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1. Introduction

Fractional factorial designs are widely recognized as one of the most effective

tools for screening experiments. Traditionally, most research has focused on

these designs under the orthogonal parameterization (OP), where factorial

effects are defined through a set of orthogonal contrasts. However, baseline

parameterization (BP) has recently attracted growing attention, especially

in contexts where a clear null state or baseline level is naturally associated

with each factor. The BP defines factorial effects with reference to intrinsic

baseline levels of the factors, which can arise quite naturally in many appli-

cations (Mukerjee and Tang, 2012). For instance, in a toxicological study

with binary factors representing the presence or absence of specific toxins,

the absence of a toxin naturally serves as the baseline level for each factor.

Factorial designs under BP have been extensively studied in the context

of cDNA microarray experiments by Yang and Speed (2002), Glonek and

Solomon (2004), and Banerjee and Mukerjee (2008), all of whom focused

on two-level full factorial designs. Mukerjee and Tang (2012) extended

this work by investigating optimal two-level fractional factorial designs us-

ing the minimum aberration (MA) criterion under BP. The construction of

MA baseline designs was further developed by Li, Miller and Tang (2014),

Miller and Tang (2016), Mukerjee and Tang (2016), and Chen, Sun and
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Tang (2021). More recently, Sun and Tang (2022) established a linear

relationship between OP and BP, demonstrating its utility for design con-

struction under BP with respect to estimability, optimality, and robustness.

Chen and Tang (2023) proposed MA factorial designs under mixed param-

eterization, including both OP and BP, for experiments in which some

factors have baseline levels while others do not. It is worth noting that

all the above studies were limited to two-level designs due to their sim-

ple structure. However, real-world applications such as cDNA experiments

(Banerjee and Mukerjee, 2008) and agricultural research often necessitate

designs with three or more levels. For instance, in genetic studies analyz-

ing cell lines over time, a temporal factor may involve three distinct levels

(e.g., measurements at three developmental stages). Similarly, agricultural

experiments investigating fertilizer efficacy typically require a three-level

design to compare outcomes across no fertilizer, chemical fertilizer, and

organic fertilizer treatments. These examples underscore the critical need

for baseline designs with s-level factors, where s ≥ 3. Nevertheless, ex-

tending traditional two-level methodologies to multi-level baseline designs

introduces significant theoretical and computational complexities. Yan and

Zhao (2024) first introduced the MA criterion under BP (BP-MA) for s-

level designs with s ≥ 3 and employed a complete search algorithm based on
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the BP-MA criterion to identify optimal designs under BP. However, this

approach involves a substantial computational burden and gives limited

consideration to the structural properties of the optimal designs.

This article advances the construction of optimal s-level baseline designs

by studying the theoretical properties of the BP-MA criterion for any s ≥ 3.

First, we examine the relationship between OP and BP. Building on this,

we establish that under the main-effect model with BP, orthogonal arrays

maintain their status as Ds- and G-optimality within all designs. Further,

we also demonstrate that orthogonal arrays are As- optimal among all bal-

anced designs. Additionally, we explore the general theoretical properties

of MA baseline designs within the BP framework. Our findings uncover

connections between the wordlength pattern under OP and the K-value

sequence under BP. Building on these theoretical insights, a method is pro-

posed for constructing s-level MA baseline designs for any s ≥ 3. Examples

are given throughout to illustrate the results.

The remainder of this paper is organized as follows. Section 2 intro-

duces some notation and definitions. Section 3 discusses the optimality

and robustness of the orthogonal array under BP. Section 4 examines the

properties of the BP-MA criterion. Section 5 studies baseline designs de-

rived from regular designs, and proposes a construction method for s-level
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BP-MA designs for any s ≥ 3. Section 6 concludes the paper and offers a

discussion. All proofs and some approximate BP-MA designs are provided

in the Supplementary Material.

2. Notation and Preliminaries

Let Zs denote a Galois field of order s, where s is a prime number or a prime

power. Consider an sn factorial that includes n factors F1, . . . , Fn, with

levels taken in Zs, where 0 is the baseline level. Let τ(i1...in) and θi1...in be

the treatment effect and factorial effect for treatment combination i1 . . . in,

respectively. The baseline mean is defined as θ0...0 = τ(0...0), representing

the response when all factors are at their baseline level. The main effect of

Fj is represented by the s− 1 parameters

θ0...ij ...0 = τ(0...ij ...0) − τ(0...0), ij = 1, . . . , s− 1,

which quantify the effect when the jth factor is at level ij while all other

factors are held at the baseline level. The two-factor interaction of Fj and

Fk is represented by the (s− 1)2 parameters

θ0...0ij0...0ik0...0 = τ(0...0ij0...0ik0...0) − τ(0...0ij0...0) − τ(0...0ik0...0) + τ(0...0),

