Statistica Sinica Preprint No: SS-2025-0168

Title

Doubly Robust Estimation of Optimal Individual
Treatment Regime in A Semi-supervised Framework

Manuscript ID

SS-2025-0168

URL

http://www.stat.sinica.edu.tw/statistica/

DOI

10.5705/s5.202025.0168

Complete List of Authors

Xintong Li,
Mengjiao Peng and
Yong Zhou

Corresponding Authors

Mengjiao Peng

E-mails

mjpeng@fem.ecnu.edu.cn




Statistica Sinica

DOUBLY ROBUST ESTIMATION OF OPTIMAL
INDIVIDUAL TREATMENT REGIME IN A
SEMI-SUPERVISED FRAMEWORK

Xintong Li, Mengjiao Peng and Yong Zhou

FEast China Normal University

Abstract: In many health-care datasets like the electronic health record (EHR)
dataset, collecting labeled data can be a laborious and expensive task, result-
ing in a scarcity of labeled data while unlabeled data is already available. This
has sparked a growing interest in developing methods to leverage the abundant
unlabeled data. We thus develop several types of semi-supervised (SS) methods
for estimating optimal individulized treatment regime (ITR) that utilize both
labeled and unlabeled data in a general model-free framework, with efficiency
gains compared to supervised estimation methods. Our proposed method first
utilizes a flexible imputation technique through single index kernel smoothing to
exploit the unlabeled data, which performs well even in cases of multidimensional
covariates, with a follow-up estimation to determine the optimal ITR by directly
optimizing the imputed value function. Additionally, in cases where the propen-
sity score function is unknown like in observational studies, we also develop a
doubly robust SS estimation method based on a class of monotonic index mod-

els. Our estimators are shown to be consistent with the cube root convergence



rate and exhibit a nonstandard asymptotic distribution characterized as the max-
imizer of a centered Gaussian process with a quadratic drift. Simulation studies
demonstrate the efficiency and robustness of the proposed methods compared to
supervised approach in finite samples. Additionally, a practical example from

the ACTG 175 study illustrates its real-world application.

Key words and phrases: Optimal treatment regime, Semi-supervised inference,

Doubly robustness, Precision medicine.

1. Introduction

Precision medicine has emerged as a promising field, aiming to provide tai-
lored medical treatments for individual patients based on their unique char-
acteristics. One main purpose of precision medicine is to find the optimal
individualized treatment regime (ITR) mapping from the individual charac-
teristics or contextual information to the treatment assignment, that max-
imizes the expected outcome, known as the value function (Manski, 2004}
Qian and Murphy, 2011). ITRs apply to a wide range of areas, including
disease management, recommender systems and public policy evaluation.
In disease management, the physician needs to decide the optimizing drug
dosages based on patients’ characteristics in order to optimize his/her clini-
cal outcome (Correa et al., [2024). In a context-based recommender system,

contextual information such as time, location, and social connection can be



incorporated to increase the effectiveness of the recommendation (Aggarwal,
. In the realm of public management, the process of policy learning
and evaluation encounters challenges posed by clustered network interfer-
ence. Addressing influential individuals with extensive social connections

can yield positive spillover effects, ultimately enhancing the overall efficacy

(Zhang and Imai, 2023)). Several methods have been developed for esti-

mating the optimal individualized treatment regime, which can be broadly
classified into two main strategies: the model-based approach which es-
timates the mean outcome model given treatment and covariates, and the
direct-search approach that non-parametrically estimates the value function
and maximizes the estimated value function over a pre-specified I'TRs class.

Methods falling into the model-based approach category include Q-Learning

(posits regression models for the outcome of interest, e.g., Watkins, 1989;

‘Watkins and Dayan| [1992; |Chakraborty et al., 2010} |Qian and Murphy,

2011; Wang et al., 2018), and A-Learning (builds models for the contrast

functions, e.g., Robins et al., |2000; Murphyl, [2003; Robins| 2004; Blatt et al.,

2004; [Lu et al., 2013; Shi et al., 2018). The direct-search approach involves

inverse-probability weighted estimation (IPWE) (Kitagawa and Tetenov,

2018; [Liu et al., |2018; Zhao et al. [2012; |Zhou et all [2017). While most

of the model-based approach relies on correctly specified outcome models,



the direct-search approach based on IPWE necessitates accurate estimation
of the propensity score (PS) function. The concept of double robustness
is fundamental in the field of causal inference (Ding and Li, [2018; Robins
et al., |1994] 1995)), especially concerning the impact of model misspecifi-
cation on estimation results. Various approaches have been proposed to
combine the strengths of the model-based and direct-search methods and
therefore enhance the robustness of the estimation process. Notably, Zhang
et al. (2012), |Zhao et al. (2019), and Athey and Wager| (2021), augmented
IPWE with the outcome model to obtain the augmented IPWE (AIPWE)
of the value function, which could be robust even if the outcome model or
PS model is misspecified.

