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Abstract:

We consider parameter inference for linear quantile regression with non-stationary

predictors and errors, where the regression parameters are subject to inequality

constraints. We show that the constrained quantile coefficient estimators are

asymptotically equivalent to the metric projections of the unconstrained estima-

tor onto the constrained parameter space. Utilizing a geometry-invariant prop-

erty of this projection operation, we propose inference procedures - the Wald, like-

lihood ratio, and rank-based methods - that are consistent regardless of whether

the true parameters lie on the boundary of the constrained parameter space. We

also illustrate the advantages of considering the inequality constraints in analyses

through simulations and an application to an exchange rate time series.

Key words and phrases: piecewise locally stationary time series, quantile regres-
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1. Introduction

Quantile regression has become a powerful method for analyzing the dis-

tributional relationship between the responses and the predictors since the

seminal work by Koenker and Bassett (1978). While a significant amount

of work focuses on scenarios with independent observations, quantile re-

gression has been studied under various time series settings. For example,

the quantile autoregression model and the quantile autoregressive condi-

tional heteroskedasticity model were proposed in Koenker and Xiao (2006)

and Koenker and Zhao (1996), respectively. Portnoy (1991) studied the

asymptotics of regression quantiles in an m-dependent setting. Koul and

Mukherjee (1994) considered the case where the errors are stationary and

long-range dependent Gaussian random variables.

Analyses on non-stationary time series where the data generating mech-

anism of the series evolves over time have attracted increasing attention in

recent years, as non-stationary behaviors have been observed in temporally

ordered data collected from a wide range of practical applications. As a

special kind of non-stationary time series, a locally stationary process con-

sidered by Zhou and Wu (2009) allows the time series to evolve smoothly

over time and covers many non-stationary processes. Later on, Zhou (2013)

introduced a piecewise locally stationary process, which allows the under-
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lying data-generating mechanism of the series to change abruptly around a

finite number of breakpoints and smoothly evolve in between. Note that the

locally stationary time series does not allow abrupt changes. Consequently,

if no breakpoints are present, the piecewise locally stationary process will

reduce to a locally stationary class. Due to its ability to capture general

forms of non-stationary behavior in both predictors and errors, this piece-

wise locally stationary framework has been assumed in subsequent time

series literature such as Zhou (2015); Wu and Zhou (2018); Rho and Shao

(2019), among others. We also adopt the piecewise locally stationary frame-

work in this paper, and we refer the readers to Section 2.2 for the detailed

definition and discussion of piecewise locally stationary time series. See

also Dette et al. (2011); Kreiss and Paparoditis (2015); Dahlhaus et al.

(2019); Hu et al. (2019); Das and Politis (2021); Kurisu (2022); Basu and

Rao (2023) among others for recent developments on locally stationary time

series analysis. Though the piecewise locally stationary time series models

are quite flexible, we point out that there are still some non-stationary be-

havior which cannot be captured by the piecewise locally stationary class.

One prominent example is the class of unit root processes.

Consider the following non-stationary time series quantile regression at
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a given quantile level τ :

yi = xTi β0(τ) + ϵi,τ , i = 1, 2, . . . , n, (1.1)

where {xi = (1, xi2, . . . , xip)
⊤}ni=1 is a p dimensional piecewise locally sta-

tionary time series of predictors that always include the intercept, β0(τ) =

(β1(τ), ..., βp(τ))
⊤ is a p dimensional vector of coefficients and ϵi,τ is the

error process that could be dependent on different quantiles τ . We shall

write β0(τ) and ϵi,τ as β0 and ϵi in the sequel to simplify the notation if

no confusions will arise. For identifiability, we require the τth conditional

quantile of the piecewise locally stationary error process ϵi given xi to be 0.

In this paper, we consider the inference of model (1.1) when the re-

gression coefficients β0 are subject to inequality constraints. Inequality

constraints are sometimes necessary to ensure model validity (e.g., an au-

toregressive conditional heteroskedasticity model requires all coefficients to

be non-negative). There are also scenarios where prior knowledge suggests

that certain constraints should be imposed. In demand analysis, it is usu-

ally reasonable to assume that the demand for a product decreases as the

product’s price increases, so the coefficient of price could constrained to be

non-positive when regressing demand on price. As another example, He and

Ng (1999) studied the degradation of roof flashing of U.S. army bases and

naturally assumed that the percentage of roof flashing in good condition
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could only decrease over time.

Although inequality constraints are commonly encountered in applica-

tions, they are sometimes overlooked in the analyses due to the lack of

available methods. However, taking the inequality constraints into account

offers at least two advantages. First, when the inequality constraints are not

considered, it can be difficult to carry out further analysis when the fitted

parameters fail to satisfy the constraints. Second, considering the inequal-

ity constraints can restrict the parameters into a smaller space, thereby

improving the estimation accuracy and hypothesis testing power.

For quantile regression, Koenker and Ng (2005) proposed an algorithm

for parameter computation under inequality constraints. Parker (2019)

studied the asymptotics of the constrained quantile process for independent

data. Liu et al. (2020) and Wu et al. (2022) considered l1-penalized quantile

regression with inequality constraints. Qu and Yoon (2015) utilized con-

strained quantile regression to ensure monotonicity in their nonparametric

quantile process model. As far as we know, no results on (non-stationary)

time series quantile regression with inequality constraints are available in

the literature.

In this paper, we aim to develop inference methods for constrained

quantile regression where both the predictors and the errors are piecewise
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locally stationary. With the observation that the constrained quantile es-

timator of β0 can be approximated by a matrix projection of the uncon-

strained estimator, we derive the limiting distribution of the constrained

quantile coefficient estimator. We also consider a likelihood ratio test and

rank-based test for parameter inference under our setting and establish their

asymptotic properties.

However, direct inference based on our asymptotic results is challeng-

ing because the limiting distributions of the estimated coefficients and test

statistics are non-standard and involve 1) the matrix projection operation,

which is not continuous when the coefficients are at the boundary; and

2) the conditional density of the errors and the long-run covariance ma-

trix, both of which are both unknown and change over time with possible

jumps. To address these issues, we propose a projected multiplier bootstrap

procedure to approximate the limiting distributions.

Our bootstrap algorithm utilizes a simple convolution of block sums of

the quantile regression gradient vectors with i.i.d. standard normal ran-

dom variables to consistently approximate the limiting distribution of the

unconstrained estimator under complex temporal dynamics. The key in

the projected multiplier bootstrap is to notice that the projection direc-

tion can be estimated consistently using the Powell sandwich estimator
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(Powell (1991)) under smoothly and abruptly time-varying data generat-

ing mechanisms of the predictors and errors. The limiting distribution of

the constrained estimator can then be approximated by projecting the con-

volution term from the multiplier bootstrap onto this estimated direction.

