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Supplementary Material

Here, we present technical proofs of Proposition 1 and Theorem 1, as well as several useful lemmas, as

well as further simulation results when a group label is known and the performance of the first K-selection

method in Remark 5.

S1. Technical Proofs

In this section, the notation C refers to a generic constant and may take different values in different places,

and νm denotes a positive sequence with νm → 0 as m → ∞. Before the proofs, we first give some

expressions that will be used in the proofs.

Recall that the log-likelihood function (ignoring the constant) is

l(θk) =
1

T

T∑
t=1

lt(θk), lt(θk) =
1

Nk

∑
i∈Gk

(Yi,t log λi,t(θk)− λi,t(θk)) .

Then, the score function is

ST (θk) =
1

NkT

T∑
t=1

∑
i∈Gk

( Yi,t
λi,t(θk)

− 1
)∂λi,t(θk)

∂θk

=
1

NkT

T∑
t=1

∂λ
(k)
t

′
(θk)

∂θk
C−1
t (θk)

(
Y

(k)
t − λ

(k)
t (θk)

)
:=

1

NkT

T∑
t=1

st(θk),

(S1.1)
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where Ct(θk) = diag(λ
(k)
t (θk)) is an Nk ×Nk diagonal matrix, ∂λ

(k)
t /∂θ′k is an Nk × 4 matrix, and

∂λ
(k)
t

∂ωk
= 1Nk + βk

∂λ
(k)
t−1

∂ωk
;

∂λ
(k)
t

∂αk
= Y

(k)
t−1 + βk

∂λ
(k)
t−1

∂αk
;

∂λ
(k)
t

∂ρk
= (D(k))−1A(k)Yt−1 + βk

∂λ
(k)
t−1

∂ρk
;

∂λ
(k)
t

∂βk
= λ

(k)
t−1 + βk

∂λ
(k)
t−1

∂βk
.

(S1.2)

The Hessian matrix is defined as

HT (θk) =
1

NkT

T∑
t=1

∑
i∈Gk

Yi;t
λ2
i,t(θk)

∂λi,t(θk)

∂θk

∂λi,t(θk)

∂θ′k
− 1

NkT

T∑
t=1

∑
i∈Gk

(
Yi,t

λi,t(θk)
− 1

)
∂2λi,t(θk)

∂θk∂θ′k
. (S1.3)

Thus, the conditional information matrix is given by

GT (θk) =
1

NkT

T∑
t=1

∑
i∈Gk

∑
j∈Gk

1

λi,t(θk)λj,t(θk)
Σ

(k)
ij,t(θk)

∂λi,t(θk)

∂θk

∂λj,t(θk)

∂θ′k

=
1

NkT

T∑
t=1

∂λ
(k)
t

′
(θk)

∂θk
C−1
t (θk)Σ

(k)
t (θk)C−1

t (θk)
∂λ

(k)
t (θk)

∂θ′k
,

(S1.4)

where Σ
(k)
t (·) denotes the true covariance matrix of Y

(k)
t , and Σ

(k)
ij,t(·) is the (i, j)th entry of Σ

(k)
t (·).

Particularly, when the components of the process
{
Y

(k)
t

}
are uncorrelated, then Σ

(k)
t (θk) = Ct(θk).

The third order partial derivative of the log-likelihood ∂3lt(θk)/∂θk,1∂θk,2∂θk,3 is given by

∂3li,t(θk)

∂θk,1∂θk,2∂θk,3
=− 1

Nk

( Yi,t
λ2
i,t(θk)

)(∂2λi,t(θk)

∂θk,1∂θk,2

∂λi,t(θk)

∂θk,3
+
∂2λi,t(θk)

∂θk,1∂θk,3

∂λi,t(θk)

∂θk,2
+
∂2λi,t(θk)

∂θk,2∂θk,3

∂λi,t(θk)

∂θk,1

)

+
2

Nk

( Yi,t
λ3
i,t(θk)

)(∂λi,t(θk)

∂θk,1

∂λi,t(θk)

∂θk,2

∂λi,t(θk)

∂θk,3

)
+

1

Nk

( Yi,t
λi,t(θk)

− 1
) ∂3λi,t(θk)

∂θk,1∂θk,2∂θk,3
,

where θk,1, θk,2, θk,3 ∈ {ωk, αk, ρk, βk}.

