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1. Introduction

Fractional factorial designs are widely recognized as one of the most effective
tools for screening experiments. Traditionally, most research has focused on
these designs under the orthogonal parameterization (OP), where factorial
effects are defined through a set of orthogonal contrasts. However, baseline
parameterization (BP) has recently attracted growing attention, especially
in contexts where a clear null state or baseline level is naturally associated
with each factor. The BP defines factorial effects with reference to intrinsic
baseline levels of the factors, which can arise quite naturally in many appli-
cations (Mukerjee and Tang, 2012). For instance, in a toxicological study
with binary factors representing the presence or absence of specific toxins,
the absence of a toxin naturally serves as the baseline level for each factor.

Factorial designs under BP have been extensively studied in the context
of cDNA microarray experiments by [Yang and Speed (2002)), |Glonek and
Solomon| (2004)), and Banerjee and Mukerjee (2008), all of whom focused
on two-level full factorial designs. Mukerjee and Tang (2012)) extended
this work by investigating optimal two-level fractional factorial designs us-
ing the minimum aberration (MA) criterion under BP. The construction of
MA baseline designs was further developed by |Li, Miller and Tang| (2014]),

Miller and Tang (2016), Mukerjee and Tang (2016), and |Chen, Sun and



MA FRACTIONAL FACTORIAL DESIGNS UNDER BP 3

Tang (2021). More recently, Sun and Tang| (2022)) established a linear
relationship between OP and BP, demonstrating its utility for design con-
struction under BP with respect to estimability, optimality, and robustness.
Chen and Tang| (2023)) proposed MA factorial designs under mixed param-
eterization, including both OP and BP, for experiments in which some
factors have baseline levels while others do not. It is worth noting that
all the above studies were limited to two-level designs due to their sim-
ple structure. However, real-world applications such as cDNA experiments
(Banerjee and Mukerjee, [2008) and agricultural research often necessitate
designs with three or more levels. For instance, in genetic studies analyz-
ing cell lines over time, a temporal factor may involve three distinct levels
(e.g., measurements at three developmental stages). Similarly, agricultural
experiments investigating fertilizer efficacy typically require a three-level
design to compare outcomes across no fertilizer, chemical fertilizer, and
organic fertilizer treatments. These examples underscore the critical need
for baseline designs with s-level factors, where s > 3. Nevertheless, ex-
tending traditional two-level methodologies to multi-level baseline designs
introduces significant theoretical and computational complexities. [Yan and
Zhao| (2024) first introduced the MA criterion under BP (BP-MA) for s-

level designs with s > 3 and employed a complete search algorithm based on
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the BP-MA criterion to identify optimal designs under BP. However, this
approach involves a substantial computational burden and gives limited
consideration to the structural properties of the optimal designs.

This article advances the construction of optimal s-level baseline designs
by studying the theoretical properties of the BP-MA criterion for any s > 3.
First, we examine the relationship between OP and BP. Building on this,
we establish that under the main-effect model with BP, orthogonal arrays
maintain their status as D,- and G-optimality within all designs. Further,
we also demonstrate that orthogonal arrays are As- optimal among all bal-
anced designs. Additionally, we explore the general theoretical properties
of MA baseline designs within the BP framework. Our findings uncover
connections between the wordlength pattern under OP and the K-value
sequence under BP. Building on these theoretical insights, a method is pro-
posed for constructing s-level MA baseline designs for any s > 3. Examples
are given throughout to illustrate the results.

The remainder of this paper is organized as follows. Section 2 intro-
duces some notation and definitions. Section 3 discusses the optimality
and robustness of the orthogonal array under BP. Section 4 examines the
properties of the BP-MA criterion. Section 5 studies baseline designs de-

rived from regular designs, and proposes a construction method for s-level
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BP-MA designs for any s > 3. Section 6 concludes the paper and offers a
discussion. All proofs and some approximate BP-MA designs are provided

in the Supplementary Material.

