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S1 Definitions

S1.1 Differential Privacy

We begin with an introduction to the core definitions of DP.

Definition 1 (Neighboring data sets). Let X be a data universe and

D,D′ ∈ X n. We say that D,D′ are neighboring if

max (|D \D′|, |D′ \D|) = 1.



Christian Covington, Xi He, James Honaker, and Gautam Kamath

We also define the set of all neighboring data sets as

Dn = {(D,D′) ∈ X n ×X n : D,D′ are neighbors}.

Definition 2 (Rényi divergence (Rényi, 1961)). Let P,Q be probability

measures over a measurable space (Ω,Σ). Then we define the α-Rényi

divergence between P,Q as

Hα (P∥Q) =
1

α− 1
ln

∫
Ω

P (x)αQ(x)1−αdx.

Definition 3 (Global Function Sensitivity). Let X be a data domain, γ :

X n → Rd, and Dn be the set of all neighboring data sets as in Definition 1.

Then we write the global sensitivity of γ with respect to a distance metric

d as

GSd(X n, γ) = max
D,D′∈Dn

d (γ(D), γ(D′)) .

Algorithms can be made to respect DP in a variety of ways, but the

most common way (as well as the approach we use in this work) is via

an additive noise mechanism. This just entails running the algorithm as

one would normally, and then adding random noise scaled relative to the

algorithm’s sensitivity.

Throughout this work, we use a popular additive noise mechanism

called the Gaussian mechanism.
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Lemma 1 (Gaussian Mechanism). Let f : X n → Rd have global ℓ2 sensi-

tivity GSℓ2(X n, f). Then the Gaussian mechanism

Mf (D) = f(D) +N

(
0,

(
GSℓ2(X n, f)√

2ρ

)2

Id

)
satisfies ρ-zCDP.

Note that it is often necessary to bound the data domain X to ensure

that GSℓ2(X n, f) < ∞. For example, let X = Rd, D = (D1, . . . , Dn) with

Di ∈ X , and f : Rn×d → Rd be such that f(D) = n−1
∑n

i=1 Di. If we let

D′ = (∞, D2, . . . , Dn), then D,D′ are neighbors (they differ only in the

first element), but ∥f(D) − f(D′)∥2 = ∞. If instead X = [0, 1]d, then the

D,D′ that induce the largest difference in f are D = (⃗1, D2, . . . , Dn) and

D′ = (⃗0, D2, . . . , Dn). In this scenario, ∥f(D)− f(D′)∥2 = ∥n−1(⃗1− 0⃗)∥2 =

n−1
√
d, and thus GSℓ2(X n, f) = n−1

√
d.

These bounds must be set without looking at the particular Di, and are

generally chosen by a data analyst based on public metadata and/or their

beliefs about the data-generating process.

S1.2 Statistical Inference

This need to bound X introduces complications for doing statistical infer-

ence under DP, while maintaining the types of guarantees we often want

from non-private estimators. We focus specifically on unbiased estimators
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and valid confidence sets.

Definition 4 (Unbiased Estimator). Let θ ∈ Rd be a model parameter we

wish to estimate. We collect data D ∼ D and estimate θ with a random

variable θ̂ : D → Rm. We say that θ̂ is an unbiased estimator of θ if

E
[
θ̂(D)

]
= θ, with randomness taken over the sampling of D ∼ D, as well

as any other randomness in θ̂.

Many applied statisticians, particularly those interested in estimating

causal effects using linear models, prize unbiased parameter estimation and

are willing to sacrifice on other fronts to achieve it. For example, the stan-

dard OLS estimator (which is the minimum-variance unbiased estimator

under the assumptions of the Gauss-Markov theorem) is used for estimating

parameters of a linear regression model in favor of other biased estimators,

such as the James-Stein estimator (Stein, 1956; Stein and James, 1961),

which dominate it in terms of ℓ2 error of the parameter estimates.

Definition 5 (Confidence Set). Let θ ∈ Rd be a model parameter we wish

to estimate using data D ∼ D. For arbitrary α ∈ [0, 1], a (1 − α)-level

confidence set for θ is a random set S ⊆ Rd such that

P (θ ∈ S) = 1− α,

with randomness taken from the sampling of D and any other randomness
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in the construction of S.

Ideally, we would be able to find a perfectly-calibrated confidence set,

where the coverage probability (i.e. P(θ ∈ S)) is exactly 1 − α. However,

this is often impossible to compute exactly and so practitioners tend to

default to being overly conservative instead. In this setting, we require

P (θ ∈ S) ≥ 1 − α and call such an S a valid confidence set. In this work,

we focus on confidence regions, which are contiguous confidence sets, and

occasionally confidence intervals, which are univariate confidence regions.

We can simplify the general problem of constructing confidence sets by

restricting our attention to estimators whose sampling distribution belongs

to a symmetric multivariate location-scale family.

Definition 6 (Location-Scale Family). A set of probability distributions

is a location-scale family if any density f(x;µ,Σ) in the set is written as

f(x;µ,Σ) = c|Σ|−1/2 exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
. for some normalization

constant c.

Our restriction to location-scale families ensures that estimating the

mean and (co)variance of the estimator is sufficient to characterize its dis-

tribution.
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S2 Step 1: Bag of Little Bootstraps

This algorithm statement is adapted and simplified for our purposes; readers

interested in the original version should consult Kleiner et al. (2014). We say

that X is our data universe, D is a distribution over X , and our realized data

X ∈ Rn×m are drawn from Dn. For an arbitrary estimator θ̂ : X n → Rd,

we define θ̂(D) = EX∼Dn

[
θ̂(X)

]
.