As discussed in Section 2.3, the main problem is that the sufficient condition on stationarity and

ergodicity for the unperturbed model is useless to obtain the asymptotics of θ̂k (see, e.g., Fokianos, Rah-

bek, and Tjøstheim (2009), Fokianos and Tjøstheim (2011) for detailed discussion). Thus we borrow the

corresponding condition for the perturbed model and then show that the two models are “close” in some

sense. We define analogously SmT (θk),Hm
T (θk),Gm

T (θk) to be the corresponding score function, Hessian
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matrix, and conditional information matrix for the perturbed model (2.5) with
(
Y

(k)
t ,λ

(k)
t

)
being replaced

by
(

(Ym
t )(k) , (λmt )(k)

)
, 1 ≤ k ≤ K. Finally, Theorem 1 follows immediately from Lemmas 2–4 below,

which verify the conditions of Theorem 3.2.23 in Taniguchi and Kakizawa (2000, Chap. 3).

S1.1 Some Lemmas

To prove the asymptotics of the MLE, we first give several lemmas.

Lemma 1. For models (2.4)–(2.5), if ||| max
1≤k≤K

(αk + βk)IN + max
1≤k≤K

ρkD
−1A|||2 < 1 holds, then

(i). ‖E (λmt − λt)‖2 = ‖E (Ym
t −Yt)‖2 ≤ δ1,m;

(ii). E ‖λmt − λt‖22 ≤ δ2,m;

(iii). E ‖Ym
t −Yt‖22 ≤ δ3,m,

where δi,m → 0, i = 1, 2, 3, as m→∞. In addition, for any δ > 0, ‖λmt − λt‖2 ≤ δ and ‖Ym
t −Yt‖2 ≤ δ

a.s. for sufficiently large m.

Proof. The proof is similar to that of Lemma 3.1 in Fokianos et al. (2020) and it is thus omitted. �

Lemma 2. Let Gm(θk) = N−1
k E

(
smt (θk)smt (θk)

′)
and G(θk) = N−1

k E
(
st(θk)st(θk)

′)
. If Assumptions

1–2 hold, then Gm(θk0)→ G(θk0) as m→∞, for each 1 ≤ k ≤ K.

Proof. Since all quantities are evaluated at the true value θk0, we suppress the notation that depends

on θk for simplicity. Similar to the proof of Lemma 4.1 in Fokianos et al. (2020) with λmt
(k), λ

(k)
t replacing

their λmt , λt, respectively, we have

∥∥∥∥∥∂λmt (k)

∂ξ
− ∂λ

(k)
t

∂ξ

∥∥∥∥∥
2

≤ νm, a.s., ξ ∈ {ωk, αk, ρk, βk}.

Next, we consider the operator norm of the matrix difference

∣∣∥∥smt (smt )′ − sts′t
∥∥∣∣

2
≤ ‖smt − st‖2

∥∥(smt )′
∥∥
2

+ ‖st‖2
∥∥(smt − st)′

∥∥
2
.
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Note that

smt − st =
{(∂λmt (k)

∂θ′k

)′
−
(∂λ(k)

t

∂θ′k

)′}
(Cm

t )−1 (Ym
t

(k) − λmt (k))
+
(∂λ(k)

t

∂θ′k

)′ {
(Cm

t )−1 − (Ct)
−1
}(

Ym
t

(k) − λmt (k)
)

+
(∂λ(k)

t

∂θ′k

)′
C−1
t

{(
Ym
t

(k) − λmt (k)
)
−
(
Y

(k)
t − λ

(k)
t

)}
:= I1 + I2 + I3.

