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Abstract: Multivariate testing has recently emerged as a promising technique
in scientific decision-making and electronic information fields. Unlike standard
A/B/n testing, which evaluates individual variations, multivariate testing aims
to identify the best-performing combination of variations from all possible com-
binations. We address the challenge of robustly allocating treatments to subjects
in multivariate testing when treatment effects are confounded by covariates and
subjects are interconnected through a network. In this context, we introduce, for
the first time, the use of a mixed effect model to account for covariate uncertainty
and network structure. Based on this model, we propose a criterion to measure
the regret of efficiency due to incorrect specification of the covariance structure.
‘We derive minimax robust experimental schemes and introduce a novel scheme
that optimally matches the design with the robust covariance structure. Our
proposed experimental schemes demonstrate: (a) resilience to various optimal-
ity criteria, (b) efficiency against model misspecification, and (c) applicability
to complex scenarios. This work extends existing research in optimal A/B test-

ing designs, offering theoretical foundations and practical implementations that



outperform current approaches in statistical efficiency, as demonstrated through

simulations and a case study.

Key words and phrases: A/B testing, minimax risk, mixed effect model.

1. Introduction

Multivariate testing (MVT) is a type of control experiment that has re-
cently emerged as a promising technique in the fields of scientific decision
making and electronic information, such as e-commerce, marketing research
and clinical trials. Large-scale control experiments are widely adopted by
technology giants such as Amazon and Google to optimize algorithms, user
interfaces, and advertising strategies. Many tech companies have achieved
significant business benefits through controlled experiments (Pokhilko et al.|
2019; Kohavi et all |2020)). For a complete review of control experiments,
see [Kohavi et al.| (2009) and Larsen et al.| (2024)).

Unlike traditional A/B testing, which evaluates only two versions of
a single factor, MVT simultaneously tests multiple factors to identify the
treatment combination that maximizes impact on key metrics (e.g., website
click-through rates, clinical trial survival rates). The full factorial design, a
classic approach for MVT, provides a comprehensive estimation of factor ef-

fects by equally allocating subjects to all treatment combinations. However,



its sample size grows exponentially with the number of factors, limiting its
application in high-dimensional settings. Fractional factorial designs, such
as Taguchi methods (Jiang et al., 2020)), slice designs (Sadeghi et al., 2020)),
and sequential designs (Haizler and Steinberg), [2021), enhance experimen-
tal feasibility while maintaining statistical power by reducing the number
of test combinations.

In practical applications, control experiments with covariates and net-
work information are common and present unique challenges. For example,
in coupon distribution experiments, due to concerns about customer churn
risk, testing is typically limited to a subset of customers from different con-
sumption tiers, and these customers often exhibit complex social network
connections. In these scenarios, in addition to the treatments, the covariates
of the subjects and network structure among subjects are usually available
to the experimenter and can significantly influence the responses. To ad-
dress this issue, existing research focuses primarily on the randomization
framework (Rubin, |2005), employing rerandomization (Branson et al., 2016}
Li and Ding| [2020; Pashley and Bind, 2023), covariate adjustment (Zhao
and Ding, [2023; Liu et al., 2024)), and other covariate balancing techniques
(Zhao and Dingj, [2022; [Bai et al., 2024) to obtain treatment effect estimates.

Within the A /B testing paradigm, parametric response-treatment-covariate



frameworks have recently been proposed as alternative methodologies to
model covariates and network effects (Pokhilko et al., 2019; Bhat et al.|
2020; Zhang and Kang, 2022)). For example, Zhang and Kang (2022)) uti-
lized residuals to capture network dependencies among subjects and devised
a Dg-optimal design to minimize the variance of estimated treatment effects
in the presence of covariates. However, existing methods still have some
limitations: traditional randomization methods face substantial uncertainty
estimation under complex data structures, while optimal design approaches
based on parametric regression models within A/B testing frameworks ex-
hibit high sensitivity to model misspecification (Wiens, 2015).

In this paper, we introduce a linear mixed effect model to address these
challenges, modeling covariate effects as random variables to quantify uncer-
tainty and using residuals to capture network dependencies among subjects.
We propose a criterion to quantify covariance structure misspecification and
derive the corresponding minimax experimental scheme. Additionally, we
develop a novel experimental scheme that optimally matches the design
with the robust covariance structure. Our experimental schemes are robust
against optimality criteria for estimating treatments and the misspecifica-
tion of the covariance structure, making them applicable to various control

experiments with complex covariates and network structures.



The remainder of this paper is organized as follows. In Section [2] we
develop a mixed effect model to quantify the uncertainty of covariates and
network structures in MV'T, and propose a criterion to measure the loss of
efficiency due to incorrect specification of the covariance structure. Section
derives minimax robust experimental schemes for estimating treatment
effects. In Section [} we propose a novel experimental scheme that opti-
mally matches the treatment with the robust covariance structure. Sec-
tions [o] and [6] compare different experimental schemes under various linear
mixed-effects models. Finally, Section [7|discusses future works. For clarity,
additional simulation results and proofs of theoretical results are included

in the Supplementary Material.

