
Statistica Sinica Preprint No: SS-2025-0393 
Title Response to Discussions of “Causal and Counterfactual 

Views of Missing Data Models” 
Manuscript ID SS-2025-0393 

URL http://www.stat.sinica.edu.tw/statistica/ 
DOI 10.5705/ss.202025.0393 

Complete List of Authors Razieh Nabi,  
Rohit Bhattacharya, 
Ilya Shpitser and  
James M. Robins 

Corresponding Authors Razieh Nabi 
E-mails razieh.nabi@emory.edu 



Statistica Sinica

RESPONSE TO DISCUSSIONS OF

“CAUSAL AND COUNTERFACTUAL VIEWS OF

MISSING DATA MODELS”

Razieh Nabi, Rohit Bhattacharya, Ilya Shpitser, James M. Robins

1. Introduction

We are grateful to the discussants – Levis and Kennedy [2025], Luo and Geng [2025], Wang

and van der Laan [2025], and Yang and Kim [2025] – for their thoughtful comments on our

paper [Nabi et al., 2025]. Below we summarize our main contributions before responding to

each discussion in turn.

Graphical models have emerged as an important tool for clarifying identifying assumptions

made in both causal inference [Pearl and Robins, 1995, Pearl, 2000] and missing data [Robins and

Gill, 1997, Bhattacharya et al., 2019, Nabi et al., 2020, Malinsky et al., 2021, Mohan and Pearl,

2021]. Our paper [Nabi et al., 2025] shows how recent techniques motivated by causal graphical

modeling may be fruitfully applied to obtain identification in missing data models. These recent

techniques allow us to obtain novel identification results that would not be possible to obtain

in standard causal inference problems, except by imposing implausible additional assumptions,

such as rank preservation.

Specifically, we formalize how identifiability of the target (i.e., complete) data law can

be viewed as identification of a joint distribution over counterfactuals L(1), the variables that
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would have been observed if all missingness indicators R were set to one (that is, if no data

were missing).

This reframing yields a counterfactual analogue of the g-formula. When assumptions

encoded in the Markov properties of a missing data DAG (m-DAG) allow us to express the

counterfactual g-formula in terms of the factuals, we obtain (nonparametric) identification.

That is, noting that the target law p(l(1)) satisfies p(l(1)) = p(l, R = 1)/p(R = 1 | l(1)), it follows

that when the missingness selection model p(R = 1 | L(1)) is identified from the observed law,

so is p(l(1)).

In our paper we used the word “nonparametric” in two different ways. The joint distribu-

tion of (L,L(1), R) is Markov to a given m-DAG if it factorizes as the product of the conditional

densities of each variable given its parents. In the graphical causal modeling literature, the

model is said to be “nonparametric” just when these conditional densities are left unrestricted

(with the exception that L is a deterministic function of its parents). The term “nonparametric

identification” refers to identification in such a model. In contrast, in the missing data literature

in statistics, a model is said to be nonparametric if it places no restrictions on either the observed

data law or the target data law p(l(1)). It is said to be nonparametric just identified (NPI) if

the target law is identified from the observed data law. The permutation model [Robins, 1997]

we discuss in our paper is known to be NPI. In contrast, all the other identified missing data

models in our paper place testable restrictions on the joint distribution of the observed data.

In fact, we conjecture that the permutation model is the only m-DAG model that is NPI. In

the following, we use nonparametric in the graphical causal modeling sense.

A key message of our paper is that features specific to missing data models (in partic-

ular the partial observability of the counterfactuals through the proxies L and the structural

restriction that R and L do not cause L(1)) can deliver parameter identification in settings
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where analogous parameters in hidden variable causal DAGs are not identified. We catalog

several such nonparametric identification techniques in m-DAGs, and we clarify similarities and

differences with standard causal identification, including when additional assumptions like rank

preservation might be needed for causal analogues.

Each discussion extends or challenges our framework in important ways. Levis and Kennedy

[2025] highlight identification strategies complementary to ours, based on the existence of instru-

mental and shadow variables, discuss semiparametric estimation theory for functionals arising

from such strategies, as well as discuss connections between m-DAGs and Single World Inter-

vention Graphs (SWIGs). Luo and Geng [2025] analyze self-censoring MNAR mechanisms with

binary variables, deriving identifiability results that leverage auxiliary variables. Wang and

van der Laan [2025] emphasize, as we do, viewing missingness as interventions, and connect our

perspective to censoring in survival models. Yang and Kim [2025] and Wang and van der Laan

[2025] both examine challenges of applying m-DAGs in applications, particularly assumption

validation, scalability, and sensitivity analysis.

