, ...,x(k1∗),2)

T û1∥2 = OP (1/n). (G.20)

Let x(j),1 = (x1(j),1, ..., xn(j),1)
T/(n − 1)1/2 for all j. From (G.11), (G.12)

and (G.14), it holds that

λ̃−1
1 ∥(x(1),1, ...,x(k1∗),1)

T û1 − (h1(1), ..., h1(k1∗))
T∥2 = OP

( k1∗∑
s=1

(nλ1)
−1

)
= OP (1/n). (G.21)

From (G.20) and (G.21), it holds that
∑k1∗

s=1(h̃1(s) − h1(s))
2 = OP (1/n).

Then, from (G.19), it holds that

k1∗∑
s=1

h̃21(s) =

k1∗∑
s=1

{(h̃1(s) − h1(s))
2 + 2h1(s)h̃1(s) − h21(s)}

= 1 + OP (η1 + n−1). (G.22)

LetD = {j| h̃1∗(j) = 0 for j = 1, ..., d}, D1 = {j| h̃1∗(j) = 0 for j = 1, ..., k1∗},

D2 = {j| h̃1∗(j) = 0 for j = k1∗ + 1, ..., d} and D∗ = {k1∗ + 1, ..., d}. From

(G.13) and (C-iii), it holds that

max
j∈{k1∗+1,...,d}

h̃21(j) < min
j∈{1,...,k1∗}

h̃21(j) (G.23)
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with probability tending to 1. Here, we assume

lim inf
d→∞,n→∞

P (k̃1 > k1∗) > 0 and lim inf
d→∞,n→∞

P (k̃1 ≤ k1∗) > 0

for the sake of simplicity. Then, from (G.23), we have that

D = D2 ⊂ D∗ and h̃o1(k̃1) ∈ {h̃1(k1∗+1), ..., h̃1(d)} if k̃1 > k1∗; and

D2 = D∗ if k̃1 ≤ k1∗ (G.24)

with probability tending to 1. If k̃1 > k1∗, from (2.3), Lemma 1 and (G.24),

we have that

1 ≤ ∥h̃1∗∥2 ≤ 1 + h̃2
o1(k̃1)

= 1 + OP (h
2
1(k1∗+1) + λ−1

1 n−1 log d)

= 1 + OP (η1 + n−1). (G.25)

Note that
∑

s∈D∗\D2
h21(s) ≤

∑
s∈D∗

h21(s) = η1. Also, from (G.24), note

that
∑

s∈D∗\D2
h̃21(s) = ∥h̃1∗∥2 −

∑k1∗
s=1 h̃

2
1(s) with probability tending to 1 if

k̃1 > k1∗. Then, if k̃1 > k1∗, from (G.22) and (G.25), we have that∑
s∈D∗\D2

h̃21(s) = OP (η1 + n−1) and

∣∣∣∣ ∑
s∈D∗\D2

h1(s)h̃1(s)

∣∣∣∣ ≤ ( ∑
s∈D∗\D2

h21(s)

)1/2( ∑
s∈D∗\D2

h̃21(s)

)1/2

= OP{η1/21 (η1 + n−1)1/2} = OP (η1 + n−1), (G.26)

so that from (G.19),

hT
1 h̃1∗ =

k1∗∑
s=1

h1(s)h̃1(s) +
∑

s∈D∗\D2

h1(s)h̃1(s) = 1 +OP (η1 + n−1). (G.27)
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When k̃1 ≤ k1∗, from (G.24), we note that ∥h̃1∗∥2+
∑

s∈D1
h̃21(s) =

∑k1∗
s=1 h̃

2
1(s)

with probability tending to 1. Then, from ∥h̃1∗∥2 ≥ 1, (G.13) and (G.22)

if k̃1 ≤ k1∗, we have that∑
s∈D1

h̃21(s) =

k1∗∑
s=1

h̃21(s) − ∥h̃1∗∥2 ≤
k1∗∑
s=1

h̃21(s) − 1 = OP (η1 + n−1)

and
∑
s∈D1

|h1(s)h̃1(s)| =
∑
s∈D1

h̃21(s){1 + oP (1)} = OP (η1 + n−1). (G.28)