2. Problem Setups

Consider n subjects randomly selected from a population to participate in
a MVT, where the goal is to examine differences between different treat-
ments. We are primarily interested in the treatment effects, thus treat
them as fixed effects. Considering the complex structure of the experimen-
tal units, we divide the covariates of the subjects into two groups to model
the fixed effects and random effects of the covariates respectively. Specifi-

cally, suppose that the relationship among the experimental result Y;, the



treatment factor t;, and the two groups of covariates z; and u; of the i-th
subject can be described by the following linear mixed-effects model (LMM,

Verbeke et al., (1997} Searle et al., [2009):
Vi=tla+z/B+ul&+e,icn]2{1,2,...,n}, (2.1)

where a is the p-dimensional treatment effect; 3 and & are the g-dimensional
fixed effect and m-dimensional random effect of the covariates respectively;
g; is the random error. The treatment effect o can be interpreted as the
expected change in the experimental results when subjects with the same
covariates are assigned to different treatments.

Let Y = (Y1,---,Y,)T be the response vector of the subjects, T =

(t1,-- ,t,)T be the n x p treatment matrix, Z = (2, -+ ,2,)’ and U =
(uy, - ,u,)T be the n x ¢ and n x m covariates matrices corresponding
to the fixed effect and random effect respectively, and € = (g1, -+ ,,)T be

the random error vector. As done by Verbeke et al. (1997); [Searle et al.
(2009), we partition the m-dimensional random effect into k& groups, that is,
€= (&, &) and U = (Uy, -+, Uy), where Uy = (wy, -+, )7 is
the covariates matrix corresponding to the m;-dimensional random effect &;,
and m = Zle my. In this paper, we consider the case where p+qg+m < n.
We make the following common assumptions about the first two moments

for the random effects and random errors.



Assumption 1. E(€) = 0,,x; and cov(§) = diag{o?1,,,, -+ , 0L, }.

Assumption 2. FE(e) = 0,; and cov(e) = 02X, where X is a known

positive-definite matrix.
Assumption 3. cov(€,€) = Oy, xn.

Assumption [I| requires that the random effect has a zero mean and no
correlation, which is commonly used in the literature of LMM (Verbeke
et al. |1997; Searle et al.. |2009). Assumption [2| requires that the random
error has a zero mean, and a general covariance matrix is used to model the
correlation among subjects. When there are network connections among
subjects, a common correlation assumption in the A/B testing literature
is the conditional autoregressive (CAR) distribution (Pokhilko et al., 2019;
Zhang and Kang, 2022). Assumption [3| requires that the random effects
and random errors are uncorrelated, a sufficient condition that ensures the
separability of inter-group and intra-group variations (Searle et al.| 2009).

Under the LMM and Assumptions the responses of the sub-
jects are modeled as an n-dimensional random vector with the following

mean and covariance matrix:

E(Y) = Ta + Z8;
(2.2)

cov(Y) =) 025, 2 R,



where o2 represents the t-th variance component, and ¥; = U,UZ. There-
fore, the fixed effect B and the random effect £ in the model quantify
the impacts of the covariates on the mean and covariance of the experi-
mental results respectively, and the experimental results of subjects with
similar covariates are more consistent than those of subjects with different
covariates. Recently, two special LMMs have been studied in the litera-
ture of A/B testing. The first case corresponds to cov(Y) = o031, where
different subjects are isolated, and their covariates only affect the expected
outcomes of the subjects (Bhat et al.| 2020). The second case corresponds to
cov(Y) = 023, where different subjects are connected through a network,
but their covariates have no impact on the covariance structure of subjects
(Pokhilko et al., 2019; Zhang and Kang, 2022)). Example [1| illustrates that
the covariance structure in practical problems may be rather complex, then
the LMM framework provides a more suitable modeling approach for
controlled experiments.

For any positive definite matrix A, we denote the condition number
of A with respect to the spectral norm ||- || as k(A). To avoid the situation

of ill-conditioned covariance structures, we define the covariance class:

k
Qo = {R: Zath | K(R) < ko,02 >0 for t € {0,1,--- ,k:}}, (2.3)
=0

where kg controls the condition number of the covariance structures in €.



Note that, for given X, - -+ , X, the covariance class in (2.3)) is determined
by the parameters o3, - - - , 0. Therefore, we call )y a parametric covariance
class. More generally, for any r > 0, we introduce the following non-

parametric covariance class:
2, ={R+K|ReQ,R+K>0and [|K| <r}. (2.4)

The covariance class (), contains all covariance matrices whose spectral
radius from a certain parametric covariance matrix in does not exceed
r. Here, the spectral norm || - || is chosen for convenience; other matrix
norms are also feasible. With this definition, the LMM with Assumptions
can be extended to responses with E(Y) = Ta+Z8 and cov(Y) € Q,.
When r = 0, the non-parametric covariance class €2, degenerates to the
parametric covariance class €)y. Therefore, this provides a more general
framework than for controlled experiments.

In this paper, we consider the problem of experimental design in the
LMM (2.1)), and focus on the estimation of the treatment effect c. Through-
out the paper, let L = (I,,0,x,), X = (T,Z),and g = R'—R'Z(Z"R'Z)'Z"R™!

for any R € €2,.. We introduce the following assumption to ensure the exis-

tence of the Generalized Least Squares (GLS) estimator g v = L(X'R7!'X)"!'X"R'Y.

Assumption 4. The covariates matrix Z satisfies rank(Z) = ¢, and there

exists a constant u € (0, 1] such that TTYgT = yTTR™'T.