The geometry-invariant property of the projection operation ensures the

consistency of the projected multiplier bootstrap procedure, regardless of

whether β0 lies on the boundary of the constraints.

The remainder of this paper is organized as follows. In Section 2, we

formally introduce the problem settings and review the piecewise locally

stationary framework. Section 3 shows our main results. More specifically,

we study the asymptotic properties of the constrained quantile estimator,

propose the likelihood ratio test and the rank-based test in Section 3.1,

and introduce the projected multiplier bootstrap algorithm in Section 3.2.

Simulation studies and a real data example are given in Sections 4 and 5,

respectively. Section 6 presents the regularity conditions.

2. Preliminaries

2.1 Settings

In model (1.1), assume that β0 satisfies the inequality constraints Cβ0 ≥ c,

where C is a q× p full rank matrix with 1 ≤ q ≤ p and c is a q dimensional
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2.1 Settings8

vector. By transformation of variables, the constraints can be simplified

into

β0 ∈ Q, Q = {(β1, . . . , βp) | βj ≥ 0, j = 1, . . . , q}. (2.1)

As a further note, we point out here that the theory and methodology of

the paper are applicable when the regression parameters β0 are confined to

any convex polyhedral cones. For simplicity and clarity, we will stick to the

cone Q in this paper.

Let β̃n be the estimated coefficients when the inequality constraints

(2.1) are ignored, Koenker and Bassett (1978) showed that

β̃n = argmin
β∈Rp

n∑
i=1

ρτ (yi − xTi β), (2.2)

where ρτ (x) = x{τ − I(x < 0)} is the so-called check function. Then β̂n,

the estimated coefficient under the inequality constraints, can be naturally

estimated by

β̂n = argmin
β∈Q

n∑
i=1

ρτ (yi − xTi β). (2.3)

Solving (2.3) is a quadratic programming problem and can be tackled with

the algorithms proposed in Koenker and Ng (2005). However, the asymp-

totic behavior of β̂n with piecewise locally stationary predictors and errors

is unclear and will be investigated in this paper.

Statistica Sinica: Preprint 
doi:10.5705/ss.202025.0108



2.2 Piecewise Locally Stationary Time Series Models9

2.2 Piecewise Locally Stationary Time Series Models

We adopt the class of piecewise locally stationary processes in Zhou (2013)

to model the predictors and errors.

We call {ϵi}ni=1 a piecewise locally stationary process generated by fil-

tration Fi and Gi with R break points if there exist constants 0 = b0 < b1 <

. . . < bR < bR+1 = 1 and non-linear filters D0, ..., DR, such that

ϵi = Dr(ti,Fi,Gi), br < ti ≤ br+1, (2.4)

where ti = i/n, Fi = {. . . , η0, η1, . . . , ηi}, Gi = {. . . , ζ0, ζ1, . . . , ζi}, and

{ηi}∞i=−∞ and {ζi}∞i=−∞ are independent i.i.d random variables. Without

loss of generality, we assume {xi}ni=1 shares same break points as {ϵi}ni=1,

and let

xi = Hr(ti,Fi−1,Gi), br < ti ≤ br+1, (2.5)

where H0, . . . , HR are non-linear filters.

The piecewise locally stationary process can capture a broad of class

non-stationary behavior in practice because it allows the underlying data

generating mechanism to evolve smoothly between breakpoints (provided

that the filters are smooth in t) while undergoing abrupt changes at these

breakpoints. Note that we include the filtration Fi−1 and Fi into xi and

ϵi, respectively, to accommodate possible auto-regressive behavior in the
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2.2 Piecewise Locally Stationary Time Series Models10

predictors; that is, xi may contain lagged values of the response. Other in-

formation that may influence both the predictors and the errors is captured

in Gi. Examples of piecewise locally stationary processes under the current

formulation can be found in Wu and Zhou (2018).

Remark 1. As pointed out by one referee, when auto-regressive type re-

cursions with break points exist in the data generating mechanism of the

predictors or the errors , they cannot be written exactly in the form of (2.5)

or (2.4). In particular, observations immediately after the break points will

be influenced by those breaks via the auto regression and therefore the distri-

butions of those observations will not be smoothly varying. We remark here

that the influence of those break points on subsequent observations are typ-

ically transient and become negligible very fast. In other words, under mild

conditions the piecewise locally stationary model is still a good approxima-

tion to the data generating mechanism when auto-regressive type recursions

with breaks exist. In particular, asymptotic results in this paper are not

influenced by this asymptotically negligible difference.

To study the asymptotic property of a piecewise locally stationary pro-

cess, we need to define a measure of its temporal dependence structure.

Intuitively, the dependence of a process can be evaluated by replacing the in-

puts (ηi and ζi) k steps earlier with corresponding in independent and iden-
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tically distributed (i.i.d.) copies and comparing the change in the output (xi

and ϵi). A larger change in the output indicates stronger dependence. Let

∥ · ∥v = {E(| · |)v}1/v denote the Lv norm and assume max1≤i≤n ∥ϵi∥v < ∞

for some v > 1, we define the kth dependence measure for {ϵi}ni=1 in Lv

norm as

∆v(D, k) = max
0≤r≤R

sup
br<t<br+1

∥Dr(t,Fk,Gk)−Dr(t,F∗
k ,G∗

k)∥v,

where F∗
k = {ηk, ηk−1, . . . , η

∗
0, η−1, . . .}, η∗0 is independent of {ηi}∞i=−∞ and

is identically distributed as η0, and the filtration G∗
k is defined in the same

way. The kth dependence measure for {xi}ni=1 is defined similarly as

∆v(H, k) = max
0≤r≤R

sup
br<t<br+1

∥Hr(t,Fk−1,Gk)−Hr(t,F∗
k−1,G∗

k)∥v.

3. Methodology and Its Theoretical Properties

3.1 Test Statistics

Suppose that we are interested in testing:

H0 : β
(A)
0 = 0, β0 ∈ Q v.s. Hα : β

(A)
0 ̸= 0, β0 ∈ Q (3.1)

where A = {a1, . . . , aq} ⊂ {1, . . . , p} with a1 < . . . < aq be a set of in-

dex and x(A) = (xa1 , . . . , xaq)
⊤ is a subvector of the p dimensional vector

x = (x1, . . . , xp)
⊤. We will consider the likelihood ratio test and the rank-

based test as these two types of test are widely used for quantile coefficients
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inference of independent data without inequality constraints (Koenker and

Machado (1999)).

