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Abstract: This paper is concerned with Spearman’s correlation matrices under large dimensional

regime, in which the data dimension diverges to infinity proportionally with the sample size. We es-

tablish the central limit theorem for the linear spectral statistics of Spearman’s correlation matrices,

which extends the results of Bao et al. (2015). We also study the improved Spearman’s correlation

matrices of Hoeffding (1948) which is a standard U-statistic of order 3. As applications, we propose

three new test statistics for large dimensional independent test and numerical studies demonstrate

the applicability of our proposed methods.
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1. Introduction

In multivariate statistical analyses, the covariance matrix is a fundamental tool used to

describe the relationships among features. Its theoretical property is crucial for under-

standing many statistical methods. For the classical setting where the data dimension p

is fixed and the sample size n tends to infinity, these properties and their applications in
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various methods are summarized in textbooks, e.g., Anderson (2003).

In the last few decades, large amounts of work are focused on the large dimensional

regime,

n → ∞, p = p(n) → ∞, p/n = yn → y ∈ (0,∞). (1.1)

Random matrix theory, as a powerful tool, provides insights into the behavior of large di-

mensional sample covariance matrices, extending the famous Wishart distribution theory.

The pioneering work Marc̆enko and Pastur (1967) derived the limiting spectral distribu-

tion (LSD) which is called Marc̆enko-Pastur (MP) law. With the LSD, we can describe

the limits of linear spectral statistics (LSS). Furthermore, Bai and Silverstein (2004) firstly

derived the central limit theorem (CLT) of LSS. The following works include Pan and Zhou

(2008); Anderson and Zeitouni (2008); Lytova and Pastur (2009); Pan (2014); Zheng et al.

(2015) and so on. As applications of RMT on the sample covariance matrix, Dobriban

and Wager (2018) and Wang and Jiang (2018) studied the prediction errors of ridge re-

gression and regularized linear discriminant analysis; Hastie et al. (2022) demonstrated

the double descent phenomenon in the simple linear regression; Bai et al. (2009) proposed

a bias correction to the likelihood ratio test; Wang et al. (2013) and Wang and Yao (2013)

considered the identify test and the sphericity test of covariance matrices, respectively.

For more results on large dimensional covariance matrices, it is referred to Paul and Aue

(2014) and Yao et al. (2015) for a comprehensive review.
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Normalization is a common procedure in data analysis. By standardizing the sample

covariance matrix, we obtain Pearson’s correlation matrix, a scale-invariant measure. Re-

cent research has extensively studied Pearson’s correlation matrices. Jiang (2004b) first

derived the limiting spectral distribution. Bao et al. (2012) and Pillai and Yin (2012)

established limiting distributions for the extreme eigenvalues. Mestre and Vallet (2017)

and Gao et al. (2017) developed the CLT of LSS of Pearson’s correlation matrices. Zheng

et al. (2019) extended the CLT to general covariance structures. See also Jiang (2019)

and Parolya et al. (2024). For a large class of population distributions, El Karoui (2009)

demonstrated that the spectral properties of Pearson’s correlation matrices resemble those

of sample covariance matrices. Typically, these studies assume finite fourth moments for

the features. However, for distributions with infinite fourth moments, such as heavy-tailed

populations, the applicability of these results may require additional verification or may no

longer hold. For instance, Heiny and Parolya (2024) justified the CLT of log-determinant

statistics of Pearson’s correlation matrices and Heiny and Yao (2022) discovered a new

LSD result for heavy-tailed distributions.

To address the challenges posed by heavy-tailed data, non-parametric statistics of-

fer robust correlation measures. Among these, Spearman’s rank correlation matrix and

Kendall’s rank correlation matrix are particularly popular due to their distribution-free

nature, making them suitable for heavy-tailed data. Recent research has explored the

properties of these rank-based correlation matrices. For example, Leung and Drton (2018)

and Wang et al. (2024) studied a class of rank-based U-statistics for independence test.
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In the realm of random matrix theory, Bai and Zhou (2008) and Wu and Wang (2022)

investigated the LSD of Spearman’s correlation matrices. Bandeira et al. (2017) and Li

et al. (2023) studied the LSD of Kendall’s correlation matrices. As far as the CLT, Bao

et al. (2015) considered asymptotic distributions of polynomial functions of Spearman’s

correlation matrices and Li et al. (2021) studied the CLT of LSS of Kendall’s correlation

matrices.