which measures the two-factor interaction effect when the jth and kth fac-

tors are set at levels ij and ik, respectively, with all remaining factors fixed
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at the baseline level. Here 1 ≤ j < k ≤ n and ij, ik ∈ {1, . . . , s− 1}. Then,

for 1 ≤ j < k ≤ n and ij, ik ∈ {1, . . . , s− 1}, we obtain

τ(0...ij ...0) = θ0...ij ...0 + θ0...0,

τ(0...0ij0...0ik0...0) = θ0...0ij0...0ik0...0 + θ0...0ij0...0 + θ0...0ik0...0 + θ0...0.

Thus, for any treatment combination i1 . . . in 6= 0 . . . 0, we have

τ(i1...in) = θ0...0 +
n∑
b=1

∑
h1,...,hb∈ψb

(
b∏

w=1

jhw

)
θ b∏
w=1

ghw

.

Here, for b = 1, . . . , n, ψb is the set of b-tuples h1, . . . , hb with 1 ≤ h1 <

· · · < hb ≤ n. For l = 1, . . . , n, if il = 0, then jl = 0, otherwise jl = 1.

gl consists of n elements, of which the lth element is the level of factor Fl,

and the rest are 0. The product
b∏

ω=1

ghw is defined as gh1 + · · · + ghb . For

example, consider the treatment combination 120 in a three-level baseline

design with three factors, that is, n = s = 3, i1 = 1, i2 = 2, and i3 = 0.

Then we have j1 = 1, j2 = 1, j3 = 0, g1 = 100, g2 = 020, g3 = 000, and

thus

τ(120) = θ000 +
3∑
b=1

∑
h1,...,hb∈ψb

(
b∏

w=1

jhw

)
θ b∏
w=1

ghw

= θ000 + j1θg1 + j2θg2 + j3θg3

+j1j2θg1g2 + j1j3θg1g3 + j2j3θg2g3 + j1j2j3θg1g2g3

= θ000 + θ100 + θ020 + θ120.
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According to the effect hierarchy principle, the primary focus is on the

main effects. Suppose all interactions can be ignored. Then θg1...gb = 0 for

b ≥ 2, and thus

τ(i1...in) = θ0...0 + j1θg1 + · · ·+ jnθgn .

For an N × n design Z, the main-effect model is

Y = Wθ + ε = 1Nθ0...0 + Z1θ1 + ε. (2.1)

Here Y is the observation vector. W = (1N , Z1), where 1N is an N × 1

vector with all elements equal to one. Z1 is an N × (s− 1)n model matrix

corresponding to all main effects. Specifically, each column of Z corre-

sponds to the s− 1 columns Z1, and their relation is linked by a mapping

shown in Table 1. θ = (θ0...0, θ
T
1 )T , where θ1 = (θ10...0, . . . , θ00...s−1)T is an

Table 1: The relation between entry of Z and that of Z1.

Z Z1

0 → 0 0 · · · 0

1 → 1 0 · · · 0

2 → 0 1 · · · 0

...
...

...
...

. . .
...

s− 1 → 0 0 · · · 1
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doi:10.5705/ss.202025.0061



MA FRACTIONAL FACTORIAL DESIGNS UNDER BP 8

(s−1)n×1 vector consisting of all main effects. ε = (ε1, . . . , εN)T is the vec-

tor of random errors that are uncorrelated and have a constant variance σ2.

Under model (2.1), the least square estimate of θ is θ̂ = (W TW )−1W TY .

The variance–covariance matrix of θ̂ is σ2(W TW )−1. For screening ex-

periments, as the main interest lies in the estimation of the main effects

rather than the intercept term, we consider var(θ̂1) = σ2(W TW )−1
(−1,−1),

where A−1
(−1,−1) is obtained from A−1 by deleting the first row and first col-

umn. To minimize var(θ̂1), we aim to find a baseline design that min-

imizes (W TW )−1
(−1,−1). There are various considerations for minimizing

(W TW )−1
(−1,−1), the most common of which is to minimize the determinant

or the trace of (W TW )−1
(−1,−1).

It is well known that in some practical applications, interactions cannot

be completely ignored. Then, the true model is

Y = Wθ + Z2θ2 + · · ·+ Znθn + ε, (2.2)

where Zj is the model matrix associated with all j-factor interactions effects,

and θj is the corresponding vector of unknown parameters for j = 2, . . . , n.

