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Abstract:

‘We consider parameter inference for linear quantile regression with non-stationary
predictors and errors, where the regression parameters are subject to inequality
constraints. We show that the constrained quantile coefficient estimators are
asymptotically equivalent to the metric projections of the unconstrained estima-
tor onto the constrained parameter space. Utilizing a geometry-invariant prop-
erty of this projection operation, we propose inference procedures - the Wald, like-
lihood ratio, and rank-based methods - that are consistent regardless of whether
the true parameters lie on the boundary of the constrained parameter space. We
also illustrate the advantages of considering the inequality constraints in analyses

through simulations and an application to an exchange rate time series.

Key words and phrases: piecewise locally stationary time series, quantile regres-
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1. Introduction

Quantile regression has become a powerful method for analyzing the dis-
tributional relationship between the responses and the predictors since the
seminal work by Koenker and Bassett| (1978). While a significant amount
of work focuses on scenarios with independent observations, quantile re-
gression has been studied under various time series settings. For example,
the quantile autoregression model and the quantile autoregressive condi-
tional heteroskedasticity model were proposed in Koenker and Xiao| (2006)
and Koenker and Zhao| (1996), respectively. [Portnoy (1991) studied the
asymptotics of regression quantiles in an m-dependent setting. Koul and
Mukherjee| (1994) considered the case where the errors are stationary and
long-range dependent Gaussian random variables.

Analyses on non-stationary time series where the data generating mech-
anism of the series evolves over time have attracted increasing attention in
recent years, as non-stationary behaviors have been observed in temporally
ordered data collected from a wide range of practical applications. As a
special kind of non-stationary time series, a locally stationary process con-
sidered by [Zhou and Wu| (2009) allows the time series to evolve smoothly
over time and covers many non-stationary processes. Later on, Zhou (2013)

introduced a piecewise locally stationary process, which allows the under-



lying data-generating mechanism of the series to change abruptly around a
finite number of breakpoints and smoothly evolve in between. Note that the
locally stationary time series does not allow abrupt changes. Consequently,
if no breakpoints are present, the piecewise locally stationary process will
reduce to a locally stationary class. Due to its ability to capture general
forms of non-stationary behavior in both predictors and errors, this piece-
wise locally stationary framework has been assumed in subsequent time
series literature such as|Zhou (2015); [Wu and Zhou (2018); Rho and Shao
(2019), among others. We also adopt the piecewise locally stationary frame-
work in this paper, and we refer the readers to Section 2.2 for the detailed
definition and discussion of piecewise locally stationary time series. See
also Dette et al| (2011); Kreiss and Paparoditis (2015); Dahlhaus et al.
(2019); Hu et al. (2019); Das and Politis (2021); Kurisu| (2022); |[Basu and
Rao| (2023) among others for recent developments on locally stationary time
series analysis. Though the piecewise locally stationary time series models
are quite flexible, we point out that there are still some non-stationary be-
havior which cannot be captured by the piecewise locally stationary class.
One prominent example is the class of unit root processes.

Consider the following non-stationary time series quantile regression at



a given quantile level 7:
yi = 11 Bo(7) + €iry i=1,2,...,m, (1.1)

where {z; = (1,2i2,...,25) "}y is a p dimensional piecewise locally sta-
tionary time series of predictors that always include the intercept, fo(7) =
(Bi(7), ..., Bp(T))" is a p dimensional vector of coefficients and ¢;, is the
error process that could be dependent on different quantiles 7. We shall
write Bo(7) and €, as [y and ¢; in the sequel to simplify the notation if
no confusions will arise. For identifiability, we require the 7th conditional
quantile of the piecewise locally stationary error process ¢; given x; to be 0.

In this paper, we consider the inference of model when the re-
gression coefficients 3y are subject to inequality constraints. Inequality
constraints are sometimes necessary to ensure model validity (e.g., an au-
toregressive conditional heteroskedasticity model requires all coefficients to
be non-negative). There are also scenarios where prior knowledge suggests
that certain constraints should be imposed. In demand analysis, it is usu-
ally reasonable to assume that the demand for a product decreases as the
product’s price increases, so the coefficient of price could constrained to be
non-positive when regressing demand on price. As another example, He and
Ngl (1999) studied the degradation of roof flashing of U.S. army bases and

naturally assumed that the percentage of roof flashing in good condition



could only decrease over time.

Although inequality constraints are commonly encountered in applica-
tions, they are sometimes overlooked in the analyses due to the lack of
available methods. However, taking the inequality constraints into account
offers at least two advantages. First, when the inequality constraints are not
considered, it can be difficult to carry out further analysis when the fitted
parameters fail to satisfy the constraints. Second, considering the inequal-
ity constraints can restrict the parameters into a smaller space, thereby
improving the estimation accuracy and hypothesis testing power.

For quantile regression, Koenker and Ng| (2005]) proposed an algorithm
for parameter computation under inequality constraints. |Parker| (2019))
studied the asymptotics of the constrained quantile process for independent
data. |Liu et al.| (2020) and Wu et al. (2022) considered [;-penalized quantile
regression with inequality constraints. [Qu and Yoon| (2015)) utilized con-
strained quantile regression to ensure monotonicity in their nonparametric
quantile process model. As far as we know, no results on (non-stationary)
time series quantile regression with inequality constraints are available in
the literature.

In this paper, we aim to develop inference methods for constrained

quantile regression where both the predictors and the errors are piecewise



locally stationary. With the observation that the constrained quantile es-
timator of 3, can be approximated by a matrix projection of the uncon-
strained estimator, we derive the limiting distribution of the constrained
quantile coefficient estimator. We also consider a likelihood ratio test and
rank-based test for parameter inference under our setting and establish their
asymptotic properties.