In this paper, we focus on Spearman’s correlation matrices and aim to establish a

central limit theorem for general linear spectral statistics. Due to introducing ranking,

the independence among samples are violated and thus, we turn to consider Gram matri-

ces. The rescaled Gram matrix is a sample covariance matrix related to the distribution

which are independent and uniformly distributed on the permutations of {1, · · · , n}. In

Bao et al. (2015), they adopted the celebrated moment method and derived the CLT for

polynomial functions. In this work, we follow the classical technique developed by Bai and

Silverstein (2004) and consider the asymptotic distribution of Stieltjes transforms. Key

challenges arise in computing the covariance of quadratic forms and establishing concentra-

tion inequalities for these forms. For uniform distribution on {1, · · · , n}, it is challenging

to derive the explicit covariance of quadratic forms. We derive the three leading terms

which all contribute to the final CLT. More details can be found in our Lemma S2.1

and Lemma S2.2 of Supplement Materials. The obtained results are consistent with Bao

et al. (2015) for polynomial functions and are also applicable to more general LSS such as

log-determinant functions. The resulting CLT of Stieltjes transform can connect to many
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other covariance or correlation matrices.

In non-parametric statistics, Hoeffding (1948) theoretical analyzed the Spearman’s

correlation from the perspective of U-statistics and proposed an improved version. Specif-

ically, Spearman’s correlation can be expressed as a U-statistics of order 3 with an ad-

ditional term. To address this, Hoeffding (1948) introduced an improved Spearman’s

correlation which is a standard U-statistic of order 3. Sample covariance matrices and

Kendall’s correlation matrices are well-known examples of U-statistics of order 2, and

their CLTs have been extensively studied in Pan (2014) and Li et al. (2021), respectively.

To the best of our knowledge, there are no CLTs for general LSS of U-statistics of order

higher than 2. While the improved Spearman’s correlation matrix is challenging to analyze

directly, we can evaluate the difference between it and the classical Spearman’s correlation

matrix. This approach enables us to establish a CLT for standard U-statistics of order 3.

This result is of interest for covariance/correlation matrices of U-statistic types and may

contribute to the development of CLTs for LSS of general U-statistics of higher order.

As applications of such CLTs, we revisit hypothesis testing for independence. Numer-

ous studies have proposed various test statistics based on different correlation matrices,

including Jiang (2004a), Zhou (2007), Gao et al. (2017), Bao et al. (2015), Leung and

Drton (2018), Bao (2019), Li et al. (2021). Our proposed test statistics fall into two

categories: those based on Euclidean distance and those based on Stein’s loss. Through

extensive numerical experiments, we demonstrate the competitive performance of our pro-

posed methods compared to well-established approaches.
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Our contributions are summarized as follows:

1. For Gram matrices, we study a novel population distribution which is uniformly

distributed on the permutations of {1, · · · , n}. Unlike the independent component

model or elliptical distributions, the quadratic forms associated with this distribution

exhibit a complex covariance structure. By carefully analyzing three leading terms,

we derive a new central limit theorem.

2. For Spearman’s correlation matrices, we establish a CLT of general linear spectral

statistics, extending the work of Bao et al. (2015) which focused on polynomial func-

tions. Our approach, based on classical random matrix techniques and the Stieltjes

transform, provides a more direct connection to other classical results, shedding light

on the underlying structure of Spearman’s correlation.