Specifically, u = 0 implies that rank(XTR™'X) < p + ¢, u = 1 implies
that XTR™'X is a block diagonal matrix, and p € (0,1) indicates that
XTR™1X is between a column-full-rank matrix and a block diagonal matrix.
If Assumption 4] does not hold, the generalized inverse based least squares
estimator can be discussed similarly (Searle et al., [2009, Appendix M.4).

When the true covariance matrix R is known, the variance-covariance

matrix of ag T is given by
cov(arr) = LIXTR'X)'LY = (T2 T) ™.

From the perspective of optimal experimental designs, for a given s €
(0,00), the ¢s-optimal design (Atkinson et al., 2007) minimizes the de-
sign criterion: ¢s(arT) = [tr{cov(dRT)s/p}]l/s, thus providing the best
estimate of the treatment effect from different perspectives. Specifically,
the commonly used A-, D-, and E-optimal designs correspond to the cases
where the values of s are 1, 0, and oo respectively. It is worth noting that
the above ¢4-optimal design depends on the true covariance matrix R.
Typically, the above ¢s-optimal design is not available because the vari-
ance components variance components o3, ...,0: in R are not known in
advance. Therefore, under a complex covariance structure, the key to ex-
perimental design is to effectively utilize the information in the unknown

covariance matrix. In this paper, we seek experimental schemes that are



robust to the true covariance matrix. Specifically, when the true covari-
ance matrix R is misspecified as the working covariance matrix Ry, the

variance-covariance matrix of the GLS estimator &g, 1 is
cov(@r,r) = LIX R, X) 1 (XTR;'RR, ' X)(XTR, ' X) L7,

Although both estimators &g, and &g, 1 are unbiased, the Gauss-Markov

theorem (Harville, 1976|) shows that &g, r is inefficient, that is,
COV(OACR()’T) — COV(dR’T) = DTRD i 0,

where D7 = L(XTRy,'X) ' X"R,!' — L(X'RX)"'X?R~!. Therefore,
DTRD can be regarded as the regret caused by the misspecification of the

covariance matrix. We define this regret as

_ llcov(@ry,r) = cov(arx)||

RT(R.R,.T) =
(R, Ro, T) feov (@)l

, (2.5)

where || - || is the spectral norm operator. A key property of the regret
is that RT(R, Ry, T) > 0, and it equals zero when Ry = R. Therefore,
the smaller the regret, the better the performance of the covariance matrix
R, and the design T. In particular, zero regret means that the working
covariance matrix achieves the same effect as the true covariance matrix.
Another important property of the regret is that for any ¢, ¢y > 0, we have

RT(cR, Ry, T) = RT(R, Ry, T). This indicates that the regret depends



only on the covariance structure, rather than on a specific covariance matrix.
The following example demonstrates that we can significantly reduce the

regret by selecting an appropriate working covariance structure.

Example 1. In a controlled experiment, there are n subjects. The first n;

subjects are male, and the last n; subjects are married. That is,

n1 males n—ny unmarried
e —_—
17"'a17 07"'70 17 71 P 07 aO
T T
Ul — ) U2 =
07"'707 17 al 07' aoa 17 71
n—nq females n1 married

In this situation, a suitable covariance structure is R = I, + a121 + a2,
where a;,ay > 0,3, = U;UT ¥, = U,UL. Suppose that the experimenter
uses a balanced design Ty, = 1,,/2)x1®(1, —1)7 to test the difference between
the two treatments. Under each true covariance structure R = 1,, + a;2; +
asXs with a; € [0,1] and ay € [0,1], we calculate the regrets for the
two working covariance structures: Rgy = I, + 0.5%; + 0.535 and Ry; =
I, + % + 2.

As shown in Figure (a), the regret is influenced by both the covariates
imbalance between treatment and control groups and the chosen working
covariance structure. Specifically, when n; is odd, the differences in both
the number of male/female and married/unmarried subjects between the

treatment and control groups are 1; when n; is even, those differences are



Regret
N
5
=
=
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(a) Regret under different values of n. (b) Regret surface when ny = 5.

Figure 1: Regrets of working covariance matrices Rgg and Ry; under various

true covariance matrices R.

0. The regret of the experimental scheme is unaffected by the working co-
variance structure only when the design perfectly balances all covariates.
Otherwise, selecting an appropriate working covariance structure can sig-
nificantly reduce the regret. Figure (b) further displays the regret surfaces
under Rgy and Rg; when n; = 5. Intuitively, the regret surface of Ry is
flatter than that of Rg;. Additionally, the maximum and average regrets of
Ry, are 1.8 and 3.2 times higher than those of Rqg, respectively. Therefore,

Ry is a more suitable covariance structure for allocating treatments.

Let = = {T | T € {-1,1}"*?,rank(T) = p} denote the full-rank
design space. In this paper, we adopt the minimax robust framework to
find a design T, € = and a working covariance matrix R, € €y such that

they have high inference ability for the treatment effect under various true



covariance structures in €,., that is,

(T.,R,) € arg  min max RT(R, Ry, T). (2.6)

TeE,RoeNo ReQ,
Since the experimental scheme (T,, R.) has the minimum regret under the
worst-case covariance structure, we call it a minimax robust experimental
scheme. Based on the minimax covariance structure R, we further provide

an approximate solution to the following ¢s-optimal design:
* . T —s 1/s
T, € arg min {tr (T"SR.T) /p} : (2.7)

which combines the efficiency of the ¢ -optimal design and the robustness

of R, with respect to the true covariance structure.

