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Abstract: In response to the insightful work by Profs. Nabi,

Bhattacharya, Shpitser, and Robins on formulating missing data

problems within the potential outcomes framework, this discus-

sion further investigates identifiability in missing not at random

settings using missing data directed acyclic graphs (m-DAGs).

Focusing on binary outcomes, we consider scenarios in which

missingness indicators may be directly influenced by the out-

come itself. We first analyze identifiability in the absence of

causal dependencies among missingness indicators, and then ex-

amine how auxiliary variables can facilitate identification when
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such dependencies are present.
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1. Introduction

We sincerely congratulate Profs. Nabi, Bhattacharya, Shpitser, and Robins

on their interesting contribution, which addresses challenges in missing data

analysis through the framework of potential outcomes. In this paper, the

authors explain how missing data problems can be framed as causal infer-

ence problems: the complete variables are viewed as counterfactual out-

comes, the missingness indicators are treated as treatment variables, and

the partially observed variables are interpreted as combinations of poten-

tial outcomes and treatments. The authors introduce missing data directed

acyclic graphs (m-DAGs), review several missing data models from previous

literature that can be represented using m-DAGs, and present identifiability

results for various graph structures.

In this discussion, we explore more identifiable missing not at random

(MNAR) models within the m-DAG framework, with a particular focus on

causal graphs involving binary outcomes. We observe that in many of the

figures presented in the main text, the complete counterfactual variables are
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not allowed to have direct effects on their own missingness indicators. In

our discussion, we consider alternative scenarios in which the missingness

mechanism may be directly affected by the outcome variable itself, as in the

self-censoring problem (Nabi et al., 2020; Li et al., 2023), and examine the

associated identifiability issues. We first study identifiability without effects

between missingness indicators, and then consider how auxiliary variables

can facilitate identification with effects between missingness indicators. The

supplementary material providing the complete proofs of the theoretical

results is available online: https://gitlab.com/pipishan95/mdag_SM.

2. Identification in Self-Censoring m-DAGs

In this discussion, we focus on an MNAR mechanism in which the missing-

ness of a variable depends on its unobserved outcome. This type of mecha-

nism is common in social and biomedical studies. For example, individuals

with higher income levels may be less likely to respond to questions about

their income. In this case, whether the income is reported depends on its

(partially unobserved) true value. Throughout this paper, let L = (L1, L2)

denote two partially observed binary outcomes, and let R = (R1, R2) de-

note their corresponding missingness indicators. The associated potential

outcomes are denoted by L(1) = (L
(1)
1 , L

(1)
2 ). Specifically, the link between
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2.1 Identification without Effect between Missingness Indicators

the potential outcomes and the observed variables is: for k = 1, 2, if Rk = 1,

then Lk = L
(1)
k ; if Rk = 0, Lk is unobserved, and Lk = L

(0)
k (with L

(0)
k triv-

ially denoted as “?”). This is closely related to the consistency assumption

in causal inference.

2.1 Identification without Effect between Missingness Indicators

In this subsection, we first consider MNAR mechanisms where the miss-

ingness mechanism of one variable does not directly affect another coun-

terfactual outcome. This corresponds to certain conditional independences

encoded in the mDAG. Let the symbol “⊥⊥ ” denote (conditional) indepen-

dence between variables. The following assumption formally characterises

these conditions in the setting with two outcome variables.

Assumption 1. (i) R1 ⊥⊥ L
(1)
2 | (L

(1)
1 , R2) and (ii) R2 ⊥⊥ L

(1)
1 | (L

(1)
2 , R1).

Assumption 1 characterizes a nonignorable missingness mechanism in-

volving two binary outcomes. In particular, Assumption 1(i) implies that

the missingness indicator R1 is conditionally independent of the other out-

come L
(1)
2 , given its own outcome L

(1)
1 and the missingness indicator R2.

This allows R1 to be directly affected by its corresponding counterfactual

outcome L(1)
1 , and similarly for R2 and L

(1)
2 . Such a mechanism is commonly

referred to as self-censoring (Nabi et al., 2020; Li et al., 2023), while this
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2.1 Identification without Effect between Missingness Indicators
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Figure 1: Three possible structures satisfy Assumption 1.

specific issue is not explicitly discussed in the main text. Figure 1 presents

three possible MNAR structures under Assumption 1, each capturing some

dependency patterns between L
(1)
1 and L

(1)
2 , and how the missingness mech-

anisms R1 and R2 are influenced by other variables. A special case of As-

sumption 1, illustrated in Figures 1(a) and 1(c), is when the missingness of

each outcome depends solely on its own value, that is, R1⊥⊥ (L
(1)
2 , R2) | L(1)

1

and R2⊥⊥ (L
(1)
1 , R1) | L(1)

2 . To simplify the exposition, we impose positivity

by assuming that p(l1, l2 | r1 = 1, r2 = 1) > 0 for all l1, l2 ∈ {0, 1}.

