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Supplementary Material

Here, we present technical proofs of Proposition 1 and Theorem 1, as well as several useful lemmas, as
well as further simulation results when a group label is known and the performance of the first K-selection

method in Remark 5.

S1. Technical Proofs

In this section, the notation C refers to a generic constant and may take different values in different places,
and v, denotes a positive sequence with v,, — 0 as m — oo. Before the proofs, we first give some
expressions that will be used in the proofs.

Recall that the log-likelihood function (ignoring the constant) is
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Then, the score function is
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where Cy(8x) = diag(A{™(6)) is an Nj x Nj, diagonal matrix, 6)\£k)/80;C is an N X 4 matrix, and

aAlm a,\ﬁ’i)l
= 1 N
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8ak 1 8ak ;
(S1.2)
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The Hessian matrix is defined as

Ylf 8)‘1t(0k) 8>\zt 6;) _ 32)\i,t(9k)
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Thus, the conditional information matrix is given by
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where ) (.) denotes the true covariance matrix of Y and Eiﬁ() is the (i,7)"" entry of B (.).
Particularly, when the components of the process {Yik)} are uncorrelated, then EEH(O,C) = C¢(6g).

The third order partial derivative of the log-likelihood 931;(8x)/00k 100k,200% 3 is given by
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where 0,1, 0k,2,0k,3 € {wk, @k, P, B}

As discussed in Section 2.3, the main problem is that the sufficient condition on stationarity and
ergodicity for the unperturbed model is useless to obtain the asymptotics of 0y (see, e.g., [Fokianos, Rah-
bek, and Tjgstheim| (2009), |[Fokianos and Tjgstheim| (2011)) for detailed discussion). Thus we borrow the
corresponding condition for the perturbed model and then show that the two models are “close” in some

sense. We define analogously ST (0x), HT (01), GT (0%) to be the corresponding score function, Hessian
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matrix, and conditional information matrix for the perturbed model (2.5) with (Y,Ek) , )\Ek)) being replaced
by ((Y;")Uc) , ()\Z”)““) ), 1 < k < K. Finally, Theorem 1 follows immediately from Lemmas below,

which verify the conditions of Theorem 3.2.23 in |Taniguchi and Kakizawa, (2000, Chap. 3).

S1.1 Some Lemmas

To prove the asymptotics of the MLE, we first give several lemmas.

Lemma 1. For models (2.4)-(2.5), if ||| lg}%xK(ak + Bi)In +  max oD A2 < 1 holds, then

(@) EAT =)y = 1B Y = Yo)ll, < 01m;

(i) BT = Aell < 02m;

(iii). E|[Y7 = Y¢||2 < 83,m,

where 0;.m — 0, 1 =1,2,3, as m — oco. In addition, for any § > 0, [|A]" — X¢|l, <0 and || Y7 — Y|, <6

a.s. for sufficiently large m.
PROOF. The proof is similar to that of Lemma 3.1 in [Fokianos et al.| (2020) and it is thus omitted. O

Lemma 2. Let G™(0;) = N,:lE(sgn(Ok)s{”(Gk)/) and G(0x) = N,:lE(st(Gk)st(Ok)'). If Assumptions

1-2 hold, then G™(0ko) — G(Okro) as m — oo, for each 1 < k < K.

PROOF. Since all quantities are evaluated at the true value 6o, we suppress the notation that depends
on 6, for simplicity. Similar to the proof of Lemma 4.1 in |Fokianos et al.| (2020) with AR Aﬁ’“) replacing

their A", A, respectively, we have

™ gal
o oE |

< VUm, as., &€ {wk,ar,pr, B}

Next, we consider the operator norm of the matrix difference

[lst" (s8) = sesill], < llst = selly [[(52)[] + lselly [[ (2" = 50 -
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As an example we here only prove the case £ = pj and the other three cases can be proved similarly. Clearly,

by Lemma[[]and 0 < S < 1, it follows that
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For the second term of I, it follows that

lem 1, <

1
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In addition,

2
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Combining the above results and using the Cauchy-Schwartz inequality, we can get
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where the last inequality is proved by the finity of each summand. Further, by Proposition 1,
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for some finite positive constants (c;;).