Thus from (G.19) and (G.22), if k̃1 ≤ k1∗, we have that

hT
1 h̃1∗ =

k1∗∑
s=1

h1(s)h̃1(s) −
∑
s∈D1

h1(s)h̃1(s) = 1 + OP (η1 + n−1)

and ∥h̃1∗∥2 =
k1∗∑
s=1

h̃21(s) −
∑
s∈D1

h̃21(s) = 1 +OP (η1 + n−1). (G.29)

If P (k̃1 ≤ k1∗) = o(1) or P (k̃1 > k1∗) = o(1), we can obtain (G.25) and

(G.27) or (G.29). Thus from (G.25), (G.27) and (G.29), we can conclude

the results for h̃1∗. As for h̃j∗ with j ≥ 2, we obtain the results similarly.

It concludes the results of Theorem 1.

Proof of Corollary 1. Assume (A-i) and (A-ii), (C-i) to (C-iii) and (⋆).

From Theorem 1, we can claim the first result of Corollary 1. Next, we

consider the second result of Corollary 1. Note that |h̃T

j∗hj′ | = |(h̃j∗ −

hj)
Thj′ | ≤ ∥h̃j∗ − hj∥ for j < j ′ (≤ m). Thus from the first result of

Corollary 1, it holds that as d→ ∞ and n→ ∞

h̃
T

j∗hj′ = OP (
√
ηj + n−1) = OP (η

1/2
j + n−1/2) for j < j ′ (≤ m). (G.30)
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Here, we consider the case of h̃
T

2∗h1. We assume |h2(1)| ≥ · · · ≥ |h2(d)| for

the sake of simplicity. Let h1,2∗ = (h1(1), ..., h1(k2∗), 0, ..., 0)
T . Similar to

(G.14), we note that

h2j′′(s) = O(λ−1
j′′ ) for s = 1, ..., d; j′′ = 1, ...,m. (G.31)

From (G.15) and (G.31), it holds that ∥h1,2∗∥2 ≤
∑k2∗

s=1 h
2
1(s) = O(λ2/λ1),

so that

hT
1,2∗Σ2h1,2∗ ≤ ∥h1,2∗∥2λmax(Σ2) = O(λm+1λ2/λ1).

Then, similar to (G.16)-(G.17), we can claim that

hT
1,2∗A2Xû2

{(n− 1)λ̃2}1/2
= λ̃

−1/2
2

k2∗∑
s=1

h1(s)û
T
2 x(s),2 = OP (λ

1/2
2 /(nλ1)

1/2). (G.32)

From (G.15) and (G.31), we note that |hT
1,2∗hj′′ | ≤

∑k2∗
s=1 |h1(s)hj′′(s)| =

{λ2/(λ1λj′′)1/2} for j′′( ̸= 2) ≤ m. Also, note that |hT
1,2∗h2| = |(h1 −

h1,2∗)
Th2| ≤ η

1/2
2 . Then, from (G.11), we have that

hT
1,2∗A1Xû2

{(n− 1)λ̃2}1/2
=OP (η

1/2
2 )

+OP

(
(nλ2)

−1/2

m∑
j′′=1( ̸=2)

λ2/λ
1/2
1

max{1, λj′′/λ2}

)

=OP{η1/22 + λ
1/2
2 /(nλ1)

1/2}. (G.33)

From (G.32) and (G.33), it holds that

k2∗∑
s=1

h1(s)h̃2(s) = OP{η1/22 + λ
1/2
2 /(nλ1)

1/2}. (G.34)