Then, the expected value of θ̂ under model (2.2) is

E(θ̂) = θ + (W TW )−1W TZ2θ2 + · · ·+ (W TW )−1W TZnθn.

It is clear that (W TW )−1W TZjθj represents the contribution to the bias in

Statistica Sinica: Preprint 
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θ̂ due to the j-factor interactions. Yan and Zhao (2024) proposed the MA

criterion under BP by introducing

Kb = ‖(W TW )−1
−1W

TZb‖2
F , (2.3)

where b = 2, . . . , n and ‖A‖2
F represents the squared Frobenius norm of

matrix A, which is computed as the sum of the squares of all its entries.

Here, (W TW )−1
−1 is derived from (W TW )−1 by removing the first row. Kb

measures the bias of the estimate of main effects due to all the b-factor

interactions. The MA criterion under BP is given below.

Definition 1. Given two s-level designs d1 and d2, let r be the smallest

integer such that Kr(d1) 6= Kr(d2), then d1 is said to have less aberration

than d2 if Kr(d1) < Kr(d2) under BP. Furthermore, d1 is called a MA design

under BP if no other design has less aberration than d1.

3. Optimal Baseline Designs for Main-Effect Model

To better explore the optimality of baseline designs, we first establish the

relationship between OP and BP.

3.1 The relationship between OP and BP

Let τ = (τ(0...0), . . . , τ(s−1...s−1))
T and θ̃ = (θ0...0, . . . , θs−1...s−1)T , where the

elements of both vectors are arranged in Yates order. Then under BP, we

Statistica Sinica: Preprint 
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have

τ = (Bs ⊗ · · · ⊗Bs)θ̃,

where Bs is repeated n times, and Bs =
(
1s, (0s−1, Is−1)T

)
, with Is−1 being

the identity matrix of order s− 1. Similarly, let β̃ = (β0...0, . . . , βs−1...s−1)T .

Then under OP, we have

τ = (Ps ⊗ · · · ⊗ Ps)β̃, (3.1)

where Ps is an s× s column-orthogonal matrix (P T
s Ps = sIs) with the first

column being 1s, and Ps is repeated n times in (3.1). Thus, we obtain

θ̃ = (B−1
s ⊗ · · · ⊗B−1

s )τ = (B−1
s Ps ⊗ · · · ⊗B−1

s Ps)β̃,

β̃ = (P−1
s ⊗ · · · ⊗ P−1

s )τ = (P−1
s Bs ⊗ · · · ⊗ P−1

s Bs)θ̃.

Lemma 1. If only the main effects are active under OP, then only the main

effects are active under BP and vice versa.

In the following, Example 1 provides an illustration of Lemma 1.

Example 1. Let n = 2, s = 3, so θ̃ = (θ00, θ01, θ02, θ10, θ11, θ12, θ20, θ21, θ22),

β̃ = (β00, β01, β02, β10, β11, β12, β20, β21, β22), and

B3 =


1 0 0

1 1 0

1 0 1

 , P3 =


1 −

√
6

2

√
2

2

1 0 −
√

2

1
√

6
2

√
2

2

 .

Statistica Sinica: Preprint 
doi:10.5705/ss.202025.0061



MA FRACTIONAL FACTORIAL DESIGNS UNDER BP 11

According to θ̃ = (B−1
3 P3⊗B−1

3 P3)β̃ and β̃ = (P−1
3 B3⊗P−1

3 B3)θ̃, we obtain

that

θ11 =
3

2
(β11 −

√
3β12) +

3

2
(3β22 −

√
3β21), θ12 = 3β11 − 3

√
3β21;

θ21 = 3β11 − 3
√

3β12, θ22 = 6β11, β11 =
1

6
θ22, β12 =

√
3

18
(θ22 − 2θ21);

β21 =

√
3

18
(θ22 − 2θ12) β22 =

1

9
(2θ11 − θ12) +

1

18
(θ22 − 2θ21).

Example 1 clearly demonstrates that each effect in θ̃ can be linearly

represented by the effects in β̃, and vice versa. Additionally, the two-factor

interactions under BP are determined solely by the two-factor interactions

under OP. Consequently, if all two-factor interaction effects are inactive

under OP, the corresponding effects under BP will also be inactive.

According to Lemma 1, if the model under OP is the main-effect model

Y = Xβ + ε = 1Nβ0 +X1β1 + ε, (3.2)

where X = (1N , X1), β1 is the vector of main effects, and X1 is the matrix of

contrast coefficients for β1. Then the model under BP is also the main-effect

model.