Clearly,

ers - feemy - @ < el -

2
)
2

thus its expectation tends to zero by Lemma Based on these results, we can get

- oA
00/,

ey = o, | xe® - e )] o

For I3, by Lemma the Cauchy-Schwartz inequality and the preceding results, we can similarly prove

I, (F) 3 . n
e[| D] e v =) = (v =AY} 0 s
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Thus, E ||si" — s¢||, = 0 as m — oo.

Further, it is not hard to show that E ||s¢||2 < oo and E H(s@”)’”i < oo. Thus, it follows that
iE|Hs§"(s,§")/—stsém —0 asm — oo.
Ny, 2
The proof is complete. O

Lemma 3. If Assumptions 1-2 hold, then the score functions for the unperturbed model (2.4) and perturbed
one (2.5) evaluated at the true value Oy = Ok satisfy, for each 1 < k < K,

(). S 2% 0, as T — oo;

(ii). VNeTSE 5 8™ ~ N (0,G™), as T — oo;

(iii). S™ 4 N(0,G), as m — oo;

(iv). lim limsup P(vNiT ||ST — Srl|l, >€) =0, Ve>O0.

m—00 T 5o

PRrROOF. Recall that

Ar (9,
(00 = 2O oo g, (v - a9 (0,),
00y,
we have E(s}" (Oko){]:t f‘m) 0, where F' " denotes the o-field generated by {YiZ; "B Yr®
€’ q,...,€5'}. Then {TS’}”}T21 for the perturbed model is a zero mean, square integrable martingale

sequence, with (s{*);>1 a martingale difference sequence. Note that E ||3§"H§ < 00, then, by the strong law
of large numbers, ST* — 0 a.s. as T — oo. Thus, (i) holds.

For (ii), by the Central Limit Theorem for martingale difference, it is easy to show (ii) holds by
verifying the following conditions

>ef |

t=1

Hst HQ >V kT&)‘ t— 1m} N2T262 ZE{”St ||2

P lm}ao

and




S1. TECHNICAL PROOFS

For (iii), it can easily be proved by Lemma [2] and Proposition 6.3.9 in [Brockwell and Davis| (1991) via

the characteristic function procedure, and it is thus omitted.

For (iv), a simple algebraic calculation gives that

VNT(SF — S7) = ;jﬂi(s;ﬂst)
t=1
e A5 - () e (v )
R e e (e
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The other two summands can be similarly proved to converge to zero in probability.

Thus, (iv) holds and the proof is complete.

O

Lemma 4. If Assumptions 1-2 hold, then the Hessian matriz for the unperturbed model (2.4) and perturbed

one (2.5) evaluated at the true value Oy = Oko satisfy, for each 1 < k < K,
(). HF 2 H™ as T — oo;

(ii). lim limsup P (N ||[HF —Hr|||, > €) =0, Ve>O0.

Mm—00 T _y50

where Hr is defined in and analogously for H7, and H™ is defined analogous to H in (3.10).

PROOF. The proof is similar to that of Lemma 3.3 in [Fokianos, Rahbek, and Tjgstheim| (2009) using

decomposition technique and Theorem 1 in |Jensen and Rahbek! (2007)), and it is thus omitted.