Recently, large unlabeled datasets generated electronically are becom-
ing increasingly accessible, but few studies have investigated safe and ef-
fective ways to leverage this wealth of abundant auxiliary information. In
biomedical applications, for example, electronic medical record (EMR) data
often remain underutilized due to difficulties in obtaining accurate clinical
data (Liao et all 2010). To address this, semi-supervised learning (SSL)
has attracted significant attention. In traditional SSL, more information
from the distribution of covariates X, obtained from unlabeled individuals,

is utilized to enhance the inference of the conditional distribution of out-



come Y given X (Chapelle et al.| 2006; Chakrabortty and Cail, 2018; [Song
et al., [2023). Although SSL methods have begun to be used in the field of
precision medicine such as estimating treatment effects (Zhang et al. |2019;
Cheng et al., 2021} Chakrabortty et al.| 2022)), there is still limited literature
on using these methods to estimate optimal treatment rules. [Sonabend-W
et al. (2023) introduced a semi-supervised off-policy reinforcement learn-
ing framework for optimizing and evaluating dynamic treatment regimes.
Their proposed SSL estimator enhances efficiency by leveraging both la-
beled and unlabeled data, along with outcome surrogates, to estimate the
value function. They constructed a doubly robust value function estimator
based on AIPW| which ensures consistency if either the Q-function or the
PS is correctly specified. |(Gunn et al.| (2024)) used covariate information from
unlabeled data to estimate the contrast function, which improves the esti-
mation of the linear decision rule based on a semiparametric working model.
Their method directly imputes the contrast function using kernel methods
with the covariate vector X, which may be slow in multidimensional cases.

This paper aims to develop efficient and robust estimators for determin-
ing optimal ITR using semi-supervised (SS) techniques within a model-free
framework. We propose a flexible imputation approach based on single-

index kernel smoothing, which performs well even with multidimensional



covariates. The optimal ITR is then estimated by directly optimizing the
value function. Additionally, we introduce a doubly robust estimation
method for cases where the PS function is unknown. The remainder of
the paper is organized as follows. We introduce the data and notations in
Section and formally describe the proposed SS estimators with known
and unknown PS in Section and [2.3] respectively. Asymptotic prop-
erties of the proposed estimator are provided in Section [3] To facilitate
inference, a perturbation resampling procedure is proposed in Section [] for
inference. Section [5| presents simulation results showing the robustness and
efficiency of the proposed estimators, followed by an application to AIDS
clinical trial data in Section [6] Some concluding discussions and extensions
are given in Section [7] Theoretical proofs and additional numerical results

can be found in the Supplementary Material.

2. Methodology

2.1 Notations and Data representation

Let Y € Y C R be the outcome variable which is assumed that a larger
value of Y implies a better response without loss of generality. Denote
X € X C RP as the p-dimensional predictor vector with bounded sup-

port X. Let A, taking values in A = {0,1}, be the treatment indica-



2.1 Notations and Data representation

tor. As in traditional SS framework (Chapelle et al., 2006), the avail-
able data consists of two independent data sources £ and U, where £ =
{(Y;,X;,4;) : i = 1,2,...,n} consist n iid labeled observations and U =
{(X;,4;):j=n+1,n+2,...,n+ N} consist N iid unlabeled observa-
tions. Assuming that the observations in both £ and U follow the same
potential distribution and for some constant p € [0,00), p, = n/N — p
as n, N — oo. And assuming that observations in £ were randomly se-
lected from £ UU for labeling so that Y is essentially missing completely
at random (MCAR) (Chakrabortty and Cai, 2018). Note that the major
difference between the SS framework and the MCAR assumption is that
the SS setting allows n/N — 0 (Song et al.l 2023) while the latter may
require n/N — ¢ for some ¢ > 0.

Let Y*(a) denote the potential outcome that would result if the subject
were given treatment a € A (Rubin), [1974)). Let ‘L’ represent independence.
Three identification assumptions are typically made in potential outcome
framework: (A1) SUTVA: Y =Y*(1)A4+Y™*(0)(1— A); (A2) Strong ignore-
ability: A L {Y*(0),Y*(1)}|X; (A3) Positivity: 0 < P(A =1|X) < 1.

The ITR d(X) is defined as a decision function that maps X € X to
a € A. For any ITR d(X), the potential outcome Y*(d(X)) can be written

by Y*(d(X)) = Y*(1)d(X)+Y*(0){1—d(X)}. Then, the outcome Y*(d(X))



2.2 Supervised and semi-supervised estimation

would be observed if a randomly chosen subject from the population were to
be assigned treatment according to ITR d(X). The optimal ITR is defined
as d°P* (X) = argmaxgep E [Y*{d(X)}], where D is some decision class
contains all possible ITRs of interest and F [Y*{d(X)}] is called the value
function of a given ITR d(X). For simplicity and interpretability, we will
focus on the linear decision class D = {dg(X) = I(3'X > 0) : B € B} where
B={B:8¢cR|B| =1} We assume that ||3]] = 1 for identifiability

and ||a|| represents the Euclidean norm of a vector a.