However, direct inference based on our asymptotic results is challeng-
ing because the limiting distributions of the estimated coefficients and test
statistics are non-standard and involve 1) the matrix projection operation,
which is not continuous when the coefficients are at the boundary; and
2) the conditional density of the errors and the long-run covariance ma-
trix, both of which are both unknown and change over time with possible
jumps. To address these issues, we propose a projected multiplier bootstrap
procedure to approximate the limiting distributions.

Our bootstrap algorithm utilizes a simple convolution of block sums of
the quantile regression gradient vectors with i.i.d. standard normal ran-
dom variables to consistently approximate the limiting distribution of the
unconstrained estimator under complex temporal dynamics. The key in
the projected multiplier bootstrap is to notice that the projection direc-

tion can be estimated consistently using the Powell sandwich estimator



(Powell (1991)) under smoothly and abruptly time-varying data generat-
ing mechanisms of the predictors and errors. The limiting distribution of
the constrained estimator can then be approximated by projecting the con-
volution term from the multiplier bootstrap onto this estimated direction.
The geometry-invariant property of the projection operation ensures the
consistency of the projected multiplier bootstrap procedure, regardless of
whether [ lies on the boundary of the constraints.

The remainder of this paper is organized as follows. In Section 2, we
formally introduce the problem settings and review the piecewise locally
stationary framework. Section 3 shows our main results. More specifically,
we study the asymptotic properties of the constrained quantile estimator,
propose the likelihood ratio test and the rank-based test in Section 3.1,
and introduce the projected multiplier bootstrap algorithm in Section 3.2.
Simulation studies and a real data example are given in Sections 4 and 5,

respectively. Section 6 presents the regularity conditions.

2. Preliminaries

2.1 Settings

In model (1.1]), assume that f, satisfies the inequality constraints C'5y > ¢,

where C is a ¢ X p full rank matrix with 1 < ¢ < p and ¢ is a ¢ dimensional



2.1 Settingss

vector. By transformation of variables, the constraints can be simplified
into

Poe@, Q=A{B....B)|8=07=1,..q} (2.1)

As a further note, we point out here that the theory and methodology of
the paper are applicable when the regression parameters 3, are confined to
any convex polyhedral cones. For simplicity and clarity, we will stick to the
cone @ in this paper.

Let Bn be the estimated coefficients when the inequality constraints

(2.1) are ignored, Koenker and Bassett| (1978)) showed that

n

B = argmin » ~ p.(y; — x] B), (2:2)
BERP Ty

where p,(z) = #{r — I(z < 0)} is the so-called check function. Then f,,
the estimated coefficient under the inequality constraints, can be naturally

estimated by

B, = arguin 3 pr (3 — 7). 23
-

Solving ([2.3) is a quadratic programming problem and can be tackled with
the algorithms proposed in [Koenker and Ngj (2005)). However, the asymp-
totic behavior of Bn with piecewise locally stationary predictors and errors

is unclear and will be investigated in this paper.



2.2 Piecewise Locally Stationary Time Series Models9

2.2 Piecewise Locally Stationary Time Series Models

We adopt the class of piecewise locally stationary processes in |Zhou (2013])
to model the predictors and errors.

We call {¢;}" ; a piecewise locally stationary process generated by fil-
tration F; and G; with R break points if there exist constants 0 = by < b; <

... <br <bgry1 =1 and non-linear filters Dy, ..., Dg, such that

€ = Dr<ti7‘Ea gl)? br < ti S br-i—la (24>

Where tl = z/n, E = {...,770,771,...,7%}, gz = {"'7(07(17"'761'}7 and

{ni}s2_ and {¢;}2 . are independent i.i.d random variables. Without
loss of generality, we assume {x;}! ; shares same break points as {¢;}" |,

and let

€Ty = Hr(tia‘/__-i—lagi% br < tz S br—i—lv (25)

where Hy, ..., Hg are non-linear filters.

The piecewise locally stationary process can capture a broad of class
non-stationary behavior in practice because it allows the underlying data
generating mechanism to evolve smoothly between breakpoints (provided
that the filters are smooth in ¢) while undergoing abrupt changes at these
breakpoints. Note that we include the filtration F;_; and F; into x; and

€;, respectively, to accommodate possible auto-regressive behavior in the
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predictors; that is, z; may contain lagged values of the response. Other in-
formation that may influence both the predictors and the errors is captured
in G;. Examples of piecewise locally stationary processes under the current

formulation can be found in Wu and Zhou (2018).

Remark 1. As pointed out by one referee, when auto-regressive type re-
cursions with break points exist in the data generating mechanism of the
predictors or the errors , they cannot be written exactly in the form of
or . In particular, observations immediately after the break points will
be influenced by those breaks via the auto regression and therefore the distri-
butions of those observations will not be smoothly varying. We remark here
that the influence of those break points on subsequent observations are typ-
ically transient and become negligible very fast. In other words, under mild
conditions the piecewise locally stationary model is still a good approxima-
tion to the data generating mechanism when auto-regressive type recursions
with breaks exist. In particular, asymptotic results in this paper are not

influenced by this asymptotically negligible difference.

To study the asymptotic property of a piecewise locally stationary pro-
cess, we need to define a measure of its temporal dependence structure.
Intuitively, the dependence of a process can be evaluated by replacing the in-

puts (n; and (;) k steps earlier with corresponding in independent and iden-
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tically distributed (i.i.d.) copies and comparing the change in the output (x;
and ¢;). A larger change in the output indicates stronger dependence. Let
I llo = {E(] - )"}/ denote the £, norm and assume max;<;<, ||€|, < oo
for some v > 1, we define the kth dependence measure for {¢;}" , in L,

norm as

A,(D,k) = max sup || D.(t, Fr,Gr) — D.(t, Fi, G)llos

0<r<Rp, <t<br41

o0
1=—00

where F{ = {nk, Mk—1,- - -0 N—1, - - -}, 0§ is independent of {n; and

is identically distributed as 79, and the filtration Gj is defined in the same

way. The kth dependence measure for {z;}_; is defined similarly as

A,(H, k) = max sup || H,(t, Fx—1,G%) — H.(t, F5_1,Gi)llo-

0<r<Ryp, <t<b,yq

3. Methodology and Its Theoretical Properties

3.1 Test Statistics

Suppose that we are interested in testing:

Ho: B =0,8€Q wvs. Ho:8M+£0,8€Q (3.1)

where A = {ai,...,a,} C {1,...,p} with a1 < ... < a, be a set of in-
dex and 2 = (2,,,... ,Zq,) ' is a subvector of the p dimensional vector
= (z1,...,2,) . We will consider the likelihood ratio test and the rank-

based test as these two types of test are widely used for quantile coefficients
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inference of independent data without inequality constraints (Koenker and
Machadol (1999)).
Let A€ denotes the complement of set A, define the likelihood ratio test

as

TLR — Z {pT (y: (xZ(AC))TBY(LAC)) — pr(yi — xZTBn)} , (3.2)

i=1
where B,SAC) is the estimate of [y under the restricted model that only in-

(A9)

cludes z;" ’ as covariates. The test statistic /2% is the likelihood ratio test
defined in Chapter 3 of [Koenker| (2005) without normalization. It compares
the empirical loss under the restricted model and the full model, and a large
value of T is in favor of the alternative hypothesis.

Let 1, (u) = 7 —I(u < 0) be the left derivative function of p,(-). Define

the rank-based test as
TfB = (Sl,n - SO,n)TDgl(Sl,n - SO,n)a (33>

where Sy, = Y. - (y; — xIBn)ng), Son = 2. Ur (Z/z' — (xz('AC))TBg C))I'Z(A)
and D, = zi(xz(A))T(ng)). Note that the rank-based test in Koenker
(2005) is constructed by the regression rankscores, which are the solutions
to the dual problem of Equation . Because the regression rankscores

for observation ¢ at 7 could be approximated with 7 — ¢, (y; — :L‘ZTBn), we

construct our rank-based test with the 1, function directly. Unlike the
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rank-based test without inequality constraints, T2P requires fitting both
the restricted model and the full model because 51, may not be 0 with
inequality constraints imposed. Also note that while D,, (times a constant)
standardizes the rank-based test with no inequality constraints and inde-
pendent observations, this is not the case in our setting. We still include
D,, in our test statistic T#P for consistency with other quantile regression
rank-based tests.

To study the properties of f£,, TER and TEB, we need the following

lemma.

Lemma 1. Under Conditions (C1)-(C4) given in Section 6,

sup > o =] B) = pr(yi — 2] Bo) } + (B — Bo) "G
|B—Bo|<n—1/2logn |
5 (8 B0) Kl — )| = 0,(1)
where G, = Z?:l xﬂ/JT(Ei) and K, = Z?:l E{fr(# 0 | Fi1, gz)xzx;r}f

fr(t7x|fk—17gk> = %P(D’I‘(t7fk7gk> S X | ]:k—lugk)f fOT b?‘ <t S b'r—‘rl-

Lemma 1 shows that the difference in the check loss function Y {pT (yi—
z) B) — pr(yi — x?ﬁo)} can be approximated by a quadratic function of 3.
This result is well-known when observations are independent (Bai et al.
(1992)). We show that it also holds when the predictors and errors are

piecewise locally stationary.
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Since Lemma 1 holds for any |3 — By| < n™'/2logn, it naturally holds
for such  that meets the inequality constraints. Therefore, the convexity of
p- implies the consistency of both Bn and Bn The Bahadur representation
(Bn — fo) — K Gy, = 0,(n™"/?) can also be derived from Lemma 1.

Define the metric projection onto region () with respect to a positive

definite symmetric matrix ¥ as

Pox(:) = arg;ggin(ﬂ —)TE(B-). (3.4)

For x € R and 8 € Q, let

Ogx(B,z) = nli_{IOlO{PQ,E(nﬁ +z) — np}. (3.5)

This metric projection has several important properties. In particular, by
Proposition 1 in [Zhou| (2015), if ¥ is positive definite, Pg x(a18+z)—a18 =
Pos(azf + ) — asf for a; and ay large enough, regardless of whether £ is
on the boundary of (). Intuitively, this geometry-invariant property is due
to the fact that, for any given ¢, the geometry or shape of d-neighborhoods
of af inside the cone is always the same for sufficiently large a. The lat-
ter geometry-invariant property of guarantees the existence of the limit in
Equation and the metric projection Pg x(-) plays a key role in investi-
gating the asymptotic properties of Bn In the following investigation, this

geometry-invariant property of the metric projection will be the key that
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inspires our multiplier bootstrap technique for the practical implementation
of our theoretical results.

The project metric approach was first investigated in the context of
statistical inference for inequality-constrained time series regression prob-
lems in Zhou| (2015). They claimed that for least-squares regressions,
Bn = Pox(B,) with ¥ = 37 z;27 /n. Such a relationship does not hold
for our quantile regressions, but Bn could be approximated by the projection
of Bn with respect to ¥ = K,,/n. It is worth mentioning that the metric
projection methodology can be also applied to i.i.d. data.

By Lemma 1 and the Bahadur representation of j3,, we have

sup Y Aoy — 2] B) = pryi — 2 Bo) }

|B—Bol<n=1/2logn,BeqQ |i—1
~ 1
+ (B — Bo) " Kn(Bn — Bo) — 5(5 — Bo) " Kn(B — Bo)| = 0p(1).
Therefore solving the optimization problem ([2.3)) is asymptotically equiva-

lent to finding the minimizer of (ﬁ—ﬁo)TKn(Bn —Bo) — %(ﬁ—ﬁo)TKn(B—ﬁo)

constrained to f € @, which is equivalent to finding the maximizer of

(B— Bn)TKn (B—B,) constrained to 3 € Q. According to (3.4), the solution

to the latter maximization problem is Pg x, (4) = P xa (fn)-

Because

A

V(B = Bo) & VP s (Br) — Vo
~ PQ}%(\/ﬁﬁO + \/ﬁKglGn) - \/ﬁﬁ()?
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it is then easy to show that

V(B — Bo) = Ogm(Bo, M), (3.6)

where = denotes weak convergence and U is a normal distributed random
variable and the explicit form of M is given later. The limiting distributions
of TR and TEB are also be derived by Equation and continuous map-
ping theorem. The above discussion is formally summarized in Theorem
below.