For I1, it follows that

‖I1‖2 ≤

∣∣∣∣∣
∥∥∥∥∥∂λmt (k)

∂θ′k
− ∂λ

(k)
t

∂θ′k

∥∥∥∥∥
∣∣∣∣∣
2

∣∣∣∥∥∥(Cm
t )−1

∥∥∥∣∣∣
2

∥∥∥Ym
t

(k) − λmt (k)
∥∥∥
2

with

∣∣∣∣∣
∥∥∥∥∥∂λmt (k)

∂θ′k
− ∂λt

(k)

∂θ′k

∥∥∥∥∥
∣∣∣∣∣
2

2

≤

∣∣∣∣∣
∥∥∥∥∥∂λmt (k)

∂θ′k
− ∂λ

(k)
t

∂θ′k

∥∥∥∥∥
∣∣∣∣∣
2

F

=

∥∥∥∥∥∂λmt (k)

∂ωk
− ∂λ

(k)
t

∂ωk

∥∥∥∥∥
2

2

+

∥∥∥∥∥∂λmt (k)

∂αk
− ∂λ

(k)
t

∂αk

∥∥∥∥∥
2

2

+

∥∥∥∥∥∂λmt (k)

∂ρk
− ∂λ

(k)
t

∂ρk

∥∥∥∥∥
2

2

+

∥∥∥∥∥∂λmt (k)

∂βk
− ∂λ

(k)
t

∂βk

∥∥∥∥∥
2

2

.

It is not hard to prove that

E

∥∥∥∥∥∂λmt (k)

∂ξ
− ∂λ

(k)
t

∂ξ

∥∥∥∥∥
2

2

≤ νm → 0, ξ ∈ {ωk, αk, ρk, βk}.

As an example we here only prove the case ξ = ρk and the other three cases can be proved similarly. Clearly,

by Lemma 1 and 0 ≤ βk < 1, it follows that

E

∥∥∥∥∥∂λmt (k)

∂ρk
− ∂λt

(k)

∂ρk

∥∥∥∥∥
2

2

≤
∣∣∣∥∥∥D(k)−1

A(k)
∥∥∥∣∣∣2

2
E ‖Ym

t−1 −Yt−1‖22 + β2
kE

∥∥∥∥∥∂λmt−1
(k)

∂ρk
−
∂λ

(k)
t−1

∂ρk

∥∥∥∥∥
2

2

+ 2
∣∣∣∥∥∥D(k)−1

A(k)
∥∥∥∣∣∣

2
βkE

{
‖Ym

t−1 −Yt−1‖2

∥∥∥∥∥∂λmt−1
(k)

∂ρk
−
∂λ

(k)
t−1

∂ρk

∥∥∥∥∥
2

}

≤
∣∣∣∥∥∥D(k)−1

A(k)
∥∥∥∣∣∣2

2
δ3,m + β2

kE

∥∥∥∥∥∂λmt−1
(k)

∂ρk
−
∂λ

(k)
t−1

∂ρk

∥∥∥∥∥
2

2

+ 2βk

∣∣∣∥∥∥D(k)−1
A(k)

∥∥∥∣∣∣
2
νm
√
δ3,m

≤ νm.
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For the second term of I1, it follows that

∣∣∣∥∥∥(Cm
t )−1

∥∥∥∣∣∣
2
≤ max

1≤i≤N

1

λi,t
≤ 1

ω
≤ C.

In addition,

E
∥∥∥Ym

t
(k) − λmt (k)

∥∥∥2
2

=
∑
i∈Gk

E
(
Y mi,t − λmi,t

)2
=
∑
i∈Gk

E
{

E
(
Y mi,t − λmi,t

)2 ∣∣∣λi,t} =
∑
i∈Gk

E
(
λmi,t
)
< C.

Combining the above results and using the Cauchy-Schwartz inequality, we can get

E

{∣∣∣∣∣
∥∥∥∥∥∂λmt (k)

∂θ′k
− ∂λ

(k)
t

∂θ′k

∥∥∥∥∥
∣∣∣∣∣
2

∣∣∣∥∥∥(Cm
t )−1

∥∥∥∣∣∣
2

∥∥∥Ym
t

(k) − λmt (k)
∥∥∥
2

}
→ 0, as m→∞.