Algorithm 1 Bag of little bootstraps (BLB)

Input: data set X ∈ Rn×m, estimator θ̂ : Xn → Rd, estimator quality assessment ξ, k number of

subsets of partition, r number of bootstrap simulations

Output: k estimates of θ̂(D)

1: procedure BLB(X, θ̂, k, r)

2: Randomly partition X into k subsets {Xi}i∈[k]

3: for i ∈ [k] do

4: b = |Xi|

5: {θ̂i,c}c∈[r] = ∅

6: for c ∈ [r] do

7: sample (n1, . . . , nb) ∼ Multinomial(n,1b/b)

8: create XU
i ∈ Rn×m by including the jth element of Xi nj times

9: θ̂i,c = θ̂(XU
i )

10: θ̂i = ξ
(
{θ̂i,c}c∈[r]

)
11: return {θ̂i}i∈[k]
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S3 Step 2: Differentially Private Estimation

Definition 7. Let B(µ,Σ) and C(µ,Σ) be families of distributions and

B,C be random variables drawn from each such that E(B) = E(C) = µ

and Cov(B) = Cov(C) = Σ. Let PSDd be the set of all d×d PSD matrices.

We say that B is heavier-tailed than C if for all µ ∈ Rd,Σ ∈ PSDd, and v ∈

Rd such that ∥v∥2 = 1, then P
[
vT (B − µ) ≤ z

]
≤ P

[
vT (C − µ) ≤ z

]
for all

z > 0.
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S3.1 Modified CoinPress Algorithm

Algorithm 2 Modified CoinPress

Input: X = (x1, . . . , xk) from a distribution D with mean µ and covariance Σ, Σ̃ such that Σ ⪯ Σ̃,

B2(µ̃0, r0) containing µ, family of distributions QX(·,Σµ) with heavier tails than D, number of iterations

t ∈ N+, zCDP privacy loss parameter ρ > 0, failure probability β > 0

Output: t estimates of µ that jointly respect ρ-zCDP

1: procedure MVMRec(X, µ̃0, r0, Σ̃, Q, t, ρ, β)

2: S = Σ̃1/2

3: µ̃0 = S−1µ̃0

4: r0 = max
(
diag

(
S−1

))
· r0

5: Define X̄ ∈ Rk×d such that ∀j ∈ [d], ∀m ∈ [k] : X̄m,j = 1
k

∑k
m′=1 xm′,j . Note that each row

X̄m,: is equal to the d-dimensional empirical mean of X

6: X′ =
(
X − X̄

)
S−1

7: for m ∈ [t− 1] do

8: (µ̃m, rm, σm) = MVM(X′, µ̃m−1, rm−1, QX(0, Id),
ρ

2(t−1)
, β
t
) ▷ Algorithm 3

9: (µ̃t, rt, σt) = MVM(X′, µ̃t−1, rt−1, QX(0, Id),
ρ
2
, β
t
)

10: ∀m ∈ [t] : µ̃m = (Sµ̃m) + µ̄1,: ▷ convert mean estimates to proper scale

11: ∀m ∈ [t] : σ⃗2
m = diag (Sσm)2 ▷ convert private noise variances to proper scale

12: return {(µ̃m, σ⃗2
m)}m∈[t]
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S3.2 Modified CoinPress Algorithm - One Step Improvement

Algorithm 3 One Step Private Improvement of Mean Ball
Input: x = (x1, . . . , xk) from a distribution with mean 0 and covariance with smaller Löwner order

than Id, B2(µ̃, r) containing 0, family of distributions QX(·, Id), zCDP privacy loss parameter ρm > 0,

failure probability βm > 0

Output: A ρs-zCDP ball B2(µ̃′, r′) and scale of the privatizing noise σ

1: procedure MVM(M̂, µ̃, r,QX , ρm, βm)

2: βs = βm/2

3: Let R ∼ QX(0, Id)

4: Set γ1 such that P (∥R∥2 > γ1) ≤ βs
k

5: Set γ2 such that P (∥R∥2 > γ2) ≤ βs

6: Project each xi into B2(µ̃, r + γ1).

7: ∆ = 2(r + γ1)/k.

8: σ = ∆√
2ρs

9: Compute µ̃′ = 1
k

∑
i xi + Y , where Y ∼ N

(
0, σ2Id

)
.

10: r′ = γ2

√
1
k
+

2(r+γ1)2

k2ρs

11: return (µ̃′, r′, σ).

S3.3 Privacy Analysis of Algorithm 2

Theorem 1 (Modified CoinPress Privacy Statement). Algorithm 2 pro-

duces t estimates of µ that jointly respect ρ-zCDP.

Proof. Algorithm 2 begins and ends by scaling the data to have empirical

mean 0 and covariance which is Löwner upper bounded by Id. The covari-

ance scaling parameter is chosen independently of the data and the rest

of the steps in the algorithm are invariant under location shift. So, our
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privacy analysis rests on the application of Algorithm 3 in lines 8 and 9 of

Algorithm 2.

Algorithm 3 interacts with the raw data only in line 9, so satisfying

DP reduces to correct specification of ∆ (the ℓ2 sensitivity of the mean)

and application of the Gaussian mechanism. The data are projected into

B2(θ̃, r+γ1), and so the most a single data point can be changed in ℓ2 norm

is 2(r + γ1). Because neighboring data sets X, Y differ in only one point

(call it z), the ℓ2 norm of the k − 1 other points remains the same and so∥∥∥∥∥1k ∑
x∈X

x− 1

k

∑
y∈Y

y

∥∥∥∥∥
2

=

∥∥∥∥1kz
∥∥∥∥
2

=
1

k
∥z∥2 ≤

2(r + γ1)

k

as desired. Thus, each step of CoinPress satisfies zCDP at the stated level

of its privacy parameter ρ. For each step m ∈ [t− 1], we see in line 8 that

the privacy parameter is ρ
2(t−1)

. For step t, we see in line 9 that the privacy

parameter is ρ
2
. Because zCDP parameters compose additively, the zCDP

parameter for the entire CoinPress algorithm is (t− 1) ρ
2(t−1)

+ ρ
2
= ρ.