3. Minimax Experimental Scheme against a Misspecification of

Covariance Structure

In this section, we present the minimax robust experimental schemes for
problem ([2.6) under different scenarios. First, we establish the connection
between the regret in and the ¢g-criterion. For any GLS estimator
aR, T, its ¢s-efficiency relative to ag r is defined as

é gbs (dR,T)

Bif, (Gro.r) ds(ary 1)’

s € [0, 00].

Obviously, the ¢s-efficiency takes values in the interval [0, 1]. The larger the

¢s-efficiency of the estimator &g, is, the higher the estimation accuracy



of &g, r under the ¢ -optimality criterion is. In particular, Eff;(agr, 1) =1

means that agr,t and agr 1 are equivalent.

Proposition 1. For any (R,Ro, T) € Q. X Qy X Z, and s > 1, the ¢s-

efficiency of g, satisfies

1
> '
~ 1+ ker(XTX)RT(R,Rg, T)

Eff;(ar, 1)

If the covariates matriz Z satisfies Assumption[]], then

1
> .
14+ /i(),u_lli(TTT>RT(R, Ro, T)

Effs(ar, 1)

The lower bound given by Proposition 1| uniformly holds for all ¢,-
optimality criteria with s > 1. For any € € [0, 1), if the risk RT(R, Ry, T) <
{(1 — &)™t — 1}H{kopu 'k(TTT)} L, then for all ¢,-optimality criteria with
s > 1, the estimation efficiency of & is at least 100(1 — €)%. Therefore, the
regret in provides a way to control all ¢¢-criteria with s > 1.

Define the index set J = {(jo, j1, - ,Jx) | J¢ € {0,1}} \ Ogg1)x1. For
any subclass C' C Qq, let [C] = {cR | ¢ > 0,R € C}. The following lemma

gives an equivalent characterization of the covariance class €.
Lemma 1. For any ko > k(X0), there exists § € (0,1) such that
QO = UJEJ[Q}(L

where for any j € J, Qf = {R = Zf:o wXy | a € Aj}, Ay = XV Ay, if

gt =1, then A;, = {1}; otherwise A;; = [0I{t = 0}, 1).



Lemma [If shows that the covariance class )y can be partitioned into
the union of 2¥*! — 1 disjoint subclasses. For example, when k = 1, we
have Q?O,l) = {aozo + El ’ ag € [(5, 1)}, Q)()(I,O) = {EO + alEl ‘ ay € [0, 1)},

and Q) ;) = {Z0 + Zi}. Q) Q) and € ;) correspond to the cases

2 2 2 2
where o > 07,05 < o}

and o2 = 0? in the true covariance structure,
respectively. An intuitive interpretation of the parameter § is that the
smaller ¢ is, the more ill-conditioned covariance structures are included in
Q. In particular, when § — 0%, Q>(k0,1) contains covariance structures with

the condition number tending to infinity.

The following theorem establishes an upper bound for the regret.

Theorem 1. For any R € ), let R* = Zf:o 07%%; be the parametric
covariance structure in €y that is closest to R in the sense of the spectral
norm. If Assumption [ holds, then for any (R,Ro, T) € Q, x Qo x Z, the

regret RT(R, Rg, T) is upper bounded by
RT(R, Ry, T) = C1#(T"T)(Cello™® — o[l +7)%,

where C and Cy are constants independent of the design and the covariance

structure, and || - |1 denotes the ly-norm.

Theorem [I| demonstrates that the regret between the nonparametric

covariance R and the parametric covariance Ry is controlled by the /;-norm



of the difference in the variance components between R* and Ry. Therefore,
maxgreq, RT(R, Ro, T) = maxgr-co, RT(R*, Ry, T). In addition, the effects
of the design T and the covariance structure (R, Rg) on this upper bound
are separable. Geometrically, the complex regret surface RT(R, Ry, T) can
be controlled by a surface RT(R, Ry, T) with good properties, and if a
experimental design has a smaller upper bound of the regret, then it usually
also has a smaller regret, thus ensuring a higher ¢, efficiency.

In practical problems, experimenters are also interested in specific linear
combinations of treatment effects. For example, the parameter a3 — a»
measures the difference between the first two treatment effects. Generally
speaking, for any b x p row full-rank matrix I', if we focus on the parameter
vector in the form of v = 'ax, then the upper bound in Theorem (1| can still

provide effective guidance for the corresponding regret.
Corollary 1. For any (R,Ro, T) € Q, x Qo x =, if Assumption (4| holds,
then for the estimators g, = 'ar,r and yr v = 'ar T, we have

|cov(YRro,1) — cov(Yr,T) ||
lcov(r,1) ||

< K(I'TT)RT(R, Ry, T).

Based on the above representation of )y, we discuss the experimental
designs that minimize the maximum regret upper bound in two cases. If the

experimenter knows in advance which variance components will dominate,



that is, R € [Q;] for some j € J, then we consider the following minimax

experimental scheme:

T..R. i RT(R*, Ry, T). 1
( )EargTGEr{lﬁ?E%I{rel%?]R ( 0, T) (3.1)

We provide a solution to this minimax problem as follows.