For I2, note that

E

∣∣∣∣∣
∥∥∥∥∥∂λ(k)

t

∂θ′k

∥∥∥∥∥
∣∣∣∣∣
4

2

≤ E

∣∣∣∣∣
∥∥∥∥∥∂λ(k)

t

∂θ′k

∥∥∥∥∥
∣∣∣∣∣
4

F

= E

{∥∥∥∥∥∂λ(k)
t

∂ωk

∥∥∥∥∥
2

2

+

∥∥∥∥∥∂λ(k)
t

∂αk

∥∥∥∥∥
2

2

+

∥∥∥∥∥∂λ(k)
t

∂ρk

∥∥∥∥∥
2

2

+

∥∥∥∥∥∂λ(k)
t

∂βk

∥∥∥∥∥
2

2

}2

< C,

where the last inequality is proved by the finity of each summand. Further, by Proposition 1,

E
∥∥∥Ym

t
(k) − λmt (k)

∥∥∥4
2

= E
[{ ∑

i∈Gk

(
Y mi,t − λmi,t

)2 }2]

= E
{ ∑
i∈Gk

(
Y mi,t − λmi,t

)4
+ 2

∑
i,j∈Gk,i 6=j

(
Y mi,t − λmi,t

)2 (
Y mj,t − λmj,t

)2 }

≤
∑
i∈Gk

4∑
j=1

cijE
{(
λmi,t
)j}

< C

for some finite positive constants (cij).

Clearly,

∣∣∣∥∥∥(Cm
t )−1 − (Ct)

−1
∥∥∥∣∣∣2

2
≤
∣∣∣∥∥∥(Cm

t )−1 − (Ct)
−1
∥∥∥∣∣∣2
F
≤ C

∥∥∥λmt (k) − λ(k)
t

∥∥∥2
2
,

thus its expectation tends to zero by Lemma 1. Based on these results, we can get

E

{∣∣∣∣∣
∥∥∥∥∥∂λ(k)

t

∂θ′k

∥∥∥∥∥
∣∣∣∣∣
2

∣∣∣∥∥∥(Cm
t )−1 − (Ct)

−1
∥∥∥∣∣∣

2

∥∥∥(Ym
t

(k) − λmt (k)
)∥∥∥

2

}
→ 0.

For I3, by Lemma 1, the Cauchy-Schwartz inequality and the preceding results, we can similarly prove

E

{∣∣∣∣∥∥∥∥∂λt(k)∂θ′k

∥∥∥∥∣∣∣∣
2

∣∣∥∥C−1
t

∥∥∣∣
2

∥∥∥(Ym
t

(k) − λmt (k)
)
−
(
Y

(k)
t − λ

(k)
t

)∥∥∥
2

}
→ 0 as m→∞.
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Thus, E ‖smt − st‖2 → 0 as m→∞.

Further, it is not hard to show that E ‖st‖22 <∞ and E
∥∥(smt )′

∥∥2
2
<∞. Thus, it follows that

1

Nk
E
∣∣∥∥smt (smt )′ − sts′t

∥∥∣∣
2
→ 0 as m→∞.

The proof is complete. �

Lemma 3. If Assumptions 1–2 hold, then the score functions for the unperturbed model (2.4) and perturbed

one (2.5) evaluated at the true value θk = θk0 satisfy, for each 1 ≤ k ≤ K,

(i). SmT
a.s−→ 0, as T →∞;

(ii).
√
NkTS

m
T

d→ Sm ∼ N (0,Gm), as T →∞;

(iii). Sm
d→ N(0,G), as m→∞;

(iv). lim
m→∞

lim sup
T→∞

P (
√
NkT ‖SmT − ST ‖2 > ε) = 0, ∀ε > 0.

Proof. Recall that

smt (θk) =
∂λmt

(k)′(θk)

∂θk
C−1
t (θk)

(
Ym
t

(k) − λmt (k)(θk)
)
,

we have E
(
smt (θk0)

∣∣FY,λ
t−1,m

)
= 0, where FY,λ

t−1,m denotes the σ-field generated by {Ym
t−1

(k), . . . ,Ym
0

(k),

εmt−1, . . . , ε
m
0 }. Then {TSmT }T≥1 for the perturbed model is a zero mean, square integrable martingale

sequence, with (smt )t≥1 a martingale difference sequence. Note that E ‖smt ‖22 <∞, then, by the strong law

of large numbers, SmT → 0 a.s. as T →∞. Thus, (i) holds.