The following notations are needed for Theorem|[I] Define the long-term

covariance matrix

o

Qt) = Z cov{H,(t, F_1,Go)¥-(D.(t, Fo, Go)), H.(t, Fi—1, Gi)- (D, (t, Fi, Gi)) }

1=—00

for b, < t < by Write M = [" M(t)dt where M(t) = E{f.(t,0 |
For,Go)Hy(t, Fr, Go) Hy(t, F-1,Go) T} for b, < t < by, and Mo = [} My(t)dt
where Mo(t) = E{f,(t,0 | F_1,Go) H\")(t, F_1, Go) H\" (t, F_1,Go) T}. For
the rank-based test, let MEP = fol MEB(t)dt where MEB(t) = E{f.(,0 |
For, Go) HEV (8, F 1, Go)HY (8, F 1, Go) T}, and MPB = [ MBB(¢)dt where
MPEB(t) = E{f,(t,0 | F_1,Go)H\V(t, F_1,Go)H,(t, F-1,Go) " }. Write D =

fol D(t)dt where D(t) = E{H™ (t, F_1,Go)H™M (t, F_1,Go) T}

Theorem 1. Under regularity conditions (C1)-(C5), we have
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(i) /(B — Bo) = Og(Bo, MU, where U follows a normal distri-
bution with mean 0 covariance fol Q(t) dt;

(i) TH = g{Ogum (B MUY, My, U} —
91{Og.m (ﬁo, MUY, M, U} under Hy, where gi(x,y,2) = %xTya: — 2l

(iii) TRE = g2 { MPPO 4 a(Bo, M~1U), MEEOq py (85", MG UA), D}
under Hy, where go(x,y,2) = (x —y) 27z —y).

The limiting distributions of v/n(B, — Bo), TXR and TEB involves un-
known quantities Q(t), f.(¢,0 | F_1,Go) and Sy. Because Q(t) and f.(¢,0 |
F_1,Go) may change abruptly at breakpoints under the piecewise locally
stationary framework, estimating them directly is challenging. Further-
more, we cannot simply replace 3y with 3, because ©¢ (B, x) is not contin-
uous in 4. Additionally, Bn has a non-zero mass at a point on the boundary
of the convex cone @) if the true [y is on the latter boundary. As a result, the
asymptotic distribution given in Theorem [I| cannot be applied directly for
inference. Instead, we use the projected multiplier bootstrap as a solution
to these challenges in the next subsection.

Before concluding this subsection, we will show the consistency of K, /n

to the matrix M in the following proposition below.

Proposition 1. Under reqularity conditions (C1)-(C3), we have

1 /n = M|, = O(1/v/n).
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3.2 The Projected Multiplier Bootstrap

Now, we consider bootstrapping the limiting distribution of \/ﬁ(ﬁn — Bo).
To approximate the behaviour of U, let m be a pre-specified block size,

and m* = n —m + 1. Define

- 1 m
v, = ——(Wim — —w10) Vi, 3.7

where @, , = Z;Z"_l Ur(€5)25, €& = yi —x; By and {V;}7, follow i.i.d stan-
dard normal distributions which are independent of {F;}° _ _and {G;}3° .
While the block bootstrap is commonly used in time series analysis, as in-
dicated in |Zhou! (2015)), this method is unable to preserve the complex de-
pendence structure of the piecewise locally stationary processes currently
assumed. Instead, the multiplier bootstrap, as given in Equations , of-
fers an alternative. This approach convolutes the block sums of the gradient
vectors from the quantile regression, which locally estimate the covariance
matrix (t), with i.i.d standard normal weights {V;}. It is shown in [Wu
and Zhou (2018) that the behaviour of U can be approximated by V,,,.
Let ¢(-) be a kernel density that satisfies [ ¢(z)dz =0, [ ¢(z)z?dr <
M, [¢*(x)de < M, and [ ¢"*(x)dx < M for some positive constant M.

Define
&/ h)m]
Sy ;1 — , (3.8)
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where h — 0 is a bandwidth parameter. This Powell sandwich estimator
= has been widely used to estimate the covariance matrix for quantile
regression with independent observations (Powell| (1991)). We can show
that it can consistently estimate the matrix M (namely the projection
direction) in our settings.

Our remaining task is to approximate the projection operation. Because

V(B — Bo) = Poz, (Vnbo + ;W) — v/nfo,

one obvious way is to replace By with Bn in the above equation. However, as
we mentioned before, this naive replacement is inconsistent because under
Hy (fBo is at the boundary), v/nf3, = v/nfo + Op(1) and the O,(1) error
term is not ignorable. Alternatively, by the geometry-invariant property of

the projection operation, when n is large enough,

Po.zn(Vinfo + W) — Vo = Poz, (0o + =, W) — '/ fy.

Therefore we could instead replace n'/43, using n'/43, to reduce the mul-
tiplication error to 0 asymptotically.

In practice, the block size m in ¥,,, and the bandwidth A in =} should be
carefully chosen. From the bias variance trade-off view, the approximation
of U will be biased if m is too small to capture the dependence structure,

while a larger m will induce a greater variance. In fact, a similar argument
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as those in Proposition 4 of Zhou| (2015) yields that the variance and bias
of the bootstrap are of the order O(m/n) and O(1/m), respectively. We
also point out that a larger size of block may contain some abrupt change
points in the predictors or errors and thus may lead to a larger variance
of ¥,,. The bandwidth A plays a similar role as the bandwidth of a kernel
density estimation, and a larger h is associated with larger bias but smaller
variance.