S3.4 Proof of Theorem 5

Proof. We start with Assumption 3 so we have µ ∈ B2 (µ̃0, r0). Note that

the clipping bounds, parameterized by γ1, in line 4 of Algorithm 3 are set

such that, with probability 1− βs, no points are affected by the bounding;

this follows because any given point is affected only if it falls outside the
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clipping ball, which occurs with probability ≤ βs

k
and so, by the union

bound, every point is unaffected with probability ≥ 1 − βs. Thus, with

probability ≥ 1− βs:

µ′ ∼ 1

k

k∑
i

µ̂i + Y

∼ µ̂+ Y (definition of µ̂)

∼ N
(
µ̂, σ2Id

)
.

We now consider γ2, which is set as a 1−βs probability upper bound on

the ℓ2 norm of the privatized mean of k draws from Q(0, Σ̃). Conditional

on no points being clipped so that µ̃′ =
∑k

i=1 µ̂i + Y , we have

1− βs ≤ P

(∥∥∥∥∥1k
k∑

i=1

µ̂i − µ+ Y

∥∥∥∥∥
2

≤ γ2

)
(S3.1)

= P (∥µ̃′ − µ∥2 ≤ γ2) . (S3.2)

So, having µ ∈ B2(µ̃0, r0) implies that P (µ ∈ B2(µ̃
′, r′)) ≥ 1 − 2βs = 1 −

βm. Using the fact that
∑t

m βm = βµ and a union bound, we proceed by

induction over the t steps of the algorithm and see that with probability

1− βµ we have

∀m ∈ [t] : µ ∈ B2(µ̃m, rm)

and

∀m ∈ [t] : µ′
m ∼ N

(
µ̂, σ2

mId
)
.
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Scaling µ′
m, σ

2
m back up as in Lines 10 and 11 give the desired result.

S3.5 Setting γ1, γ2

This section is concerned with how to set γ1, γ2 in lines 4, 5 of Algorithm 3

for various Qµ̃. We start with a general statement that works for arbitrary

Qµ̃.

Fact 2 (Chebyshev’s Inequality). If X is a d-dimensional random vector

with expected value µ = E(X) and covariance Σ = E
(
(X − µ)(X − µ)T

)
,

then

P
(√

(X − µ)TΣ−1(X − µ) > t
)
≤ d

t2
,

provided that Σ is positive definite.

Corollary 1. For any R in Algorithm 3, P
(
∥R∥2 >

√
d/β

)
≤ β.

Proof. By construction of R, we know that µ = 0 and Σ = Id. Let Rj be

the jth element of R. Then we can write

√
(R− µ)TΣ−1(R− µ) =

√
RTR =

(
d∑

j=1

R2
j

)1/2

= ∥R∥2

We can set t =
√
d/β and rewrite Chebyshev’s Inequality as

P
(
∥R∥2 >

√
d/β

)
≤ β.
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In practice, it is beneficial to set tighter bounds based on the specified

Qµ̃. This can hypothetically be done via Monte Carlo sampling and empir-

ical CDF inequalities. However, this can be computationally expensive for

γ1 in particular, as you need at least k/β draws (and often far more) from

the random variable to get a proper upper bound.

Some Qµ̃ also admit analytical bounds, which avoid the need for the

costly computation. If Qµ̃ is multivariate Gaussian, we can use the follow-

ing:

Fact 3 (Lemma 1 of Laurent and Massart (2000)). Let Qµ̃ be multivariate

Gaussian such that Qµ̃(µ,Σ) = N (µ,Σ). Then if R ∼ Qµ̃(0, Id), we know

that

∀β ∈ (0, 1] : P
(
∥R∥2 >

√
d+

√
d log(1/β) + 2 log(1/β)

)
≤ β.

We present a similar bound for when Qµ̃ is multivariate Laplace, based

heavily on a result from Corollary 3.1 from Vladimirova et al. (2020).

Theorem 4. Let Qµ̃ be multivariate Laplace with mean µ = 0 and covari-

ance Σ = Id. Then if R ∼ Qµ̃(0, Id), we know that

∀β ∈ (0, 1] : P
(
∥R∥2 >

√
e · d log2(β)

)
≤ β,

where e ≈ 2.718 is Euler’s number.

Proof. We start by noting that ∥R∥2 =
(∑d

j=1 R
2
j

)1/2
. We know that the
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Rj are Laplace with mean 0 and variance 1, and thus ∀j ∈ [d] : R2
j ∼

Weibull(λ = 1/2, k = 1/2). For ease of notation, we’ll call Xj = R2
j .

We now define sub-Weibull random variables, as is done in Vladimirova

et al. (2020). We call a random variable Xj sub-Weibull with tail parameter

θ if there exists θ, a, b > 0 such that ∀x > 0 : P (|Xj| ≥ x) ≤ a exp
(
−bx1/θ

)
.

For context, sub-Gaussian random variables are sub-Weibull with θ = 1/2,

sub-Exponentials are sub-Weibull with θ = 1, and Weibull random variables

themselves are sub-Weibull with θ = 2.

We can state an alternative condition, also from Vladimirova et al.

(2020), that Xj is sub-Weibull with tail parameter θ if ∃c > 0 s.t. ∀t ≥ 1 :

∥Xj∥t ≤ ctθ. Our goal is to find the smallest c that holds for Weibull random

variables in particular. We recall that Xj ∼ Weibull(λ = 1/2, k = 1/2) and

θ = 2. Thus, for all t ≥ 1:

∥Xj∥t ≤ ctθ

⇐⇒
(
E
(
|Xj|t

))1/t ≤ ctθ

⇐⇒ λΓ

(
t

k
+ 1

)1/t

≤ ctθ (S3.3)

⇐⇒ 1

2t2
Γ(2t+ 1)1/t ≤ c. (S3.4)

Line S3.3 follows by using the MGF of a Weibull random variable, and

line S3.4 follows by plugging in the parameter values.
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Our goal is to find the smallest c such that ∥X∥t ≤ ctθ for all t ≥ 1.

The lefthand side of line S3.4 is decreasing in t for t ≥ 1, so finding the

smallest possible c for t = 1 will be sufficient for all t ≥ 1. Plugging in

t = 1, we get c = 1.