2. Response to the discussions

2.1 On the discussion by Levis and Kennedy

Levis and Kennedy [2025] draw attention to additional causal identification tools and highlight

implications for estimation. In particular, they emphasize the relevance of instrumental vari-

ables, shadow variables, and SWIGs as complementary devices for reasoning about identification

in missing data problems. They also consider how identification results derived from m-DAGs

can be translated into practical estimation procedures with desirable asymptotic properties.

Their discussion situates our contribution within a broader pipeline of causal inference methods

and points toward promising directions for future methodological development.
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2.1 On the discussion by Levis and Kennedy

We appreciate Levis and Kennedy’s thoughtful remarks. On their first point, we agree that

instrumental variables [Sun et al., 2018], shadow variables [Miao et al., 2024], and related tools

[Li et al., 2023] are useful complements. Our emphasis in the paper, however, was on a nonpara-

metric identification framework: aside from the Markov restrictions encoded via independence

assumptions in m-DAGs, we make no further distributional assumptions. In contrast, the use

of IVs or shadow variables begins in settings where nonparametric identification fails, and pro-

ceeds by imposing additional restrictions (such as functional form constraints e.g., homogeneity

assumptions when using of IVs), relevance assumptions which result in generic identification, or

restrictions on the support of variables to restore identification. These extra ingredients move

the analysis outside the purely nonparametric domain that was our focus.

On estimation, we appreciate the worked example they provide. While our goal in this

paper was primarily conceptual, highlighting the philosophical parallels and differences between

missing data and causal identification, their discussion underscores the importance of connecting

identification results to practical estimation and efficiency theory. We agree this is important

future work.

We also agree with Levis and Kennedy that causal inference problems in the presence of

confounding often occur together with censoring, and that obtaining identification when both

complications are present is challenging. We also appreciate their worked example illustrating

these complications.

We would like to offer two notes of caution regarding generalizing the construction pre-

sented by Levis and Kennedy, first on the appropriate generalization of the SWIG splitting con-

struction from causal diagrams to m-DAGs, and second on the general utility of using SWIGs

for obtaining identification in missing data settings.
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2.1 On the discussion by Levis and Kennedy

On the translation of m-DAGs to SWIGs

For simple MAR models where the m-DAG’s structure resembles that of the standard condition-

ally ignorable model in causal inference, the translation of an m-DAG to an equivalent SWIG

is fairly natural. There are, however, important distinctions even in these simple settings. In

causal inference, SWIGs provide a template indexed by treatment interventions (two templates

if the treatment is binary) [Richardson and Robins, 2013]; in the missing data analogue, only the

template for R = 1 is meaningful, since the counterfactual L(0) is not defined. This difference is

highlighted in Figures 1(a, b) for a causal model satisfying ignorability and an analogous miss-

ing data model that is MCAR. Similarly, Figures 1(c, d) highlight the same for a conditionally

ignorable causal model and a MAR missing data model.

Caution must be exercised when SWIGs are constructed from m-DAGs representing MNAR

mechanisms. For instance, in a missing data model with self-censoring, a natural idea for what

the SWIG should look like would be the graph shown in Figure 2(a). However, if we try to

collapse the random and fixed nodes in this SWIG to reconstruct the observed data graph, we

obtain the graph shown in Figure 2(b), which erroneously implies a cycle in the underlying data

generating process.

The problem arises from conflating the full data variable L(1) in m-DAGs, and the observed

data variable L relabeled to be counterfactual in the SWIG construction. An appropriate view

of m-DAGs that avoids these types of difficulties is to view full data variables such as L(1)

as unobserved confounders U , with additional structure imposed by missing data consistency.

In this view, the SWIG corresponding to the self-censoring model is better represented by

Figure 2(c), where the variable L(1) is viewed as an unobserved confounder U with special

structure, which influences both the observability indicator R, and the observed proxy variable

L. The m-DAG corresponding to this view of the self-censoring model is shown in Figure 2(d).
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2.1 On the discussion by Levis and Kennedy
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Figure 1: (a) Ignorable treatment model with SWIGs; (b) Its MCAR ana-

logue, with a single relevant SWIG; (c) Conditionally ignorable treatment

model with SWIGs; (d) Its MAR analogue, again with only one relevant

SWIG.

