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1. Introduction

Viewing missingness as longitudinal intervention enabled closed-form efficient es-

timation for challenging bivariate censoring problems.

Opposite to the common view of causal inference as missing data problems, viewing miss-

ingness as (longitudinal) intervention has also been a fruitful strategy, leveraging identification

and estimation techniques from causal inference literature. For example, in the challenging

bivariate censoring problem, viewing the complex censoring mechanism as longitudinal inter-

ventions under sequential randomization assumptions (SRA; it can be shown that SRA ⊂ MAR

for multivariate right-censored data and SRA = MAR for univariate right-censored data) leads

to closed-form efficient influence curves which would have not been possible with only the MAR

assumptions (Rubin, 1976; van der Laan and Robins, 2003). For example, if the full data is

Xj(t) = I(Tj ≤ t), j = 1, 2 defined by survival times T1, T2 that are subject to censoring times

C1, C2, then only assuming MAR is significantly weaker than assuming (C1, C2) ⊥ (X1, X2),

resulting in an efficient influence curve that does not exist in closed form. Even though such
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SRA based estimators are inefficient if one truly only assumes MAR, they can flexibly incor-

porate time-dependent covariate information and provide meaningful efficiency improvement

(van der Laan and Robins, 2003). There also exist scenarios (for example, when C1 and T2 are

dependent, such as when monitoring, defined as interval censoring, is part of the intervention;

see Carone et al. (2012); van der Laan (2018)) where SRA is plausible whereas MAR is violated.

The missing data model is a special case of multivariate/bivariate censoring.

In Nabi et al., the missing data model defined by full data variables L
(1)
1 , . . . , L

(1)
K , miss-

ingness indicators R1, . . . , RK , and observed data variables L1, . . . , LK is a special case of mul-

tivariate censoring. For k = 1, . . . ,K, let Tk ∈ R, Ck ∈ {−∞,∞}, and define T̃k = min{Tk, Ck}

with a non-censoring indicator ∆k = I(Ck > Tk). Then L
(1)
k = Tk, Rk = ∆k, Lk = T̃k define

the same missing data model, except that when Rk = 0 we let Lk = −∞ instead of Lk =?.

Therefore, the examples with K = 2 (e.g. Figure 2-4) are special cases of bivariate censoring.

In fact, when Tk truly represents a survival time, the multivariate/bivariate censoring models

allow additional time-dependent covariates that predict both censoring and survival.

SRA may be limited without actual time series data structure.

Although SRA is a practical MAR assumption in many real-world data problems, it can

be limited in missing data problems without censoring and longitudinal components.

Consider the missing data model induced by the special case of bivariate censoring (K = 2)

above. Let Tk, k = 1, 2 be discrete survival time variables or categorical variables with supports

0, 1, . . . , p. Let L
(1)
k (t) include I(Tk ≤ t) as component. Then L

(1)
k (0) = I(Tk = 0). Let

Lk(t) = −∞ if Ck = −∞ and Lk(t) = L
(1)
k (t) if Ck = ∞. Now SRA ⊂ MAR is equivalent

to: p(RRR(t)|R̄RR(t − 1),LLL(1)) = p(RRR(t)|R̄RR(t − 1),LLL(t)) for t = 1, . . . , p. But for such missing data

models, Rk(t) = Rk(0) for t = 1, . . . , p. At t = 0, it reduces to p(RRR|LLL(1)) = p(RRR|LLL(0)). As

LLL(0) = ∅, SRA here becomes trivially MCAR; yet MAR is a more complex concept allowing for
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dependence of censoring and full data. Under a missing data structure without time ordering,

a submodel of MNAR may be more plausible and/or easier to identify than MAR and SRA,

highlighting the need for practical tools to identify and analyze realistic, identifiable MNAR

submodels.

2. Contributions of Missing Data DAGs

Viewing missingness as intervention, in combination with graphical representation,

creates missing data DAGs that can construct flexible, identifiable submodels of

MNAR.