Statistica Sinica: Preprint 
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3.2 Optimality and robust prediction of orthogonal arrays

Under model (3.2), a design is Ds-optimal if it minimizes the determinant

of (XTX)−1
(−1,−1), or As-optimal if it minimizes tr

{
(XTX)−1

(−1,−1)

}
. Simi-

larly, the Ds- and As-optimal criteria under model (2.1) can be obtained by

replacing X with W . Moreover, a design achieves G-optimality if it mini-

mizes the maximum prediction variance over the entire experimental region.

Cheng (1980) showed that under OP, the orthogonal array of strength 2 is

universally optimal under the main-effect model. An N × n array with en-

tries from Zs is said to be an orthogonal array of strength t, if every N × t

subarray contains each t-tuple on Zs with the same frequency (Hedayat,

Sloane and Stufken, 1999). Without loss of generality, the strength of the

orthogonal arrays mentioned below is assumed to be greater than 1. The

following theorem fundamentally extends this optimality hierarchy from OP

to BP.

Theorem 1. Under model (2.1), orthogonal arrays are Ds- and G-optimal

among all designs. Furthermore, they achieve As-optimality among all bal-

anced designs.

Theorem 1 demonstrates that orthogonal arrays, when employed as

baseline designs, simultaneously minimize the determinant of the variance-

Statistica Sinica: Preprint 
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covariance matrix for main effects estimation, minimize the maximum pre-

diction variance across the experimental domain, and achieve minimal total

variance for main effects estimation among all balanced designs. This uni-

fied optimality guarantees both efficient parameter estimation and robust

predictive performance. Therefore, we exclusively focus on orthogonal ar-

rays for subsequent sections.

4. Theory of Minimum Aberration Criterion

Let α(gk1 . . . gkb) denote the frequency of 11 . . . 1 as a row in the N × b

subarray given by the {(s − 1)(ki − 1) + gki [ki], i = 1, . . . , b}th columns of

Z1, where gi[i] denotes the ith element of gi, and ki denotes the position of

the ith non-zero digit in gk1 . . . gkb , counting from left to right. For example,

when gk1gk2 = 1020, we have k1 = 1, k2 = 3. Further, let φ(gk1 . . . gkb) be

an (s − 1)n × 1 vector with the jth element being α(〈jgk1 . . . gkb〉), where

α(〈jgk1 . . . gkb〉) denotes the frequency of 11 . . . 1 as a row in the
{
j, (s −

1)(ki − 1) + gki [ki], i = 1, . . . , b
}

th columns of Z1. For example, let s = 3

and let Z be the OA(9, 4, 3, 2) in the left part of Table 2, where the four

factors are denoted by A,B,C, and D, respectively. Then, the model matrix

corresponding to main effects, Z1, is a 9× 8 matrix, as shown in the right

part of Table 2. Let A1C2 be an active effect with factorial effect θ1020,

Statistica Sinica: Preprint 
doi:10.5705/ss.202025.0061
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where gk1 = g1 = 1000 and gk2 = g3 = 0020. Then α(gk1gk2) = α(1020) = 1

denotes the frequency of 11 as a row in columns 1 and 6 of Z1. φ(gk1gk2) =

(1, 0, 1, 0, 0, 1, 0, 0)T , where the jth element, α(〈j1020〉), is the frequency of

111 or 11 as a row in the (j, 1, 6)th columns of Z1 for j = 1, . . . , 8. For

example, the third element α(〈31020〉) = 1 is the frequency of 111 as a row

in the (3, 1, 6)th columns of Z1.

Table 2: Baseline design Z and its first-order model matrix Z1.

Z Z1

A B C D A1 A2 B1 B2 C1 C2 D1 D2

0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 2 0 0 1 0 1 0 0 1

0 2 2 1 0 0 0 1 0 1 1 0

1 0 1 1 1 0 0 0 1 0 1 0

1 1 2 0 1 0 1 0 0 1 0 0

1 2 0 2 1 0 0 1 0 0 0 1

2 0 2 2 0 1 0 0 0 1 0 1

2 1 0 1 0 1 1 0 0 0 1 0

2 2 1 0 0 1 0 1 1 0 0 0

When an orthogonal array is used to create a baseline design, an addi-

tional derivation of Kb in (2.3) is provided below.