SWIGs do not make identification arguments for MNAR prob-

lems clearer

The primary motivation for SWIGs in the causal inference context is to provide a graphical rep-

resentation for independences that arise in identification arguments. The function of m-DAGs

is to provide precisely the same graphical representation in missing data problems, rendering

SWIGs unnecessary.

Take, for example, the independences that can be read from the m-DAG in Figure 3(a) and

the corresponding SWIG in Figure 3(b). From either graph, we are able to extract independences

of the form Rk ⊥⊥ L
(1)
k , R−k | L(1)

−k, for k ∈ {1, 2} that define the binary block-parallel MNAR

model. That is, the m-DAG itself is just as expressive as the SWIG for reading off independences

important for identification in missing data models. In fact, we now argue that attempting

identification using standard causal inference arguments from the SWIG may be problematic
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2.1 On the discussion by Levis and Kennedy
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U ≡ L(1)
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Figure 2: (a) A possible SWIG representation of a self-censoring missing

data model; (b) Stitching SWIGs into an observed-data model produces a

cycle; (c) A SWIG that draws a distinction between the full data variable

L(1), viewed as an unobserved confounder U with extra restrictions, and

the observed variable L under an intervention where R is set to 1; (d) The

full data graph equating the full data variable L(1) with an unobserved

confounder U with special structure.

for missing data problems due to the single counterfactual nature of missing data, which as we

discussed in Section 6 of our paper is more akin to the rank preservation assumption in causal

inference.

To obtain the identification of the target law p(l
(1)
1 , l

(1)
2 ) of the block-parallel MNAR model,

we showed in Section 5.2 of our paper that a parallel use of the g-formula was required, which

never arose in standard causal inference settings. If just the marginal p(l
(1)
2 ) is desired, this

is obtained by marginalization. Now suppose instead, we attempted to perform identification

arguments for p(l
(1)
2 ) using the SWIG, in a manner similar to the derivation of the adjustment

formula for causal inference. This would proceed as follows. First notice from the SWIG in

Figure 3(b) that L
(1)
2 ⊥⊥ R2 | U1, R1 – this is analogous to conditional ignorability except U1 is
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2.1 On the discussion by Levis and Kennedy
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Figure 3: (a) The block-parallel MNAR model, labeling missing variables

as unmeasured for the purposes of constructing a SWIG; (b) The corre-

sponding SWIG obtained from (a).

observed only when R1 = 1. Thus we have,

p(l
(1)
2 ) =

∑
r1,u1

p(r1, u1, l
(1)
2 )

=
∑
r1,u1

p(r1, u1) p(l
(1)
2 | r1, u1)

=
∑
r1,u1

p(r1, u1) p(l
(1)
2 | r1, u1, r2 = 1)

=
∑
r1,u1

p(r1, u1) p(l2 | r1, u1, r2 = 1).

Despite the final expression above appearing to be a function that is devoid of counterfactuals,

the appearance of the variable U1 in the expression prevents identification, as U1 is observed

only when R1 = 1. Since R1 cannot be set to the value 1 in the formula above, we are unable

to establish identification via the arguments presented. In fact, no sequential strategy that we

are aware of based on the SWIG in Figure 3(b) would help establish identification. That is, the

parallel fixing arguments presented in Section 5.2 of our paper are required here.

In short, while applying the SWIG construction to m-DAGs offers useful insights in causal

problems with simple types of missingness, such as MCAR or MAR, we caution that such
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2.2 On the discussion by Luo and Geng

constructions must be done with care, as Levis and Kennedy have done.

To illustrate, Figure 4(a) extends the example of Levis and Kennedy to include missingness

in both the outcome Y and treatment A. The goal here is to identify the average causal effect

of A on Y in the absence of censoring.

Just as in the previous example shown in Figures 3(a, b), an argument based solely on

SWIGs does not yield identification. Instead, identification strategies that leverage restrictions

encoded in both m-DAGs and SWIGs are necessary. In particular, we first obtain the target law

p(X,A(1), Y (1)) by applying inverse probability weighting with the product of the propensity

scores for R1 and R2, resulting in the graph in Figure 4(b). We then apply the g-formula on

A(1) to adjust for confounding by X, taking advantage of the restrictions in the SWIG shown in

Figure 4(c). This yields p(Y (1,a)), the distribution of the outcome Y , had it not been censored

and had treatment been set to value a, from which the average causal effect of interest may be

obtained.