In a missing data DAG, the fully observed counterfactuals are defined and presented as

vertices. By incorporating fully observed counterfactuals into causal graphs, a missing data DAG

naturally leverages the idea of viewing missingness as intervention. This makes it particularly

suitable for representing and identifying some MNAR (and some MAR) models

2.1 Representing Existing Models with Missing Data DAGs

Permutation missingness (which can be generalized to sequential CAR, a layered extension of

CAR; see Robins (1997); Gill and Robins (1997)) is a plausible MNAR submodel in many

real-world applications. To see how it works, consider baseline covariates W = (W1,W2),

a randomized treatment A ∈ {0, 1}, and potential outcomes Y (0), Y (1). However, coarsening

indicator ∆ = 0 hides a key confounder W1. The actual observed data is (∆,∆W1,W2, A, Y (A)).

Sequential CAR analyzes the following factorization:

p(A = a,∆ = δ|W,Y (0), Y (1)) = p(A = a|W1,W2)p(∆ = δ|W2, A, Y (A)), (2.1)

which is a direct violation of CAR as A depends on partially observedW1. CAR would only allow

p(A = a|∆ = δ, δW1,W2) depending on observed components which is much more restrictive.
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2.2 Identifying Novel MNAR Submodels

A two-stage sampling procedure, where the second stage measures with controlled ran-

domization a confounder omitted in the first stage (such as W1 in (2.1)), fits naturally into

sequential CAR. In other scenarios, multiple permutations (orderings) of the variables may

construct sequential CAR models; however, which ordering actually generated the data cannot

be learned from the observed information without further knowledge on the data generating

process.

Permutation missing models and sequential CAR conditions are formally defined without

the graphical component. Some missing data DAGs, through d-separation, imply conditional

independence conditions that are equivalent to the permutation missingness. However, each one

of such missing data DAGs (or its Markov equivalent classes) will be inherently more restrictive

than the non-graphical definition, due to the additional local Markov conditions implied by the

graphical structure.

Block-conditional MAR (BCMAR Zhou et al. (2010)) is a natural MNAR extension of

MAR under non-monotone missingness. A time or causal order still exists for blocks of vari-

ables (each block consists of the full data within-block and its missingness indicators), which

makes BCMAR a subset of block-sequential models. A subset of BCMAR (referred to as

”block-sequential MNAR” in this manuscript, where the vertices need to be generalized to ran-

dom vectors to truly represent the blocks) is represented and identified as missing data DAGs.

Interestingly, the identification result involves only the monotone-missing cases even though the

missingness model is not monotone.

2.2 Identifying Novel MNAR Submodels

Missing data DAGs become particularly appealing as it provides a principled identification

strategy, fixing missingness variables in a way similar to fixing treatment variables in causal
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DAGs. The resulting identification strategies are highlighted by sequentially or simultaneously

fixing the missingness variables. This makes identification easily available for a large class of

(graphically represented) MNAR models, some previously not identified or considered.

Graph-based rules for detecting non-identifiable scenarios are also represented by edge

patterns in missing data DAGs, such as self-censoring and criss-cross structures. The necessary

and sufficient conditions of identifiability of missing data DAGS remain an open question.

3. Realistic Examples

The plausibility of previously mentioned models can be evaluated under the following conceptual

examples. We start with two variables, the observed version, L1, L2, the full version L1(1), L2(1)

and the missingness indicators R1, R2. The following ones are relevant when there exists time

ordering from L1(1), L1, R1 to L2(1), L2, R2 and can be generalized to more time points.

1. MAR is appropriate when missingness R2 only depends on the observed components

L1, R1. MAR is equivalent to SRA in this scenario. For example, when the missingness

is monotone (e.g. dropouts) and there exists no unmeasured confounding. This can

be satisfied in well-planned clinical studies with scheduled visits, where unmeasured

confounding and measurement error remain the common violations.

pl1(1),l2(1)(l1, l2) =
p(l1, l2, r1 = 1, r2 = 1)

p(r2 = 1 | r1 = 1, l1)× p(r1 = 1)
. (3.2)

2. BCMAR is appropriate when missingness R2 depends on the full version L1(1) and R1.

For example, when the missingness is non-monotone but a time or causal ordering still

presents from (L1(1), R1) to (L2(1), R2). This is also common in clinical studies with

repeated measurements where missingness is intermittent (allowing (R1, R2) = (0, 1))
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rather than drop-out.