Let Ac denotes the complement of set A, define the likelihood ratio test

as

TLR
n =

n∑
i=1

{
ρτ
(
yi − (x

(Ac)
i )⊤β̂(Ac)

n

)
− ρτ (yi − x⊤i β̂n)

}
, (3.2)

where β̂
(Ac)
n is the estimate of β0 under the restricted model that only in-

cludes x
(Ac)
i as covariates. The test statistic TLR

n is the likelihood ratio test

defined in Chapter 3 of Koenker (2005) without normalization. It compares

the empirical loss under the restricted model and the full model, and a large

value of TLR
n is in favor of the alternative hypothesis.

Let ψτ (u) = τ − I(u < 0) be the left derivative function of ρτ (·). Define

the rank-based test as

TRB
n = (S1,n − S0,n)

⊤D−1
n (S1,n − S0,n), (3.3)

where S1,n =
∑

i ψτ (yi − x⊤i β̂n)x
(A)
i , S0,n =

∑
i ψτ

(
yi − (x

(Ac)
i )⊤β̂

(Ac)
n

)
x
(A)
i

and Dn =
∑

i(x
(A)
i )⊤(x

(A)
i ). Note that the rank-based test in Koenker

(2005) is constructed by the regression rankscores, which are the solutions

to the dual problem of Equation (2.2). Because the regression rankscores

for observation i at τ could be approximated with τ − ψτ (yi − x⊤i β̂n), we

construct our rank-based test with the ψτ function directly. Unlike the
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rank-based test without inequality constraints, TRB
n requires fitting both

the restricted model and the full model because S1,n may not be 0 with

inequality constraints imposed. Also note that while Dn (times a constant)

standardizes the rank-based test with no inequality constraints and inde-

pendent observations, this is not the case in our setting. We still include

Dn in our test statistic TRB
n for consistency with other quantile regression

rank-based tests.

To study the properties of β̂n, T
LR
n and TRB

n , we need the following

lemma.

Lemma 1. Under Conditions (C1)-(C4) given in Section 6,

sup
|β−β0|≤n−1/2 logn

∣∣∣∣∣
n∑

i=1

{
ρτ (yi − x⊤i β)− ρτ (yi − x⊤i β0)

}
+ (β − β0)

⊤Gn

−1

2
(β − β0)

⊤Kn(β − β0)

∣∣∣∣ = op(1),

where Gn =
∑n

i=1 xiψτ (ϵi) and Kn =
∑n

i=1E
{
fr(

i
n
, 0 | Fi−1,Gi)xix

⊤
i

}
,

fr(t, x|Fk−1,Gk) =
∂
∂x
P (Dr(t,Fk,Gk) ≤ x | Fk−1,Gk), for br < t ≤ br+1.

Lemma 1 shows that the difference in the check loss function
∑n

i=1

{
ρτ (yi−

x⊤i β)− ρτ (yi − x⊤i β0)
}
can be approximated by a quadratic function of β.

This result is well-known when observations are independent (Bai et al.

(1992)). We show that it also holds when the predictors and errors are

piecewise locally stationary.
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3.1 Test Statistics14

Since Lemma 1 holds for any |β − β0| ≤ n−1/2 log n, it naturally holds

for such β that meets the inequality constraints. Therefore, the convexity of

ρτ implies the consistency of both β̃n and β̂n. The Bahadur representation

(β̃n − β0)−K−1
n Gn = op(n

−1/2) can also be derived from Lemma 1.

Define the metric projection onto region Q with respect to a positive

definite symmetric matrix Σ as

PQ,Σ(·) = argmin
β∈Q

(β − ·)⊤Σ(β − ·). (3.4)

For x ∈ Rp and β ∈ Q, let

ΘQ,Σ(β, x) = lim
n→∞

{PQ,Σ(nβ + x)− nβ}. (3.5)

This metric projection has several important properties. In particular, by

Proposition 1 in Zhou (2015), if Σ is positive definite, PQ,Σ(a1β+x)−a1β =

PQ,Σ(a2β + x)− a2β for a1 and a2 large enough, regardless of whether β is

on the boundary of Q. Intuitively, this geometry-invariant property is due

to the fact that, for any given δ, the geometry or shape of δ-neighborhoods

of aβ inside the cone is always the same for sufficiently large a. The lat-

ter geometry-invariant property of guarantees the existence of the limit in

Equation (3.5) and the metric projection PQ,Σ(·) plays a key role in investi-

gating the asymptotic properties of β̂n. In the following investigation, this

geometry-invariant property of the metric projection will be the key that
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inspires our multiplier bootstrap technique for the practical implementation

of our theoretical results.

The project metric approach was first investigated in the context of

statistical inference for inequality-constrained time series regression prob-

lems in Zhou (2015). They claimed that for least-squares regressions,

β̂n = PQ,Σ(β̃n) with Σ =
∑n

i=1 xix
T
i /n. Such a relationship does not hold

for our quantile regressions, but β̂n could be approximated by the projection

of β̃n with respect to Σ = Kn/n. It is worth mentioning that the metric

projection methodology can be also applied to i.i.d. data.

By Lemma 1 and the Bahadur representation of β̃n, we have

sup
|β−β0|≤n−1/2 logn,β∈Q

∣∣∣∣∣
n∑

i=1

{
ρτ (yi − x⊤i β)− ρτ (yi − x⊤i β0)

}
+ (β − β0)

⊤Kn(β̃n − β0)−
1

2
(β − β0)

⊤Kn(β − β0)

∣∣∣∣ = op(1).

Therefore solving the optimization problem (2.3) is asymptotically equiva-

lent to finding the minimizer of (β−β0)⊤Kn(β̃n−β0)− 1
2
(β−β0)⊤Kn(β−β0)

constrained to β ∈ Q, which is equivalent to finding the maximizer of

(β− β̃n)⊤Kn(β− β̃n) constrained to β ∈ Q. According to (3.4), the solution

to the latter maximization problem is PQ,Kn(β̃n) = PQ,Kn
n
(β̃n).

Because

√
n(β̂n − β0) ≈

√
nPQ,Kn

n
(β̃n)−

√
nβ0

≈ PQ,Kn
n
(
√
nβ0 +

√
nK−1

n Gn)−
√
nβ0,
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it is then easy to show that

√
n(β̂n − β0) ⇒ ΘQ,M(β0,M−1U), (3.6)

where ⇒ denotes weak convergence and U is a normal distributed random

variable and the explicit form ofM is given later. The limiting distributions

of TLR
n and TRB

n are also be derived by Equation (3.6) and continuous map-

ping theorem. The above discussion is formally summarized in Theorem 1

below.