We use the minimum volatility method (Chapter 9 of |[Politis et al.
(1999)) for the selection of block size m. The idea is that the estimated
value should be stable when m is chosen within the reasonable range. More
specifically, let m; < ... < mg be K candidates of block size. For each
candidate my, we calculate

m

o = S (i = B 0) (@, = o)
" my(n —my + 1)

j=1
where mj = n —my + 1. The my that minimizes the standard error of
{mG - ?iig is selected. The bandwidth A is also chosen by the minimum
volatility method (Wu and Zhou| (2018)).

The detailed steps to construct the confidence interval using the pro-

posed bootstrap method are summarized below.

Step 1: Select the block size m with the minimum volatility method and

the bandwidth A with the minimum volatility method.
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Step 2:

Step 3:

Step 4:

Fit the constrained quantile regression with x; get Bn. Calculate

= as Equation (3.8]).

For ¢ =1,...,m"*, generate i.i.d standard normal variables V;, and
calculate U, as Equation 1) Compute A, = Poz, (nl/‘lﬁn +

Yn) — nl/%n where T, = E;l\llm.

Repeat Step 3 for B iterations to get {/A\n,l, e ,/A\n,B}. If /A\n,k is
a scalar, calculate the /2-th and (1 — «/2)-th sample percentile
of {A,x}E , denoted by Guso and ¢i_a/2. The 100(1 — @)% confi-
dence interval of 3, is given by (8, — Gi—a/2/ V1, B, — aj2/\/1).
Otherwise, calculate the Euclidean distance between the vector
Ay and its center (sample mean of {A,x}2 ,, denoted by A,).
Then compute the corresponding a//2-th and (1 — «/2)-th quan-
tiles of the distance, say cia /2 and cil_a /2, respectively. Finally, the

100(1 — )% confidence interval of 3, can be derived via cza 2 <

V(B = Bn) = Anllz < di_ao-

The limiting distribution of TX% and T*5 under the null hypothesis

can be bootstrapped similarly. Define

) (A9)T

N GO s
Z =y A 39
i=1
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(A) T

=RB Z i Gl/h (3.10)

(€49 1)z A (AT
:oRf—Zd) /> , (3.11)
and
S 1 (A9 M _(ac)
Yo, = —(w; ) — — @1, Vi 3.12
0, ; (mm*)( ) o, ) (3.12)
Ac¢ i+m— ~(AC A¢ ~(AC A€ 5(AC
where @7, = S0 g (7)2f" and 1) = y; — ()T,

The algorithm for implementing T2 and T2P is given below.

Step 1: Select the block size m and the bandwidth A by the minimum

volatility method.

Step 2: Fit the constrained quantile regression with x; and xEAC) as covari-

ates, respectively, to get Bn and 37({46).

(a) For TER: Calculate TE as Equation (3.2), and get =, and

Eo. as Equation (3.8) and (3.9)).

(b) For TFB: Calculate TP as Equation (3.3), and get =F*F and
="} as Equation (3.10] - ) and (| -

Step 3: For i =1,...,m*, generate i.i.d standard normal variables V;, and
calculate ¥,, and ¥y, as Equation (3.7) and (3.12). Compute
Ay = Pz, (4B, + T,,) — n'/48, and A, = Pos,, (n/1507) +

{ 1/4 H(A°) % =1 \ ——1
Ton) —n*6y" ) where T,, = ='W, and Ty, = ZonYom-
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(a) For TEE: Compute the bootstrapped test statistic TL** =
gl(AOJ’La E:0,ha l:[;0,77"0) — g1 (ATM Eh) \I]m)

(b) For THB: Compute the bootstrapped test statistic T/8* =

gQ(EfBAna E(])%,E[\O,nv Dn/n)

Step 4: Repeat Step 3 for B iterations to get {T5*, ... TLE} and {TEB*, .
The resulting p-values for T-% and TP are B~' ", I(TER > TLE)

and B~' >, I(TEB > TEB*) respectively.

n

Theorem [2[ shows the projected multiplier bootstrap procedure is con-

sistent, and can detect local alternatives with n='/? rate.

Theorem 2. Suppose that reqularity conditions (C1)-(C5) hold, the block
size m satisfies m — oo, m/n — 0, and the bandwidth h satisfies hlog®n —
0, nh®log™*n — oo, we have

(i) A = Oqm(Bo, MT'U);

(ii) For any a € (0,1), let d:® be the (1 — «)-th quantile of
gl(f\o,n,Eo,h,\Ilo,m) - gl(f\n,Eh,\Ifm) conditional on the original data set,
then under Hy, P(TER > dX) — a as n — oo;

(iii) For any o € (0,1), let d%P be the (1 — «)-th quantile of
EfBA —RB

ga2( s 2ok Ao,n, D,,/n) conditional on the original data set, then under

Hy, P(TEB > dBP) — o as n — oo;

n

.. TRBY.
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(iv) Under H,: ﬁ(()A) = L, € QQ where L,, is a deterministic sequence sat-
isfying n'/?|L,| — 0o, Ln(nh?)~1/? = 0, L,n?/h?® = 0 and mlog®n/n — 0,
where L, = max(|L,|,n""/?log*n), we have P(T " > d:®) = 1 asn — oo

and P(TEB > dBB) — 1 asn — co.

Finally, we shall perform a theoretical investigation of the asymptotic
power performance of our constrained tests and compare it with that of the
unconstrained counterparts. We shall carry out this investigation through

a simple scenario. Specifically, we consider model (|1.1]) and test
Hozﬁi:(] V.S. Halﬁi#o

for some 1 < ¢ < p. Recall that j; is the ith component of 5y. The inequal-
ity constraint considered is 8; > 0. We shall perform level a tests of H
using confidence intervals of ; with or without the inequality constraints.
Denote by Powerconstrained @and Power nconstrained the asymptotic powers of
the constrained and unconstrained tests, respectively. The following propo-

sition summarizes our theoretical finding.