We can finally appeal to Corollary 3.1 from Vladimirova et al. (2020),

which states that if X1, . . . , Xd are i.i.d. Weibull random variables with tail

parameter θ, then for all x ≥ dKθ we have

P

(∣∣∣∣∣
d∑

j=1

Xj

∣∣∣∣∣ ≥ x

)
≤ exp

(
−
(

x

Kθd

)1/θ
)

for Kθ = ec. Plugging in the c = 1 we found for Weibull random variables

yields

P

(∣∣∣∣∣
d∑

j=1

Xj

∣∣∣∣∣ ≥ x

)
≤ exp

(
−
( x

e · d

)1/θ)
.

We want the probability to be less than β, so we sub this in and get

P

(∣∣∣∣∣
d∑

j=1

Xj

∣∣∣∣∣ ≥ e · d log2(β)

)
≤ β.

We note that ∥X∥2 =
√∣∣∣∑d

j=1 Xj

∣∣∣, so setting the bound at
√

e · d log2(β)

gives our desired result.

S3.6 Trick for setting Σ̃ for θ̂BLB estimation

In our GVDP algorithm, we independently estimate the means of both the

{θ̂BLB
i }i∈[k] and {Σ̂BLB

i }i∈[k], each requiring (among other things) that the
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analyst specify Σ̃, a Löwner upper bound on the sample covariance of the

BLB samples. If we estimate the mean of {Σ̂BLB
i }i∈[k] and do our post-

processing to find a private covariance estimate Σ̃ prior to estimating the

mean of {θ̂BLB
i }i∈[k], we can actually leverage some extra information that

will generally improve our estimates with a small cost to the theoretical

guarantee. All the experimental results in the paper use this trick.

Although we are scaling up our subsets to the original data size within

the BLB to get correct overall covariance estimates, this does not imply

that the covariance of the {θ̂BLB
i }i∈[k] match this correct scaling. In fact,

this covariance will often be roughly the same as if θ̂ were simply run on

subsets of size n
k
. So, the covariance of the {θ̂BLB

i }i∈[k] should be roughly

r(n/k)
r(n)

Σ̂, where r is the convergence rate of the estimator in question. For

example, the covariance of OLS coefficients decays with 1
n
, so if θ̂ represents

OLS estimation we would say the covariance is 1/(n/k)
1/n

Σ̂ = kΣ̂. We upper

bound this with kΣ̃.

Under Assumption 1, this strategy gives us a 1− βΣ̃ probability guar-

antee that kΣ̃ will Löwner upper bound the empirical covariance of the

{θ̂BLB
i }i∈[k]. So, by using kΣ̃ as the upper covariance bound for our mean

estimation for {θ̂BLB
i }i∈[k], we generally start with a pretty tight bound and

can dramatically improve the accuracy of our estimates. This does lose a
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bit of theoretical strength in the results; we generally assume that the an-

alyst’s upper bound is an actual upper bound on the empirical covariance

with probability 1, whereas this trick provides a guarantee with probability

1− βΣ̃.

S3.7 Generalizing CoinPress beyond multivariate sub-Gaussians

In Figure 1 we provide evidence that our generalization of CoinPress beyond

sub-Gaussian distributions delivers on its promises. We pretend as if the es-

timator and data were such that the distributions induced by the BLB were

are dominated by the multivariate Laplace (i.e. they are sub-Exponential),

and the analyst overestimated the relevant parameters by a factor of 100.

We show results corresponding to two different methods for calculating the

clipping parameters at each step of CoinPress. The analytic solution cal-

culates the bound using a theoretical bound given in Theorem 4, while the

approximate solution calculates an approximate upper bound using Monte

Carlo sampling.
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Figure 1: Distribution of coefficient estimates and 95% confidence intervals for k = 5,000, d = 10, ρ = 0.1

for multivariate Laplace distribution

S4 Step 3: Postprocessing

S4.1 Proof of Theorem 6

Proof. Our goal is to find weights {Am}m∈[t] with Am ∈ Rd×d such that

the Löwner order of Cov
(∑t

m=1Amτ̂m
)
is minimized. Because we want our

weighted estimator to remain unbiased, we restrict ourselves to sets of Am

such that
∑t

m=1 Am = Id.

We note that the Am are constants and τ̂m are independent, so

Cov

(
t∑

m=1

Amτ̂m

)
=

t∑
m=1

Cov (Amτ̂m)

=
t∑

m=1

AT
mCov (τ̂m)Am.

Assume τ̂m ∈ Rd and let {Bm}m∈[t] with Bm ∈ Rd×d be an arbitrary
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weighting. Then we can write

Cov

(
t∑

m=1

Amτ̂m

)
⪯ Cov

(
t∑

m=1

Bmτ̂m

)

⇐⇒ ∀v ∈ Rd \ {0} : vTCov

(
t∑

m=1

Amτ̂m

)
v ≤ vTCov

(
t∑

m=1

Bmτ̂m

)
v.

Note that the quantities on the righthand side of the statement above are

scalars, so we have translated the problem of finding a minimal Löwner

bound into minimizing a one-dimensional quantity.

Let v ∈ Rd \ {0} be arbitrary. We now have a one-dimensional con-

strained optimization problem; we want to find {Am}m∈[t] which minimizes

vTCov
(∑t

m=1Amτ̂m
)
v subject to

∑t
m=1Am = Id. We can solve this using

a Lagrange multiplier.

We write

L
(
{Am}m∈[t], λ

)
= vTCov

(
t∑

m=1

Amτ̂m

)
v − λvT

(
t∑

m=1

Am − Id

)
v

and differentiate with respect to Am. Recall that Cov (τ̂m) = Sm. Then we

have

∂L
(
{Am}m∈[t], λ

)
∂Am

=
∂vTCov

(∑t
m=1Amτ̂m

)
v − λvT

(∑t
m=1 Am − Id

)
v

∂Am

=
∂
(∑t

m=1 v
TAT

mCov (τ̂m)Amv
)
− λvT

(∑t
m=1 Am − Id

)
v

∂Am

= SmAmvv
T + ST

mAmvv
T − λvvT (S4.5)

= 2 (SmAm − λId) vv
T .
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(S4.5) comes from a matrix calculus identity that for vectors a, b and matrix

C all independent of X, ∂(Xa)TC(Xb)
∂X

= CXbaT + CTXabT and noting that

the partial with respect to Am influences the sum only in the mth term.