2. Notation and Preliminaries

Let Z, denote a Galois field of order s, where s is a prime number or a prime
power. Consider an s™ factorial that includes n factors Fi,..., F,, with
levels taken in Z, where 0 is the baseline level. Let 7(;,. 4,) and 0;,_;, be
the treatment effect and factorial effect for treatment combination ;.. .1,,
respectively. The baseline mean is defined as 0y_o = 7(..0), representing
the response when all factors are at their baseline level. The main effect of

F} is represented by the s — 1 parameters

90...ij...0 = T(0..4;..0) — T(0..0), t=1,...,8—1,

which quantify the effect when the jth factor is at level ¢; while all other
factors are held at the baseline level. The two-factor interaction of F; and

Fy, is represented by the (s — 1)? parameters

90...01'3-0...02';@04..0 = 7(0...0i;0...0i0...0) — T(0...0i;0...0) — T(0...0i0...0) T 7(0...0)>

which measures the two-factor interaction effect when the jth and kth fac-

tors are set at levels 7; and i, respectively, with all remaining factors fixed
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at the baseline level. Here 1 < j < k <n and 4,9, € {1,...,5 —1}. Then,

for 1 <j <k <nandiji,e{l,...,s— 1}, we obtain

70...i;..0) = bo...i;..0 + bo._.0,

7(0...0i,0...0i1,0...0) = 90...0ij0...o@'ko...o + 90...0z'j0...0 + 6o..0i,0..0 + 0o..0-

Thus, for any treatment combination iy ...7, # 0...0, we have

n b
T(ir.in) = D0..0 +Z Z <H jhw> Hﬁ R

b=1 hi,...hp€¢y, \w=1

Here, for b = 1,...,n, 1 is the set of b-tuples hy,..., hy, with 1 < h; <
- < hy <n. Forl=1,...,n,if i = 0, then j; = 0, otherwise j; = 1.
g; consists of n elements, of which the [th element is the level of factor Fj,
and the rest are 0. The product ﬁl Gh,, 1s defined as g, + -+ + gp,. For
example, consider the treatment combination 120 in a three-level baseline
design with three factors, that is, n = s =3, 11 = 1, i, = 2, and i3 = 0.

Then we have 7, =1, jo =1, j3 =0, ¢y = 100, go = 020, g3 = 000, and

thus

3 b
T(120) = Booo + Z Z (H jhw> 0 .

b=1 hi1,....,hpEYp \w=1 w1;[1 hw
= Oooo + J16g, + J20g, + J304,
+j1j299192 + j1j399193 + j2j369293 + j1j2j39919293

= 0poo + oo + 20 + O120-



MA FRACTIONAL FACTORIAL DESIGNS UNDER BP 7

According to the effect hierarchy principle, the primary focus is on the
main effects. Suppose all interactions can be ignored. Then 6,, 4 = 0 for

b > 2, and thus
T(iy.in) = Do..0 + J10g, + -+ + Jnby, .
For an N x n design Z, the main-effect model is
Y=W0+e=1xn0y. 0+ Z101 + €. (2.1)

Here Y is the observation vector. W = (1y,7;), where 1y is an N x 1
vector with all elements equal to one. Z; is an N x (s — 1)n model matrix
corresponding to all main effects. Specifically, each column of Z corre-

sponds to the s — 1 columns Z;, and their relation is linked by a mapping

shown in Table . 0 = (0y..0,07)T, where 0, = (10..0,.-,000.5-1)" is an

Table 1: The relation between entry of Z and that of Z;.

Z A

0 — 0 0 0
1 — 1 0 0
2 — 0 1 0
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(s—1)n x 1 vector consisting of all main effects. € = (ey,...,ey)7 is the vec-

tor of random errors that are uncorrelated and have a constant variance o2.

Under model (2.1)), the least square estimate of 6 is 0= (WITW)'wTy.
The variance covariance matrix of 6 is o2(WZW)~'. For screening ex-
periments, as the main interest lies in the estimation of the main effects
rather than the intercept term, we consider var(f;) = UQ(WTW)(’_lL_l),

where A(__ll ) is obtained from A~! by deleting the first row and first col-

-1

~

umn. To minimize var(6;), we aim to find a baseline design that min-
imizes (WTW)(EI’_I). There are various considerations for minimizing
(WTW)(’_lL_l), the most common of which is to minimize the determinant
or the trace of (WTW)(__IL_D.
It is well known that in some practical applications, interactions cannot

be completely ignored. Then, the true model is
Y =W0+ Zy05+ -+ Z,0, + ¢, (2.2)

where Z; is the model matrix associated with all j-factor interactions effects,

and 6, is the corresponding vector of unknown parameters for j = 2,...,n.