Proposition 2. Under conditions (C1)-(C4), the assumption that 0 < a <

0.5, and the alternative that 3; = ¢/\/n with some ¢ > 0, we have

Powerconstmined > POwerunconstmined'
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Proposition [2| states that under the considered scenario, the constrained
test is strictly more powerful than its unconstrained counterpart asymptot-
ically. This result is intuitively plausible as parameters are typically easier

to estimate and test in smaller parameter spaces.

4. Simulations

In this section, we conduct a Monte Carlo simulation to examine the per-
formance of our proposed method.

Our simulation is firstly based on the model

vi = Bo + Biwi + e, (4.1)

with the inequality constraints Sy > 0 and 5, > 0. We set 5y = 1 through-
out the simulation and vary ;.

We consider the following three different settings based on model (4.1):

(i) Generate {z;} and {e;} from two independent AR(1) models with
coefficient 0.5. This setting represents a stationary model with ho-
moscedastic errors. Following (4.1, we note that y; = Gy + F, ' (1) +
Bix;+€; -, where €; ; = ei—Fejl(T). Here F,, represents the cumulative

distribution function of e;. Observe that the conditional 7th quantile

of € - given z; is 0.
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(ii) Generate {z;} from an AR(1) model with a coefficient of —0.3 when

t; = £ < 0.5 and an AR(1) model with a coefficient of 0.3 when

3l

t; > 0.5. Furthermore, let e; = 0.7 cos (27t;)e;—1 + n; where 7; follows
an i.i.d standard normal distribution independent of {z;}. Let ¢;, =
e; — F-1 (7). This setting represents a non-stationary time series with

€

errors independent of the predictors.

(iii) Generate {z;} and {e}} as in Setting (ii). Let e; = (1 +22)"/2¢}/2. In
this case ¢, = (1 + 22)/2(e; — F.'(7))/2. This is a non-stationary

(3

quantile regression model with dependent {e¢;} and {z;}.

Secondly, we consider another model below as one of the reviewer suggested

Yi = Bo+ Bixi1 + Poxin + e (4.2)

with the inequality constraints [y, 51,82 > 0. For simplicity, we also set
Bo = 1 throughout the simulation and change the values of 5, and ;. We

consider two distinct settings based on the model (4.2)):

(iv) Generate {x;; } from an AR(1) model with the coefficient 0.5 and {x; 2}
from an MA(1) model with the coefficient 0.3. Let {e;} follow an AR(1)
model with the coefficient 0.5, independent of {z;} and {x;2}. Observe
that in this setting €, , = e; — F, ! (7). This setting represents a stationary

€

model with homoscedastic errors.
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(v) Generate the predictors as
Ti1 = (05 — 0.5ti)xi_171 + n;, Ti2 = (025 + 0.5151')‘7}2‘_1,2 + i,
where {n;} are i.i.d. standard normal. Furthermore, generate {e}} as

0.6 cos(2nt;)er_; +m;, 0<t; <0.8,
Let e; = |1 + @1 + @iolef /4. In this case €, = |1 + z;1 + 0|(ef —

F'(7))/4. This setting is a non-stationary case with errors dependent on

the predictors.

Additionally, our proposed method is also compared to the traditional
quantile regression inference with inequality constraints where the predic-
tors are i.i.d. (Parker| (2019)). We still consider the model with the
inequality constraints [y, 81, 82 > 0 but the predictors are i.i.d. random

variables. Specifically, the data generating mechanism is given by

(vi) Assume {x;1}, {z;2} and {e;} from (4.2)) are independently gener-
ated from a standard normal distribution. Then the error process is

€ir = € — F_,I(T).

€

The block size m and the bandwidth h are chosen by the minimum

volatility method. The bootstrap size is set as 1000 for all the models and
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the simulation uses 1000 generated data sets. A normal kernel function is
used to get =, Zo.n, Zo,rp and Egp. Due to page constraints, results for set-
tings (i)—(iii) of model are presented in Table 1 of the supplementary
material. For settings (iv)—(v) of model (4.2)), the simulated coverage prob-
abilities for the slopes in the binding case ($; = 2 = 0) and non-binding
case (; = 0.5, 5 = 1) are shown in Tables . Also we display the Type

I error of the testing
Hy:0,=0,=0 vs. H,:atleast one of 5, or B >0 (4.3)

for TER and TEB. For the ii.d. case in the model setting (vi), given
Bo =1 =1, wewishtotest Hy: 8o =0 v.s. Hg,: [y > 0. The likelihood
ratio test (LR(i.i.d.)) and the regression rankscore test (RR(i.i.d.)) in
Parker| (2019)) are conducted, and the comparison results with our likelihood
ratio test as well as the rank-based test are shown in Tables [I] and 2l
According to Tables[1}2 and our results in Section S1 of the supplemen-
tary material, the performance of our method is reasonably good across the
first five model settings. Generally, as the sample size grows, our simulated
results approach closer to the corresponding nominal levels. The accuracy
of TER and THB does not deteriorate as the complexity of model increases,
and the coverage probability of the confidence interval is similar under the

binding and non-binding cases. On the other hand, our proposed tests
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a=5%
n = 400 n = 800

Quantile 0.1 0.5 0.8 0.9 0.1 0.5 0.8 0.9
Setting (iv)

LR 6.0 4.0 4.8 5.0 5.0 4.7 5.1 5.1

RB 5.8 4.6 5.3 6.2 6.2 4.7 5.8 5.4

CI(B) 93.8 96.1 934 934 942 949 948 94.8

CI(NB) 929 939 941 920 953 941 953 939
Setting (v)