Finally, we note that there is currently no complete graphical identification theory for

causal parameters associated with arbitrary m-DAGs that encode both MNAR and (possible)

confounding by unmeasured common causes U . We expect this theory to employ both SWIG

and m-DAG constructions, as in the worked example of Levis and Kennedy, and our examples

above.

2.2 On the discussion by Luo and Geng

Luo and Geng [2025] extend our framework by focusing on self-censoring MNAR mechanisms,

where the missingness of a variable depends directly on its unobserved value. They study

such models with binary outcomes and establish identifiability results under explicit, testable

conditions. Their discussion highlights how auxiliary variables, either baseline or follow-up
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2.2 On the discussion by Luo and Geng

measurements, can be leveraged to restore identification. In doing so, they illustrate that self-

censoring structures, which were not emphasized in our paper, can still yield identification in

important cases. They also point to future directions for extending these ideas beyond the

binary case to more general settings.

We thank Luo and Geng for their examples of self-censoring mechanisms. In our paper, we

noted self-censoring as a form of MNAR but did not explore it further, since m-DAG models with

self centering are never nonparametrically identified [Mohan et al., 2013]. Since our emphasis

was on nonparametric identification, we did not employ any restrictions not implied by the

m-DAG factorization, including (i) relevant restrictions needed by instrumental variable or

proxy methods, or (ii) constraints implied by state space restrictions. As Luo and Geng [2025]

illustrated, such assumptions can sometimes yield identifiability, and their results highlight

concrete testable conditions under which this occurs.

We fully agree that self-censoring is of practical importance, with income surveys, sensitive

health questions, and other social science settings providing common examples. Their discussion

usefully demonstrates how auxiliary information, through baseline or follow-up variables, can

be leveraged to address such scenarios.

More broadly, we believe that in MNAR submodels that identify the target law, restrictions

implied by the m-DAG always yield testable implications for the observed data law, with the

exception of the permutation model [Robins, 1997]. Examples of such tests have been developed

in prior work on graphical models [Mohan and Pearl, 2014, Nabi and Bhattacharya, 2023, Guo

et al., 2023, Chen et al., 2023].

Overall, we view their discussion as complementary to our focus: while our framework

aimed to catalog nonparametric identification results, their work illustrates how additional

structure can both sharpen identifiability and connect to practical applications.
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2.3 On the discussion by Wang and van der Laan

A(1)

X

Y (1)

RA RY
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(a)

A(1) = A

X

Y (1) = Y

rA = 1 rY = 1

A Y

(b)

A(1) = A a

X

Y (1,a) = Y (a)

rA = 1 rY = 1

A Y

(c)

Figure 4: (a) Extension of Levis and Kennedy’s example to have two missing

variables. (b) Graph obtained after fixing RA and RY in parallel. (c) SWIG

obtained by splitting the treatment variable A after already having fixed

RA and RY .

2.3 On the discussion by Wang and van der Laan

Wang and van der Laan [2025], like us, approach missingness through the lens of interventions.

They emphasize the close relationship between missing data models and multivariate censoring

models in survival analysis. They carefully prove that the permutation missingness model is

MNAR rather than MAR and flesh out our example of why the permutation model is substan-

tively plausible in some real world applications. They also discuss substantive settings where

the block sequential model is plausible.

They are less certain that the other identifiable MNAR models discussed in our paper

are substantively plausible. In our view, it is difficult to establish plausibility of any missing

data model in practice, whether it is formulated graphically or not. One advantage of the sort

of theory we present is a single formulation for a large class of identifiable models (including

existing models in the literature such as those described in [Zhou et al., 2010, Robins, 1997]).
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2.4 On the discussion by Yang and Kim

Since no single model may be plausible in applications, an alternative strategy is to perform the

analysis of interest under a wide class of identifiable missingness models, as a form of sensitivity

analysis.

We make one final observation regarding the plausibility of (or the lack there of) the

identifiable MNAR models considered in the paper. Identification in every case we discuss relies

on an assumption that one or more counterfactuals L
(1)
j suffice to control confounding of the

“effect” of Rk on Lk where j ̸= k. But why should we privilege L
(1)
j (or a set of such variables) as

a set sufficient for adjustment? It seems much more plausible that there exist other unmeasured

common causes of Rk and Lk (equivalently L
(1)
k ) that would also need to be adjusted for to

eliminate confounding. Are we assuming the L
(1)
j suffice to control confounding because we

believe it to be so or rather because we want to achieve identification for identification’s sake?