Then, the expected value of § under model (2.2) is
E0) =60+ (WTW) " "W Zyby + - - + (WW) "W Z,6,,.

It is clear that (WTW)"'W7Z,0; represents the contribution to the bias in
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0 due to the j-factor interactions. Yan and Zhao (2024) proposed the MA

criterion under BP by introducing
Ky = |[(WTW)53W 7 Zy |, (2.3)

where b = 2,...,n and ||A||% represents the squared Frobenius norm of
matrix A, which is computed as the sum of the squares of all its entries.
Here, (WTW)~1 is derived from (WTW)~! by removing the first row. K,
measures the bias of the estimate of main effects due to all the b-factor

interactions. The MA criterion under BP is given below.

Definition 1. Given two s-level designs d; and ds, let » be the smallest
integer such that K,(d;) # K,(ds), then d; is said to have less aberration
than dy if K,.(d;) < K,.(d2) under BP. Furthermore, d; is called a MA design

under BP if no other design has less aberration than d;.

3. Optimal Baseline Designs for Main-Effect Model

To better explore the optimality of baseline designs, we first establish the

relationship between OP and BP.

3.1 The relationship between OP and BP

Let T = (7—(0...0)7 . 77—(3—1...5—1))T and 5 = (‘90“‘0, . ,95_1‘_.5_1),11, Where the

elements of both vectors are arranged in Yates order. Then under BP, we



MA FRACTIONAL FACTORIAL DESIGNS UNDER BP 10

have

T=(B;® - ® By)b,

where By is repeated n times, and B, = (15, (0s_1, [s,l)T), with I5_; being
the identity matrix of order s — 1. Similarly, let 8 = (Bo.0s -+ Bs-t1.5-1) T

Then under OP, we have
T=(P,® - ®P)B, (3.1)

where P, is an s X s column-orthogonal matrix (PI P, = sI,) with the first

column being 1, and P; is repeated n times in (3.1)). Thus, we obtain

0= (B'® @B )7 =(B;'P,® - B;'P,)p,

S

B=P'® P )7=(P/'B,®- - ® P 'B,)f.

Lemma 1. If only the main effects are active under OP, then only the main

effects are active under BP and vice versa.
In the following, Example [1| provides an illustration of Lemma

Example 1. Let n =2, s = 3, so 52 (9007901790279107911791%920’9217922)7

B = (Boos Bots Bozs B10s P11, Pizs P20, a1, Baz), and

Bi=111 0], B=11 0 =2
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According to § = (B3 ' Ps®@ B3 ' Py) and 3 = (P; ' Bs® Py ' By)f, we obtain

that

O = gwu —V3B12) + g<3522 —V3B21), 012 =3B — 3V3Bu;

1 V3
021 = 3811 — 3V3B12, 0o = 6B11, P = 6922, Pr2 = —— (62 — 2091);

18
V3

1 1
Po1 = 1—8(922 —2012) Bar = 5(2911 —bh2) + 1_8(922 — 202).

Example |1f clearly demonstrates that each effect in 0 can be linearly
represented by the effects in 5 , and vice versa. Additionally, the two-factor
interactions under BP are determined solely by the two-factor interactions
under OP. Consequently, if all two-factor interaction effects are inactive
under OP, the corresponding effects under BP will also be inactive.