Kazuyoshi Yata and Makoto Aoshima

Here, we assume

lim inf
d→∞,n→∞

P (k̃2 > k2∗) > 0 and lim inf
d→∞,n→∞

P (k̃2 ≤ k2∗) > 0

for the sake of simplicity. Let G = {j| h̃2∗(j) = 0 for j = 1, ..., d}, G1 =

{j| h̃2∗(j) = 0 for j = 1, ..., k2∗}, G2 = {j| h̃2∗(j) = 0 for j = k2∗ + 1, ..., d}

and G∗ = {k2∗ + 1, ..., d}. Then, similar to (G.24), we can claim that

G = G2 ⊂ G∗ if k̃2 > k2∗; and G2 = G∗ if k̃2 ≤ k2∗ (G.35)

with probability tending to 1. If k̃2 ≤ k2∗, similar to (G.28), we can claim

that

∑
s∈G1

h̃22(s) = OP (η2 + n−1) and

h̃
T

2∗h1 =

k2∗∑
s=1

h1(s)h̃2(s) −
∑
s∈G1

h1(s)h̃2(s). (G.36)

with probability tending to 1. From (G.15) and (G.31), we note that∑
s∈G1

h21(s) ≤
∑k2∗

s=1 h
2
1(s) = O(λ2/λ1). Then, from (G.36), if k̃2 ≤ k2∗,

it holds that

∑
s∈G1

|h1(s)h̃2(s)| ≤
(∑

s∈G1

h21(s)
∑
s∈G1

h̃22(s)

)1/2

= OP{(η1/22 + n−1/2)λ
1/2
2 /λ

1/2
1 },

so that from (G.34) and (G.36),

h̃
T

2∗h1 =

k2∗∑
s=1

h1(s)h̃2(s) −
∑
s∈G1

h1(s)h̃2(s) = OP{η1/22 + λ
1/2
2 /(nλ1)

1/2}. (G.37)
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If k̃2 > k2∗, similar to (G.26), we can claim that

∑
s∈G∗\G2

h̃22(s) = OP (η2 + n−1). (G.38)

Then, by noting that
∑

s∈G∗\G2
h21(s) ≤ 1, it holds that∣∣∣∣ ∑

s∈G∗\G2

h1(s)h̃2(s)

∣∣∣∣ ≤ ( ∑
s∈G∗\G2

h21(s)

)1/2( ∑
s∈G∗\G2

h̃22(s)

)1/2

= OP{(η2 + n−1)1/2}. (G.39)

Here, similar to (G.22), from (G.35), if k̃2 > k2∗, we can claim that

k2∗∑
s=1

h̃22(s) =

k2∗∑
s=1

h̃2o2(s) = 1 +OP (η2 + n−1). (G.40)

Then, from (2.5), it holds that

d∑
s=k2∗+1

h̃2o2(s) = ∥h̃2∥2 −
k2∗∑
s=1

h̃2o2(s) = (δ/λ2){1 + oP (1)}+OP (η2 + n−1).

Thus from lim infd→∞ tr(Σ2)/d > 0, (G.15) and (G.40), if k̃2 > k2∗, λ2 =

o(d) and η2 = o(n−1), we have that

k̃2∑
s=k2∗+1

h̃2o2(s) ≥ (k̃2 − k2∗){tr(Σ2)/(dλ2n)}{1 + oP (1)} and

k2∗∑
s=1

h̃2o2(s) = 1 +OP (n
−1). (G.41)

Let #(A) denote the cardinality of the set A. Note that

#(G∗\G2) = k̃2 − k2∗
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with probability tending to 1 if k̃2 > k2∗. From
∑k̃2

s=1 h̃
2
o2(s) ≥ 1 and (G.41),

if k̃2 > k2∗, λ2 = o(d) and η2 = o(n−1), it holds that k̃2 − k2∗ = OP (λ2), so

that from (G.15) and (G.38),

∣∣∣∣ ∑
s∈G∗\G2

h1(s)h̃2(s)

∣∣∣∣ ≤ ( ∑
s∈G∗\G2

h21(s)

)1/2( ∑
s∈G∗\G2

h̃22(s)

)1/2

= OP{(λ2/λ1)1/2(η2 + n−1)1/2}. (G.42)

From (2.3), note that λ1/λ2 = O(1) if lim infd→∞ λ2/d > 0. Thus it holds

that

η
1/2
2 + λ

1/2
2 /(nλ1)

1/2 = O(η
1/2
2 ) if lim inf

d→∞,n→∞
nη2 > 0; and

η
1/2
2 + λ

1/2
2 /(nλ1)

1/2 = O(η
1/2
2 + n−1/2) if lim inf

d→∞
λ2/d > 0. (G.43)

Thus from (G.34), (G.39), (G.42) and (G.43), if k̃2 > k2∗, we have that

h̃
T

2∗h1 =

k2∗∑
s=1

h1(s)h̃2(s) +
∑

s∈G∗\G2

h1(s)h̃2(s) = OP{η1/22 + λ
1/2
2 /(nλ1)

1/2}.