Remark 1. The linear ITR with intercept term that dz = 1 (@/X > co>
are considered as in literature (Fan et al.l 2017; |Chu et al., [2023), which is
: / : A\ N/ \/
equavilent to dg = I (X > 0) with 8 = (¢, 8 ) and X = (1,X’)". Thus,
we assume the intercept term is contained in the covariate X throughout

this paper for notation simplicity without loss of generality.

2.2 Supervised and semi-supervised estimation

In this section, we establish the main framework of our SS methodology
when the PS is known. This methodological framework can be easily ex-
tended to the case of unknown PS in observational studies, and the details
will be discussed in the following section [2.3] Denote the conditional aver-

age treatment effect (CATE) as D(X) = E(Y|X,A=1)—- E(Y|X,A=0).



2.2 Supervised and semi-supervised estimation

To illustrate our basic idea, we begin with a lemma.

Lemma 1. Under identification assumptions made in Section[2.1], we have
ER{Y™(1) = Y*(0)}dp(X)] = E[D(X)ds(X)].

From Lemma [I] and the definition of optimal ITR in Section [2.1] that

doﬁpt = argmax E[Y*(dg(X))] = argmax E[{Y*(1)—Y*(0) }dg(X)], we have
dgeD dg€D

dy" = argmax E[D(X)dg(X)]. Let E[D(X)dg(X)] be the value function
dﬁED

and B, = argmax E[D(X)dg(X)], then the induced optimal ITR in D is
BeB
I(B,X >0).
Combining the ideas of the direct search method from Zhang et al.

(2012) and robust A-learning (Murphy, 2003), we can construct the consis-

tent estimator of the value function as follows:
E[D(X)dp(X)] = E[V(Z,0)ds(X)] := A(B, 0),

where Z = (X, Y, A), V(Z,0) = LG satisfies E[V(Z,60)|X] =

D(X) (Fan et al., 2017), 7(X) = P(A = 1]X) is the PS function, and
v(X,0) is a model parameterized by 6 for v(X), an arbitrary function of
X. Let 8 be a consistent estimator of 0, such as the least squares estimator
for the linear model v(X, ) = 8'X. As a prelude to Section 2.3 we assume

that v(X) is the baseline treatment-free effect 1o(X) = E(Y|X, A = 0)



2.2 Supervised and semi-supervised estimation

without loss of generality. Thus we can obtain the supervised estimator of

the value function based only on £ that

Aup(B,0) = Zv Z:,0)I >0),

and the supervised estimator of the optimal ITR parameter 3, is then

obtained by B

sup = argmax Agp(8,0).
BeB
Due to the absence of labels in the unlabeled data U/, we cannot estimate

V(Z,0) directly. Therefore, to leverage information from the unlabeled

data, we consider imputing the value function estimation by appropriately

training on £. For the linear ITR dg(X) = I(3'X = 0), we have
A(B,0) = E[E[V(Z,0)|8'X]ds(X)]

by the law of iterated expectations. Let m(3'X,0) = E[V(Z,0)|3'X].
Notably, we implicitly utilize a single-index projection for dimensionality
reduction, which alleviates the ‘curse of dimensionality’ problem when es-
timating m(3'X, 0) using nonparametric methods. The accuracy of im-
putation estimation is crucial for the effectiveness of SS methods based on
imputation (Chakrabortty and Cail, 2018; \Wang et al. |2023)). Therefore, we
employ a nonparametric kernel smoothing method to estimate m(3'X, 6)

to avoid model misspecification, that is

n”' Y i Kn(B'Xi — B'X;)V(Zi, 0)

m(BX;,0) = n~ty " Kn(B'X; — B'X;) ’

(2.1)



2.2 Supervised and semi-supervised estimation

K (“;”) with K: R — R being some suitable kernel

where Kj,(u—v) = &
function and h = h(n) > 0 being the bandwidth.

Next, we establish our SS method based on the above imputation esti-
mation. We introduce a weight parameter A € [0, 1] to balance the contri-
butions of labeled and unlabeled data in value function estimation. Specif-
ically, since A(3,80) = AE[V(Z,0)dsg(X)] + (1 — N)E[m(8'X, 0)ds(X)], we

construct the following SS estimator of the value function that

1 —-A n+N .
N m(B'X;,0)1(8'X; > 0),

Jj=n+1

AB.0) = X V(zL 01X, > 0)+
=1

and the corresponding SS estimator of the optimal ITR parameter 3, is

given by B,\ = arg max A,\(ﬁ, 9) Section (3| establishes \ = 15;2 as the
BeB
optimal weight, which we recommend for applications.