The following notations are needed for Theorem 1. Define the long-term

covariance matrix

Ω(t) =
∞∑

i=−∞

cov{Hr(t,F−1,G0)ψτ (Dr(t,F0,G0)), Hr(t,Fi−1,Gi)ψτ (Dr(t,Fi,Gi))}

for br < t ≤ br+1. Write M =
∫ 1

0
M(t)dt where M(t) = E{fr(t, 0 |

F−1,G0)Hr(t,F−1,G0)Hr(t,F−1,G0)
⊤} for br < t ≤ br+1, andM0 =

∫ 1

0
M0(t)dt

where M0(t) = E{fr(t, 0 | F−1,G0)H
(Ac)
r (t,F−1,G0)H

(Ac)
r (t,F−1,G0)

⊤}. For

the rank-based test, let MRB
0 =

∫ 1

0
MRB

0 (t)dt where MRB
0 (t) = E{fr(t, 0 |

F−1,G0)H
(A)
r (t,F−1,G0)H

(Ac)
r (t,F−1,G0)

⊤}, andMRB =
∫ 1

0
MRB(t)dt where

MRB(t) = E{fr(t, 0 | F−1,G0)H
(A)
r (t,F−1,G0)Hr(t,F−1,G0)

⊤}. Write D =∫ 1

0
D(t)dt where D(t) = E{H(A)

r (t,F−1,G0)H
(A)
r (t,F−1,G0)

⊤}.

Theorem 1. Under regularity conditions (C1)-(C5), we have

Statistica Sinica: Preprint 
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(i)
√
n(β̂n − β0) ⇒ ΘQ,M(β0,M−1U), where U follows a normal distri-

bution with mean 0 covariance
∫ 1

0
Ω(t) dt;

(ii) TLR
n ⇒ g1{ΘQ,M0(β

(Ac)
0 ,M−1

0 U (Ac)),M0, U
(Ac)} −

g1{ΘQ,M
(
β0,M−1U),M, U} under H0, where g1(x, y, z) =

1
2
x⊤yx− z⊤x;

(iii) TRB
n ⇒ g2{MRBΘQ,M

(
β0,M−1U),MRB

0 ΘQ,M0(β
(Ac)
0 ,M−1

0 U (Ac)),D}

under H0, where g2(x, y, z) = (x− y)⊤z−1(x− y).

The limiting distributions of
√
n(β̂n − β0), T

LR
n and TRB

n involves un-

known quantities Ω(t), fr(t, 0 | F−1,G0) and β0. Because Ω(t) and fr(t, 0 |

F−1,G0) may change abruptly at breakpoints under the piecewise locally

stationary framework, estimating them directly is challenging. Further-

more, we cannot simply replace β0 with β̂n because ΘQ,Σ(β, x) is not contin-

uous in β. Additionally, β̂n has a non-zero mass at a point on the boundary

of the convex cone Q if the true β0 is on the latter boundary. As a result, the

asymptotic distribution given in Theorem 1 cannot be applied directly for

inference. Instead, we use the projected multiplier bootstrap as a solution

to these challenges in the next subsection.

Before concluding this subsection, we will show the consistency of Kn/n

to the matrix M in the following proposition below.

Proposition 1. Under regularity conditions (C1)–(C3), we have

∥Kn/n−M∥2 = O(1/
√
n).
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3.2 The Projected Multiplier Bootstrap18

3.2 The Projected Multiplier Bootstrap

Now, we consider bootstrapping the limiting distribution of
√
n(β̂n − β0).

To approximate the behaviour of U , let m be a pre-specified block size,

and m∗ = n−m+ 1. Define

Ψm =
m∗∑
i=1

1√
(mm∗)

(ϖi,m − m

n
ϖ1,n)Vi, (3.7)

where ϖi,m =
∑i+m−1

j=i ψτ (ϵ̂j)xj, ϵ̂i = yi−x⊤i β̂n and {Vi}ni=1 follow i.i.d stan-

dard normal distributions which are independent of {Fi}∞i=−∞ and {Gi}∞i=−∞.

While the block bootstrap is commonly used in time series analysis, as in-

dicated in Zhou (2015), this method is unable to preserve the complex de-

pendence structure of the piecewise locally stationary processes currently

assumed. Instead, the multiplier bootstrap, as given in Equations (3.7), of-

fers an alternative. This approach convolutes the block sums of the gradient

vectors from the quantile regression, which locally estimate the covariance

matrix Ω(t), with i.i.d standard normal weights {Vi}. It is shown in Wu

and Zhou (2018) that the behaviour of U can be approximated by Ψm.

Let ϕ(·) be a kernel density that satisfies
∫
ϕ(x)dx = 0,

∫
ϕ(x)x2dx ≤

M ,
∫
ϕ2(x)dx ≤ M , and

∫
ϕ′2(x)dx ≤ M for some positive constant M .

Define

Ξh =
n∑

i=1

ϕ(ϵ̂i/h)xix
⊤
i

nh
, (3.8)
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3.2 The Projected Multiplier Bootstrap19

where h → 0 is a bandwidth parameter. This Powell sandwich estimator

Ξh has been widely used to estimate the covariance matrix for quantile

regression with independent observations (Powell (1991)). We can show

that it can consistently estimate the matrix M (namely the projection

direction) in our settings.

Our remaining task is to approximate the projection operation. Because

√
n(β̂n − β0) ≈ PQ,Ξh

(
√
nβ0 + Ξ−1

h Ψm)−
√
nβ0,

one obvious way is to replace β0 with β̂n in the above equation. However, as

we mentioned before, this naive replacement is inconsistent because under

H0 (β0 is at the boundary),
√
nβ̂n =

√
nβ0 + Op(1) and the Op(1) error

term is not ignorable. Alternatively, by the geometry-invariant property of

the projection operation, when n is large enough,

PQ,Ξh
(
√
nβ0 + Ξ−1

h Ψm)−
√
nβ0 = PQ,Ξh

(n1/4β0 + Ξ−1
h Ψm)− n1/4β0.

Therefore we could instead replace n1/4β0 using n1/4β̂n to reduce the mul-

tiplication error to 0 asymptotically.

In practice, the block sizem in Ψm and the bandwidth h in Ξh should be

carefully chosen. From the bias variance trade-off view, the approximation

of U will be biased if m is too small to capture the dependence structure,

while a larger m will induce a greater variance. In fact, a similar argument
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as those in Proposition 4 of Zhou (2015) yields that the variance and bias

of the bootstrap are of the order O(m/n) and O(1/m), respectively. We

also point out that a larger size of block may contain some abrupt change

points in the predictors or errors and thus may lead to a larger variance

of Ψm. The bandwidth h plays a similar role as the bandwidth of a kernel

density estimation, and a larger h is associated with larger bias but smaller

variance.