(G.44)

If P (k̃2 > k2∗) = o(1) or P (k̃2 ≤ k2∗) = o(1), we can obtain (G.37) or

(G.44). Thus from (G.37) and (G.44), we can conclude the second result

for h̃
T

2∗h1. As for h̃
T

j∗hj′ with j
′ < j; (j′, j) ̸= (1, 2), we obtain the result

similarly. From (G.30), we can claim the second result of Corollary 1.



AUTOMATIC SPARSE PCA

For the third result of Corollary 1, by noting that.

h̃
T

j∗h̃j′∗ =hT
j h̃j′∗ + (h̃j∗ − hj)

T h̃j′∗

=hT
j h̃j′∗ + hT

j′h̃j∗ + (h̃j∗ − hj)
T (h̃j′∗ − hj′)

for j ̸= j′, from the second result of Corollary 1, it concludes the result.

Proof of Proposition 3. From (G.3), it holds that h̃
T

j hj′ = λ
1/2
j′ uT

j′ûj/λ̃
1/2
j

for j ̸= j′. Thus from (G.1) and (G.2), we can conclude the result.

Proof of Theorem 2. Assume (A-i), (A-ii), (C-i), (C-ii), (C-iii’) and (⋆). We

first consider the proof for h̃1ω. We assume |h1(1)| ≥ · · · ≥ |h1(d)| for the

sake of simplicity. Similar to (G.13), we can claim that

h̃21(j) = h21(j){1 + oP (1)} for j = 1, ..., k1ω + r1; and

h̃21(j) = h21(j) + oP
(
h2o1(k1ω+r1)

)
for j = k1ω + r1 + 1, ..., d (G.45)

as d → ∞ and n → ∞. Similar to (G.14), from (C-iii’), we note for

j′ = 1, ...,m, that

λ1h
2
1(j) ∈ (0,∞) as d→ ∞ for j = 1, ..., k1ω + r1;

and h21(j) = O(λ−1
1 ) for j = k1ω + r1 + 1, ..., d. (G.46)
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Also, we note that

kj′ω → ∞ and kj′ω/(ωj′λj′) ∈ (0,∞) as d→ ∞ for j′ = 1, ...,m.

(G.47)

Then, from (G.45), we have that

ω1 ≤ ∥h1ω∥2 ≤ ω1 + h2o1(k1ω) = ω1 +O(λ−1
1 ) = ω1 +O(ω1/k1ω) and

ω1 ≤ ∥h̃1ω∥2 ≤ ω1 + h̃2
o1(k̃1ω)

= ω1 +OP (ω1/k1ω). (G.48)

From (C-ii), all the elements of Σ2 are bounded. Thus, from (G.46) and

h1ω = (h1(1), ..., h1(k1ω), 0, ..., 0)
T , we note that hT

1ωΣ2h1ω = O(k21ω/λ1).

Then, similar to (G.16)-(G.17), from (G.47), we can claim that

hT
1ωA2Xû1

{(n− 1)λ̃1}1/2
= OP (k1ωλ

−1
1 n−1/2) = OP (ω1n

−1/2). (G.49)

From (G.31), we note that |hT
1ωhj| = |

∑k1ω
s=1 h1(s)hj(s)| = O{k1ω/(λ1λj)1/2}

for j = 2, ...,m. Then, from (G.11) and (G.48), it holds that

hT
1ωA1Xû1

{(n− 1)λ̃1}1/2
=hT

1ωh1{1 +OP (n
−1)}+OP (k1ωλ

−1
1 n−1/2)

=ω1 +OP (ω1/k1ω + ω1n
−1/2). (G.50)

From (G.49) and (G.50), it holds that

k1ω∑
s=1

h̃1(s)h1(s) = ω1 +OP (ω1/k1ω + ω1n
−1/2). (G.51)