LR 4.9 4.4 3.9 4.7 4.7 4.4 4.4 4.3

RB 6.4 5.7 5.7 5.6 5.4 5.9 5.4 4.7

CI(B) 96.4 93.1 95.7 96.1 96.8 942 93.8 94.7

CI(NB) 93.5 941 944 939 93.6 957 949 95.0
Setting (vi)

LR 3.6 4.1 4.4 4.6 5.2 5.1 5.9 4.5

RB 4.3 4.8 5.3 5.0 6.2 5.5 6.0 5.8

LR(i.i.d.) 4.4 4.6 4.4 4.5 3.5 6.0 4.4 5.1

RR(i.i.d.) 4.5 4.4 4.0 4.8 4.2 6.1 4.4 5.9

Table 1: Simulated Type I error rates o = 5% (in percentage) of the likelihood
ratio test (LR) and rank-based test (RB), and coverage probability of the con-
fidence interval (CI) for 51 and f2; (B) stands for the binding case while (NB)
stands for the non-binding case; LR(i.i.d.) and RR(i.i.d.) stands for likelihood

ratio test and regression rankscore test for i.i.d. data in [Parker| (2019).

demonstrate comparable Type I error rates to the likelihood ratio test and
regression rankscore test (Parker| (2019)) under the model setting (vi).

We also compared the empirical power when testing 5, = 0 in (4.1))
using the Wald test (implemented by constructing the confidence interval),
the likelihood ratio test and the rank-based test, with and without consider-
ing the inequality constraints. To ensure a fair comparison, we deliberately

specify the block size m so that the Type I error rates of all the methods are
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a=10%
n = 400 n = 800

Quantile 0.1 0.5 0.8 0.9 0.1 0.5 0.8 0.9
Setting (iv)

LR 11.2 8.9 9.1 8.6 9.5 8.5 8.7 9.5

RB 123 103 114 11.8 11.2 8.9 10.3  10.4

CI(B) 89.2 92.0 88.8 8.3 89.1 913 904 90.1

CI(NB) 88.5 88.6 88.8 86.7 89.9 888 90.8 87.9
Setting (v)

LR 8.9 8.0 7.1 8.6 9.2 8.1 8.2 9.0

RB 11.2 9.5 109 108 103 10.0 10.5 10.7

CI(B) 923 90.5 932 938 928 91.7 926 925

CI(NB) 90.7 91.0 90.1 889 89.1 92,5 91.2 90.7
Setting (vi)

LR 11.2 8.9 9.1 8.6 9.5 8.5 8.7 9.5

RB 9.5 8.5 11.1  10.6 11.6 9.7 109 111

LR(i.i.d.) 8.6 9.7 9.1 8.4 8.9 12.1 9.1 10.4

RR(i.i.d.) 9.0 9.7 8.6 9.1 8.9 11.6 10.5 10.9

Table 2: Simulated Type I error rates a = 10% (in percentage) of the LR, RB
tests, and coverage probability of CI for 5; and [s.

very close to the nominal level under Hy. Figure [1| summarizes our results
under Setting (iii), the results under the other two settings for tell a
similar story.

We observe in Figure [1| that the methods incorporating the inequality
constraints have higher power compared to those that do not. Our results
are consistent with simulations in |Andrews| (1998)), |[Farnan et al.| (2014) and
Yu et al.[(2019) under different settings, and confirms the benefit of utilizing
the information provided by the inequality constraints in achieving higher

statistical power. Among the three methods that account for the inequality
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Figure 1: Simulated power of the likelihood ratio test with/without inequality
constraints (solid/dashed blue), the rank-based test with/without inequality con-
straints (solid/dashed cyan), the Wald test with/without inequality constraints
(solid/dashed red) under Setting (iii).

constraints, we notice a slight advantage of the rank-based test over the

other two methods in terms of power, particularly when 7 = 0.8.

5. Exchange Rate Data

In this section, we apply our proposed method to the dataset of the per-
centage changes in Deutsche mark/U.S. dollar exchange rate measured in
10-minute intervals. The original data ranging from June 5, 1989 to June
19, 1989, was investigated in Chapter 3 of [T'say| (2005) and can be down-
loaded via the book The first 192 h of data are used in our data
analysis, resulting in a total of 1152 observations.

Figure 2| displays the dataset. We first apply the methodology in [Zhou

(2013) to test if there exists a structural change in the mean of the series.



32

The p-value of the robust test with 10000 bootstrap sample is 0.6327, hence
we do not have evidence against the null hypothesis of no structural change
in mean. On the other hand, the variability of the series appears unstable
from Figure 2 Consequently, we could test if there are some changes in
the second-order structure of the data. To this end, we employ the method
in [Zhou (2013) again and test constancy of the marginal variance and the
first-order auto-covariance of the series. Let x1, 9, ..., 21152 be the observed
time series. Since the mean remains constant, the latter two tests are
equivalent to testing structural change in mean for y; = x? and z; = ;141
Based on 10000 bootstrap samples, the corresponding p-values for the series
y; and z; are < 0.1% and 0.3919, respectively. Therefore, we conclude
that the time series x; is non-stationary with the major source of the non-
stationarity coming from the non-constant marginal variance. Consequently
it is necessary to model the predictors and errors as non-stationary time
series for volatility investigation of this series via quantile regression.
Next, we aim to fit a quantile ARCH model to this financial time se-
ries. Owing to mathematical requirements, the ARCH coefficients are con-

strained to be non-negative. Then we consider the following model

$12 = 5077 + ﬁl,rl'?_l + 62,7"7;12—2 + BS,TCE?—i& + €i,rs (51)

where By, > 0, B;» > 0,7 = 1,2,3, and ¢, is the error process. We first
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Figure 2: Time series plot of the percentage changes of the exchange rate between

the mark and dollar in 10-min intervals: time series length, 1152.