Theorem 2. Suppose that for some j € J, R € [Q5]. If the design T,

satisfies TT'T, = nl,, and the working covariance structure is

Yo +(1/2) Zf:l,jtzo X + Zf:l,jtzl Xt if jo=1;

{1+0)/2)0+ (1/2) Xr oS+ Sy ;1 S if Jo =0,

then (T, R,) € argminrez ryeq, MaXRe(o;] RT(R, Ry, X).

Theorem [2 shows that the column-orthogonal treatment matrix and
the parametric covariance structure R, can minimize the maximum regret
upper bound, and the variance components with j; = 1 should be larger
than the other components. The conclusion in Theorem [2| is applicable
when the relative magnitudes of the variance components can be estimated
from previous experimental results or determined by experts in the field. In
Example 7 we assume that R € QZ‘17070) and show that the corresponding
minimax covariance structure Rgg has a smaller regret than Ry .

If the experimenter has no prior knowledge about the covariance struc-

ture, a reasonable assumption in this case is the nonparametric covariance



class €2,., and the following minimax experimental design can be considered:

(T,,R,) €arg  min max RT(R, Ry, T). (3.2)

Te=,RoeQg ReEQ,

The following theorem provides a solution to the minimax problem (|3.2)).

Theorem 3. If the design T. satisfies TLT, = nl,, and the working co-

variance structure is
4

So+ (1—6/2)%, k=1

Ri= (S04 (1-6/2)(31 +52) or So+ (1/2)(S1 + 5o), k=2

Yo+ (1/2) 0, %, k> 2,
\

then (T., R,) € arg minpez rycn, Maxren, RL(R, Ry, T).

Theorem [3| shows that, in the absence of information about the true
covariance structure, the treatment matrix of the minimax experimental
design is still column-orthogonal, but its covariance structure assigns the
maximum weight to the components of the random error. It should be
noted that when the number of groups of random effects k£ > 2, the mini-
max covariance structure is independent of the parameter d, which further
enhances its practicality. In fact, Rgy in Example [I] is the minimax covari-
ance structure in the cases where R € 0, or R € 9?1,0,0)'

Next, we identify the conditions under which the above minimax exper-

imental schemes achieves zero regret. For any positive definite matrix A,



define Q4 = {X | ¥ = A+ XD, X" +VD,VT} where Dy, D, are arbitrary
symmetric matrices such that ¥ is positive definite, and V is an arbitrary

column full-rank matrix satisfying XTA~1V = 0.

Theorem 4. For any experimental scheme (Ro, T) € Qo X Z, we have

RT(R, Ry, T) =0 if and only if R € [Qgr,].

The above conclusion shows that the robust experimental scheme in
Theorem [3|has zero regret under a class of parametric covariance structures.
Therefore, if R € [Qg,], then the minimax working covariance structure
achieves the same effect as the true covariance structure. Note that if
there exists a column full-rank matrix Q € R?™ such that U = ZQ, then
Qy C [Qg,], that is, the minimax robust experimental scheme in Theorem

achieves zero regret in the parametric covariance class €.

4. Optimal Matching Based on Minimax Covariance Structure

In this section, we give an approximate solution for any ¢s-optimal design

T: in (2.7):

T; € argmin [tr{(T" e T)~*/p}]"", (4.1)
SS)

where R, is the minimax robust covariance structure given in Theorem

or [3| Intuitively, the optimal solution of Problem (4.1)) not only preserves



the effectiveness of the ¢s-optimal design, but also inherits the robustness
of the minimax covariance structure R..

However, solving the above ¢,-optimal design is quite difficult, because
even in the simplest case where s = p = 1, it is an NP-complete prob-
lem (Nesterov, |1998). From Lemma S2 in the Supplementary Material,
any ¢s-optimality criterion is controlled by {tr(TT¥g, T/p)}~!. An intu-
itive interpretation is that a larger value of tr(T?Xg,T/p) indicates that
the performance of the design T is better under all ¢,-optimality criteria.

Therefore, we consider the following trace maximization problem:
T € arg rr}la}tr(TTZR*T/p). (4.2)
(SI=)

Although the solution of Problem provides an approximation for
all ¢s-optimal designs, it is still computationally intractable. To solve
this problem, we introduce the semidefinite relaxation (SDR) technique
to approximate the problem effectively. Specifically, consider the following
semidefinite programming problem:

max tr(Xg.S)
st. Si=1,i€[n], (4.3)
ST =8> 0.
Given an optimal solution T* € = of Problem , define S* = T*T*7 /.

It is easy to verify that S* is a symmetric positive semi-definite matrix



and Sf; = 1 for ¢ € [n], that is, S* satisfies the constraints of Problem
([4.3). In addition, tr(Xr,S*) = tr(T*"Sg, T*/p). Therefore, in the sense of
achieving a higher objective value, Problem (4.3) is a relaxation of Problem
2.

Unless both n and p are very small, it is almost impossible to obtain
the optimal solution of Problem (4.2]). Fortunately, moderate to large-scale
semidefinite programming problems can be solved in polynomial time. For
example, the simplest subgradient method can obtain an e-approximate
solution of Problem after O(n?logn/e?) operations (Nesterovl [2007).