We use the minimum volatility method (Chapter 9 of Politis et al.

(1999)) for the selection of block size m. The idea is that the estimated

value should be stable when m is chosen within the reasonable range. More

specifically, let m1 < . . . < mK be K candidates of block size. For each

candidate mk, we calculate

V̂mk
=

m∗
k∑

j=1

(ϖj,mk
− mk

n
ϖ1,n)

⊤(ϖj,mk
− mk

n
ϖ1,n)

mk(n−mk + 1)
,

where m∗
k = n − mk + 1. The mk that minimizes the standard error of

{V̂mk+j
}j=3
j=−3 is selected. The bandwidth h is also chosen by the minimum

volatility method (Wu and Zhou (2018)).

The detailed steps to construct the confidence interval using the pro-

posed bootstrap method are summarized below.

Step 1: Select the block size m with the minimum volatility method and

the bandwidth h with the minimum volatility method.
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Step 2: Fit the constrained quantile regression with xi get β̂n. Calculate

Ξh as Equation (3.8).

Step 3: For i = 1, . . . ,m∗, generate i.i.d standard normal variables Vi, and

calculate Ψm as Equation (3.7). Compute Λ̂n = PQ,Ξh
(n1/4β̂n +

Υ̂n)− n1/4β̂n where Υ̂n = Ξ−1
h Ψm.

Step 4: Repeat Step 3 for B iterations to get {Λ̂n,1, . . . , Λ̂n,B}. If Λ̂n,k is

a scalar, calculate the α/2-th and (1 − α/2)-th sample percentile

of {Λ̂n,k}Bk=1, denoted by q̂α/2 and q̂1−α/2. The 100(1 − α)% confi-

dence interval of βn is given by (β̂n − q̂1−α/2/
√
n, β̂n − q̂α/2/

√
n).

Otherwise, calculate the Euclidean distance between the vector

Λ̂n,k and its center (sample mean of {Λ̂n,k}Bk=1, denoted by Λ̄n).

Then compute the corresponding α/2-th and (1 − α/2)-th quan-

tiles of the distance, say d̂α/2 and d̂1−α/2, respectively. Finally, the

100(1 − α)% confidence interval of βn can be derived via d̂α/2 ≤

∥
√
n(β̂n − βn)− Λ̄n∥2 ≤ d̂1−α/2.

The limiting distribution of TLR
n and TRB

n under the null hypothesis

can be bootstrapped similarly. Define

Ξ0,h =
n∑

i=1

ϕ(ϵ̂
(Ac)
i /h)x

(Ac)
i x

(Ac)⊤
i

nh
, (3.9)
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ΞRB
h =

n∑
i=1

ϕ(ϵ̂i/h)x
(A)
i x⊤i

nh
, (3.10)

ΞRB
0,h =

n∑
i=1

ϕ(ϵ̂
(Ac)
i /h)x

(A)
i x

(Ac)⊤
i

nh
, (3.11)

and

Ψ0,m =
m∗∑
i=1

1√
(mm∗)

(ϖ
(Ac)
i,m − m

n
ϖ

(Ac)
1,n )Vi, (3.12)

where ϖ
(Ac)
i,m =

∑i+m−1
j=i ψτ (ϵ̂

(Ac)
j )x

(Ac)
j and ϵ̂

(Ac)
j = yj − (x

(Ac)
j )⊤β̂

(Ac)
n .

The algorithm for implementing TLR
n and TRB

n is given below.

Step 1: Select the block size m and the bandwidth h by the minimum

volatility method.

Step 2: Fit the constrained quantile regression with xi and x
(Ac)
i as covari-

ates, respectively, to get β̂n and β̂
(Ac)
n .

(a) For TLR
n : Calculate TLR

n as Equation (3.2), and get Ξh and

Ξ0,h as Equation (3.8) and (3.9).

(b) For TRB
n : Calculate TRB

n as Equation (3.3), and get ΞRB
h and

ΞRB
0,h as Equation (3.10) and (3.11).

Step 3: For i = 1, . . . ,m∗, generate i.i.d standard normal variables Vi, and

calculate Ψm and Ψ0,m as Equation (3.7) and (3.12). Compute

Λ̂n = PQ,Ξh
(n1/4β̂n + Υ̂n) − n1/4β̂n and Λ̂0,n = PQ,Ξ0,h

(n1/4β̂
(Ac)
n +

Υ̂0,n)− n1/4β̂
(Ac)
n where Υ̂n = Ξ−1

h Ψm and Υ̂0,n = Ξ−1
0,hΨ0,m.
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(a) For TLR
n : Compute the bootstrapped test statistic TLR∗

n =

g1(Λ̂0,n,Ξ0,h,Ψ0,m)− g1(Λ̂n,Ξh,Ψm).

(b) For TRB
n : Compute the bootstrapped test statistic TRB∗

n =

g2(Ξ
RB
h Λ̂n,Ξ

RB
0,h Λ̂0,n, Dn/n).

Step 4: Repeat Step 3 forB iterations to get {TLR∗
n1 , . . . , TLR∗

nB } and {TRB∗
n1 , . . . , TRB∗

nB }.

The resulting p-values for TLR
n and TRB

n are B−1
∑

b I(T
LR
n > TLR∗

nb )

and B−1
∑

b I(T
RB
n > TRB∗

nb ), respectively.

Theorem 2 shows the projected multiplier bootstrap procedure is con-

sistent, and can detect local alternatives with n−1/2 rate.

Theorem 2. Suppose that regularity conditions (C1)-(C5) hold, the block

size m satisfies m→ ∞, m/n→ 0, and the bandwidth h satisfies h log2 n→

0, nh3 log−2 n→ ∞, we have

(i) Λ̂n ⇒ ΘQ,M(β0,M−1U);

(ii) For any α ∈ (0, 1), let dLRα be the (1 − α)-th quantile of

g1(Λ̂0,n,Ξ0,h,Ψ0,m) − g1(Λ̂n,Ξh,Ψm) conditional on the original data set,

then under H0, P (T
LR
n > dLRα ) → α as n→ ∞;

(iii) For any α ∈ (0, 1), let dRB
α be the (1 − α)-th quantile of

g2(Ξ
RB
h Λ̂n,Ξ

RB
0,h Λ̂0,n, Dn/n) conditional on the original data set, then under

H0, P (T
RB
n > dRB

α ) → α as n→ ∞;
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(iv) Under Hα: β
(A)
0 = Ln ∈ Q where Ln is a deterministic sequence sat-

isfying n1/2|Ln| → ∞, L̃n(nh
3)−1/2 → 0, L̃nn

2/h3 → 0 and m log8 n/n→ 0,

where L̃n = max(|Ln|, n−1/2 log2 n), we have P (TLR
n > dLRα ) → 1 as n→ ∞

and P (TRB
n > dRB

α ) → 1 as n→ ∞.