Kb =
∑

gk1 ...gkb∈Φb

ξ(gk1 . . . gkb)
T ξ(gk1 . . . gkb), (4.1)

where Φb = {ϕb | ϕb is a 1× n vector with b non-zero entries from Zs}, 1 ≤

k1, . . . , kb ≤ n, and ξ(gk1 . . . gkb) = s/N{Acφ(gk1 . . . gkb)−α(gk1 . . . gkb)1(s−1)n}.

Statistica Sinica: Preprint 
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Ac is a block-diagonal matrix of order (s − 1)n with the diagonal block

H = Is−1 + Js−1. Here, Is−1 is an identity matrix of order s− 1 and Js−1 is

an all-one matrix of order s − 1. The smaller the value of Kb, the smaller

the bias of b-factor interactions in estimating the main effects is.

We now derive a new expression for Kb in (4.1), which is given in Lemma

2 and plays a key role in the subsequent theoretical results.

Lemma 2. For b = 2, . . . , n,

Kb =
s2

N2

∑
ϕb∈Φb

(bTϕb
1 + Tϕb

2 ) ,

where

Tϕb
1 = ‖β(gk1 . . . gkb)

TH − α(gk1 . . . gkb)1
T
s−1‖

2

F
, and

Tϕb
2 =

∑
j∈V

‖β(jgk1 . . . gkb)
TH − α(gk1 . . . gkb)1

T
s−1‖

2

F
.

β(gk1 . . . gkb) is an (s− 1)× 1 vector, with one element being α(gk1 . . . gkb),

and the remaining elements being 0. V = {1, . . . , n}\{k1, . . . , kb}. For l =

1, . . . , s−1, jl = (s−1)(j−1)+l, and β(jgk1 . . . gkb) =
(
α(〈j1gk1 . . . gkb〉), . . . ,

α(〈js−1gk1 . . . gkb〉)
)T

.

Lemma 2 provides a new expression for Kb. Using Lemma 2, we derive

several significant theoretical results.

Theorem 1 demonstrates that the orthogonal array minimizes the vari-

ance of the main effects estimates from various aspects. Next, we examine

Statistica Sinica: Preprint 
doi:10.5705/ss.202025.0061
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the bias of these estimates.

Theorem 2. If an N × n s-level orthogonal array of strength t ≥ 2 is used

to create a baseline design, then the (K2, . . . , Kt) sequence satisfies:

(1). for 2 ≤ v ≤ t− 1, Kv = v(s−1)v

s2v−2

(
n
v

)
,

(2). Kt = t(s−1)t

s2t−2

(
n
t

)
+ s2Jt, where Jt = 1

N2

∑
ϕt∈Φt

Tϕt

2 .

Remark 1. Theorem 2 generalizes Theorem 1 in Miller and Tang (2016),

which corresponds to the special case of s = 2, and thus allows for the study

of general baseline designs.

According to Theorem 2, all s-level orthogonal arrays of strength t have

identical K2, . . . , Kt−1. Moreover, orthogonal arrays can be classified into

regular and nonregular designs, among which regular designs have specific

algebraic structures and are the most widely used. Next, we further consider

Kt and Kt+1 based on regular designs.

5. Construction of MA Baseline Designs

5.1 Baseline designs from regular designs

An OA(sn−p,m, s, 2) with levels from GF(s) is said to be regular and de-

noted as an sn−p design, if its runs are the solution to the system of equations

Statistica Sinica: Preprint 
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ATx = 0, where A = (a1, . . . , ap), and a1, . . . , ap are linearly independent

n-dimensional column vectors. Let R(A) be the p-dimensional space gener-

ated by a1, . . . , ap, and call it the defining contrast subgroup. The aliasing

can be captured by the wordlength pattern (A3, A4, . . .), where Aj repre-

sents the number of words of length j in R(A). The resolution of design D

is the smallest integer j such that Aj(D) > 0 (Cheng, 2014). Note that for

a regular design, if its resolution is t+ 1, then its strength is t.

As discussed, sn−p designs of resolution t + 1 have identical Kv values

for 2 ≤ v ≤ t− 1. The following theorem shows that for these designs, Kt

(equivalent to Jt) can be minimized by minimizing At+1.

Theorem 3. If an s-level regular design of resolution t+1 is used to create

a baseline design, we have

Jt =
t+ 1

s2t

{
(s− 1)γts1 + γts2

}
At+1,

where s ≥ 3 is a prime power, γts1 = (−1)t(s− 1)/s + (s− 1)t/s, and

γts2 = (s− 1)t − γts1.

Next, let us see an example for illustration.

Example 2. Consider a 54−2 design of resolution 3 with factors A,B,C,

and D, where the defining contrast subgroup is

I = ABC4 = AB3D4 = ACD3 = BC3D2 = AB2C2D2 = AB4C3D.