For (ii), by the Central Limit Theorem for martingale difference, it is easy to show (ii) holds by

verifying the following conditions

T∑
t=1

E

{∥∥∥∥ smt√
NkT

∥∥∥∥2
2

I
(
‖smt ‖2 >

√
NkTδ

) ∣∣∣FY,λ
t−1,m

}
<

1

N2
kT

2δ2

T∑
t=1

E
{
‖smt ‖42

∣∣∣FY,λ
t−1,m

}
→ 0

and

1

NkT

T∑
t=1

Var
(
smt

∣∣∣FY,λ
t−1,m

)
a.s.→ 1

Nk
E
(
smt s

m
t
′) := Gm.
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For (iii), it can easily be proved by Lemma 2 and Proposition 6.3.9 in Brockwell and Davis (1991) via

the characteristic function procedure, and it is thus omitted.

For (iv), a simple algebraic calculation gives that

√
NkT (SmT − ST ) =

1√
NkT

T∑
t=1

(smt − st)

=
1√
NkT

T∑
t=1

{(∂λmt (k)

∂θ′k

)′
−
(∂λ(k)

t

∂θ′k

)′}
(Cm

t )−1
(
Ym
t

(k) − λmt (k)
)

+
1√
NkT

T∑
t=1

(∂λ(k)
t

∂θ′k

)′ {
(Cm

t )−1 − (Ct)
−1
}(

Ym
t

(k) − λmt (k)
)

+
1√
NkT

T∑
t=1

(∂λ(k)
t

∂θ′k

)′
C−1
t

{(
Ym
t

(k) − λmt (k)
)
−
(
Y

(k)
t − λ

(k)
t

)}
.

Note that

P

(∥∥∥ 1√
NkT

T∑
t=1

{(∂λmt (k)

∂θ′k

)′
−
(∂λ(k)

t

∂θ′k

)′}
(Cm

t )−1
(
Ym
t

(k) − λmt (k)
)∥∥∥

2
> ε

)

≤P

(
νm√
NkT

∥∥∥ T∑
t=1

(Cm
t )−1

(
Ym
t

(k) − λmt (k)
)∥∥∥

2
> ε

)

≤ ν2m
ε2NkT

E
∥∥∥ T∑
t=1

(Cm
t )−1

(
Ym
t

(k) − λmt (k)
)∥∥∥2

2

=
ν2m

ε2NkT

T∑
t=1

E
∥∥∥(Cm

t )−1
(
Ym
t

(k) − λmt (k)
)∥∥∥2

2
≤ Cν2m → 0.

The other two summands can be similarly proved to converge to zero in probability.

Thus, (iv) holds and the proof is complete. �

Lemma 4. If Assumptions 1–2 hold, then the Hessian matrix for the unperturbed model (2.4) and perturbed

one (2.5) evaluated at the true value θk = θk0 satisfy, for each 1 ≤ k ≤ K,

(i). Hm
T

p→ Hm as T →∞;

(ii). lim
m→∞

lim sup
T→∞

P
(
Nk |‖Hm

T −HT ‖|2 > ε
)

= 0, ∀ε > 0.

where HT is defined in (S1.3) and analogously for Hm
T , and Hm is defined analogous to H in (3.10).

Proof. The proof is similar to that of Lemma 3.3 in Fokianos, Rahbek, and Tjøstheim (2009) using

decomposition technique and Theorem 1 in Jensen and Rahbek (2007), and it is thus omitted. �
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S1.2 Proof of Proposition 1

For (i), by Propositions 3.1 in Fokianos et al. (2020), it suffices to prove that |||B1 +B2D
−1A +B3|||2 < 1,

i.e., |||
∑K
k=1(αk +βk)Zk +

∑K
k=1 ρkZkD

−1A|||2 < 1. Suppose M1, M2 are two general nonnegative matrix

satisfying 0 ≤ M1 ≤ M2. For each m = 1, 2, . . . , we have 0 ≤ Mm
1 ≤ Mm

2 , then |||Mm
1 |||F ≤ |||Mm

2 |||F .