Furthermore, based on the kernel estimator of the imputation function,

we propose the following pooled estimator of the value function that

> \ 1 n+N’A , . ,
Ap(B,0) = > " (B'X;,0)1 (BX; > 0),
j=1

and the pooled estimator of the optimal ITR parameter 3, is given by

~

B, = arg max Apl(ﬂ, é)
BeB
Notably, since we do not require a specific model for V(Z, @), the pro-
posed framework for learning the optimal ITR is model-free. Unlike the

method proposed by (Gunn et al.| (2024)), which is only applicable to low-



2.3 Doubly robust estimation with unknown propensity score

dimensional covariates, our method utilizes projection-based dimensional-
ity reduction in imputation estimation. This allows us to employ a one-
dimensional kernel function, avoiding the ‘curse of dimensionality’ issue

when p is large.

Remark 2. Since the objective functions Ay(3,8) and A,(8,8) involve
kernel estimators with an unknown parameter, we simplify the optimization
procedure by employing a two-step iterative algorithm for implementation.

See Section S4.1 of the Supplementary Material for algorithm details.

2.3 Doubly robust estimation with unknown propensity score

Section clearly establishes a framework of SS estimation methods when
7m(X) is known. However, in practice, when data come from observational
studies, 7(X) is typically unknown and therefore needs to be estimated,
using parametric methods, such as logistic regression (Mo and Liul 2022]),
or flexible nonparametric methods, such as regression forests (Athey et al.,
2019). Let 7(X, ) denote the model posited for 7(X) with parameter
a, where a has a compact support agup,. Let & be the estimate of a
obtained based on either £ or £ UU. In this section, building on the SS
framework from the Section [2.2] we similarly construct a doubly robust

value function estimation method. This method guarantees the consistency



2.3 Doubly robust estimation with unknown propensity score

of the value function estimation when either the PS model 7(X, a) or the
baseline treatment-free effect model v(X, ) is correctly specified.

Next, we will elaborate on the doubly robust value function estima-

tion method. Define V(Z,0, a) = & &i?ﬁ%&%f and the imputation

function m(8'X,0,a) = E[V(Z,0,a)|3X]. When (X, a) is correctly
specified, it is similar to the case discussed in Section When v (X, ) is

correctly specified, we have

ADXH{A - n(X, o)}
(X, a){l —7(X, )}

m(B'X,0,a)=E ‘ 3 X] lD(X) W&Xl) ‘ ﬁ’X} .

It is worth noting that when D(X) is a monotonic increasing index model,

for any positive function g(-), we have

d%pt = arg; renpax E[D(X)dg(X)] = ar;g; Ier;)ax E[D(X)g(X)ds(X)].

m(X)

Due to the positivity assumption, X

) is always a positive function, hence

dop = argmax E[D(X)dg(X)] = arg max E[m(8'X, 0, a)dg(X)].
dg€D dg€D

Similar to Section 2.2, based on L, the doubly robust supervised esti-

mator of the value function can be obtained as

APE(3.6. & Zv 7:,0,8)I (BX; > 0),

sup

and correspondingly, the doubly robust supervised estimate of the optimal

ITR parameter is B = arg max Asup (3, 0 , Q).

BeB

sup



The doubly robust semi-supervised estimate of the value function based
on weighting is given by AP%(3,0, &) = 2 37 V(Z;,0, &)1 (B'X; > 0) +

LA (BX,,0,&) (X, = 0), where A € [0,1] and 1(8'%, 0, &) =

nTl 0 Kn(B'Xi—B'x)V (Zi,0,&)
n=13 T Kn(B'Xi—B'x)

. The corresponding estimator of optimal I'TR

~ DR . A
parameter is 3, = argmaxAP%(3,6, &).
BeB

Furthermore, the doubly robust pooled estimate of the value function

~DR N
is By = W N (B'X,, 0, &)1 (B'X; > 0), and the corresponding es-

DR . .
timator of the optimal ITR parameter is 3,, = argmax A%(3,6, &).
BeB

3. Asymptotic Properties

In this section, we will mainly study the asymptotic properties of the pa-
rameter estimators we proposed in Section [2.2] and that of the estimators
in Section can be obtained similarly and will be also given in Section
S1.2 of the Supplementary Material. In order to establish asymptotic re-
sults, some regularity conditions need to be assumed, which can be found

in Section S1.1 of the Supplementary Material.

Theorem 1. Let G(t), GA(t) and G,(t) be the mean-zero Gaussian process
with continuous sample paths. Under conditions C1-C7, and as n, N — oo,
*=py = p€(0,00), A€ [0,1], we have:

(al) Bsup 5 Bo- (a2) sz 5 Bo- (a3) B)\ 5 Bo-



(b1) n%(Bsup - Bo) % arg max Z(t), where the process Z(t) = G(t) — 5t'Vt.
Here G(t) has the covariance kernel function Cov(-,-) and -V is the second
derivative matriz of E[V(Z,80y)1(3'X = 0)] with respect to B at B,.