Based on the 7/2 theorem in Nesterov| (1998), we propose the follow-
ing random allocation Algorithm [I] This method transforms the optimal
solution of Problem into a feasible solution of Problem by inde-
pendent sampling from a multivariate Gaussian distribution. The following

proposition provides the theoretical support for Algorithm [T}

Proposition 2. Let T* and T, be the optimal solution of Problem (4.2)) and
the output of Algorithm (1], respectively. Then, with probability 1, T, € =

and E{tr(TTYg,T,)} > (2/7)tr(T* TSR, T*).

Proposition [2] shows that based on the optimal solution of Problem
(4.3), the output T, of Algorithm [1| provides a feasible solution for Problem

(4.2) with probability 1. In addition, the expected efficiency of T, relative



Algorithm 1: SDR based Randomized Allocation Algorithm
Input: Sample size n, number of treatments p, and working

covariance matrix R,.
Output: T,, the random allocation of Problem (4.2)).
1 Calculate an optimal solution S* of Problem based on the
covariance structure R.,.
2 for j=1,---,pdo
3 Independently generate u; ~ N (0,1, S*);

4 Set v; = sign(u;), where the symbol sign(u;) represents the

sign of the elements in u;.

5 end

6 Return the random allocation T, = (v, va, -+, V,).

to the optimal solution of Problem (|4.2)) is at least 2/ (this is an efficiency
lower bound independent of the scale of the original problem!). Bhat et al.
(2020) derived a similar conclusion in the context of A/B testing, so the
result of Proposition 2| can be regarded as a generalization of the conclusion
in Bhat et al.| (2020) to the case of p-dimensional treatments.

Next, we investigate the approximation capability of the output T, of
Algorithm [1] with respect to the ¢ -optimal design T of Problem (4.1]).

For simplicity, we define M, = TIYg, T, and M = T:TXg T* Sub-



sequently, we establish the following lower bound for any ¢,-efficiency of

ag, T, relative to ag, T:.

Theorem 5. For any 0 < s < oo, the expected relative ¢s-efficiency

> 0,

ds(ar, 1) (4/m — 1)es
E{qbs(amjn)} = (M) E(s(M,))

where rky(M?) = k(M?) if s < 1; rk,(M?) = min{p'~/*, k(M?*)} if s > 1,

and es > 1 1s a constant independent of T,.

Note that the GLS estimator ag, r+ is computationally infeasible un-
less the sample size n and dimension p are very small. Theorem [5| ensures
that ar, T, serves as a practical alternative, offering a theoretically guar-
anteed approximation, that is, the expected ¢s-efficiency of ag, 1, relative
to ag, 1: is bounded below by a positive constant. This means that the
ag, T,’s precision is guaranteed to not degrade arbitrarily compared to the
ideal estimator, even in high-dimensional settings. The conditional numbers
k(M,) and x(M?) have a negative impact on the lower bound of the effi-
ciency, because as these conditional numbers increase, the GLS estimators
ar, T, and ag, t: become increasingly unstable.

It is worth noting that the random allocation Algorithm [I] does not
depend on a specific ¢, optimality criterion. For a given s, the stability

and effectiveness of Algorithm (1| can be further improved by integrating the



outputs of the M runs of Algorithm [l Specifically, let

T,y =arg min [tl“ {(TZ;ER* Tr,i)_s/p}] e )

Tr,i,ie[M}

where T, ; is the i-th output of Algorithm . We call (Ts,R,) the
semidefinite relaxation based matching (SDRM). The total time complex-
ity of the SDRM scheme is O(n*logn/e* + n® + n*pM), where the first,
second, and third terms come from solving the semidefinite programming
problem in , computing the Cholesky decomposition of S*, and draw-
ing pM independent n-dimensional Gaussian samples, respectively. By us-
ing the stochastic proximal point algorithm (Vono et al., 2022)) to gener-
ate Gaussian distribution samples, the time complexity can be reduced to
O(n?logn/e* + n?*pM). In addition, the time for solving the semidefinite
programming problem in can be further reduced by using the block

coordinate descent algorithm (Waldspurger et al., |2015)).

5. Simulation

In this section, we assume the following relationship between the responses
and the covariates:

Y ~ N(Ta + ZB,R), (5.1)



where the treatment effect @ = (2,3 x ]_(p_l)xlT)T, the fixed effect B =
—1,x1, and N(p,X) represents the multivariate normal distribution with
location parameter p and scale matrix . We set p = 2, ¢ = m = 13,
k =3, Z = U, and consider the following covariates distributions: wuy; =
1, uy < MN(2;0.9,0.1), ug & MN(10;0.1 x 1% ,), i € [n], where
MN(n;p1,...,ps) is a multinomial distribution.

We define ¥, = U,U! /tr(U,UY), where Uy = (uy,--- ,uy,)’, for
te{l,--,k}, Bo = (0" pxn, if Xg follows a first-order autoregressive
(AR) structure, and g = (M~ — pW) ™1 if 3 follows a conditional au-
toregressive (CAR) structure, where M is a diagonal matrix with diagonal
elements m; = (14 il w;;)~', W is a random adjacency matrix, satis-
fying w;; = 0, P(w;; = 1) = P(w;; = 0) = 0.5. In this simulation, we set

p~U[0.2,0.8] in Xy. Let

k
Q:{R:Zath(agNU[lofg,l],af,--- Ny

t=0

i.0.d.