From (G.47), note that E(
∑k1ω

s=1 z̄
2
1(s),x) = O(ω1λ1/n) and E(

∑k1ω
s=1 ∥x(s),2∥2) =

O(ω1λ1). Then, similar to (G.20)-(G.21), we have that
∑k1ω

s=1{(h̃1(s) −
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h1(s))
2 = OP (ω1/n), so that from (G.45)-(G.48) and (G.51),

k1ω+r1∑
s=1

h̃21(s) =

k1ω∑
s=1

{(h̃1(s) − h1(s))
2 + 2h1(s)h̃1(s) − h21(s)}+

k1ω+r1∑
s=k1ω+1

h̃21(s)

= ω1 +OP (ω1/k1ω + ω1n
−1/2). (G.52)

From (G.45), it holds that

max
j∈{k1ω+r1+1,...,d}

h̃21(j) < min
j∈{1,...,k1∗+r1}

h̃21(j) (G.53)

with probability tending to 1. Here, we assume

lim inf
d→∞,n→∞

P (k̃1ω ≥ k1ω + r1) > 0 and lim inf
d→∞,n→∞

P (k̃1ω < k1ω + r1) > 0

for the sake of simplicity. Then, if k̃1ω ≥ k1ω + r1, from (G.51) and (G.53),

it holds that

h̃
T

1ωh1ω =

k1ω∑
s=1

h̃1(s)h1(s) = ω1 +OP (ω1/k1ω + ω1n
−1/2). (G.54)

Let Dω = {j| h̃1ω(j) = 0 for j = 1, ..., k1ω + r1} and Gω = {j| h̃1ω(j) =

0 for j = 1, ..., k1ω}. When k̃1ω < k1ω + r1, from (G.53), we note that

∥h̃1ω∥2+
∑

s∈Dω
h̃21(s) =

∑k1ω+r1
s=1 h̃21(s) with probability tending to 1. Then, if

k̃1ω < k1ω+ r1, from (G.45), (G.48) and (G.52), we have that
∑

s∈Gω
h̃21(s) ≤∑

s∈Dω
h̃21(s) =

∑k1ω+r1
s=1 h̃21(s) − ∥h̃1ω∥2 = OP (ω1/k1ω + ω1n

−1/2) and
∑

j∈Gω

h̃1(j)h1(j) =
∑

j∈Gω
h̃21(j){1+ oP (1)}. Thus, if k̃1ω < k1ω + r1, from (G.51), it
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holds that

h̃
T

1ωh1ω =

k1ω∑
s=1

h̃1(s)h1(s) −
∑
s∈Gω

h̃1(s)h1(s)

= ω1 +OP (ω1/k1ω + ω1n
−1/2). (G.55)

If P (k̃1ω < k1ω + r1) = o(1) or P (k̃1ω ≥ k1ω + r1) = o(1), we can obtain

(G.54) or (G.55). Thus from (G.48), (G.54) and (G.55), we can conclude

the result for h̃1ω. As for h̃jω with j ≥ 2, we obtain the results similarly.

It concludes the result of Theorem 2.

Proofs of Corollary A.1 and Proposition A.1. For Corollary A.1, from The-

orem 1 and (G.1), under the conditions in Corollary A.1, we have that for

j = 1, ...,m, that ∥β̃j − βj∥2/λj = vj∥h̃j∗∥2 + 1− 2v
1/2
j h̃

T

j∗hj +OP (n
−1) as

d → ∞ and n → ∞. Then, by noting that v
1/2
j = 1/2 + vj/2 + OP (n

−1),

from Theorem 1, we can conclude the result in Corollary A.1.