Statistica Sinica: Preprint 
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Here t = 2, A3 = 4, γ2
51 = 4, γ2

52 = 12, thus J2 = 12
625

(4× 4 + 12) = 0.5376.

Now, we further consider Kt+1 for sn−p designs of resolution t + 1.

For any word F a1
1 F a2

2 . . . F ak
k of length k, define its degenerate word as

F1F2 . . . Fk, where ai ∈ GF (s) for i = 1, . . . , k. For example, the degenerate

words of words AB2C2D2 and AB4C3D are both ABCD. Further let A∗t+2

denote the number of degenerate words of length t + 2, and A1
t+2 denote

the number of degenerate words of length t + 2 that share t + 1 common

factors with some degenerate word of length t + 1. To provide a clearer

understanding of these symbols, consider the following example.

Example 3. Consider two 55−2 designs, denoted as Design I and Design II,

both incorporating factors A,B,C,D, and E. For these designs, the words

of lengths 3 and 4 are given as follows.

Design I : I = ABD4 = AB2CE4 = BCDE4 = AC4D3E.

Design II : I = ABD4 = AB2E4 = AD3E = BDE4 = AB4D2E2 = AB3DE3.

For both Designs I and II, we have t = 2. Let A∗4 be the number of de-

generate words of length 4, and A1
4 be the number of degenerate words

of length 4 that share 3 common factors with some degenerate word of

length 3. Design I has three distinct length-4 words: AB2CE4, BCDE4

and AC4D3E. These three words correspond to three distinct degenerate
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words: ABCE, BCDE and ACDE, i.e., A∗4 = 3. Moreover, there is no

degenerate word of length 4 that shares 3 common factors with any degen-

erate word of length 3, i.e., A1
4 = 0. Design II has two distinct length-4

words: AB4D2E2 and AB3DE3. These two words correspond to the same

degenerate word ABDE, where ABDE shares 3 common factors with some

degenerate words of length 3. Thus, we have A∗4 = A1
4 = 1.

Theorem 4. If an sn−p design of resolution t+1 is used to create a baseline

design, we obtain

Kt+1 =
1

s2t
{C1(t+ 1)At+1 + C2(t+ 2)A1

t+2 + C3(t+ 2)A2
t+2 + C4}, (5.1)

where C1 = s2γts2 + {(s− 1)γts2 + (s− 1)2γts1}(n− t− 1)− (s− 1)t+1, C2 =

{s2−(s−1)(t+1)}γts2+{s2(s−2)−(s−1)2(t+1)}γts1, C3 = γt+1
s2 +(s−1)γt+1

s1 ,

C4 = (s−1)t+1(t+1)n!
(t+1)!(n−t−1)!

, and A2
t+2 = A∗t+2 − A1

t+2 > 0.

Remark 2. When comparing regular designs of resolution t+1 with identi-

cal Kt values, it becomes necessary to further compare their Kt+1 values. In

this regard, Theorem 4 provides valuable guidance. Furthermore, Theorem

4 extends Theorem 2 of Miller and Tang (2016) to accommodate designs

with s > 2. This extension broadens its applicability to a wider range of

factorial experiments.

Specifically, when t = 2, we have γ2
s1 = s − 1, γ2

s2 = (s − 1)(s − 2),
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γ3
s1 = (s − 1)(s − 2), and γ3

s2 = (s − 1)3 − (s − 1)(s − 2). Then we obtain

the following result.

Corollary 1. When t = 2, we have A2
4 = A4 − (s− 3)A1

4, and

K3 =
1

s4

(
3C1A3 + 4C3A4 + 4C5A

1
4 + C4

)
,

where C1 = (s− 1)2(2s− 3)n + s2(s− 1)(s− 2)− (7s− 10)(s− 1)2, C3 =

(s − 1)3 + (s − 1)(s − 2)2, C5 = C2 − (s − 3)C3 = (2s − 6)(s − 1)2, and

C4 = n(n− 1)(n− 2)(s− 1)3/2.

From Theorem 3 and Corollary 1, we obtain that the sequential min-

imization of (K2, K3) is equivalent to the sequential minimization of (A3,

C3A4 + C5A
1
4). Let us consider the following example.

Example 4. Based on enumeration, there are nine combinatorially non-

isomorphic classes of 47−4 designs. One representative design is selected

from each class and labeled as Designs I through IX. These nine 47−4 designs

involve factors A, B, C, D, E, F , and G, with their defining words and

corresponding index values summarized in Table 3.