By the Gelfand formula for the spectral radius of a matrix M, i.e., ρ(M) = lim
m→∞

|||Mm|||1/m, where

||| · ||| is any matrix norm, we can get that ρ(M1) ≤ ρ(M2) as m → ∞. Since |||M|||2 =
√
ρ(M′M) and

M′
2M2 −M′

1M1 = M′
2(M2 −M1) + (M′

2 −M′
1)M1 ≥ 0, it follows that |||M1|||2 ≤ |||M2|||2. See also

8.1.P8 (page 524) of Horn and Johnson (2013, Chap. 8). Note that
∑K
k=1(αk + βk)Zk +

∑K
k=1 ρkZkD

−1A

is nonnegative and θk = (ωk, αk, ρk, βk)′ is assumed to be positive. Hence, we obtain that |||
∑K
k=1(αk +

βk)Zk +
∑K
k=1 ρkZkD

−1A|||2 ≤ ||| max
1≤k≤K

(αk +βk)IN + max
1≤k≤K

ρkD
−1A|||2 < 1, which completes the proof.

For (ii), we can easily get that |||
∑K
k=1 αkZk+

∑K
k=1 ρkZkD

−1A|||1+|||
∑K
k=1 βkZk|||1 ≤ |||

(
max

1≤k≤K
αk
)
IN

+
(

max
1≤k≤K

ρk
)
D−1A|||1+ max

1≤k≤K
βk < 1. Thus, the result holds by Propositions 3.2 in Fokianos et al. (2020).

�

S1.3 Proof of Theorem 1

We here sketch the proof. By similar arguments in Lemma 3.4 in Fokianos, Rahbek, and Tjøstheim (2009),

it is not hard to prove that all third order partial derivatives of the log-likelihood function of the perturbed

model (2.5) are uniformly bounded in the neighborhood O (θk0) of the true parameter. Further, all third

order partial derivatives of the log-likelihood of the perturbed model tend to their counterparts of the

unperturbed model, which implies that the latter are uniformly bounded.

By Lemmas 3–4, the boundedness of all third order partial derivatives of the log-likelihood function of

the unperturbed model (2.4), and Proposition 6.3.9 in Brockwell and Davis (1991), the conditions (A.1)–

(A.3) of Lemma 1 in Jensen and Rahbek (2004) are verified. Thus, Theorem 1 holds. �
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S2. Further Simulation Results

S2.1 Simulation results when a group label is known

To assess the finite-sample performance of the MLE when a group label is known, we consider two different

types of network structure, each with combinations of network size (i.e., N = 20, 50, 100) and sample size

(i.e., T = 100, 200, 400). Each case is randomly simulated with R = 1000 replicates. Denote the estimates

obtained in the rth simulation to be θ̂(r) = (ω̂(r), α̂(r), ρ̂(r), β̂(r))′, where 1 ≤ r ≤ R. The simulation results

are summarized in Tables 1–2 for the Erdös–Rényi model and stochastic blockmodel, respectively.

We summarize the root mean square error (RMSE) and the coverage rate of the confidence interval

for each estimator. Specifically, for the network effect coefficient ρ1 in Group 1, the RMSE is calcu-

lated as RMSEρ1 = {R−1∑R
r=1(ρ̂

(r)
1 − ρ1)}1/2. The 95% confidence intervals for ρ1 is CI

(r)
ρ1 =

(
ρ̂
(r)
1 −

z0.975ŜDρ1 , ρ̂
(r)
1 + z0.975ŜDρ1

)
, where ŜDρ1 is the standard deviation of ρ̂1, and zα is the αth quantile of a

standard normal distribution. Then, the coverage probability is defined as CPρ1 = R−1∑R
r=1 I

(
ρ1 ∈ CI

(r)
ρ1

)
,

where I(·) is an indicator function. The performance of other estimators are evaluated similarly.