O
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S1.2 Proof of Proposition 1

For (i), by Propositions 3.1 in |Fokianos et al.l (I2020[), it suffices to prove that |||B1 + BeD 'A 4 Bs|[|2 < 1,

ie., || Zi{:l(ak +Bk)Z + Zszl pxZrD 7 All|2 < 1. Suppose M1, M, are two general nonnegative matrix
satisfying 0 < My < My. For each m = 1,2,..., we have 0 < MT" < M3, then ||[[MT'|||r < [||MZ]||F.
By the Gelfand formula for the spectral radius of a matrix M, i.e., p(M) = W}gnoo [[|M™][]Y/™, where
[I| - ||| is any matrix norm, we can get that p(M1) < p(M2) as m — oco. Since |||M|||2 = y/p(M'M) and

MM, — MM = M5(Ms — My) + (M5 — Mj)M; > 0, it follows that |[|[M1]||2 < |[|Mz2]||2. See also

8.1.P8 (page 524) of|Horn and Johnsonl (]2013, Chap. 8|). Note that S0 (o + Br)Zk + >on_, ppZe DA

is nonnegative and 0 = (wy, ax, pk, Br)’ is assumed to be positive. Hence, we obtain that ||| S5, (a +
K -1 -1 .

< .

Br)Zk+> 1 prZi DT A2 < || lg}%xK(ak + Br)In + | nax pD 7 Al||]2 < 1, which completes the proof.

For (ii), we can easily get that ||| Zszl aka—FZkK:l peZrD A1+ | Zszl BrZi]|l1 < |||(1r<1}ca<xK ak)IN

+ ( max pk)DflAHh + max B < 1. Thus, the result holds by Propositions 3.2 in|Fokianos et al.| (l2020|).
1<k<K 1<k<K

O

S1.3 Proof of Theorem 1

We here sketch the proof. By similar arguments in Lemma 3.4 in [Fokianos, Rahbek, and Tjgstheim| (2009)),

it is not hard to prove that all third order partial derivatives of the log-likelihood function of the perturbed
model (2.5) are uniformly bounded in the neighborhood O (0x0) of the true parameter. Further, all third
order partial derivatives of the log-likelihood of the perturbed model tend to their counterparts of the
unperturbed model, which implies that the latter are uniformly bounded.

By Lemmas[3H4] the boundedness of all third order partial derivatives of the log-likelihood function of

the unperturbed model (2.4), and Proposition 6.3.9 in [Brockwell and Davis| (1991)), the conditions (A.1)-

(A.3) of Lemma 1 in |[Jensen and Rahbek| (2004)) are verified. Thus, Theorem 1 holds. O
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S2. Further Simulation Results

S2.1 Simulation results when a group label is known

To assess the finite-sample performance of the MLE when a group label is known, we consider two different
types of network structure, each with combinations of network size (i.e., N = 20,50, 100) and sample size
(i.e., T = 100,200,400). Each case is randomly simulated with R = 1000 replicates. Denote the estimates
obtained in the rth simulation to be 8 = @m,am, pm), ,3(7'))'7 where 1 < r < R. The simulation results
are summarized in Tables for the Erdés—Rényi model and stochastic blockmodel, respectively.

We summarize the root mean square error (RMSE) and the coverage rate of the confidence interval
for each estimator. Specifically, for the network effect coefficient p; in Group 1, the RMSE is calcu-
lated as RMSE,, = {R™' Zle(ﬁ(f) — p1)}/?. The 95% confidence intervals for p; is CI) = (ﬁ(lr) -
20,9758/1\),31, ﬁ(lr) + z0‘9758/l\)p1), where S/I\D,,1 is the standard deviation of p1, and z, is the ath quantile of a
standard normal distribution. Then, the coverage probability is defined as CP,, = R™* Zle I(p1 € CIEfl)),
where I(-) is an indicator function. The performance of other estimators are evaluated similarly.

From Tables for the two network structures, we find that the RMSEs are all very small for all
estimators 0}, = (&\)k,ak,ﬁk,gk)’, 1 < k < K. As the network dimension N and sample size T increase,
the estimators perform better with smaller RMSEs, which implies more accurate estimates and smaller
standard deviations. These results largely agree with the theoretical ones. Note that estimators in Group 1
always perform better than the other two groups, because it has the largest proportion of nodes. Moreover,
the coverage probabilities are close to the nominal level 95%. It can be seen that the estimated standard
deviations SD approximate the true ones well.