Lemma 1. The full law p(r1, r2, l
(1)
1 , l

(1)
2 ) is identifiable for the m-DAG

under Assumption 1 if

p(l1 = 0, l2 = 0 | r1 = 1, r2 = 1)

p(l1 = 0, l2 = 1 | r1 = 1, r2 = 1)
̸= p(l1 = 1, l2 = 0 | r1 = 1, r2 = 1)

p(l1 = 1, l2 = 1 | r1 = 1, r2 = 1)
. (2.1)
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2.2 Identification with Effect between Missingness Indicators

Lemma 1 shows that the full data law is identifiable if the two ratios

in (2.1) are not equal, a testable condition from the observed data. For all

causal structures depicted in Figure 1, the condition is equivalent to the

following inequality:

p(l
(1)
1 = 0, l

(1)
2 = 0)

p(l
(1)
1 = 0, l

(1)
2 = 1)

̸= p(l
(1)
1 = 1, l

(1)
2 = 0)

p(l
(1)
1 = 1, l

(1)
2 = 1)

,

which further implies that L(1)
1 and L

(1)
2 must be associated in these graphs

(L(1)
1 ⊥̸⊥ L

(1)
2 ). In the context of graphical discussions concerning binary

nonresponse in longitudinal studies, Ma et al. (2003) points out that the

full law becomes identifiable when a fully observable auxiliary variable does

not directly affect the missingness mechanism. Lemma 1 further extends

this idea by employing the incomplete variable Li as the auxiliary variable

for another missing outcome Lj (with i ̸= j).

2.2 Identification with Effect between Missingness Indicators

In practice, the full law becomes unidentifiable when Assumption 1 is vio-

lated, which may occur in a class of graph structures illustrated in Figure

2. It can be observed that all graphs contain a collider structure, where

each missingness mechanism may be affected by its corresponding outcome

variable. A variable is referred to as a collider when it is causally influenced

by two or more variables (Pearl, 2000). We have noticed that in the context
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2.2 Identification with Effect between Missingness Indicators

of m-DAGs, this variable is also referred to as “colluder” (Nabi et al., 2020),

and we would like to avoid any ambiguity caused by this terminology. For

instance, Figure 2(a) includes the structure R1 → R2 ← L
(1)
2 , while Fig-

ures 2(b) and 2(c) include the structure R2 → R1 ← L
(1)
1 . Specifically,

when the structure R2 → R1 ← L
(1)
1 is present, intervening on R1 induces

a correlation between R2 and L
(1)
1 , thereby violating the conditional inde-

pendence assumption in Assumption 1(i). In this section, we will address

the identifiability issues in Figure 2(a) by introducing auxiliary variables.

To simplify the exposition, we always introduce the positivity assumption

in the subsequent discussions where needed.
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Figure 2: Three possible structures do not satisfy Assumption 1.

We first introduce the baseline self-censoring scenario in Figure 3(a),

where a baseline outcome L0, its missingness indicator R0, and its poten-
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2.2 Identification with Effect between Missingness Indicators

tial outcome L
(1)
0 are included. For example, in a survey involving sensitive

questions, L(1)
0 may represent the respondent’s potential answer to whether

they have ever engaged in a certain type of behaviour. The actual re-

sponse is denoted by L0, which may be observed or missing, and R0 denotes

the corresponding missingness indicator. These variables (L0, R0, L
(1)
0 ) are

assumed to occur before (L
(1)
1 , L

(1)
2 , R1, R2) and satisfy specific structural

independence conditions. Although there is a collider structure among

(L
(1)
1 , L

(1)
2 , R1, R2), the subgraph consisting of (L(1)

1 , L
(1)
0 , R1, R0) addition-

ally satisfies the conditional independencies R1 ⊥⊥ L
(1)
0 | (L

(1)
1 , R0) and

R0⊥⊥L(1)
1 | (L

(1)
0 , R1). According to Lemma 1, the full law p(r0, r1, l

(1)
0 , l

(1)
1 ) is

identifiable under additional testable conditions analogous to those in (2.1),

which contributes to identifying the full law p(r0, r1, r2, l
(1)
0 , l

(1)
1 , l

(1)
2 ).