(b2) n%(Bpl - By) 4 arg 1nax Zy(t), where the process Zy(t) = Gp(t) —
st'Vt. Here Gy (t) has the covariance kernel function (T_%p)QC’ov(~, ).

(b3) n3 (B, —By) 4 arg max Z\(t), where the process Z(t) = Gi(t)— 5t'V¢.
¢

Here G\(t) has the covariance kernel function [\? + (1 — \)?*p?|Cov(-, -).

Note that Cov(-, -) in this theorem is calculated in the proof of Theorem
[1]that Cov(Cy, Ca) = §(L(Cy)+ L(Cy) — L(Cy = Cy)) for Cy, Cy € R?, where
L(C) == [|C'v|q(v)p(0,v)dv, ¢(X) = E[V?*(Z,00)|X], p(r,v) is the joint
density function of (7, v), and other specific definitions and proof details can
be found in the Supplementary Material. We can see from this theorem that
the convergence rates of Bsup, ﬁpl and B , are all the cube root of n, which
implies that unlabeled data does not improve the convergence rate of the
estimators. Although SS methods may not significantly reduce the bias of
the estimator, their asymptotic variance will decrease substantially as the
size of the unlabeled data increases. Denote the covariance of Bsup, ,3/\
and Bpl are Mgup, 2y and X respectively. Theorem |1] shows that Xy is
minimized when the weight A = % (See more details in Section S1.3 of

the Supplementary Material). Accordingly, in our numerical simulations,



we set the tuning parameter A\ to this optimal value. With this choice,
a comparison of Yg,,, Xy, and X reveals that g, = Xy > X, since

2

1> TJ%Q > (—1_%)2 holds for all p € [0,00). This implies that our SS

estimators, 3, and 3, are more efficient than or at least as effective as 3

pl» sup*

The reduction in asymptotic variance leads to a significant improvement in
efficiency, which we will visually demonstrate through numerical results in

Section [l

4. Variance Estimation

Since the asymptotic variance is challenging to compute directly, we em-
ploy a simple resampling approach based on repeatedly perturbing the value
function, as proposed in |Jin et al,| (2001), to estimate the variance of our
estimators for inference. Here, we provide a detailed description of the per-
turbation resampling procedure for estimating ¥,. A similar approach can
be applied to perturb the corresponding value function for estimating other
asymptotic variances, such as Y, X, and LPF with the only distinc-
tion being the specific form of the value function undergoing perturbation.
Other variance estimation perturbation steps are provided in the Supple-

mentary Material. Let & (i = 1,...,n) be n iid copies of a random variable

¢ following a Beta distribution, Beta(v/2 — 1,1), which is assumed to be



independent of the observed data £ UU. Notably, the variance estimation
is generally robust to the choice of &’s distribution (Jin et al., 2001), and
alternative choices such as I'(1, 1) can also be used (Peng and Huang), 2008;
Fan et al| 2017). The resampling procedure is outlined as follows:

1. Generate iid perturbation &; from Beta(v/2 —1,1) fori=1,...,n+ N.
2. Perturb the value function. Let 8° = arg;nin%z:?zl &1 — A)Y: —

5 P LEKR(BX—B'X)V(Z;,0 .
v(X;,0))? and m*(8'X;,0) = z i?:lZth(ﬁ,Xi_Z;)/X(j) ) then for lincar de-

cision dg(X) = I(B8'X > 0), we perturb the value function by

) R R b
AL (3 ( > Zgl (Zl,H ) 3(X; T Z &’ <B’X]~,0 ) dg(X;).

Jj=n+1

3. Re-estimate 3. We use the iterative algorithm derived in Remark [2] to
obtain the new estimator that B?\ = ar%néax Ab (ﬁ, éb>

€
4. Estimate the variance. Repeat the above steps for B times and compute
the empirical variance matrix 3, of {ﬁi,b = 1,..., B} to estimate the
population variance X,.

Note that the nusaince estimators @ and m(8'X, 0) don’t need to be
perturbed technically. However, in order to make more accurate variance es-
timates with finite samples, we therefore perturb it as in|Cheng et al. (2021]).
The above variance estimation procedure ensures that ns (B/\ — BO) and

ns (BA BA> have the same asymptotic distribution, so we denote the

~b
empirical variance of { By:b=1,..., B} as an estimator of the population



asymptotic variance. The relevant theoretical proof will be given in the

Supplementary Material.