By examining Table 3, we observe that when A3 and A4 are sequentially

minimized, K2 and K3 are also sequentially minimized. Moreover, when A3

remains the same, K2 does not change.
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Table 3: The defining words and associated index values for nine designs.

Design D E F G A3 A4 A∗4 A1
4 A2

4 K2 K3

I AB AC AB2C2 AB3C3 3 23 23 0 23 32.06 33.84

II AB AC BC2 AB2C2 4 19 19 0 19 34.88 34.32

III AB AC BC ABC2 5 15 15 0 15 37.69 34.80

IV AB AB2 AB3C AB2C2 5 19 19 1 18 37.69 37.52

V AB AB2 AC BC2 6 15 15 1 14 40.50 38.00

VI AB AC BC ABC 7 7 7 0 7 43.31 35.77

VII AB AB2 AC BC 7 11 11 1 10 43.31 38.48

VIII AB AB2 AC AC2 8 11 11 2 9 46.13 41.68

IX AB AB2 AB3 AC 11 11 11 5 6 54.56 51.28

Remark 3. Extensive simulations reveal that for designs with the same

value of A3, minimizing A1
4 also leads to the minimization of A4. This

finding suggests that when searching for the MA design under BP, one can

start with the MA design under OP.

Given the frequent occurrence for s = 3, 4, and 5 in practical applica-

tions, we derive specific expressions for Kt+1 with t = 2 for these represen-

tative cases. The detailed formulas are provided below.

Corollary 2. (1). For a 3n−p design of resolution 3, we have

K3 =
1

81
{(36n− 78)A3 + 40A4 + 4n(n− 1)(n− 2)} .
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(2). For a 4n−p design of resolution 3, we have

K3 =
1

256

{
(135n− 198)A3 + 156A4 + 72A1

4 +
27

2
n(n− 1)(n− 2)

}
.

(3). For a 5n−p design of resolution 3, we have

K3 =
1

625

{
(336n− 300)A3 + 400A4 + 256A1

4 + 32n(n− 1)(n− 2)
}
,

where A1
4 is the number of degenerate words of length 4 that share 3 common

factors with some degenerate word of length 3.

We next illustrate Corollary 2 with two examples.

Example 5. Consider a 35−2 design of resolution 3 with factors A,B,C,D,

and E, where the defining contrast subgroup is

I = ABD2 = CDE2 = ABCE2 = ABC2DE.

Here, n = 5, A3 = 2, A4 = 1, thus K2 = 12.89 and K3 = 5.98.

Example 6. 55−2 designs have four combinatorially non-isomorphic classes

based on enumeration. Select one design from each of these four classes

and denote the resulting designs as I, II, III, and IV, respectively. The five

factors are denoted as A, B, C, D, and E. Table 4 presents the definition

relationships for these four designs. The words of length 3 and 4 in each
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design can be obtained, as shown below.

Design I : I = ABCD4 = AB2C3E4 = BC2DE4 = AC4D3E = AB3DE3.

Design II : I = ABD4 = AB2CE4 = BCDE4 = AC4D3E.

Design III : I = ABD4 = ACE4 = BC4D4E.

Design IV : I = ABD4 = AB2E4 = AD3E = BDE4 = AB4D2E2 = AB3DE3.

As shown in Table 4, when A3 and A4 are minimized sequentially, K2 and

K3 are also minimized sequentially.

Table 4: Some associated index values for designs in Example 6.

Design D E A3 A4 A∗4 A1
4 A2

4 J2 K2 K3

I ABC AB2C3 0 5 5 0 5 0 12.80 6.27

II AB AB2C 1 3 3 0 3 0.13 16.16 7.20

III AB AC 2 1 1 0 1 0.27 19.52 8.13

IV AB AB2 4 2 1 1 0 0.54 26.24 13.59

5.2 A general construction method for MA baseline designs

Building on the definition of baseline isomorphism (Yan and Zhao, 2024)

and the non-exchangeability of the baseline level with other levels under

BP, it is sufficient to consider s distinct level permutations for an s-level
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design. In this paper, the following s level permutations are considered.

{0, 1, 2, . . . , s− 1} → {0, 1, 2, . . . , s− 1},

{0, 1, 2, . . . , s− 1} → {1, 0, 2, . . . , s− 1},

...

{0, 1, 2, . . . , s− 1} → {1, 2, . . . , 0, s− 1},

{0, 1, 2, . . . , s− 1} → {1, 2, . . . , s− 1, 0}.

(5.2)

For example, when s = 3, we only need to consider the following three level

permutations.