Finally, we shall perform a theoretical investigation of the asymptotic

power performance of our constrained tests and compare it with that of the

unconstrained counterparts. We shall carry out this investigation through

a simple scenario. Specifically, we consider model (1.1) and test

H0 : βi = 0 v.s. Hα : βi ̸= 0

for some 1 ≤ i ≤ p. Recall that βi is the ith component of β0. The inequal-

ity constraint considered is βi ≥ 0. We shall perform level α tests of H0

using confidence intervals of βi with or without the inequality constraints.

Denote by Powerconstrained and Powerunconstrained the asymptotic powers of

the constrained and unconstrained tests, respectively. The following propo-

sition summarizes our theoretical finding.

Proposition 2. Under conditions (C1)-(C4), the assumption that 0 < α ≤

0.5, and the alternative that βi = c/
√
n with some c > 0, we have

Powerconstrained > Powerunconstrained.
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Proposition 2 states that under the considered scenario, the constrained

test is strictly more powerful than its unconstrained counterpart asymptot-

ically. This result is intuitively plausible as parameters are typically easier

to estimate and test in smaller parameter spaces.

4. Simulations

In this section, we conduct a Monte Carlo simulation to examine the per-

formance of our proposed method.

Our simulation is firstly based on the model

yi = β0 + β1xi + ei, (4.1)

with the inequality constraints β0 ≥ 0 and β1 ≥ 0. We set β0 = 1 through-

out the simulation and vary β1.

We consider the following three different settings based on model (4.1):

(i) Generate {xi} and {ei} from two independent ar(1) models with

coefficient 0.5. This setting represents a stationary model with ho-

moscedastic errors. Following (4.1), we note that yi = β0 + F−1
ei

(τ) +

β1xi+ϵi,τ , where ϵi,τ = ei−F−1
ei

(τ). Here Fei represents the cumulative

distribution function of ei. Observe that the conditional τth quantile

of ϵi,τ given xi is 0.
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(ii) Generate {xi} from an ar(1) model with a coefficient of −0.3 when

ti = i
n

≤ 0.5 and an ar(1) model with a coefficient of 0.3 when

ti > 0.5. Furthermore, let ei = 0.7 cos (2πti)ei−1 + ηi where ηi follows

an i.i.d standard normal distribution independent of {xi}. Let ϵi,τ =

ei −F−1
ei

(τ). This setting represents a non-stationary time series with

errors independent of the predictors.

(iii) Generate {xi} and {e∗i } as in Setting (ii). Let ei = (1+ x2i )
1/2e∗i /2. In

this case ϵi,τ = (1 + x2i )
1/2(e∗i − F−1

e∗i
(τ))/2. This is a non-stationary

quantile regression model with dependent {ϵi} and {xi}.

Secondly, we consider another model below as one of the reviewer suggested

yi = β0 + β1xi,1 + β2xi,2 + ei (4.2)

with the inequality constraints β0, β1, β2 ≥ 0. For simplicity, we also set

β0 = 1 throughout the simulation and change the values of β1 and β2. We

consider two distinct settings based on the model (4.2):

(iv) Generate {xi,1} from an ar(1) model with the coefficient 0.5 and {xi,2}

from an ma(1) model with the coefficient 0.3. Let {ei} follow an ar(1)

model with the coefficient 0.5, independent of {xi,1} and {xi,2}. Observe

that in this setting ϵi,τ = ei−F−1
ei

(τ). This setting represents a stationary

model with homoscedastic errors.
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(v) Generate the predictors as

xi,1 = (0.5− 0.5ti)xi−1,1 + ηi, xi,2 = (0.25 + 0.5ti)xi−1,2 + ηi,

where {ηi} are i.i.d. standard normal. Furthermore, generate {e∗i } as

e∗i =


0.6 cos(2πti)e

∗
i−1 + ηi, 0 ≤ ti ≤ 0.8,

(0.5− ti)e
∗
i−1 + ηi, 0.8 < ti ≤ 1.

Let ei = |1 + xi,1 + xi,2|e∗i /4. In this case ϵi,τ = |1 + xi,1 + xi,2|(e∗i −

F−1
e∗i

(τ))/4. This setting is a non-stationary case with errors dependent on

the predictors.

Additionally, our proposed method is also compared to the traditional

quantile regression inference with inequality constraints where the predic-

tors are i.i.d. (Parker (2019)). We still consider the model (4.2) with the

inequality constraints β0, β1, β2 ≥ 0 but the predictors are i.i.d. random

variables. Specifically, the data generating mechanism is given by

(vi) Assume {xi,1}, {xi,2} and {ei} from (4.2) are independently gener-

ated from a standard normal distribution. Then the error process is

ϵi,τ = ei − F−1
ei

(τ).

The block size m and the bandwidth h are chosen by the minimum

volatility method. The bootstrap size is set as 1000 for all the models and
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the simulation uses 1000 generated data sets. A normal kernel function is

used to get Ξh,Ξ0,h,Ξ0,RB and ΞRB. Due to page constraints, results for set-

tings (i)–(iii) of model (4.1) are presented in Table 1 of the supplementary

material. For settings (iv)–(v) of model (4.2), the simulated coverage prob-

abilities for the slopes in the binding case (β1 = β2 = 0) and non-binding

case (β1 = 0.5, β2 = 1) are shown in Tables 1–3. Also we display the Type

I error of the testing

H0 : β1 = β2 = 0 v.s. Hα : at least one of β1 or β2 > 0 (4.3)

for TLR
n and TRB

n . For the i.i.d. case in the model setting (vi), given

β0 = β1 = 1, we wish to test H0 : β2 = 0 v.s. Hα : β2 > 0. The likelihood

ratio test (LR(i.i.d.)) and the regression rankscore test (RR(i.i.d.)) in

Parker (2019) are conducted, and the comparison results with our likelihood

ratio test as well as the rank-based test are shown in Tables 1 and 2.