To see the overall performance of 5, Fig. plots the histograms of standardized 51 with N = 100 and
T = 400 for the stochastic block network structure. From Fig. [T} we can see that the empirical densities of

each estimator are very close to normal ones. The results strongly support the consistency and asymptotic
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Table 1:  Simulation results for the Erdos—Rényi model. The RMSEs (x10?) for each estimator

are reported with their coverage rates (%) in the parentheses.

N | T w1 a P1 B1 wo Qs P2 B2 ws ag P3 B3
748 416 442 10.76 | 18.60 5.24 535 14.31 | 43.71 575  7.56  14.16

100
(90.2) (95.1) (95.6) (97.3) | (91.2) (94.3) (94.7) (94.2) | (92.1) (94.9) (95.6) (93.4)
544 299  3.21 771 | 1326 350 355  9.68 | 27.44 425 518 943

20 | 200
(90.4)  (95.3) (94.3) (94.4) | (90.8) (94.7) (94.5) (95.3) | (93.2) (95.0) (92.9) (94.0)
426 215 224 545 948 245 251  6.77 | 1934 283 392  6.52

400
(87.6) (95.3) (94.2) (95.4) | (90.5) (95.0) (94.7) (94.3) | (92.9) (95.0) (92.4) (95.0)
6.10 3.29 3.81 10.24 | 18.16 3.66 5.10 13.8 33.57 4.28 5.34 10.95

100
(93.6) (95.1) (95.3) (97.9) | (92.3) (94.7) (95.1) (91.7) | (93.7) (94.4) (96.2) (93.6)
4.58 2.28 2.71 7.46 13.10 2.56 3.58 9.94 23.1 3.10 3.65 7.48

50 | 200
(94.6) (95.3) (95.2) (95.5) | (94.3) (94.4) (94.7) (94.8) | (93.7) (94.6) (95.2) (94.5)
3.08 1.68 1.98 5.35 8.55 1.81 2.61 6.72 15.65 2.18 2.62 5.29

400
(95.2)  (95.0) (94.9) (95.0) | (94.7) (94.6) (94.7) (95.1) | (94.5) (95.2) (94.5) (95.1)
7.47 2.89 3.41 9.60 14.37 3.40 3.72 11.62 29.75 3.92 3.69 9.69

100
(93.6) (93.9) (95.2) (94.0) | (94.2) (93.9) (94.4) (94.2) | (93.0) (94.6) (95.0) (94.4)
5.08 2.02 2.50 7.10 9.88 2.46 2.61 8.27 19.68 2.89 2.56 6.82

100 | 200
(93.9) (94.5) (94.8) (94.9) | (95.0) (94.6) (94.8) (94.5) | (94.0) (95.1) (95.2) (94.9)
3.76 1.43 1.76 5.05 717 1.70 1.80 5.83 13.79 1.96 1.74 4.71

400
(94.1)  (95.3) (94.7) (94.3) | (94.0) (95.8) (95.0) (94.3) | (94.2) (95.3) (95.1) (94.9)
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Table 2: Simulation results for the stochastic blockmodel. The RMSEs (x102) for each estimator

are reported with their coverage rates (%) in the parentheses.