According to Lemmal[l], if the model under OP is the main-effect model

Y:Xﬂ+€:1Nﬁ0+X151+€, (32>

where X = (1, X1), £ is the vector of main effects, and X7 is the matrix of
contrast coefficients for ;. Then the model under BP is also the main-effect

model.
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3.2 Optimality and robust prediction of orthogonal arrays

Under model , a design is Dg-optimal if it minimizes the determinant
of (XTX)(_fl’fl), or As-optimal if it minimizes tr{(XTX)(_fol)}. Simi-
larly, the Dy~ and A-optimal criteria under model can be obtained by
replacing X with W. Moreover, a design achieves G-optimality if it mini-
mizes the maximum prediction variance over the entire experimental region.
Cheng| (1980)) showed that under OP, the orthogonal array of strength 2 is
universally optimal under the main-effect model. An N x n array with en-
tries from Z, is said to be an orthogonal array of strength ¢, if every N x ¢
subarray contains each t-tuple on Z; with the same frequency (Hedayat,
Sloane and Stufken| |1999). Without loss of generality, the strength of the
orthogonal arrays mentioned below is assumed to be greater than 1. The

following theorem fundamentally extends this optimality hierarchy from OP

to BP.

Theorem 1. Under model (2.1)), orthogonal arrays are Ds- and G-optimal
among all designs. Furthermore, they achieve As-optimality among all bal-

anced designs.

Theorem (1| demonstrates that orthogonal arrays, when employed as

baseline designs, simultaneously minimize the determinant of the variance-
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covariance matrix for main effects estimation, minimize the maximum pre-
diction variance across the experimental domain, and achieve minimal total
variance for main effects estimation among all balanced designs. This uni-
fied optimality guarantees both efficient parameter estimation and robust
predictive performance. Therefore, we exclusively focus on orthogonal ar-

rays for subsequent sections.

4. Theory of Minimum Aberration Criterion

Let a(gy, - .- gx,) denote the frequency of 11...1 as a row in the N x b
subarray given by the {(s — 1)(k; — 1) + g, [ki], 7 = 1,...,b}th columns of
Zy, where g;[i] denotes the ith element of g;, and k; denotes the position of
the ¢th non-zero digit in g, . .. gx,, counting from left to right. For example,
when g, gx, = 1020, we have ky = 1, ks = 3. Further, let ¢(gy, ... gx,) be
an (s — 1)n x 1 vector with the jth element being a({jgs, ... gr,)), Where
a((jg, - - - gr,)) denotes the frequency of 11...1 as a row in the {j, (s —
1)(ki — 1) + gi,[ks],i = 1,...,b}th columns of Z;. For example, let s = 3
and let Z be the OA(9,4,3,2) in the left part of Table 2 where the four
factors are denoted by A, B, C, and D, respectively. Then, the model matrix
corresponding to main effects, 77, is a 9 x 8 matrix, as shown in the right

part of Table 2] Let A;Cy be an active effect with factorial effect 61090,
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where gy, = g1 = 1000 and g, = g3 = 0020. Then a(gx, gr,) = @(1020) = 1
denotes the frequency of 11 as a row in columns 1 and 6 of Z;. ¢(gk, gr,) =
(1,0,1,0,0,1,0,0)T, where the jth element, o((j1020)), is the frequency of
111 or 11 as a row in the (j,1,6)th columns of Z; for j = 1,...,8. For
example, the third element «((31020)) = 1 is the frequency of 111 as a row

in the (3,1, 6)th columns of Z;.

Table 2: Baseline design Z and its first-order model matrix Z;.

z 7
A B C D A, A, BT B, C Oy Dy Dy
0 0 o o o o 0 0 0 0 0 0
0o 1 1 2 o o0 1 0o 1 0 0 1
0o 2 2 1 o o o 1 0 1 1 0
1 0 1 1 1 o o0 o0 1 o0 1 0
1 1 2 0 1 o 1 0 0 1 0 0
1 2 0 2 1 0o 0 1 0 0 0 1
2 0 2 2 o 1 0 0 0 1 0 1
2 1 0 1 o 1 1 0o 0 0 1 0
2 2 1 0 o 1 o0 1 1 0 0 0

When an orthogonal array is used to create a baseline design, an addi-

tional derivation of K} in ([2.3)) is provided below.

Ko= 3 &g 00) E 0 g0 (4.1)

Gk -Gk €Pb

where @, = {¢y | pp is @ 1 X n vector with b non-zero entries from Z,}, 1 <

ki,ooo by <nyand £(gr, - - - gr,) = S/N{ADH(Gr, - - - Gry) —(Gky - - - Giy) L(s—1)n }-
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A, is a block-diagonal matrix of order (s — 1)n with the diagonal block
H =1, 1+ Js_1. Here, I,_; is an identity matrix of order s — 1 and J,_; is
an all-one matrix of order s — 1. The smaller the value of K, the smaller
the bias of b-factor interactions in estimating the main effects is.