According to Tables 1-2 and our results in Section S1 of the supplemen-

tary material, the performance of our method is reasonably good across the

first five model settings. Generally, as the sample size grows, our simulated

results approach closer to the corresponding nominal levels. The accuracy

of TLR
n and TRB

n does not deteriorate as the complexity of model increases,

and the coverage probability of the confidence interval is similar under the

binding and non-binding cases. On the other hand, our proposed tests

Statistica Sinica: Preprint 
doi:10.5705/ss.202025.0108



29

α = 5%

n = 400 n = 800

Quantile 0.1 0.5 0.8 0.9 0.1 0.5 0.8 0.9

Setting (iv)

LR 6.0 4.0 4.8 5.0 5.0 4.7 5.1 5.1

RB 5.8 4.6 5.3 6.2 6.2 4.7 5.8 5.4

CI(B) 93.8 96.1 93.4 93.4 94.2 94.9 94.8 94.8

CI(NB) 92.9 93.9 94.1 92.0 95.3 94.1 95.3 93.9

Setting (v)

LR 4.9 4.4 3.9 4.7 4.7 4.4 4.4 4.3

RB 6.4 5.7 5.7 5.6 5.4 5.9 5.4 4.7

CI(B) 96.4 93.1 95.7 96.1 96.8 94.2 93.8 94.7

CI(NB) 93.5 94.1 94.4 93.9 93.6 95.7 94.9 95.0

Setting (vi)

LR 3.6 4.1 4.4 4.6 5.2 5.1 5.9 4.5

RB 4.3 4.8 5.3 5.0 6.2 5.5 6.0 5.8

LR(i.i.d.) 4.4 4.6 4.4 4.5 3.5 6.0 4.4 5.1

RR(i.i.d.) 4.5 4.4 4.0 4.8 4.2 6.1 4.4 5.9

Table 1: Simulated Type I error rates α = 5% (in percentage) of the likelihood

ratio test (LR) and rank-based test (RB), and coverage probability of the con-

fidence interval (CI) for β1 and β2; (B) stands for the binding case while (NB)

stands for the non-binding case; LR(i.i.d.) and RR(i.i.d.) stands for likelihood

ratio test and regression rankscore test for i.i.d. data in Parker (2019).

demonstrate comparable Type I error rates to the likelihood ratio test and

regression rankscore test (Parker (2019)) under the model setting (vi).

We also compared the empirical power when testing β1 = 0 in (4.1)

using the Wald test (implemented by constructing the confidence interval),

the likelihood ratio test and the rank-based test, with and without consider-

ing the inequality constraints. To ensure a fair comparison, we deliberately

specify the block size m so that the Type I error rates of all the methods are

Statistica Sinica: Preprint 
doi:10.5705/ss.202025.0108



30

α = 10%

n = 400 n = 800

Quantile 0.1 0.5 0.8 0.9 0.1 0.5 0.8 0.9

Setting (iv)

LR 11.2 8.9 9.1 8.6 9.5 8.5 8.7 9.5

RB 12.3 10.3 11.4 11.8 11.2 8.9 10.3 10.4

CI(B) 89.2 92.0 88.8 88.3 89.1 91.3 90.4 90.1

CI(NB) 88.5 88.6 88.8 86.7 89.9 88.8 90.8 87.9

Setting (v)

LR 8.9 8.0 7.1 8.6 9.2 8.1 8.2 9.0

RB 11.2 9.5 10.9 10.8 10.3 10.0 10.5 10.7

CI(B) 92.3 90.5 93.2 93.8 92.8 91.7 92.6 92.5

CI(NB) 90.7 91.0 90.1 88.9 89.1 92.5 91.2 90.7

Setting (vi)

LR 11.2 8.9 9.1 8.6 9.5 8.5 8.7 9.5

RB 9.5 8.5 11.1 10.6 11.6 9.7 10.9 11.1

LR(i.i.d.) 8.6 9.7 9.1 8.4 8.9 12.1 9.1 10.4

RR(i.i.d.) 9.0 9.7 8.6 9.1 8.9 11.6 10.5 10.9

Table 2: Simulated Type I error rates α = 10% (in percentage) of the LR, RB

tests, and coverage probability of CI for β1 and β2.

very close to the nominal level under H0. Figure 1 summarizes our results

under Setting (iii), the results under the other two settings for (4.1) tell a

similar story.

We observe in Figure 1 that the methods incorporating the inequality

constraints have higher power compared to those that do not. Our results

are consistent with simulations in Andrews (1998), Farnan et al. (2014) and

Yu et al. (2019) under different settings, and confirms the benefit of utilizing

the information provided by the inequality constraints in achieving higher

statistical power. Among the three methods that account for the inequality
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Figure 1: Simulated power of the likelihood ratio test with/without inequality

constraints (solid/dashed blue), the rank-based test with/without inequality con-

straints (solid/dashed cyan), the Wald test with/without inequality constraints

(solid/dashed red) under Setting (iii).

constraints, we notice a slight advantage of the rank-based test over the

other two methods in terms of power, particularly when τ = 0.8.

5. Exchange Rate Data

In this section, we apply our proposed method to the dataset of the per-

centage changes in Deutsche mark/U.S. dollar exchange rate measured in

10-minute intervals. The original data ranging from June 5, 1989 to June

19, 1989, was investigated in Chapter 3 of Tsay (2005) and can be down-

loaded via the book web page. The first 192 h of data are used in our data

analysis, resulting in a total of 1152 observations.

Figure 2 displays the dataset. We first apply the methodology in Zhou

(2013) to test if there exists a structural change in the mean of the series.
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The p-value of the robust test with 10000 bootstrap sample is 0.6327, hence

we do not have evidence against the null hypothesis of no structural change

in mean. On the other hand, the variability of the series appears unstable

from Figure 2. Consequently, we could test if there are some changes in

the second-order structure of the data. To this end, we employ the method

in Zhou (2013) again and test constancy of the marginal variance and the

first-order auto-covariance of the series. Let x1, x2, . . . , x1152 be the observed

time series. Since the mean remains constant, the latter two tests are

equivalent to testing structural change in mean for yi = x2i and zi = xixi+1.

Based on 10000 bootstrap samples, the corresponding p-values for the series

yi and zi are < 0.1% and 0.3919, respectively. Therefore, we conclude

that the time series xi is non-stationary with the major source of the non-

stationarity coming from the non-constant marginal variance. Consequently

it is necessary to model the predictors and errors as non-stationary time

series for volatility investigation of this series via quantile regression.

Next, we aim to fit a quantile ARCH model to this financial time se-

ries. Owing to mathematical requirements, the ARCH coefficients are con-

strained to be non-negative. Then we consider the following model

x2i = β0,τ + β1,τx
2
i−1 + β2,τx

2
i−2 + β3,τx

2
i−3 + ϵi,τ , (5.1)

where β0,τ > 0, βi,τ ≥ 0, i = 1, 2, 3, and ϵi,τ is the error process. We first
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Figure 2: Time series plot of the percentage changes of the exchange rate between

the mark and dollar in 10-min intervals: time series length, 1152.