Theorem 1. The full law p(r0, r1, r2, l
(1)
0 , l

(1)
1 , l

(1)
2 ) is identifiable for the m-

DAG in Figure 3(a) if

p(l0 = 0, l1 = 0 | r0 = 1, r1 = 1)

p(l0 = 0, l1 = 1 | r0 = 1, r1 = 1)
̸= p(l0 = 1, l1 = 0 | r0 = 1, r1 = 1)

p(l0 = 1, l1 = 1 | r0 = 1, r1 = 1)
, (2.2)

and

p(l2 = 0 | r1 = 1, r2 = 1, l1 = 0)

p(l2 = 0 | r1 = 1, r2 = 1, l1 = 1)
̸= p(l2 = 1 | r1 = 1, r2 = 1, l1 = 0)

p(l2 = 1 | r1 = 1, r2 = 1, l1 = 1)
. (2.3)

Condition (2.2) in Theorem 1 is similar to condition (2.1), and allow

us to identify the joint distribution p(r0, r1, l
(1)
0 , l

(1)
1 ) via Lemma 1. Ad-
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2.2 Identification with Effect between Missingness Indicators
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Figure 3: Some identifiable m-DAGs with baseline and follow-up measure-

ments.

ditionally, to ensure identifiability of the full law, we further impose an

inequality condition (2.3) between two ratios, based on the independence

shown in Figure 3(a), which means that

p(l1 = 0, l2 = 0 | r2 = 1)

p(l1 = 1, l2 = 0 | r2 = 1)
̸= p(l1 = 0, l2 = 1 | r2 = 1)

p(l1 = 1, l2 = 1 | r2 = 1)
.

This implies that the counterfactual variables L(1)
1 and L

(1)
2 must be depen-

dent given R2 = 1; that is, L(1)
1 ⊥̸⊥ L

(1)
2 | R2 = 1. It can be seen that the

baseline measurement plays a key role in ensuring the identifiability of the

joint distribution p(l
(1)
1 , r1), which is then used to identify subgraphs with

a collider structure among (L
(1)
1 , L

(1)
2 , R1, R2). From this perspective, the

potentially missing auxiliary variable L
(1)
0 and its missingness indicator R0
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2.2 Identification with Effect between Missingness Indicators

provide additional information for identification.

We next show that, in addition to the baseline measurement L0, the

presence of an additional follow-up measurement L3, along with its missing-

ness indicator R3 and associated potential outcome L(1)
3 , can also ensure the

identifiability of the full data law. Let L1 and L2 represent the first-stage

and second-stage health measurements, respectively, with corresponding

missingness indicators R1 and R2. The follow-up measurement collected at

a later time point is denoted by L3, with its missingness indicator R3. Such

settings are common in practice, especially in longitudinal studies involving

repeated measurements or long-term follow-up. Figure 3(b) illustrates this

sequential scenario involving three outcomes. The following theorem shows

that this structure allows for the identification of the full law.

Theorem 2. The full law p(r1, r2, r3, l
(1)
1 , l

(1)
2 , l

(1)
3 ) is identifiable for the m-

DAG in Figure 3(b) if (2.3) holds and

p(l2 = 0, l3 = 0 | r2 = 1, r3 = 1)

p(l2 = 0, l3 = 1 | r2 = 1, r3 = 1)
̸= p(l2 = 1, l3 = 0 | r2 = 1, r3 = 1)

p(l2 = 1, l3 = 1 | r2 = 1, r3 = 1)
. (2.4)

The inequality condition between two ratios in (2.4) of Theorem 2 is

similar to condition (2.1) in Lemma 1 and condition (2.2) in Theorem 1.

In addition, Theorem 2 also requires that condition (2.3) holds. As in The-

orem 1, the key idea is to leverage the subgraph over (L
(1)
2 , L

(1)
3 , R2, R3)
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to recover the joint distribution p(r2, r3, l
(1)
2 , l

(1)
3 ). By exploiting the con-

ditional dependence between L
(1)
2 and L

(1)
3 , the distribution p(r2, l

(1)
2 ) can

further contribute to identifying the full data law p(r1, r2, r3, l
(1)
1 , l

(1)
2 , l

(1)
3 ).

3. Discussion

We close by again congratulating the authors on their important contribu-

tion to m-DAGs. In this discussion, we consider some potential identifica-

tion issues arising from m-DAGs with self-censoring scenario. Future work

may enhance identifiability in more general settings (Li et al., 2023), such

as continuous outcomes.
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