We now derive a new expression for K in , which is given in Lemma
and plays a key role in the subsequent theoretical results.

Lemma 2. Forb=2,...,n,

82

Y e,

PpEPy

K,
where

2
T{pb = H/8<gk1 s gkb)TH N\ a(gkl e 'gkb)]‘z—l”F’ and

] 2
T = 118Gk - 91) H = algry - 9,) 101 |

JjeEV

B(Gky - - Gr,) s an (s — 1) x 1 vector, with one element being o (g, - - - gk, ),
and the remaining elements being 0. V = {1,... ,n}\{k1, ..., kp}. Forl =
17 s 3_17 jl — (8_1)(j_1)+l7 andﬁ(]glﬂ e 'gkb) = (Oé(<jlgk1 s gkb>)7 S

({Js—19k, - - .gkb)))T,

Lemma [2 provides a new expression for K;. Using Lemma [2| we derive
several significant theoretical results.
Theorem (1| demonstrates that the orthogonal array minimizes the vari-

ance of the main effects estimates from various aspects. Next, we examine
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the bias of these estimates.

Theorem 2. If an N x n s-level orthogonal array of strength t > 2 is used

to create a baseline design, then the (Ks, ..., K}) sequence satisfies:

(1). for2<v<t—1, K, ="50°("),

v

(2). K; = ti‘;igt (T;) + s%J,, where J, = ﬁ SOTS.

N
Remark 1. Theorem [2| generalizes Theorem 1 in Miller and Tang (2016)),
which corresponds to the special case of s = 2, and thus allows for the study

of general baseline designs.

According to Theorem 2] all s-level orthogonal arrays of strength ¢ have
identical K, ..., K, 1. Moreover, orthogonal arrays can be classified into
regular and nonregular designs, among which regular designs have specific
algebraic structures and are the most widely used. Next, we further consider

K; and K., based on regular designs.

5. Construction of M A Baseline Designs

5.1 Baseline designs from regular designs

An OA(s"P m,s,2) with levels from GF(s) is said to be regular and de-

noted as an s"7P design, if its runs are the solution to the system of equations
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ATz = 0, where A = (ay,...,a,), and ay, ..., a, are linearly independent
n-dimensional column vectors. Let R(A) be the p-dimensional space gener-
ated by ay,...,ap,, and call it the defining contrast subgroup. The aliasing
can be captured by the wordlength pattern (As, A4, ...), where A; repre-
sents the number of words of length j in R(A). The resolution of design D
is the smallest integer j such that A;(D) > 0 (Cheng, [2014). Note that for
a regular design, if its resolution is ¢ + 1, then its strength is ¢.

As discussed, s"7P designs of resolution ¢ + 1 have identical K, values
for 2 < v <t — 1. The following theorem shows that for these designs, K;

(equivalent to J;) can be minimized by minimizing A;,.

Theorem 3. If an s-level reqular design of resolution t+1 is used to create
a baseline design, we have

t+1
Jy = 2 {(5 - 1)’%21 + 722} Agya,

where s > 3 is a prime power, vt, = (=1)'(s—1)/s + (s —1)'/s, and
Yoo = (s = 1) =71
Next, let us see an example for illustration.

Example 2. Consider a 5*~2 design of resolution 3 with factors A, B, C,

and D, where the defining contrast subgroup is

I = ABC* = AB*D* = ACD? = BC®D? = AB*C?D? = AB*C®D.
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Here t =2, A3 = 4, 72, = 4, 72, = 12, thus J, = %(4 X 44 12) = 0.5376.

Now, we further consider K,;,; for s"P designs of resolution ¢t + 1.
For any word Fy"F3?...F* of length k, define its degenerate word as
FiFy ... Fy, where a; € GF(s) fori =1,..., k. For example, the degenerate
words of words AB*C?D? and AB*C®D are both ABC'D. Further let A4,
denote the number of degenerate words of length ¢t + 2, and Aj,, denote
the number of degenerate words of length ¢ 4+ 2 that share ¢ + 1 common
factors with some degenerate word of length ¢ + 1. To provide a clearer

understanding of these symbols, consider the following example.