LR LR(NC) RB RB(NC)

τ = 0.1 0.3025 0.6558 0.0019 0.0357

τ = 0.5 0.0309 0.1692 0.0002 0.0208

τ = 0.8 0 0.0036 0 0

τ = 0.9 0 0 0 0

Table 3: P-values of the proposed LR and RB tests at different quantile levels

τ for the null H01: β1 = β2 = β3 = 0; (NC) represents the corresponding tests

ignoring the inequality constraint.

apply the projected multiplier bootstrap methodology to test ARCH effect

of the model at various quantiles, i.e., H01 : β1,τ = β2,τ = β3,τ = 0 for

τ = 0.1, 0.5, 0.8, 0.9. With 10000 bootstrap replicates, the p-values for LR

and RB tests under inequality constraints or not are shown in Table 3.

We observe in Table 3 that, the RB test rejects the null hypothesis

at all four different quantile levels while the LR test only rejects the null

hypothesis when τ = 0.5, 0.8 and 0.9. Moreover, the p-values for both

LR and RB tests usually become larger when the inequality constraint is
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ignored, especially for τ = 0.1, 0.5 and 0.8. Specifically, the LR test actually

fails to reject the null hypothesis at τ = 0.1 and 0.5 if the constraint is

ignored. This further illustrates the benefits of considering the inequality

constraints in terms of power. In addition, we observe stronger ARCH effect

at the 0.9 quantile level compared to the 0.1 quantile level, indicating an

asymmetric tail behavior. We also note that the LR test may not perform

robustly at lower quantile levels, leading us to favor the RB test.

Based on the significance of the ARCH effect, we reject the null H01

and further test the hypothesis H02 : β3 = 0 with inequality constraints. It

turns out that the p-values for both LR and RB tests at different quantile

levels are larger than 0.05. Hence, we do not have strong evidence to reject

the null β3 = 0. Subsequently, we are interested in testing if H03 : β2 = 0

with or without the inequality constraints β1, β2 ≥ 0.

β̂2 LR LR(NC) RB RB(NC)

τ = 0.1 0.0026 0.4679 0.6963 0.0322 0.0743

τ = 0.5 0.0247 0.2350 0.7302 0.0669 0.5625

τ = 0.8 0.2030 0.0001 0.0002 0.0004 0.0015

τ = 0.9 0.3911 0.0006 0.0007 0 0.0006

Table 4: P-values of the proposed LR and RB tests at different quantile levels

τ for the null: H03 : β2 = 0; β̂2 is the estimated coefficient under the inequality

constraints.

From Table 4, we find out that under the constraint β1, β2 ≥ 0, the RB
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test rejects H03 for four distinct quantile levels at α = 0.1 level, while the

LR test only rejects the null at higher quantile levels τ = 0.8, 0.9. On the

other hand, unconstrained tests fail to reject H03 at the median level. Our

analysis suggests that a quantile ARCH(2) model seems to be appropriate

to describe the volatility behavior of this data set.

6. Regularity Conditions

In the following regularity conditions, χ ∈ (0, 1) and M <∞ are constants

that may take different values from line to line.

(C1) For some constant η > 0, the process {xi}ni=1 satisfies

max
0≤r≤R

sup
br<t1<t2<br+1

∥Hr(t1,F−1,G0)−Hr(t2,F−1,G0)

t1 − t2
∥4 ≤M,

∆4(H, k) = O(χ|k|) and max1≤i≤n ∥xi∥4+η ≤M .

(C2) The process {ϵi}ni=1 satisfies

max
0≤r≤R

sup
br<t1<t2<br+1

∥Dr(t1,F0,G0)−Dr(t2,F0,G0)

t1 − t2
∥4 ≤M.

Define F
(q)
r (t, x|Fk−1,Gk) =

∂q

∂xqP (Dr(t,Fk,Gk) ≤ x | Fk−1,Gk), br <

t ≤ br+1. There exist c > 0 s.t. for 0 ≤ q ≤ p,

max
0≤r≤R

sup
br<t<br+1,|u|<c

∥F (q)
r (t,Hr(t,Fk−1,Gk)

⊤u | Fk−1,Gk)

− F (q)
r (t,Hr(t,F∗

k−1,G∗
k)

⊤u | F∗
k−1,G∗

k)∥4 = O(χk)
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(C3) For some c > 0 and ϵ > 0, assume that

ϵ ≤ min
0≤r≤R

inf
br<t<br+1,|x|<c

|fr(t, x | F−1,G0)|

≤ max
0≤r≤R

sup
br<t<br+1,x∈R

|fr(t, x | F−1,G0)| ≤M,

max
0≤r≤R

sup
br<t<br+1,−c<x1<x2<c

|fr(t, x1 | F−1,G0)− fr(t, x2 | F−1,G0)

x1 − x2
| ≤M,

max
0≤r≤R

sup
br<t1<t2<br+1

∥fr(t1, 0 | F−1,G0)− fr(t2, 0 | F−1,G0)

t1 − t2
∥2 ≤M.

(C4) Let λ1(·) be the smallest eigenvalue of a matrix. Assume ∃ ϵ > 0,

min
0≤r≤R

inf
br<t<br+1

λ1[E{Hr(t,F−1,G0)Hr(t,F−1,G0)
⊤}] ≥ ϵ.

(C5) Assume inf0≤t≤1 λ1(Ω(t)) ≥ ϵ.

Conditions (C1) and (C2) require the data generation mechanism of

{xi}ni=1 and {ϵi}ni=1 to be smooth between breakpoints, and the processes

{xi}ni=1 and {F (q)
r (t, x | Fk−1,Gk)}ni=1 to be short-term dependent with ex-

ponentially decreasing dependence measure. Conditions (C1)-(C2) together

imply that the process {xiψτ (ϵi)}ni=1 is piecewise stochastic Lipschitz contin-

uous and short-term dependent, and therefore n−1/2
∑

i xiψτ (ϵi) converges

to a Gaussian process by Proposition 5 of Zhou (2013). Condition (C3) as-

sumes that the conditional density fr(t, x | F−1,G0) is bounded away from

0 and infinity, Lipschitz continuous in x and stochastic Lipschitz continuous
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in t. These are common assumptions required to establish the asymptotic

properties of quantile regression. Condition (C4) and (C5) require the de-

sign matrix and the long-term covariance matrix Ω(t) to be positive definite,

and imply that the limit of Kn/n is positive definite.

Supplementary Material

The online supplementary material contains additional simulation results

and proofs of the theoretical results presented in Section 3.
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