We set this to 0 to find a stationary point.

0 = 2 (SmAm − λId) vv
t

λIdvv
T = SmAmvv

t

Am = λS−1
m Idvv

T (vvT )−1

= λS−1
m .

We know from our constraint that
∑t

m=1Am = Id, so

t∑
m=1

λS−1
m = Id

λ =

(
t∑

m=1

S−1
m

)−1

,

and thus our stationary point is achieved at Am =
(∑t

m=1 S
−1
m

)−1
S−1
m .

We have shown that choosing Am in this way achieves a stationary

point, but we want to show that it is a global minimum. For that, we need

to check the second partial derivative test, which states that our stationary

point is a global minumum if
∂2L({Am}m∈[t],λ)

∂2Am
is PD.
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We first note that

∂2L
(
{Am}m∈[t], λ

)
∂2Am

=
∂

∂Am

2 (SmAm − λId) vv
T

= 2(vvT )⊗ Sm,

where ⊗ is the Kronecker product.

We know vvT is PD, because ∀z ∈ Rd\{0} we get zTvvT z = (zTv)(vT z) =

(vT z)T (vT z) > 0. The strict inequality comes because we know that both v

and z are non-zero. We know Sm is PD by assumption and that, in general,

if a matrix Y is PD then so is 2Y . Finally, the Kronecker product of PD

matrices is also PD, so 2(vvT )⊗Sm is PD and our second partial derivative

condition is met. So L is convex and our local minimum is also a global

minimum. Thus, our choice of Am achieves the Cov
(∑t

m=1 Amτ̂m
)
with

minimal Löwner order.

S4.2 Proof of Theorem 7

Proof. From Theorem 5, we know that, with probability ≥ 1− βΣ̃:

∀m ∈ [t] : S̃m ∼ N
(
ŜBLB, σ⃗2

Σ̃,m
Id′
)
,

where ŜBLB is the flattened form of Σ̂BLB. Assumption 1 then let’s us

substitute in Ŝ for ŜBLB. For the rest of the proof, we assume that this

condition is met.
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Thus, by Theorem 6, we know that a precision-weighted S̃ will have

mean E[S̃] = Ŝ and covariance Cov
(
S̃
)

=
(
Σt

m=1σ⃗
−2

Σ̃,m
Id′
)−1

Moreover,

this S̃ is itself multivariate Gaussian because it is a linear combination of

multivariate Gaussians. That is, we can write

S̃ ∼ N

Ŝ,

(
t∑

m=1

σ⃗2
Σ̃,m

Id′

)−1
 =: N

(
Ŝ, σ⃗2

S̃
Id′
)
.

Let Σ̃′ be the unflattened matrix constructed from S̃. Then we can write

Σ̃′
i,j ∼ N

(
Σ̂i,j, b

2
i,j

)
, where bi,j = unflatten (σ⃗S̃)i,j. Then, by Theorem 1.1

from Bandeira and Van Handel (2016), we know that

E∥Σ̃′ − Σ̂∥2 ≤ (1 + ϵ)

(
2max

i∈[d]
∥bi,·∥2 +

6
√
log d

log(1 + ϵ)
max

i,j∈[d]×[d]
|bi,j|

)
,

for arbitrary ϵ ∈ (0, 1/2], where ∥·∥2 is the spectral norm. Moreover, by

Corollary 3.9 from Bandeira and Van Handel (2016) we have that, for any

t ≥ 0:

∥Σ̃′ − Σ̂∥2 ≤ (1 + ϵ)

(
2max

i∈[d]
∥bi,·∥2 +

6
√
log d

log(1 + ϵ)
max

i,j∈[d]×[d]
|bi,j|

)
+ t

with probability ≥ 1 − exp
(

−t2

4maxi,j b2i,j

)
. Setting t =

√
ln(1/βub)

4maxi,j b2i,j
yields a

1− βub probability bound.

Now define

c = min
ϵ∈(0,1/2]

(1+ϵ)

(
2max

i∈[d]
∥bi,·∥2 +

6
√
log d

log(1 + ϵ)
max

i,j∈[d]×[d]
|bi,j|

)
+

√
ln(1/βub)

4maxi,j b2i,j
.
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The spectral norm ∥·∥2 of a matrix is its largest singular value (or equiva-

lently, the square root of the absolute value of its largest magnitude eigen-

value). So, if ∥Σ̃′− Σ̂∥2 ≤ c, we know that the smallest eigenvalue of Σ̃′− Σ̂

is necessarily at least −c. Therefore, the smallest eigenvalue of Σ̃′+ cId− Σ̂

is at least 0 or, equivalently, Σ̃+cId ⪰ Σ̂. This statement holds with proba-

bility 1− βub. Combining this with the initial 1− βΣ̃ probability guarantee

on the form of our estimator completes the proof.

The statement for c simplifies significantly in the case where the {Σ̃m}m∈[t]

are diagonal matrices (which occurs if we care only about confidence in-

tervals for each parameter rather than a joint confidence region). Let

q(p, µ, σ2) :=
√
2σerf−1(2p− 1) + µ be the quantile function for a N(µ, σ2)

distribution where erf−1(·) is the inverse error function.

Corollary 2. Given diagonal covariance estimates and privacy variances

{Σ̃m, σ⃗
2
Σ,m}m∈[t], let S̃m ∈ Rd′ be the flattened version of Σ̃m. We can con-

struct a precision-weighted estimator S̃: S̃ :=
∑t

m=1 S̃m/σ⃗2
Σ,m∑t

m=1 1/σ⃗
2
Σ,m

.