5. Simulation Results

To evaluate the finite sample performance of the proposed estimators, we
consider a class of monotonic index models with different types of outcomes

and decision rules that
Y =v(X)+ AD(X) +¢,

where X = (X1, Xy, ..., Xg)', A is generated from Bernoulli {7(X)} and ¢

is generated from N (0,0.5?). Six cases are studied:
e S1, y(X) =1+~/X and D(X) = 28,X:
e 52, (X)) =1++)X and D(X) = exp (0.58,X) — 1;
e 33, ¥(X) = 1 +sin (v, X) + 0.5 (v4X)? and D(X) = 108,X;
o S4, y(X) =1+ X1 X, + 0.5X2 and D(X) = 108,X;
o S5, 1(X) =1+ sin (v\X) + 0.5 (v,X)? and D(X) = 2 (8,X)*;
e S6, v(X) = 14 X, X, +0.5X2 and D(X) = 2(8,X)°.

The linear model v(X,80) = 0'(1,X’) is posited for v(X) = po(X), thus

case S1 and case S2 represents the model (X, €) correctly specified , while



case 53 to case S6 are misspecified. For all the cases, we independently
generate the covariates (Xj,...,Xy) from the multivariate standard nor-
mal distribution Ny(0, 1), X5 from Bernoulli(0.5) and X4 from uniform
distribution U(0,1). The true parameters are set as 8, = (1, —1,2,1,2,1)’,
v, =(1,-1,1,1,—-1,1) and v, = (1,0,—1,0,1, —1)". To evaluate the pro-
posed SS and pooled estimatior with a known 7(X) in Section we set
m(X) = 0.5. Due to space limitations, we provide a detailed description of
the numerical simulation in the Supplementary Material. The simulation
results with known 7(X) for case S1 is shown in Table [1] and for case S2
through case S6 are presented in Tables S1 to Table S5 in the Supplemen-
tary Material, respectively.

In all scenarios, the proposed estimators exhibit negligible bias relative
to their SEs. The performance of our variance estimation method is also
satisfactory, as the estimated SDs align closely with the SEs. The cover-
age probabilities (CPs) of confidence intervals based on adaptive skewness-
adjusted quantiles are close to the nominal level of 95%, and more details
are given in the Supplementary Material. Generally, for a fixed labeled
sample size of n = 200, all estimators show comparable bias. As the size of
the unlabeled sample N increases from 200 to 500, the SEs of the SS and pl

estimators decrease, leading to improved efficiency. This indicates that the



Table 1: Results under case S1 with known propensity score

Method N  Statistics B o Bs Ba Bs Bs

sup Bias 0.000 0.013 -0.009 -0.001 -0.006 -0.004
SE 0.051 0.049 0.047  0.049 0.061 0.115

SD 0.048 0.046  0.047 0.049 0.060 0.111

CP(%) 97.5 96.4 97.1 97.1 96.8 92.7

SS 200 Bias 0.005 0.021 -0.005 0.005 -0.002 0.007
SE 0.040 0.034 0.034 0.040 0.036 0.037

SD 0.035 0.032 0.032 0.035 0.034 0.037

CP(%) 97.9 94.3 97.4 97.8 98.8 99.6

Eff 1.644 1.808 1.886 1.512 2.896 9.744

500 Bias 0.004  0.016 -0.006 0.006 -0.006 0.010

SE 0.028 0.024 0.029 0.028 0.033 0.037

SD 0.029 0.026  0.029 0.029 0.032 0.037

CP(%) 97.5 95.8 96.7 98.2 99.0 97.7

Eff 3.237 3.498 2.618 3.086 3.440 9.429

pl 200 Bias 0.004 0.017 -0.005 0.005 -0.006 0.013
SE 0.020 0.019 0.023 0.021 0.024 0.037

SD 0.024 0.023 0.027  0.024 0.028 0.039

CP(%) 98.9 95.0 96.8 99.2 99.6 97.6

Eff 6.252 5.013 4.226 5.477 6.435 9.192

500 Bias 0.003 0.014 -0.004 0.005 -0.007 0.012

SE 0.015 0.013  0.019 0.015 0.018 0.033

SD 0.019 0.018  0.023 0.019 0.023 0.036

CP(%) 99.2 94.8 95.5 99.2 99.5 95.4
Eff 11.543 8.900 6.244 9.878 10.831 11.369




SS and pl methods enhance accuracy and efficiency as the size of the unla-
beled sample grows. Compared to the sup estimator, the proposed SS and
pl estimators demonstrate superior performance with the relative efficiency
(Eff) gains across all cases. Notably, in most cases, the reduction in SE of
the pl method relative to the sup method is more pronounced than that of
the SS method, resulting in higher efficiency for the pl method relative to
the SS method, which is consistent with the theoretical results discussed in
Section [3

When the PS is unknown, we estimate it using a logistic regression
model and apply the doubly robust SS method outlined in Section to
estimate the parameters indexing optimal ITR. The relevant details and
related simulation results are also shown in the Supplementary Material
through Tables S6 to S10, respectively. Tables S6 and S7 show the results
that both models are correctly specified, Tables S8 shows results under
misspecified baseline treatment-free effect model and correctly specified PS
model, and Tables S9 and S10 show results under misspecified PS model
and correctly specified baseline treatment-free effect model. These results
demonstrate that our method exhibits similar superiority to the supervised
method when the PS is known, and validate the doubly robust property of

our proposed methods against model misspecification.