For Proposition A.1, from Proposition 2 and (G.1), under (A-i) and

(C-i), it holds for j = 1, ...,m, that

λ̂
1/2
j ĥ

T

j hj = λ̃
1/2
j h̃

T

j hj = λ
1/2
j {v1/2j +OP (n

−1)}

= λ
1/2
j {1/2 + vj/2 +OP (n

−1)}. (G.56)

Then, from Proposition E.1, we can conclude the result in Proposition

A.1.
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Proofs of Theorem A.1 and Proposition A.2. We first consider the proof of

Theorem A.1. From Theorem 1, (G.1) and (G.15), under the conditions in

Theorem A.1, we have that for j = 1, ...,m, that

∥β̃jβ̃
T

j − βjβ
T
j ∥2F =λ2j{1 + 2(vj − 1) +OP (n

−1 + ηj)}+ λ2j

− 2λ2j{1 + (vj − 1) + OP (n
−1 + ηj)}

=OP{λ2j(n−1 + ηj)} (G.57)

as d→ ∞ and n→ ∞. Note that |tr{(β̃jβ̃
T

j − βjβ
T
j )(β̃j′β̃

T

j′ − βj′β
T
j′)}| ≤

∥β̃jβ̃
T

j −βjβ
T
j ∥F ·∥β̃j′β̃

T

j′−βj′β
T
j′∥F ≤ ∥β̃jβ̃

T

j −βjβ
T
j ∥2F+∥β̃j′β̃

T

j′−βj′β
T
j′∥2F

for j ̸= j′. Then, it holds that

∥Σ̃1 −Σ1∥2F ≤ m
m∑
s=1

∥β̃sβ̃
T

s − βsβ
T
s ∥2F .

Thus from (G.57), we can conclude the result in Theorem A.1.

For Proposition A.2, from Proposition E.1 and (G.56), under (A-i) and

(C-i), we have for j = 1, ...,m, that ∥β̂jβ̂
T

j − βjβ
T
j ∥2F = 2{1 + oP (1)}δλj +

δ2 + OP (λ
2
jn

−1). Here, from (G.2) and (G.3), it holds that λ̂
1/2
j ĥ

T

j hj′ =

λ
1/2
j′ uT

j′ûj = OP (λ
1/2
j′ /n

1/2). Thus, we can conclude the result in Proposition

A.2.

Proof of Proposition B.1. Assume (A-i), (C-i), (C-ii) and (⋆’). By using

Markov’s inequality, for any c > 0, under (A-ii’), we have as d → ∞ and
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n→ ∞ that

d∑
j′=1

P (|z̄j(j′),x| ≥ cd1/8/n1/2) =
d∑

j′=1

P (|z̄j(j′),x|8 ≥ c8d/n4)

≤
d∑

j′=1

n4E(|z̄j(j′),x|8)
dc8

= O(c−8) for j = 1, ...,m; and

d∑
j′=1

P (∥x(j′),2∥ ≥ cd1/8) =
d∑

j′=1

P (∥x(j′),2∥8 ≥ c8d)

≤
d∑

j′=1

E(∥x(j′),2∥8)
dc8

= O(c−8),

so that

z̄j(j′),x = OP (d
1/8/n1/2) for all j, j ′; and

∥x(j′),2∥ = OP (d
1/8) for all j′.

Then, from (G.1) and (G.9), it holds for j = 1, ...,m, that

λ̃
−1/2
j xT

(j′),2ûj = OP{(λ−1
j n−1d1/4)1/2} for all j′.

Thus from (G.3), by combining (G.10) and (G.11), we have for j = 1, ...,m,

that

h̃j(j′) = hj(j′) +OP{(λ−1
j n−1d1/4)1/2} for all j′. (G.58)

From (G.58), under (C-iii), it holds for j = 1, ...,m and all j′, that

h̃2j(j′) = h2j(j′) + oP

(
hoj(kj∗) max{|hoj(kj∗)|, |hj(j′)|}

)
. (G.59)

From (2.3), note that λ−1
j d1/4 = o(1) for j = 1, ...,m. Then, from (G.59),

similar to the proofs of Theorem 1 and Corollary 1, we can obtain the
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results in Theorem 1 and Corollary 1 after replacing (A-ii) and (⋆) with

(A-ii’) and (⋆’). By using the results in Theorem 1 and Corollary 1, similar

to the proofs of Theorem A.1 and Corollary A.1, we can obtain the results

in Theorem A.1 and Corollary A.1 after replacing (A-ii) and (⋆) with (A-ii’)

and (⋆’). For Theorem 2, from (G.58), similar to the proofs of Theorem

2, we can obtain the result after replacing (A-ii) and (⋆) with (A-ii’) and

(⋆’).
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