2@

Ulo, 1]}

TN

and
Q={R+K|RecQK=0vVVT/tx(VVT),V;;, " U[0,1],v ~ U[0,1]}

represent parametric and nonparametric covariance classes, respectively.
The true covariance structure R in (5.1) is randomly sampled from the

following cases,



R1. Q, where ¥, follows an AR structure;
R2. Q, where ¥, follows an AR structure;
R3. Q, where ¥, follows a CAR structure;
R4. Q, where ¥, follows a CAR structure.

In this section, we compare the performance of the GLS estimator
Gr,,T, based on different experimental schemes listed in Table [T, In the
baseline scheme (BI), each treatment is assigned to each individual with
equal probability, and the working covariance matrix Ry = I,,. According
to Theorem , the minimax covariance structure R. = ¥y + (1/2) S5, ;.
As suggested by Zhang and Kang| (2022)), we set p = 0.5 in X of R,.. The
schemes of combining the column-balanced design and column-orthogonal
design with the minimax covariance structure (Ry = R.,) are abbreviated
as BM and OM, respectively. The random sampling and SDR matching
methods based on the minimax covariance structure (Ry = R.) are abbre-
viated as RSM and SDRM, respectively. Thus, the true covariance structure
R is misspecified by Rg in the BI, BM, OM, RSM, and SDRM schemes.
We denote the SDR matching method based on the true covariance struc-
ture (Ry = R) as ORACLE, which corresponds to the case of the covari-

ance structure is correctly specified. In this simulation, we set s = 1, and



Table 1: Designs and covariance structures of experimental schemes.

Method Design Covariance Structure
BI Column-balanced Ro=1,
BM Column-balanced R, =R.
OM Column-orthogonal Ry =R,
RSM Random Sampling Matching Ry = R.
SDRM SDR Matching R, = R.
ORACLE SDR Matching Ry =R

use M = 10* independent samplings for the RSM, SDRM, and ORACLE

schemes.

For each experimental scheme (Ry, T), we calculate the following three

metrics:
(i). Regret: ||cov(aryT,) — cov(ar )|/ |lcov(ar T)];
(ii). Relative ¢p-efliciency: det{cov(ar,r,)}/ det{cov(arT)};
(iii). Mean Squared Error-efficiency (MSE-efficiency): MSE(agr t)/MSE(ar, 1,):

where &g  is the GLS estimator based on the ORACLE scheme, and det(-)

is the determinant operator. The summary table of various 128-run schemes



evaluated across L = 100 randomly generated true covariance structures
is displayed in Table From these results, we can draw the following
conclusions: when the random error follows an AR structure (R1 and R2),
the performance of the BM scheme is significantly better than that of the BI
scheme. The OM scheme further reduces the uncertainty in the estimation
of the treatment effect by combining the column-orthogonal design, which
is consistent with the conclusion in Theorem [3] In addition, the RSM
scheme utilizes the structure of the ¢s-optimal design, and its performance
is better than that of the OM scheme. Across all true covariance structures,
the SDRM scheme consistently exhibits the best performance among the
five experimental schemes.

It is worth noting that when the true covariance structure belongs to
the parametric class €2 (R1 and R3), the performance of the SDRM scheme
is almost the same as that of the ORACLE. This is consistent with the
conclusion in Theorem @l When the random error follows a CAR structure
(R3 and R4), the performance of the BM scheme is almost the same as
that of the BI scheme, and the performance of other experimental schemes
is similar to that when the error follows an AR structure. The difference
between the BM and BI schemes under different random error assumptions

is due to the robustness of the minimax covariance structure against the



Table 2: Summary table across various 128-run experimental schemes.

BI BM OM RSM SDRM

Average regret (standard deviation)

Rl 2.75(1.88)  1.11(0.30) 0.80(0.19) 0.65(0.15) 0.03(0.02)
R2 3.20(5.07) 2.66(6.98) 1.80(4.40) 2.00(6.02) 1.25(5.15)
R3  0.21(0.08) 0.21(0.08) 0.15(0.05) 0.07(0.03) 0.03(0.02)

R4 1.77(10.73) 1.78(10.83) 1.58(9.37) 1.45(9.61) 1.32(7.74)

Average ¢g-efficiency (standard deviation)

RI  0.16(0.12)  0.28(0.07) 0.45(0.10) 0.42(0.06) 1.00(0.01)
R2  0.15(0.11)  0.20(0.10) 0.31(0.14) 0.28(0.13) 0.60(0.28)
R3  0.80(0.05) 0.80(0.05) 0.82(0.04) 0.92(0.02) 1.00(0.00)

R4 0.53(0.21)  0.53(0.21) 0.55(0.21) 0.61(0.23) 0.66(0.25)

Average MSE-efficiency (standard deviation)

Rl  0.51(0.06) 0.61(0.07) 0.71(0.09) 0.72(0.07) 1.00(0.06)
R2  0.50(0.06) 0.56(0.06) 0.67(0.08) 0.65(0.07) 0.91(0.10)
R3  0.88(0.08) 0.88(0.08) 0.89(0.07) 0.96(0.08) 1.00(0.07)

R4 0.80(0.07)  0.80(0.07) 0.80(0.06) 0.86(0.07) 0.90(0.07)




misspecification of the true covariance structure (Theorem , and the AR
structure is essentially different from the independent and identically dis-
tributed error structure, that is, o ¢ [€2r,]. Figure S3 in the Supplementary
Material shows that the average Frobenius norm of I, — (M — pW)~! for
different values of p and n is less than 1073, Therefore, the CAR structure
is close to the independent and identically distributed structure, that is,
the performance of the BM scheme is close to that of the BI scheme. It
is worth mentioning that under the general covariance structure, the con-
clusion should be similar to that under the AR structure. Furthermore, as
demonstrated in Table S1 in the Supplementary Material, when covariates
distributions exhibit greater complexity, the advantages of the proposed

approaches become more pronounced.