6. Real Data Analysis

In this section, we apply the proposed methods to analyze the ‘ACTG 175’
dataset. Due to space limitations, data descriptions can be found in the
Supplementary Material. Here we focus on a subset of patients who received
combination antiretroviral therapy with ZDV+ddl or ZDV+ddC. The sub-
set comprises 1046 participants, with 522 receiving ZDV+ddI (denoted as
A=1) and 524 receiving ZDV+ddC (denoted as A=0). The primary out-
come Y of interest is the the CD4 T cell count (cells per cubic millimeter) at
96 + 5 weeks, a critical marker of immune function (Phillips and Lundgren),
2006). In the subset of ACTG175 dataset, outcome CD496 is missing for
376 out of the 1046 total samples. We here focus on the SS setting, thus
we randomly selecte n = 532 entries from the 670 samples with observed
outcome values to form our labeled dataset £ like Gunn et al. (2024)) did.
The remaining N = 532 entries are naturally designated as the unlabeled
dataset . Baseline characteristics X of participants include seven binary
variables and four continuous variables. These variables are essential for
assessing the efficacy of the optimal I'TR and understanding the impact of
individual patient characteristics on treatment outcomes. The results in Ta-
ble S11 of the Supplementary Material indicate that the MCAR assumption

is appropriate in this study.



Table |2/ reports the estimated coefficients for 3 along with the standard
deviation (SD) estimated by perturbation resampling bootstrap with 500

bootstrap samples. The results indicate that the SS estimator and pl esti-

Table 2: Estimated parameters of optimal ITR for ACTG 175 study

Mehods sup SS pl

Predictors  Est SD Est SD Est SD

intercept  0.024 0.032 0.026 0.049 0.138 0.104
hemo -0.839 0.359 -0.821 0.069 -0.809 0.077
homo -0.211 0.284 -0.237 0.074 -0.207 0.037
drugs -0.171 0.290 -0.096 0.103 -0.173 0.037
race 0.270 0.217 0.327 0.077 0.285 0.076

gender  -0.024 0.322 -0.022 0.084 -0.010 0.056
str2 0.189 0.184 0.208 0.059 0.213 0.033
symptom -0.190 0.206 0.087 0.097 -0.220 0.031
age 0.098 0.115 0.110 0.051 0.092 0.041
weight 0.060 0.107 0.068 0.046 0.048 0.044

cd40 -0.219 0.132 -0.251 0.060 -0.229 0.020

cd80 0.125 0.107 0.145 0.053 0.124 0.030

mator yield estimates that are relatively close to those obtained from the



sup estimator. However, they exhibit significantly smaller standard devia-
tions for all covariates except for the intercept term, which is consistent with
our theoretical findings in Section [3]and simulation conclusions in Section [5
This suggests that the SS methods, by leveraging auxiliary information from
the unlabeled data, can improve the efficiency and enhance the stability of
the estimates. Table S12 and Table S13 in the Supplementary Material
presents the 95% and 90% quantile-based confidence intervals (Cls) for the
covariates and displays the lengths of the corresponding Cls respectively. In
Table S12, ClIs that are significant at the 0.05 or 0.1 level are highlighted in
bold. In many studies across various medical fields, the impact of clinical,
demographic, and behavioral variables on individuals with AIDS has been
investigated. Ragni et al.| (1995]) showed that patients with hemophilia ex-
hibited a higher incidence of severe hepatotoxicity and a shorter time to
onset of this toxicity compared to non-hemophilic patients when treated
with ZDV-+ddI. Furthermore, asymptomatic patients demonstrated a bet-
ter CD4 response to the treatment. As commonly known, the risk of HIV
infection is higher among homosexual or bisexual individuals compared to
heterosexual individuals (Carré et al., |1994)). Similarly, individuals who
inject drugs have a higher risk of HIV infection compared to those who

do not use drugs (Schoenbaum et al., [1990). The significance of CD8 T-



lymphocyte function in HIV progression has been established in studies
such as|Langford et al|(2007). Activated by CD4+ T-helper cells, anti-HIV
CDS8 T-cells assume a pivotal role in controlling viremia, as demonstrated
by research like Ogg et al.| (1998), responding to ongoing viral replication
by increasing CD8 T-cells (Keoshkerian et al. [2003). Additionally, Fried-
land et al.| (1991) highlighted the influence of age, race, and risk behaviors
on AIDS progression. These findings indicate that our statistical analysis
results align with established clinical research outcomes. From Table S13,
it is evident that the confidence interval lengths of pl estimator are shorter
than those of SS estimator, which in turn are shorter than those estimated
using the supervised method. This observation holds true for all covariates,
with the exception of the intercept term that is not focused on. Notably,
traditional supervised methods failed to identify statistically significant co-
variate coefficients in this data analysis, neither at the 0.05 level nor at the
0.1 level. This lack of significance may be attributed to the relatively larger
variance, which leads to unstable estimates and consequently wider confi-
dence intervals. In contrast, both the SS estimation and the pl estimation
demonstrated superior performance. To further validate the performance
of our method, we conducted additional analyses using a train-test splitting

approach. More details are described in Section S4.3 of the Supplementary



Material. Consequently, the optimal individualized treatment recommen-
dations derived from these methods are presented in the following Table [3]