Example 3. Consider two 5°~2 designs, denoted as Design I and Design 11,
both incorporating factors A, B, C, D, and E. For these designs, the words

of lengths 3 and 4 are given as follows.

Design I: I = ABD* = AB?’CE* = BCDE* = AC*D3E.

Design I1 : I = ABD* = AB*E* = AD3E = BDE* = AB*D*E? = AB3DE?3.

For both Designs I and II, we have t = 2. Let A} be the number of de-
generate words of length 4, and A} be the number of degenerate words
of length 4 that share 3 common factors with some degenerate word of
length 3. Design I has three distinct length-4 words: AB?CE*, BCDE*

and AC*D3E. These three words correspond to three distinct degenerate
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words: ABCE, BCDE and ACDE, ie., A} = 3. Moreover, there is no
degenerate word of length 4 that shares 3 common factors with any degen-
erate word of length 3, i.e., A} = 0. Design II has two distinct length-4
words: AB*D?E? and AB3*DE?. These two words correspond to the same
degenerate word ABDFE, where ABDFE shares 3 common factors with some

degenerate words of length 3. Thus, we have A} = Al = 1.

Theorem 4. If an s"7P design of resolution t+1 is used to create a baseline

design, we obtain

1
Ky :ﬁ{cl (t+1)Ap1 + Caot +2) Ay, + Cs(t + 2)A§+2 + Cu}, (5.1)

where Cy = s°ly +{(s = D)yl + (s = 1?45} (n—t — 1) — (s = 1), Oy =
{82 =(s=D(t+ D)o +H{s*(s=2) = (s=1)*(t+ 1)}, Cs = 73" +(s— 1),

s—1)t+1 1)n! *
Cy= %¢ and A7, = Ajyy = Al > 0.

Remark 2. When comparing regular designs of resolution ¢4 1 with identi-
cal K; values, it becomes necessary to further compare their K;; values. In
this regard, Theorem 4 provides valuable guidance. Furthermore, Theorem
4 extends Theorem 2 of Miller and Tang (2016) to accommodate designs
with s > 2. This extension broadens its applicability to a wider range of

factorial experiments.

Specifically, when ¢t = 2, we have 74, = s — 1, 7%, = (s — 1)(s — 2),
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v =(s—1)(s—2),and v3, = (s — 1) — (s — 1)(s — 2). Then we obtain

the following result.
Corollary 1. When t = 2, we have A2 = Ay — (s — 3)AL, and
1
Ky = = (3C1 A5 + 4C5A4 + AC5A) + Cy),

where C = (s —1)2(2s = 3)n + s*(s — 1)(s — 2) — (7Ts — 10)(s — 1)2, O3 =
(s—=13+(s=1)(s—2)% C5 = Cy — (s —3)C3 = (25 — 6)(s — 1)?, and

Cy=n(n—1)(n—2)(s—1)3/2.

From Theorem [3] and Corollary [I, we obtain that the sequential min-
imization of (K5, K3) is equivalent to the sequential minimization of (As,

C3A, + C5A}). Let us consider the following example.

Example 4. Based on enumeration, there are nine combinatorially non-
isomorphic classes of 4% designs. One representative design is selected
from each class and labeled as Designs I through IX. These nine 47~* designs
involve factors A, B, C, D, E, F, and G, with their defining words and
corresponding index values summarized in Table [3

By examining Table[3], we observe that when A3 and A4 are sequentially
minimized, Ky and K3 are also sequentially minimized. Moreover, when Aj

remains the same, K5 does not change.
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Table 3: The defining words and associated index values for nine designs.