Let Σ̃′ be the diagonal d × d matrix created by unflattening S̃ and b

be the unflattened d × d diagonal matrix where b2i,i = Var
(
Σ̃′

i,i

)
(i.e. the

diagonal values of the covariance matrix of the flattened precision-weighted
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estimator). For βub ∈ (0, 1), define c⃗ = {cj}j∈[d] where

cj = q

(
1− βub

d
, 0, b2j,j

)
.

Then, for Σ̃ = Σ̃′+ c⃗Id we have P
(
∀j ∈ [d] : Σ̂j,j ≤ Σ̃j,j

)
≥ 1−βΣ̃−βub.

Proof. We start as in the proof in Section S4.2, but we know additionally

that Σ̃′
i,j = 0 for i ̸= j. We know that if our assumptions hold, which

happens with probability ≥ 1 − βΣ̃, we can write Σ̃′
j,j ∼ N

(
Σ̂j,j, b

2
j,j

)
where bj,j = (σ⃗S̃)j.

By definition of the quantile function, we know then that, for arbitrary

j ∈ [d]:

1− βub

d
= P

(
Σ̃′

j,j ≤ q

(
1− βub

d
, Σ̂j,j, b

2
j,j

))
= P

(
Σ̃′

j,j ≤ Σ̂j,j + q

(
1− βub

d
, 0, b2j,j

))
= P

(
Σ̃′

j,j − cj ≤ Σ̂j,j

)
(definition of cj)

= P
(
Σ̃′

j,j + cj ≥ Σ̂j,j

)
(symmetry of the Gaussian) .

Applying a union bound over the d failure probabilities and combining

with the 1 − βΣ̃ probability that our required assumptions hold yields the

desired result.
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S4.3 Proof of Theorem 8

Proof. From Theorem 5, we know that, with probability ≥ 1− β θ̃:

∀m ∈ [t] : θ̃m ∼ N
(
θ̂BLB, θ⃗2

θ̃,m
Id′
)
,

where Ŝ is the flattened form of Σ̂. Assumption 1 then let’s us substitute

in θ̂ for θ̂BLB.

However, we opt to use the trick from Section S3.6 to avoid having to

make Assumption 4. Theorem 8 gives us a covariance bound that, after

appropriate scaling, satisfies Assumption 4 with probability 1 − βΣ̃ − βub,

so we fold this into our failure probability. Our result then follows directly

from the precision-weighting procedure in Theorem 6.

S5 Confidence Region/Intervals

S5.1 Proof of Theorem 9

Proof. We assume that our estimation of θ̃ and Σ̃ worked as described at

the top of Section 2.4, which comes with a 1 − βΣ̃ − βub − β θ̃ probability

guarantee. This means that E(θ̃) = E(θ̂) = θ and Σ̃ ⪰ Σ̂ ⪰ Σ where our

non-private estimator θ̂ ∼ G(θ,Σ). Furthermore, we assume that Qθ̂ is

heavier-tailed than G.

Summarizing this, we have a high-probability guarantee that three con-
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ditions hold:

(1) E(Z) = E(θ̂) = θ

(2) Σ ⪯ Σ̃

(3) Qθ̂ is heavier-tailed than G.

Under these conditions, Z and θ̂ have the same mean and θ̂ is more

concentrated than Z, so a confidence region that is valid for Z is valid for

θ̂. In other words,

∀α ∈ (0, 1) : P(Z ∈ C) ≥ 1− α =⇒ P(θ ∈ C) ≥ 1− α.

The result for confidence intervals, rather than a single region, follows

trivially by noting that a confidence interval is a 1-dimensional confidence

region.

Corollary 3 (Confidence Intervals (valid with high probability)). Let Z

be a d-dimensional random variable such that Z ∼ Qθ̂

(
θ̂ + N (0,Σθ̃) , Σ̃

)
.

Suppose {(cilj, ciuj )}j∈[d] is a set of intervals such that

∀j ∈ [d] : P
[
Zj ∈ (cilj, ci

u
j )
]
≥ 1− αj,

for some {αj}j∈[d] with αj ∈ (0, 1). Then, with probability 1−βΣ̃−βub−β θ̃,

∀j ∈ [d] : P
[
θ̂BLB
j ∈

(
cilj, ci

u
j

)]
≥ 1− αj.
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Likewise, with probability 1− βΣ̃ − βub − β θ̃,

P
[
∀j ∈ [d] : θ̂BLB

j ∈
(
cilj, ci

u
j

)]
≥ 1−

d∑
j

αj.

Proof. All but the last statement is a trivial application of Theorem 9 to

the 1-dimensional case. The last statement follows via a union bound.

S6 Empirical Results

S6.1 Logistic regression with imbalanced class output

In Figure 2 we show qualitatively similar results for a more challenging

setting; logistic regression with imbalanced classes.

We generate data as we did for Figure 2 but run the outcome variable y

through a scaled logistic function to get a new outcome variable y′ ∈ {0, 1}n.

Specifically, for pi =
1

1+exp(−Xiβ)
and p̄ = 1

n

∑n
i=1 pi, we have P(yi = 1) =

pi
p̄
· 0.05. This induces a minority class that occurs with probability ≈ 0.05.

Having such imbalanced classes introduces a practical problem in choosing

a good k for GVDP. If n
k
is small, it becomes likely that we will see only

the majority class in any given subset and the model will not be able to

be fit. Thus, our experiments here have larger n than we used for the OLS

experiments.
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(a) n = 10,000, k = 250 (b) n = 100,000, k = 1,000 (c) n = 100,000, k = 2,000

Figure 2: Logistic Regression: Distribution of coefficient estimates and 95% confidence intervals

S6.2 Logistic regression with fully sparse data

The requisite bootstrap assumptions do not hold for all estimators and

data distributions. We make our setting more difficult again for Figure 3,

by making both the outcome and covariates a sparse binary vector/matrix

respectively. It is unlikely that an analyst would want to use GVDP in

this setting, because knowing that the data are binary (which we assume

an analyst would know) immediately provides tight clipping bounds for the

data. Nevertheless, we include it as an example because it’s the most natu-

ral scenario we found where our method fails because of poor performance

of the BLB.