3. From a U-statistic perspective, Spearman’s correlation is not a standard U-statistic.

Hoeffding (1948) proposed an improved version which is a U-statistic of order 3. By

carefully evaluating the difference between the classical and improved Spearman’s

correlation matrices, we derive the explicit impact on the asymptotic mean and

establish a CLT for the improved Spearman’s correlation matrix. As we know, this

is the first CLT for standard U-statistic of order 3 in random matrix theory.

4. Spearman’s correlation matrices, derived from ranking and standardizing the original

data matrix, can be viewed as both sample covariance and Pearson-type correlation

matrices. From a U-statistic perspective, Spearman’s correlation matrices are of
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order 3, while Kendall’s correlation matrices are of order 2. Thus, Spearman’s

correlation matrices can be connected with many existing random matrix models

and the corresponding CLT results can also be connected with well-established CLT

results. The obtained results allow us to gain deeper insights into the asymptotic

distribution of linear spectral statistics for various sample covariance and correlation

matrices.

The remainder of the paper is structured as follows: Section 2 introduces the necessary

background knowledge and tools from random matrix theory. Section 3 presents our

main results, including the CLTs for Gram matrices, Spearman’s correlation matrices,

and improved Spearman’s correlation matrices. Section 4 applies our theoretical results to

hypothesis testing for independence and conducts numerical experiments to demonstrate

the effectiveness of our proposed methods. In Section 5, we summarize our CLTs with

discussions and the Appendix provides detailed proofs of our theoretical results.

2. Preliminary result in RMT

Let Hn be any n × n Hermitian matrix with eigenvalues λ1 ≥ · · · ≥ λn. The empirical

spectral distribution (ESD) is defined as

FHn(x) =
1

n

n∑
i=1

I(λi ≤ x), (2.1)
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where I(·) is the indicator function. If FHn converges weakly to some limiting distribution

F , then we call F the limiting spectral distribution of Hn.

With the LSD, we can study the linear spectral statistic which is defined as

1

n

n∑
i=1

f(λi) =

∫
f(x)dFHn(x).

Here f(·) is any bounded and continuous function. By the property of weak convergence,

we can conclude

∫
f(x)dFHn(x) →

∫
f(x)dF (x).

Some common functions in statistics include

1

n

n∑
i=1

λk
i =

1

n
tr(Hk

n), k = 1, 2, · · · ,

1

n

n∑
i=1

(λi − 1)2 =
1

n
∥Hn − In∥2F ,

1

n

n∑
i=1

λi − log(λi)− 1 =
1

n
tr(Hn)−

1

n
log det(Hn)− 1,

and so on. If Hn is a random matrix, we can further consider the central limit theorem of

linear spectral statistics.

In random matrix theory, one of the most powerful tools is Stieltjes transform, which
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is defined as

mF (z) =

∫
1

x− z
dF (x), z ∈ C+, (2.2)

with respect to any distribution function F . Here C+ is the upper half space of the

complex plane. Similar to the characteristic function in probability, there is a one-to-one

correspondence between the probability distribution and its Stieltjes transform. With the

Stieltjes transform, by the residue theorem of complex analysis,

1

n

n∑
i=1

f(λi) =

∫
f(x)dFHn(x) = − 1

2πi

∮
C
f(z)mFHn (z)dz,

where
∮
C is closed and taken in the positive direction, enclosing the support of FHn .

Furthermore, we can study the asymptotic distribution, e.g.,

∫
f(x)dFHn(x)−

∫
f(x)dF (x) =

1

2πi

∮
C
f(z) (mF (z)−mFHn (z)) dz.

In summary, to find the LSD of a random matrix Hn, we can study its Stieltjes

transform

mFHn (z) =
1

n
tr (Hn − zIn)

−1 .

To explore the asymptotic distribution of the LSS, we need to find the asymptotic distri-

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0395



bution of

mF (z)−mFHn (z),

which is usually a Gaussian process. The Gaussian process further yields the asymptot-

ically normal distribution of the LSS. It is referred to Bai and Silverstein (2010) for a

comprehensive survey on random matrix theory.