In fact, similar plausibility concerns arise in non-graphical identifiable models, such as non-

monotone MAR. In our view, plausible models of missingness feature a description of data

generation that follows a temporal order (often representable as a DAG). Unfortunately, to be

realistic, even models of this type would feature unobserved confounding of the sort that would

prevent identifiability.

2.4 On the discussion by Yang and Kim

Yang and Kim [2025] emphasize the practical challenges of applying the m-DAG framework.

They point out that while m-DAGs provide a principled way to encode assumptions and extend

identification theory, their utility in practice depends critically on correct graph specification,

which may be difficult to achieve in applied settings. They raise concerns about scalability

in high-dimensional problems, where the number of variables and missingness patterns grows

quickly, and about the feasibility of validating the conditional independence assumptions en-
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2.4 On the discussion by Yang and Kim

coded in an m-DAG. They further stress the importance of developing systematic approaches

to sensitivity analysis, noting that small misspecifications of the graph can have consequences

for identification and downstream tasks.

We thank Yang and Kim for raising important questions about the practical utility of

m-DAGs, and graphical modeling more broadly. Our goal in this paper was primarily concep-

tual: to provide a general framework that connects causal and missing data perspectives and

to catalog identification results that arise from this connection. Their emphasis on practical

feasibility is appreciated, and complementary to our focus. That said, continuing work in the

graphical modeling community over the last two decades has rendered much of the critiques of

the graphical modeling approach to causal inference and missing data problems out of date.

Identification of causal and missing data parameters must, by necessity, rely on equality

restrictions in the full data distribution. Graphical models aim to encode these restrictions in

a way that allows the construction of a plausible data generating mechanism consistent with a

temporal order of events. Models that obtain identifiability without a corresponding graphical

representation, for instance the non-monotone missing at random (MAR) model, often lack such

a plausible mechanism. Indeed, existing efforts that argue for the plausibility of models such as

non-monotone MAR embed them into a graphical model or a mixture of such models [Robins

and Gill, 1997].

Over the last decade, an explosion of easy to use open-source packages that take advantage

of graphical models have been developed for all tasks in causal inference and missing data, in-

cluding establishing identification, constructing estimators and applying them to data, conduct-

ing sensitivity analyses, establishing bounds on non-identified parameters, and model selection.

A non-exhaustive list of these packages includes: Ananke [Lee et al., 2023], autobounds [Duarte

et al., 2024], dosearch [Tikka et al., 2021], DAGitty [Textor et al., 2016], software developed
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2.4 On the discussion by Yang and Kim

as part of the Tetrad project (equipped with Python and R interfaces) [Ramsey and Andrews,

2023], as well the pcalg package [Kalisch et al., 2012], and extensions to deal with missing values

[Andrews et al., 2024].

Further, sensitivity analyses results can be fruitfully applied to graphical models. For

example, nongraphical results in Robins et al. [1999] can easily be represented in graphical

structures that encode MAR, conditional or sequential ignorability, and other types of Markov

restrictions. For instance, the permutation model in Robins [1997] is shown to be a graphical

model in our paper.

In addition, graphical models allow a particularly powerful form of nonparametric sensi-

tivity analysis, where consistent inferences are made in union models defined over a potentially

large class of graphs that the analyst is uncertain about; see for example, [VanderWeele and

Shpitser, 2011, Yang et al., 2024, Shpitser and VanderWeele, 2010, Shpitser et al., 2010, Chang

et al., 2024, Wang et al., 2025]. For instance, the result in [VanderWeele and Shpitser, 2011]

states that identification of the causal effect by covariate adjustment may be formulated without

precise knowledge of the graph, but only via the set of common causes of the treatment and out-

come, provided an adjustment set exists. The method developed by Yang et al. [2024] provide

similar robustness guarantees with more complex types of identifying functionals, including the

front-door functional, and the ratio functional arising in instrumental variable analysis.

We share the authors’ view that algorithmic and computational advances will be needed

to bring graphical identification methods to bear on high-dimensional problems with complex

missingness patterns. We see this as an exciting frontier for future work, and one where con-

tinued integration of causal inference tools with missing data methodology will be especially

fruitful. We believe smoothing and sparsity methods, as well as sum-product algorithm type

methods developed in the graphical modeling literature may all be relevant for these advances
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[Lee et al., 2021].

3. Conclusion

We thank the discussants for their thoughtful contributions. Together, their contributions point

toward a roadmap: combine graphical identification, auxiliary information, intervention-based

censoring perspectives, efficiency-oriented estimation, and structured sensitivity analysis into a

practical toolkit for MNAR problems.
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