Design| D FE F G A3 Ay A AL A2 Ky, Ky
I AB AC AB?C? AB3C3 3 23 23 0 23 32.06 33.84
IT AB AC BC?* AB*C? 4 19 19 0 19 34.88 34.32
II1 |AB AC BC ABC* 5 15 15 0 15 37.69 34.80
IV | AB AB? AB3C AB?C? 5 19 19 1 18 37.69 37.52
\Y% AB AB?* AC BC? 6 15 15 1 14 40.50 38.00
VI |AB AC BC ABC 7 7 7 0 7 4331 35.77
VII | AB AB?> AC BC 7 11 11 1 10 43.31 38.48

VIII | AB AB?> AC AC? 8 11 11 2 9 46.13 41.68
IX |AB AB? AB? AC 11 11 11 5 6 54.56 51.28

Remark 3. Extensive simulations reveal that for designs with the same

value of Az, minimizing A} also leads to the minimization of A4. This

finding suggests that when searching for the MA design under BP, one can

start with the MA design under OP.

Given the frequent occurrence for s = 3,4, and 5 in practical applica-

tions, we derive specific expressions for K1 with ¢ = 2 for these represen-

tative cases. The detailed formulas are provided below.

Corollary 2.

(1). For a 3™P design of resolution 3, we have

1
Ky = o7 {(36n — 78) A; + 4044 + dn(n — 1)(n — 2)}.
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(2). For a 4™P design of resolution 3, we have

1 27
Ks = 756 {(135n —198) Az + 156 A4 + T2A; + En(n —1)(n— 2)} .

(3). For a 5™ P design of resolution 3, we have

Ky = o {(336n — 300) A3 + 40044 + 2364} + 32n(n — 1)(n — 2)},

where A} is the number of degenerate words of length 4 that share 3 common
factors with some degenerate word of length 3.

We next illustrate Corollary [2| with two examples.

Example 5. Consider a 352 design of resolution 3 with factors A, B, C, D,

and E, where the defining contrast subgroup is
I = ABD?* = CDE* = ABCE* = ABC?DE.
Here, n =5, A3 =2, Ay =1, thus Ky = 12.89 and K3 = 5.98.

Example 6. 5°~2 designs have four combinatorially non-isomorphic classes
based on enumeration. Select one design from each of these four classes
and denote the resulting designs as I, II, III, and IV, respectively. The five
factors are denoted as A, B, C, D, and E. Table [4] presents the definition

relationships for these four designs. The words of length 3 and 4 in each
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design can be obtained, as shown below.
Design I : I = ABCD* = AB>C3FE* = BC?DE* = AC*D3E = AB3DE3.
Design II : I = ABD* = AB>CE* = BCDE* = AC*D3E.
Design 111 : I = ABD* = ACE* = BC*D*E.
Design IV : I = ABD* = AB’E* = AD3FE = BDE* = AB*D?*E? = AB3DE3.

As shown in Table [4] when A and A, are minimized sequentially, Ky and

K3 are also minimized sequentially.

Table 4: Some associated index values for designs in Example [6]

Design D E Ag A4 AZ Aéll A?I J2 KQ Kg

I ABC AB*C®* 0 5 5 0 5 0 1280 6.27
IT AB AB*C 1 3 3 0 3 013 16.16 7.20

I1I AB AC 2 1 1 0 1 027 1952 8.13

v AB  AB?> 4 2 1 1 0 0.54 26.24 13.59

5.2 A general construction method for M A baseline designs

Building on the definition of baseline isomorphism (Yan and Zhao|, |2024]))
and the non-exchangeability of the baseline level with other levels under

BP, it is sufficient to consider s distinct level permutations for an s-level
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design. In this paper, the following s level permutations are considered.
{0,1,2,...,s =1} - {0,1,2,...,s — 1},
{0,1,2,...,s =1} = {1,0,2,...,s — 1},
(5.2)
{0,1,2,...,s =1} - {1,2,...,0,s — 1},

{0,1,2,...,s =1} = {1,2,...,s — 1,0}.
For example, when s = 3, we only need to consider the following three level

permutations.
{0,1,2} — {0,1,2}, {0,1,2} — {1,0,2}, {0,1,2} — {2,1,0}.

Therefore, based on the theoretical properties of the MA criterion under
BP, we propose a method of s-level MA designs under BP based on MA

designs under OP and level permutations in (5.2)), as given in Algorithm .