N | T w1 a P1 B1 wo Qs P2 B2 ws ag P3 B3
8.07 4.12 4.07 10.06 17.76 4.90 5.69 14.72 | 48.72 5.90 5.73 13.39

100
(91.7)  (94.8) (95.4) (94.8) | (92.3) (94.3) (95.0) (94.1) | (92.5) (94.3) (94.9) (93.3)
5.90 2.82 2.97 7.38 11.94 3.65 4.20 10.23 | 30.34 4.02 3.88 9.01

20 | 200
(89.9) (94.7) (95.3) (95.5) | (94.5) (94.8) (94.4) (94.5) | (91.7) (95.4) (94.3) (93.9)
4.71 2.09 221 5.29 875 241 294 7.4 | 2112 290 276 6.33

400
(87.1)  (95.2) (93.5) (94.6) | (94.1) (94.8) (93.0) (94.7) | (91.4) (94.7) (95.4) (95.5)
6.21 3.29 3.95 10.44 15.34 3.82 4.35 12.40 | 33.18 4.42 6.15 10.83

100
(94.0)  (94.2) (96.2) (98.1) | (93.7) (94.8) (95.1) (93.5) | (93.4) (94.9) (97.3) (94.4)
434 231 2.91 761 | 1035 269 312 878 | 21.99 317 434 743

50 | 200
(94.9)  (94.3) (94.5) (95.3) | (94.4) (95.0) (94.6) (95.5) | (93.9) (94.6) (95.0) (94.7)
293  1.69 1.97 526 7.42 1.86 210  6.14 | 14.83 221 292  5.07

400
(95.4)  (94.9) (94.7) (94.9) | (93.7) (95.5) (95.0) (94.4) | (95.0) (94.7) (94.4) (94.4)
5.69 2.84 3.38 9.41 13.60 3.36 3.79 11.78 | 28.25 4.05 3.67 9.45

100
(93.9)  (95.0) (94.8) (94.1) | (93.8) (94.9) (94.8) (94.0) | (93.9) (95.0) (94.4) (94.2)
4.09 2.08 2.55 6.93 9.70 2.37 2.82 8.58 18.39 2.73 2.44 6.37

100 | 200
(94.4)  (94.5) (94.6) (94.4) | (95.3) (94.5) (95.4) (95.3) | (95.2) (94.8) (94.6) (94.6)
2.82 1.52 1.76 4.77 6.58 1.70 1.93 5.85 13.51 1.96 1.76 4.61

400
(95.1)  (94.7) (95.7) (95.0) | (94.9) (95.8) (95.8) (95.8) | (94.9) (95.3) (94.5) (95.0)
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normality of the MLE for our proposed model again.
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Figure 1: The histograms and Q-Q plots of standardized 51 with network dimension N = 100 and
sampling size T' = 400 under the stochastic block network structure. The curve in the histogram

denotes the density of standard normal distribution.

S2.2 The performance of the clustering method of K-selection

In this subsection, we study the performance of the first method of selecting K proposed in Remark 5,
i.e., estimate the coefficient parameter 8 at the nodal level and apply k-means clustering to partition these
N sets of estimates into K groups. The optimal number of groups is chosen based on classical statistics in
clustering. The true number of groups is K = 3 with parameters in Table |3} The data is generated under
the stochastic blockmodel, and the network size is N = 20, 50,100 and sample size is T" = 100, 200, 400,
each with R = 1000 replicates.

Here we use the NbClust package in R, which provides up to 30 indices for determining the number
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Table 3: True parameters in model (2.3) for each group, with K = 3.

w a p B 7

Group1 [ 0.2 0.1 04 0.1 0.5
Group2 | 0.5 0.2 0.2 0.3 0.3

Group3 | 1 04 01 04 0.2

of clusters, including the Silhouette coefficient, gap statistic, etc (see |[Charrad et al.| (2014])). Table
reports the number of indices which recommend K as the optimal number of groups, taking average on
1000 replicates, where 1 < K < 10. We can see that K = 2 and K = 3 are recommended the most in
all scenarios, with more than 6 indices. When T = 400, the number of group K is correctly estimated
as 3, while when 7" = 100 or 200, K = 2 has slightly more recommendations than K = 3. Thus, this
method of selecting K has better performance with larger 7" and N in practice. When T or N is small, we
could combine this method with the model fitting criterion (the second method in Remark 5) to select a

reasonable number of groups.
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