We create a new set of covariatesX ′ such that ∀j ∈ [d] : X ′
i,j = 1(Xi,j ≥

zj) where zj = minr∈R
1
n

∑n
i=1 1(Xi,j > r) ≤ 0.05. That is, X ′ is itself now

a binary matrix with highly imbalanced classes. The rightmost plot shows

distributions of the d coefficient estimates induced by BLB, with a black
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dotted line at the value of the non-private coefficient. Note that at n =

100,000, the BLB distributions are essentially point masses at two extreme

points, and our algorithm yields biased estimates and confidence intervals

with insufficient coverage. For n = 1,000,000, the BLB distributions are

much closer to being a symmetric distribution about the true coefficient

value, and our algorithm yields the promised guarantees.

The left plots show poor confidence interval coverage because the BLB

distribution is not a good approximation of the non-private sampling dis-

tribution. The right plots show better confidence interval coverage because

the BLB approximation is successful.

S6.3 Explanation of Table 1

The GVDP and AdaSSP algorithms differ in a few key ways. First, AdaSSP

does not attempt to do unbiased parameter estimation or give valid con-

fidence intervals; instead, it is trying to estimate OLS coefficients with

minimal ℓ2 error. For purposes of comparison, we will ignore confidence

intervals altogether and focus only on the parameter estimates. Second,

AdaSSP assumes only bounds on the data, assuming that we can specify

data domains X ,Y for our covariates and outcome, respectively, such that

∥X∥ = supx∈X ∥x∥2 where x ∈ Rm and ∥Y∥ = supy∈Y |y|. Ignoring the
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(a) n = 100,000, k = 500, d = 10 (b) n = 1,000,000, k = 500, d = 10

(c) BLB coefficient distributions for

n = 100,000, k = 500

(d) BLB coefficient distributions for

n = 1,000,000, k = 500

Figure 3: Logistic Regression with unbalanced binary fatures: Distribution of coefficient estimates and

95% confidence intervals

assumptions needed for confidence intervals for now, GVDP requires As-

sumptions 3, and 4 on the distribution of covariances induced by the bag of

little bootstraps, as well as Assumption 3 on the distribution of means. It’s

worth noting the qualitative difference between these methods; AdaSSP

requires the user to bound the data, GVDP requires the user to bound
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moments of the parameter distribution. For most analyses, we expect the

AdaSSP bounds to be easier to specify tightly than those of GVDP. How-

ever, GVDP is designed to scale more gracefully under overly conservative

bounds.

We generate data just as we did for our OLS demonstration and com-

pare AdaSSP and GVDP across a number of what we call “overestimation

factors”. Say we have realized data X ∈ Rn×d, y ∈ Rd. For an over-

estimation factor of c, we set the bounds for AdaSSP to c · supx∈X ∥x∥2

and c · supy∈Y ∥y∥. For GVDP, we perform the BLB step to get our

{θ̂BLB
i }i∈[k], which we’ll say has empirical mean µ̂ ∈ Rd and empirical covari-

ance Σ̂ ∈ Rd×d. We set our ℓ2 bounding ball for the mean of the distribution

as B2

(
µ̂, c

(
maxj∈[d] µ̂j

))
and our Löwner upper bound on the covariance as

c
(
diag(Σ̂)Id

)
. Runs of non-private OLS are included for comparison, but

the overestimation factor does not affect them.

The experiment in the body of the paper was run with n = 500,000, k =

2,500, d = 10, and ρ = 0.1. We run each method over 100 simulations,

estimating d coefficients at each iteration, so each method produces 1,000

coefficient estimates overall.

Comparison with AdaSSP We again consider OLS, but now compare GVDP’s

performance to that of the Adaptive Sufficient Statistic Perturbation (AdaSSP)
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OF 1 1.5 4 5 10 100 1000 10000

non-private 39.23 39.23 39.23 39.23 39.23 39.23 39.23 39.23

AdaSSP 40.31 49.66 1801.04 23395.30 71790.88 46382.71 82803.01 76377.38

GVDP 58.23 59.01 58.64 57.74 58.61 61.57 70.24 102.05

Table 1: Average ℓ2 estimation error for each algorithm by overestimation factor (OF)

algorithm from Wang (2018), one of the best-performing algorithms for DP

OLS. AdaSSP assumes bounds on the underlying data and attempts to

estimate the OLS coefficients with minimal ℓ2 error. We consider the per-

formance of AdaSSP vs. GVDP as a function of the “overestimation factor”

(OF), which is a multiplicative factor by which we overestimate the bounds

of the data (for AdaSSP) or parameters (for GVDP).

Despite our presentation above, AdaSSP and GVDP can’t really be

directly compared because the OFs have qualitatively different meanings.

However, the general comparison is still useful; AdaSSP performs well with

slightly overestimated bounds but scales poorly with overly conservative

bounds, while GVDP performs a bit less well at low overestimation factors

but scales much better when the bounds are poorly set. More information

can be found in Section S6.3.
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S6.4 Replication of Card (1999)

Inspired by the tests of Andrés F. Barrientos and Bowen (2024), we attempt

to replicate the core analysis of Card (1999) under the constraints of DP.

We use CPS ASEC data from 1994 to 1996 (Ruggles et al., 2021) and run

OLS to estimate the following model:

log(inc wage) = β0 + β1educ + β2PE + β3PE
2 + β4PE

3 + β5white + ϵ,

where inc wage is an individual’s total pre-tax wage and salary income, educ

is years of education, PE is potential years of work experience, and white in-

dicated whether or not the individual identifies as white. The effect of edu-

cation on income is our question of interest, with the other variables serving

as controls. This allows us to use the full OLS model within the bootstrap,

but release and privately estimate only the estimated mean/variance of β1.