Algorithm 1

Step 1 Given N and n, we list all s-level regular MA designs under OP
with resolution ¢ + 1, suppose there are p such arrays.

Step 2 For each of the p MA designs in Step 1, obtain s™ designs by applying
level permutations in on one or more columns. For each of the
resulting s"p designs, calculate the K, for r =t¢,...,n—1 and then find

the minimum aberration designs.
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When s = 5, Table 5| demonstrates the Ky and K3 values for the 125-
run designs with n factors generated by the regular MA design (RMA),
as well as the Ky and K3 values derived from applying level permutations
to the regular MA design (PMA). As shown in Table [, by applying level
permutations to regular MA designs under OP, baseline designs with smaller
K5 and K3 values can be obtained. Note that these designs may no longer

be regular designs.

Table 5: The comparison of K, and Kj3-values of RMA and PMA.

n 3 4 S 6 7 8 9 10

(RMA)K, | 384 7.68 1280 19.20 33.60  49.28 69.60 124.80

(PMA)K, 3.84 7.68 1280 19.20 32.88 47.84 67.08 117.60

(RMA)K3 | 031 1.87 6.27 15.74  34.60 64.49  110.07 201.24

(PMA)K3; | 031  1.87 6.27 1574  34.61 6443 109.63  193.39

Remark 4. Theorems [3| and [4] provide a theoretical basis for constructing
baseline designs from MA regular designs, where the detailed method is
given in Algorithm [I} In fact, the level permutation can be extended into
nonregular designs to identify approximate BP-MA designs. Please refer
to the supplementary materials for details. It is shown that the proposed

method performs well for nonregular cases as well.

Remark 5. In Step 2 of Algorithm [T}, evaluating the K, forr =¢,...,n—1



MA FRACTIONAL FACTORIAL DESIGNS UNDER BP 26

across all s"p candidate designs becomes computationally intractable for
large s/n/p. To address this combinatorial explosion, we adopt a random-
ized subsampling strategy. Specifically, we randomly select a subset of
designs from the s"p candidate designs. For the selected designs, we com-
pute K, for r =t,...,n—1 to identify approximately minimum aberration

designs. Further details can be found in the supplementary material.

6. Conclusion and Discussion

Fractional factorial designs under BP have garnered significant attention.
However, the theory of s-level fractional factorial designs with s > 3 under
BP has not been thoroughly explored. This paper investigates the general
theory of s-level baseline designs for any s > 3. We first establish the
relationship between OP and BP. Subsequently, we show that orthogonal
arrays retain their D,- and G-optimality among all designs. Moreover, we
demonstrate that orthogonal arrays achieve A -optimality within the class
of balanced designs. Furthermore, we explore the theory of the BP-MA
criterion and its connection to the MA criterion under OP. Finally, we pro-
pose a method for constructing BP-MA designs based on these theoretical
properties. Additionally, we provide theoretical support for the algorithm

proposed by |Yan and Zhao (2024) and supplement it with designs for cases
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where s = 5 and the number of runs is 25, 50, 75, 100, and 125 in the
supplementary material.

This paper may inspire further exploration in related research areas.
Theorem [[]demonstrates that orthogonal arrays are D;-, G-, and Ag-optimal
among all balanced designs. This suggests an interesting and meaningful
direction for future research — exploring whether orthogonal arrays are
also ¢-optimal among all balanced designs under any concave and signed
permutation invariant criterion ¢(-), as proposed by [Peng, Mukerjee and
Lin| (2019)). In addition to this theoretical inquiry, another promising di-
rection lies in extending the construction of s-level baseline designs beyond
balanced settings. For instance, the compromise design constructed by
Karunanayaka and Tang| (2017) and |Li, Liu and Tang (2022)) in the case of
two levels. Building on this, we aim to construct compromise designs for
s > 3 levels in the future. To further broaden the applicability of baseline
designs, it is also essential to explore their development in more complex
experimental frameworks, such as block experiments, which warrant further

investigation.
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Supplementary Material

Supplementary material presents the proofs of theoretical results and lists
5-level approximate BP-MA designs and their K5 and K3 values for runs of

95, 50, 75, 100, and 125.
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