From Tables 1–2 for the two network structures, we find that the RMSEs are all very small for all

estimators θ̂k = (ω̂k, α̂k, ρ̂k, β̂k)′, 1 ≤ k ≤ K. As the network dimension N and sample size T increase,

the estimators perform better with smaller RMSEs, which implies more accurate estimates and smaller

standard deviations. These results largely agree with the theoretical ones. Note that estimators in Group 1

always perform better than the other two groups, because it has the largest proportion of nodes. Moreover,

the coverage probabilities are close to the nominal level 95%. It can be seen that the estimated standard

deviations ŜD approximate the true ones well.

To see the overall performance of θ̂, Fig. 1 plots the histograms of standardized θ̂1 with N = 100 and

T = 400 for the stochastic block network structure. From Fig. 1, we can see that the empirical densities of

each estimator are very close to normal ones. The results strongly support the consistency and asymptotic
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Table 1: Simulation results for the Erdös–Rényi model. The RMSEs (×102) for each estimator

are reported with their coverage rates (%) in the parentheses.

N T ω1 α1 ρ1 β1 ω2 α2 ρ2 β2 ω3 α3 ρ3 β3

20

100
7.48 4.16 4.42 10.76 18.60 5.24 5.35 14.31 43.71 5.75 7.56 14.16

(90.2) (95.1) (95.6) (97.3) (91.2) (94.3) (94.7) (94.2) (92.1) (94.9) (95.6) (93.4)

200
5.44 2.99 3.21 7.71 13.26 3.50 3.55 9.68 27.44 4.25 5.18 9.43

(90.4) (95.3) (94.3) (94.4) (90.8) (94.7) (94.5) (95.3) (93.2) (95.0) (92.9) (94.0)

400
4.26 2.15 2.24 5.45 9.48 2.45 2.51 6.77 19.34 2.83 3.92 6.52

(87.6) (95.3) (94.2) (95.4) (90.5) (95.0) (94.7) (94.3) (92.9) (95.0) (92.4) (95.0)

50

100
6.10 3.29 3.81 10.24 18.16 3.66 5.10 13.8 33.57 4.28 5.34 10.95

(93.6) (95.1) (95.3) (97.9) (92.3) (94.7) (95.1) (91.7) (93.7) (94.4) (96.2) (93.6)

200
4.58 2.28 2.71 7.46 13.10 2.56 3.58 9.94 23.1 3.10 3.65 7.48

(94.6) (95.3) (95.2) (95.5) (94.3) (94.4) (94.7) (94.8) (93.7) (94.6) (95.2) (94.5)

400
3.08 1.68 1.98 5.35 8.55 1.81 2.61 6.72 15.65 2.18 2.62 5.29

(95.2) (95.0) (94.9) (95.0) (94.7) (94.6) (94.7) (95.1) (94.5) (95.2) (94.5) (95.1)

100

100
7.47 2.89 3.41 9.60 14.37 3.40 3.72 11.62 29.75 3.92 3.69 9.69

(93.6) (93.9) (95.2) (94.0) (94.2) (93.9) (94.4) (94.2) (93.0) (94.6) (95.0) (94.4)

200
5.08 2.02 2.50 7.10 9.88 2.46 2.61 8.27 19.68 2.89 2.56 6.82

(93.9) (94.5) (94.8) (94.9) (95.0) (94.6) (94.8) (94.5) (94.0) (95.1) (95.2) (94.9)

400
3.76 1.43 1.76 5.05 7.17 1.70 1.80 5.83 13.79 1.96 1.74 4.71

(94.1) (95.3) (94.7) (94.3) (94.0) (95.8) (95.0) (94.3) (94.2) (95.3) (95.1) (94.9)
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Table 2: Simulation results for the stochastic blockmodel. The RMSEs (×102) for each estimator

are reported with their coverage rates (%) in the parentheses.