Card (1999) runs this model separately for males and females; in Fig-

ure 4 we report the female results (n = 95,177) as well as for males and

females combined (n = 197,756). To be consistent with Andrés F. Barrien-

tos and Bowen (2024), we report results in approximate DP with (ϵ, δ) =

(5, 1/k), which translates to ρ ≈ {0.879, 1.06, 1.23} for k = {1000, 500, 250}.

All results are run with t = 5 CoinPress iterations and an overestimation

factor of 100, and we run the GVDP estimation algorithm 200 times to
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show the long-run performance of the algorithm.

(a) female: k = 1,000 (b) female: k = 500 (c) female: k = 250

(d) combined: k = 1,000 (e) combined: k = 500 (f) combined: k = 250

Figure 4: Distribution of coefficient estimates and 95% confidence intervals for females only and both

males and females (combined) with ϵ = 5. The dot with a capped error bar represents the non-private

estimate and confidence interval. The wider bars are the upper/lower bounds on the confidence intervals

for the runs of GVDP. The horizontal line is the empirical mean of the GVDP estimates.

We note that our bootstrapped means do not always equal to the non-

private mean in expectation, so although our algorithm’s guarantees with

respect to the bootstrapped distribution are met, they do not imply guar-

antees relative to the non-private answer as we hope they would. We see

in these plots a clear trade-off. At k = 1,000, our confidence intervals are

fairly tight, but are essentially centered around the upper end of the non-

private confidence interval rather than the the true coefficient estimate. At
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k = 250 we minimize bias by generating more a representative bootstrap

distribution, but do so at the cost of wider confidence intervals.

S7 Notes on Assumptions and Analyst Choices

S7.1 Assumption 1

Assumption 1 essentially has three distinct pieces; we speak to the plausi-

bility of each below.

First, we assume that the sampling distribution of the estimator is a

member of a symmetric multivariate location-scale family, which we require

because we want to be able to fully characterize the distribution by its mean

and covariance. Given that X is of a reasonable sample size, we can appeal

to the central limit theorem and argue that this assumption ought to hold.

If the analyst cares only about confidence intervals for each element of

the parameter, rather than a joint confidence region, it is sufficient for the

marginal sampling distribution of each element in the parameter vector to

belong to a symmetric univariate location-scale family.

Second, we assume that the BLB estimator in unbiased with respect

to the estimand of interest in the non-private setting. The BLB shares

many of the statistical properties of the traditional bootstrap, including
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asymptotic consistency (as both n → ∞ and n
k
→ ∞), but also no finite-

sample guarantee of unbiasedness. As such, this assumption may not hold

in practice. However, if the BLB estimator exhibits low bias relative to the

potential bias induced by poorly chosen clipping bounds, our method could

still be an effective way to produce private estimates with lower bias than

existing methods.

Third, we assume that the BLB estimates of the covariance are, with

probability 1, a Löwner upper bound on the true covariance of the sam-

pling distribution. This condition on Σ̂BLB is onerous (especially in high

dimensions) and seems unlikely to hold in general. In practice however,

this condition can be dropped at the cost of a bit of extra fuzziness in the

results. As stated above, we later make claims about our private estimator

relative to Σ̃BLB, which under Assumption 1 also hold relative to Σ̂. This

generalization to Σ̂ is a higher bar than is typically set in applications of

the bootstrap, where the bootstrap approximation is simply treated as a

“good-enough” approximation of the sampling distribution. Moreover, if

we care only about getting confidence intervals, rather than a confidence

region, we can replace the Löwner condition with the condition that each

element of the diagonal of Σ̂BLB is at least as large as the corresponding

element of Σ̂.
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S7.2 Assumption 2

Assumption 2 essentially follows from the first part of Assumption 1 where

we assume the sampling distribution is from a symmetric location-scale fam-

ily. If we can identify the location-scale family of the sampling distribution

(again, we often appeal to the central limit theorem and say this is Multi-

variate Gaussian), then this same family trivially satisfies Assumption 2.

S7.3 Assumptions 3 and 4

Assumptions 3 and 4 state that the analyst can set bounds on the mean and

covariance on the BLB estimates of both the mean and covariance of the

sampling distribution. We believe that setting tight bounds would be very

difficult in general, often more difficult than setting tight bounds on the

data (the requirement we’re trying to avoid). However, we suggest that the

analyst aim to set very conservative bounds, unless they are very confident

in their knowledge of the parameters. Because we use the CoinPress mean

estimation algorithm to iteratively improve the bounds the analyst provides,

the performance of the algorithm degrades slowly with more conservative

bounds; e.g. see our results from Section 3 where the analyst’s bounds

are too conservative by a factor of 100 or Section S6.3 where we show

performance when the analyst’s bounds are too conservative by a factor of
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10,000.

S7.4 Choosing k

Recall from our explanation of Algorithm 1 that k is the number of subsets

into which we partition our original data, which in turn becomes the number

of elements fed into our private mean estimation algorithm, Algorithm 2.

This presents a trade-off for the user; when k is large, the sensitivity of our

aggregator decreases (Line 7 of Algorithm 3) and thus so does the variance

of the noise we need to add for privacy. On the other hand, we assume

that the mean and covariance estimates we get from the BLB reasonably

approximate the mean and covariance of the true sampling distribution of

the parameters, which is provably true only as n → ∞ and n
k
→ ∞ for

Hadamard differentiable estimators (Kleiner et al., 2014).

In the body of the paper, we argued that once n
k
is large enough that

the BLB estimates have converged, there is no use in further increasing the

ratio of n to k; we are better served by increasing k and reducing the noise

needed for privacy. So, the best possible case for an analyst is that they

choose the largest k such that the BLB estimates, operating over subsets

of size n
k
, approximates the true parameters of the sampling distribution.

As a final note, recall from Section 2.2 that we assume that n is public
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knowledge or has been privately estimated. Thus, we can choose k in a way

that depends on n with no extra privacy cost; if n is public knowledge then

there’s no dependence on the data at all and if it was privately estimated

then this falls under the postprocessing property of zCDP.
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