LR LR(NC) RB RB(NC)
7=0.1 03025 06558 0.0019 0.0357
7=05 00309 0.1692 0.0002 0.0208
7=08 0 0.0036 0 0
7=09 0 0 0 0

Table 3: P-values of the proposed LR and RB tests at different quantile levels
7 for the null Hyp1: f1 = 2 = B3 = 0; (NC) represents the corresponding tests
ignoring the inequality constraint.

apply the projected multiplier bootstrap methodology to test ARCH effect
of the model at various quantiles, i.e., Hy; : B1, = B2; = (3, = 0 for
7 =0.1,0.5,0.8,0.9. With 10000 bootstrap replicates, the p-values for LR
and RB tests under inequality constraints or not are shown in Table [3]
We observe in Table [3| that, the RB test rejects the null hypothesis
at all four different quantile levels while the LR test only rejects the null
hypothesis when 7 = 0.5,0.8 and 0.9. Moreover, the p-values for both

LR and RB tests usually become larger when the inequality constraint is
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ignored, especially for 7 = 0.1, 0.5 and 0.8. Specifically, the LR test actually
fails to reject the null hypothesis at 7 = 0.1 and 0.5 if the constraint is
ignored. This further illustrates the benefits of considering the inequality
constraints in terms of power. In addition, we observe stronger ARCH effect
at the 0.9 quantile level compared to the 0.1 quantile level, indicating an
asymmetric tail behavior. We also note that the LR test may not perform
robustly at lower quantile levels, leading us to favor the RB test.

Based on the significance of the ARCH effect, we reject the null Hy,;
and further test the hypothesis Hys : f3 = 0 with inequality constraints. It
turns out that the p-values for both LR and RB tests at different quantile
levels are larger than 0.05. Hence, we do not have strong evidence to reject
the null g3 = 0. Subsequently, we are interested in testing if Hyz : 2 = 0

with or without the inequality constraints f;, B2 > 0.

Bo LR LR(NC) RB RB(NC)
7=0.1 00026 04679 0.6963 0.0322 0.0743
T=05 00247 02350 0.7302 0.0669 0.5625
7=08 02030 0.0001 0.0002 0.0004 0.0015
=09 03911 0.0006 0.0007 0 0.0006

Table 4: P-values of the proposed LR and RB tests at different quantile levels
7 for the null: Hys : B2 = 0; BQ is the estimated coeflicient under the inequality

constraints.

From Table [d we find out that under the constraint £y, f2 > 0, the RB
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test rejects Hyz for four distinct quantile levels at a = 0.1 level, while the
LR test only rejects the null at higher quantile levels 7 = 0.8,0.9. On the
other hand, unconstrained tests fail to reject Hps at the median level. Our
analysis suggests that a quantile ARCH(2) model seems to be appropriate

to describe the volatility behavior of this data set.

6. Regularity Conditions

In the following regularity conditions, x € (0,1) and M < oo are constants

that may take different values from line to line.

(C1) For some constant n > 0, the process {x;}! , satisfies

H,.(t1,F_1,G0) — H,(t2, F_1,Go)

max sup I |la < M,
0<r<R br<t1<to<bri1 11 —ta
A4(H, k’) = O(X|k|) and maxi<i<n ||wi||4+7] S M.
(C2) The process {¢; }, satisfies
D, (t1, Fo, — D, (ta, Fo,
o TS I (t1, Fo,Go) (t2, Fo g0)||4 < M.
0<r<R br<t1<ta<bry1 tl - t2

Deﬁne F'r(q)(tax|‘7k—17gk) - o2 P(DT‘(t7~Fk7gk) S € | fk—lagk‘)a b’r‘ <

9z

t <b,11. There exist ¢ > 0 s.t. for 0 < g < p,

max sup |F\(t, H,(t, Fr-1,Gx) u | Fie1, Gr)

0<Sr<Ryp <i<byy,ul<c

= Bt Ho (8, Fioy, Gi) T | Fioy Gl = OKF)
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(C3) For some ¢ > 0 and € > 0, assume that

< mi inf t _
€= Orgr}nlganr<t<llygl,\x|<c|fT( - ’ 7 b go)‘

< t -~ <M
= 0, 0 e T I T GO A

|fr(t>5€1 | F-1,G0) — fr(t, 2 | F_1,Go)

max sup | < M,
0<r<Rp, <t<byq1,—c<m1<za<c T1— L2
t,0 | F_ — fr(te,0 | F_
max sup HfT( 1, ’ 17g0) f’/‘( 2 | 17g0)”2 SM
0<r<Rp, <ty <ta<brin t1 — 12

(C4) Let A\i(-) be the smallest eigenvalue of a matrix. Assume 3 € > 0,

min inf M\ [E{H,(t,F 1,G0)H.(t,F 1,G0) }] > €.

0<r<Rb,<t<bri1

(C5) Assume infoci<1 A1 (2(2)) > €.

Conditions (C1) and (C2) require the data generation mechanism of
{z;}"_; and {e;}_; to be smooth between breakpoints, and the processes
{z;}, and {Ft, x| Fu_s, Gr)}, to be short-term dependent with ex-
ponentially decreasing dependence measure. Conditions (C1)-(C2) together
imply that the process {x;1-(¢;) 1, is piecewise stochastic Lipschitz contin-
uous and short-term dependent, and therefore n=1/2 3" 2,0, (¢;) converges
to a Gaussian process by Proposition 5 of Zhou! (2013). Condition (C3) as-
sumes that the conditional density f,(¢t,z | F_1,Gp) is bounded away from

0 and infinity, Lipschitz continuous in x and stochastic Lipschitz continuous
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in t. These are common assumptions required to establish the asymptotic
properties of quantile regression. Condition (C4) and (C5) require the de-
sign matrix and the long-term covariance matrix €2(¢) to be positive definite,

and imply that the limit of K, /n is positive definite.

Supplementary Material

The online supplementary material contains additional simulation results

and proofs of the theoretical results presented in Section 3.
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