The sup, SS, and pl estimators generally recommend similar treatments for

Table 3: Treatment recommendation for ACTG 175 study

ITR sup SS  pl

ZDV+ddl 457 545 621

ZDV+4ddC 589 501 425

most patients. However, the SS and pl estimators suggest the ZDV+ddI
regime for a larger number of patients, while the recommendation for the
ZDV+ddC regime is relatively smaller. And in medical research, treatment
with ZDV+ddI has demonstrated a more pronounced efficacy in improv-
ing patient outcomes and slowing the progression of disease in individuals
with HIV/AIDS compared to the treatment with ZDV+ddC (Darbyshire
et al., [1996; [Hammer et al., 1996; Mauss et al., [1996). Therefore, analy-
sis of ACTG 175 study suggests that our SS methods are more effective
than supervised method in treatment assignment and are more likely to
recommend appropriate treatments to patients, which again demonstrates

the superiority of our SS methods in learning the optimal ITR.



7. Conclusion

This paper introduces a novel method for estimating optimal individualized
treatment regime (ITR) in a SS setting, where the true outcome variable,
denoted as Y, is observed for only a small portion of the data. Our pro-
posed estimators use a kernel smoothing imputation technique to estimate
the value function, effectively leveraging the unlabeled data ¢/. We then di-
rectly optimize the estimated value function to obtain parameter estimates
that index the optimal ITR. To address the multidimensional covariates
X, we use a dimensionality reduction approach by projecting X onto a
one-dimensional index (3'X. This technique helps mitigate the ’curse of
dimensionality’ associated with Nadaraya-Watson kernel regression.

Two main types of estimators are developed that utilize both labeled
and unlabeled data to enhance estimation efficiency compared to traditional
supervised estimators. The first is the SS estimator, which adjusts the

contribution of labeled and unlabeled data using a tuning parameter .

o
1+p27

The SS estimator achieves minimum asymptotic variance when \ =
where p represents the limiting ratio of labeled to unlabeled samples as
the sample size goes to infinity. The second is the pooled (pl) estimator,

which impute the value function for all subjects, including those with labels.

Furthermore, we propose a doubly robust estimation method for situations



when the PS 7(X) is unknown, as often occurs in observational studies.
Our approach allows for potential misspecification in either the baseline
treatment-free effect model or the PS model. This doubly robust property
make our method more broadly applicable. We show that all the proposed
estimators provide improvements in efficiency and effectiveness compared
to the supervised estimators. Our results also indicate that as the amount
of unlabeled data increases, the efficiency of both the SS and pl estimators
improves correspondingly.

We evaluated the performance of our estimators through theoretical
analysis and simulation studies under four different true model settings,
highlighting their practical advantages. Our findings demonstrate that the
proposed SS methods are as effective as or more effective than traditional
supervised methods in estimating the optimal ITR, suggesting promising
prospects for real-world applications. Overall, this paper contributes to the
development of robust and efficient methods for estimating the optimal ITR
in a SS framework. By effectively integrating labeled and unlabeled data, we
improve estimation accuracy and effectiveness. The proposed estimators,
along with the theoretical and practical advantages demonstrated under
various cases, provide a solid foundation for future research and practical

applications in learning optimal ITR.



Several directions are worth considering for further research. Firstly, it
is natural to extend our fixed-dimensional results to high-dimensional set-
tings where p grows with sample size. Secondly, the proposed estimation
methods could be further developed to handle more complex data struc-
tures, such as survival outcome with censoring or truncation, or outcomes
are missing under missing at random mechanisms or in blocks. Thirdly,
addressing potential heterogeneity between labeled and unlabeled popu-
lations through methods such as transfer learning and federated learning
warrants investigation. Methodologically, while our current approach uses
the Nelder-Mead algorithm to handle non-smoothness, our estimation pro-
cedure can be easily extended to incorporate the smoothing techniques, such
as those proposed in Feng et al. (2022, [2024)) to facilitate gradient-based
optimization and improve inferential properties, albeit at the cost of band-
width selection. Furthermore, extending our framework to accommodate
nonlinear decision rules and more complex policy learning problems would

provide additional insights. These challenges merit further investigation.

Supplementary Material

The online Supplementary Material contains additional asymptotic results,

theoretical proofs and additional numerical descriptions and results.
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