pl1(1),l2(1)(l1, l2) =
p(l1, l2, r1 = 1, r2 = 1)

p(r2 = 1 | r1 = 1, l1)× p(r1 = 1)
. (3.3)

3. Permutation missingness (or sequential CAR) is appropriate if L2(1) is a key confounder

deciding the missingness R1 of L1(1), and if R2 represents a fully controlled additional

random sampling procedure decided by fully observed L1, R1. This is a practical as-

sumption in follow-up rounds of surveys, where later rounds sample the key missingness

confounders in the prior round until it reaches MAR (for R2 in this example).

pl1(1),l2(1)(l1, l2) =
p(l1, l2, r1 = 1, r2 = 1)

p(r2 = 1 | r1 = 1, l1)×
∑

l1
p(l2|r2=1,r1=1,l1)×p(r1=1,l1)∑

l1,r1
p(l2|r2=1,r1,l1)×p(r1,l1)

There exist other missing data DAGs that are identifiable but appear to be less connected to

real-world data analysis applications, even for a simple model such as block-parallel MNAR.

When more variables are included in a missing data DAG, the number of ways of identi-

fications increases, especially for sequential identification strategies under Markov equivalence.

A unified and efficient search algorithm for identification strategies is of interest. It also re-

mains an open question which of them are most relevant in real-world data problems; research

is needed showcasing their applications, either as the main model or in sensitivity analysis.

Lastly, estimation based on aforementioned identifications poses another challenge. For

example, although the identification results (3.2) and (3.3) coincide, BCMAR posits unintuitive

model restrictions on the observed data distribution (Hunt, 2020), complicating the construction

of efficient estimators. In addition, different forms of propensity scores are impacted to different

degrees by near-violation of positivity assumptions (Petersen et al., 2012), which warrants future

research. Finally, the implicitly imposed restriction (e.g. by BCMAR) can challenge the validity

of seemingly simple and non-parametric missingness models, requiring statistical tests of the

proposed graphical models based on the statistical restriction.
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4. Discussion

Missing data hierarchy through the lens of DAGs.

While MNAR encompasses a more complex collection of distributions, usually considered

more general than MAR, missing data DAGs now allow for flexible specification for submodels

of MNAR, challenging this conventional viewpoint. Because of the graphical and structural

constraints, each missing data DAG (or its Markov equivalence class) can be just as restrictive

or even more so, as a submodel, than MAR.

Committing to one missing data DAG, even an MNAR one, may itself be a strong model

assumption, especially with a large number of variables, by enforcing all the local Markov con-

ditions. Therefore, caution should be exercised. In practice, the time or causal ordering among

variables may be partially known or indeterminable. In such cases, no DAG can accurately

represent the data generating process, motivating generalizations to realistic bi-directed graphs

(Richardson et al., 2023) for missing data.

Although particular missing data DAGs construct testable assumptions, the testability

is rooted in strong structural restrictions that often make them less plausible. Such tests

may lack sufficient power to detect violations. In contrast, untestable assumptions can be

more plausible, especially when reflecting domain knowledge. Various time ordering based non-

testable assumptions (e.g. MAR under dropouts, sequential CAR under follow-up surveys; or

imposing subtle model restrictions, e.g. BCMAR) are more applicable to typical data generating

procedures as discussed in Section 3.

It all comes down to the question: which is more relevant and appropriate in real-world

applications? As numerous novel MNAR submodels can now be straightforwardly defined and

identified using graphs, there is a growing need for demonstrations on real-world data. In

many cases, multiple identification strategies may be equally plausible or differ only slightly
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in the submodel representation; a quantitative trade-off may arise. Some submodels may lead

to estimators with lower variance but require slightly stronger assumptions. A slightly more

realistic model may come at the cost of estimation difficulty or large variance (a trade-off

similar to what occurs with weak instrumental variables). Choosing among them depends

not only on identifiability but also on estimation performance and practical interpretability.

An important extension discussed in Supplementary Materials is allowing hidden variables,

which may construct multiple realistic models for structured and principled sensitivity analysis

involving unmeasured confounding.
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