N T ω1 α1 ρ1 β1 ω2 α2 ρ2 β2 ω3 α3 ρ3 β3

20

100
8.07 4.12 4.07 10.06 17.76 4.90 5.69 14.72 48.72 5.90 5.73 13.39

(91.7) (94.8) (95.4) (94.8) (92.3) (94.3) (95.0) (94.1) (92.5) (94.3) (94.9) (93.3)

200
5.90 2.82 2.97 7.38 11.94 3.65 4.20 10.23 30.34 4.02 3.88 9.01

(89.9) (94.7) (95.3) (95.5) (94.5) (94.8) (94.4) (94.5) (91.7) (95.4) (94.3) (93.9)

400
4.71 2.09 2.21 5.29 8.75 2.41 2.94 7.14 21.12 2.90 2.76 6.33

(87.1) (95.2) (93.5) (94.6) (94.1) (94.8) (93.0) (94.7) (91.4) (94.7) (95.4) (95.5)

50

100
6.21 3.29 3.95 10.44 15.34 3.82 4.35 12.40 33.18 4.42 6.15 10.83

(94.0) (94.2) (96.2) (98.1) (93.7) (94.8) (95.1) (93.5) (93.4) (94.9) (97.3) (94.4)

200
4.34 2.31 2.91 7.61 10.35 2.69 3.12 8.78 21.99 3.17 4.34 7.43

(94.9) (94.3) (94.5) (95.3) (94.4) (95.0) (94.6) (95.5) (93.9) (94.6) (95.0) (94.7)

400
2.93 1.69 1.97 5.26 7.42 1.86 2.10 6.14 14.83 2.21 2.92 5.07

(95.4) (94.9) (94.7) (94.9) (93.7) (95.5) (95.0) (94.4) (95.0) (94.7) (94.4) (94.4)

100

100
5.69 2.84 3.38 9.41 13.60 3.36 3.79 11.78 28.25 4.05 3.67 9.45

(93.9) (95.0) (94.8) (94.1) (93.8) (94.9) (94.8) (94.0) (93.9) (95.0) (94.4) (94.2)

200
4.09 2.08 2.55 6.93 9.70 2.37 2.82 8.58 18.39 2.73 2.44 6.37

(94.4) (94.5) (94.6) (94.4) (95.3) (94.5) (95.4) (95.3) (95.2) (94.8) (94.6) (94.6)

400
2.82 1.52 1.76 4.77 6.58 1.70 1.93 5.85 13.51 1.96 1.76 4.61

(95.1) (94.7) (95.7) (95.0) (94.9) (95.8) (95.8) (95.8) (94.9) (95.3) (94.5) (95.0)
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normality of the MLE for our proposed model again.
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Figure 1: The histograms and Q-Q plots of standardized θ̂1 with network dimension N = 100 and

sampling size T = 400 under the stochastic block network structure. The curve in the histogram

denotes the density of standard normal distribution.

S2.2 The performance of the clustering method of K-selection

In this subsection, we study the performance of the first method of selecting K proposed in Remark 5,

i.e., estimate the coefficient parameter θ at the nodal level and apply k-means clustering to partition these

N sets of estimates into K groups. The optimal number of groups is chosen based on classical statistics in

clustering. The true number of groups is K = 3 with parameters in Table 3. The data is generated under

the stochastic blockmodel, and the network size is N = 20, 50, 100 and sample size is T = 100, 200, 400,

each with R = 1000 replicates.

Here we use the NbClust package in R, which provides up to 30 indices for determining the number
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Table 3: True parameters in model (2.3) for each group, with K = 3.

ω α ρ β γ

Group 1 0.2 0.1 0.4 0.1 0.5

Group 2 0.5 0.2 0.2 0.3 0.3

Group 3 1 0.4 0.1 0.4 0.2

of clusters, including the Silhouette coefficient, gap statistic, etc (see Charrad et al. (2014)). Table 4

reports the number of indices which recommend K as the optimal number of groups, taking average on

1000 replicates, where 1 ≤ K ≤ 10. We can see that K = 2 and K = 3 are recommended the most in

all scenarios, with more than 6 indices. When T = 400, the number of group K is correctly estimated

as 3, while when T = 100 or 200, K = 2 has slightly more recommendations than K = 3. Thus, this

method of selecting K has better performance with larger T and N in practice. When T or N is small, we

could combine this method with the model fitting criterion (the second method in Remark 5) to select a

reasonable number of groups.
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