6. Case Study

This case study is based on the Amazon Mechanical Turk dataset from the
UCI Machine Learning Repository (Asuncion and Newman, [2007)). After re-
moving missing values, the dataset contains 9843 records and 23 attributes,
including 21 attributes describing driving scenarios such as destination, cur-
rent time, weather conditions, and whether there are passengers, as well as

two treatment variables: coupon type and coupon validity period. Coupon



types include bars, takeaway food restaurants, coffee houses, cheap restau-
rants, and expensive restaurants. The coupon validity periods include 2
hours and 24 hours. For more information on this dataset, refer to Wang
et al.| (2017).

Our main goal is to assess the impact of coupon distribution on the con-
sumption intention of drivers. We encode the g¢-level qualitative variables
into ¢ binary dummy variables. Therefore, there are 64 coupon distribution
strategies composed of 6 two-level treatment variables. For example, a fea-
sible strategy is to distribute bar and cafe coupons with a validity period of
2 hours. Note that in addition to coupon distribution strategies, different
driving scenarios also affect drivers’ consumption intentions. For example,
if the coupon’s usage location is in the same direction as the driver’s desti-
nation, they are more likely to consume. Therefore, we use the LMM
to model the relationship between drivers’ consumption intentions, coupon
distribution strategies, and driving scenarios.

Different experimental schemes in Table [1| are compared based on a
synthetic dataset, where drivers’ covariates are randomly sampled from the
Amazon Mechanical Turk dataset, and responses are generated by the LMM
(5.1 considering fixed effects for the first 5 covariates, with the true covari-

ance structure belonging to 2. To ensure the reliability of comparison
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Figure 2: AMSEs of various experimental schemes in the case study when

random errors is the CAR structure.

results, we require that the sample and population have the same num-
ber of categories for qualitative variables to maintain similarity, which is
easily satisfied through repeated sampling. Three covariates describing the
distance between the driver’s current location and the coupon location are
treated as three-dimensional covariates corresponding to the same random
effect, resulting in a total of £ = 19 groups of covariates. The true values
of treatment effects and fixed effects are set as o = (2,3,3,3,3,3)7 and

B = —1541, respectively.



We compare the average MSE (AMSE) of estimating treatment effects
for different experimental schemes under 100 randomly generated covari-
ance structures from €2. Under each true covariance structure, the MSE is
calculated based on 100 independent response datasets.

Figure [2] shows the AMSEs of various schemes in 100 repetitions when
random errors follow the CAR structure. We can draw the following conclu-
sions: at each sample size, the experimental schemes based on the minimax
covariance structure (BM, OM, RSM, and SDRM) achieve smaller AMSEs
than the BI scheme. The OM scheme further reduces the estimation error
of the BI scheme by minimizing the upper bound of the regret. On this
basis, our last two schemes (RSM and SDRM) further improve estimation
accuracy by optimally matching the design with the minimax covariance
structure. Among these five experimental designs, the SDRM scheme per-
forms the best. Notably, the 96-run SDRM scheme performs almost as
well as the 256-run Bl scheme, significantly demonstrating the advantages
of the SDRM scheme under the LMM. Additional simulation results for
other network structures are summarized in Figures S4 and S5 in the Sup-
plementary Material. From these results, we conclude that under the AR
structure, the boxplots of various experimental schemes are wider because

all subjects are connected. Other conclusions are consistent with those



under the CAR structure. These results indicate that our experimental
schemes can be applied to controlled experiments with complex covariates

and network structures.

7. Discussion

This paper focuses on the impact of covariates and network structures of
subjects on treatment effect estimation, aiming to improve estimation accu-
racy through optimizing experimental designs. First, the study employs a
linear mixed effects model framework to effectively address the uncertainty
of covariates and network dependencies. Based on this, minimax robust
schemes and optimal matching schemes are proposed. Simulation experi-
ments and real data analysis show that the SDRM scheme proposed in this
paper exhibits significant advantages under the LMM.

Future researches include two important directions: First, exploring
optimal designs for heterogeneous treatment effects, such as analyzing the
differential impacts of treatments across different age and income groups.
Second, conducting in-depth research on modeling and analyzing interfer-
ence effects of treatment allocation on related subjects, such as scenarios
where online game duration is influenced by both activity attractiveness

and social relationships. Such problems require integrating network inter-
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ference models with optimization design methods, and relevant research
can build on the theoretical framework of Chen et al.| (2023) to provide new

approaches for causal inference in complex social systems.

Supplementary Material

The Supplementary Material includes two applications of the proposed ro-
bust experimental schemes: A/B testing and sequential experiments, sup-

plementary simulation results, and proofs for all the theoretical results.
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