{0, 1, 2} → {0, 1, 2}, {0, 1, 2} → {1, 0, 2}, {0, 1, 2} → {2, 1, 0}.

Therefore, based on the theoretical properties of the MA criterion under

BP, we propose a method of s-level MA designs under BP based on MA

designs under OP and level permutations in (5.2), as given in Algorithm 1.

Algorithm 1

Step 1 Given N and n, we list all s-level regular MA designs under OP

with resolution t+ 1, suppose there are p such arrays.

Step 2 For each of the p MA designs in Step 1, obtain sn designs by applying

level permutations in (5.2) on one or more columns. For each of the

resulting snp designs, calculate the Kr for r = t, . . . , n−1 and then find

the minimum aberration designs.
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When s = 5, Table 5 demonstrates the K2 and K3 values for the 125-

run designs with n factors generated by the regular MA design (RMA),

as well as the K2 and K3 values derived from applying level permutations

to the regular MA design (PMA). As shown in Table 5, by applying level

permutations to regular MA designs under OP, baseline designs with smaller

K2 and K3 values can be obtained. Note that these designs may no longer

be regular designs.

Table 5: The comparison of K2 and K3-values of RMA and PMA.

n 3 4 5 6 7 8 9 10

(RMA)K2 3.84 7.68 12.80 19.20 33.60 49.28 69.60 124.80

(PMA)K2 3.84 7.68 12.80 19.20 32.88 47.84 67.08 117.60

(RMA)K3 0.31 1.87 6.27 15.74 34.60 64.49 110.07 201.24

(PMA)K3 0.31 1.87 6.27 15.74 34.61 64.43 109.63 193.39

Remark 4. Theorems 3 and 4 provide a theoretical basis for constructing

baseline designs from MA regular designs, where the detailed method is

given in Algorithm 1. In fact, the level permutation can be extended into

nonregular designs to identify approximate BP-MA designs. Please refer

to the supplementary materials for details. It is shown that the proposed

method performs well for nonregular cases as well.

Remark 5. In Step 2 of Algorithm 1, evaluating the Kr for r = t, . . . , n−1

Statistica Sinica: Preprint 
doi:10.5705/ss.202025.0061



MA FRACTIONAL FACTORIAL DESIGNS UNDER BP 26

across all snp candidate designs becomes computationally intractable for

large s/n/p. To address this combinatorial explosion, we adopt a random-

ized subsampling strategy. Specifically, we randomly select a subset of

designs from the snp candidate designs. For the selected designs, we com-

pute Kr for r = t, . . . , n− 1 to identify approximately minimum aberration

designs. Further details can be found in the supplementary material.

6. Conclusion and Discussion

Fractional factorial designs under BP have garnered significant attention.

However, the theory of s-level fractional factorial designs with s ≥ 3 under

BP has not been thoroughly explored. This paper investigates the general

theory of s-level baseline designs for any s ≥ 3. We first establish the

relationship between OP and BP. Subsequently, we show that orthogonal

arrays retain their Ds- and G-optimality among all designs. Moreover, we

demonstrate that orthogonal arrays achieve As-optimality within the class

of balanced designs. Furthermore, we explore the theory of the BP-MA

criterion and its connection to the MA criterion under OP. Finally, we pro-

pose a method for constructing BP-MA designs based on these theoretical

properties. Additionally, we provide theoretical support for the algorithm

proposed by Yan and Zhao (2024) and supplement it with designs for cases
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where s = 5 and the number of runs is 25, 50, 75, 100, and 125 in the

supplementary material.

This paper may inspire further exploration in related research areas.

Theorem 1 demonstrates that orthogonal arrays areDs-, G-, andAs-optimal

among all balanced designs. This suggests an interesting and meaningful

direction for future research — exploring whether orthogonal arrays are

also φ-optimal among all balanced designs under any concave and signed

permutation invariant criterion φ(·), as proposed by Peng, Mukerjee and

Lin (2019). In addition to this theoretical inquiry, another promising di-

rection lies in extending the construction of s-level baseline designs beyond

balanced settings. For instance, the compromise design constructed by

Karunanayaka and Tang (2017) and Li, Liu and Tang (2022) in the case of

two levels. Building on this, we aim to construct compromise designs for

s ≥ 3 levels in the future. To further broaden the applicability of baseline

designs, it is also essential to explore their development in more complex

experimental frameworks, such as block experiments, which warrant further

investigation.
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Supplementary Material

Supplementary material presents the proofs of theoretical results and lists

5-level approximate BP-MA designs and their K2 and K3 values for runs of

25, 50, 75, 100, and 125.
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