3. Main result

For independent and identically distributed (i.i.d.) samples X1, . . . ,Xn ∈ Rp, we denote

their rank statistics as ri = (ri1, · · · , rip)⊤, i = 1, . . . , n. For each feature j ∈ {1, · · · , p},

(r1j, . . . , rnj) are uniformly distributed on the permutations of {1, · · · , n}. Then,

Erij =
n+ 1

2
, var(rij) =

n2 − 1

12
.

With the rank statistics, the Spearman’s rank correlation matrix is defined by

ρn =
12

n(n2 − 1)

n∑
k=1

(rk −
n+ 1

2
1p)(rk −

n+ 1

2
1p)

⊤, (3.1)

which is the Pearson’s correlation matrix based on r1, . . . , rn ∈ Rp. Due to ranking,

r1, . . . , rn ∈ Rp are not independent anymore and it is hard to tackle the Spearman’s rank

correlation matrix directly. Here we turn to its Gram matrix.
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3.1 Gram matrix

3.1 Gram matrix

Standardizing rank statistics, we denote

√
12

n2 − 1


r11 − n+1

2
· · · r1p − n+1

2

... · · · ...

rn1 − n+1
2

· · · rnp − n+1
2

 =

(
s1, · · · , sp

)
.

If the features are completely independent, s1, . . . , sp ∈ Rn are i.i.d. and have been

centered, e.g.,

Esi = 0n, Σ = cov(s1) =
n

n− 1

(
In −

1

n
1n1

⊤
n

)
.

Then, we can study the sample covariance matrix of s1, . . . , sp,

gn =
1

p

p∑
i=1

sis
⊤
i . (3.2)

This sample covariance matrix can also be regarded as the Gram matrix of the original

rank statistics, that is,

gn =
12

p(n2 − 1)

(
(ri −

n+ 1

2
1p)

⊤(rj −
n+ 1

2
1p)

)
n×n

.

Thus, gn and ρn/yn share the same non-zero eigenvalues.
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3.1 Gram matrix

Denoting mn(z) as the Stieltjes transforms of ρn i.e.,

mn(z) =
1

p
tr(ρn − zIp)

−1,

it is proven in Bai and Zhou (2008) that mn(z) → m(z) almost surely and

m(z) =
1− y − z +

√
(1 + y − z)2 − 4y

2yz
. (3.3)

This result shows that the LSD of ρn converges weakly to the M-P law Fy almost surely,

whose density function is

py(x) =

√
(x− (1−√

y)2)((1 +
√
y)2 − x)

2πxy
I
(
(1−√

y)2 < x < (1 +
√
y)2

)
,

for y ≤ 1 and has a point mass 1− 1/y at origin for y > 1.

We further denote sn(z) and sn(z) as the Stieltjes transform of gn and ρn/yn, respec-

tively

sn(z) =
1

n
tr(gn − zIn)

−1 = y2nmn(ynz)−
1− yn

z
,

sn(z) =
1

p
tr(

ρn

yn
− zIp)

−1 =
1

yn
(sn(z) +

1

z
)− 1

z
,

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0395



3.1 Gram matrix

and almost surely

sn(z) → s(z) =
1− y0 − z +

√
(1 + y0 − z)2 − 4y0
2y0z

,

sn(z) → s(z) =
−(1− y0 + z) +

√
(1 + y0 − z)2 − 4y0
2z

,

where y0 = 1/y. Then, the LSD of gn converges weakly to the M-P law Fy0 almost surely.

For the LSS of gn,

∫
f(x)dF gn(x) =

1

n

n∑
i=1

f (λi(gn)) ,

where f is an analytic function and λ1(gn) ≥ · · · ≥ λn(gn) are eigenvalues of gn, we have

almost surely

∫
f(x)dF gn(x) →

∫
f(x)dFy0(x).

Further, we study the asymptotic distribution of the LSS. Let

Gn(x) = n
(
F gn(x)− Fn/p(x)

)
,

and we focus on

∫
f(x)dGn(x) = n

(∫
f(x)dF gn(x)−

∫
f(x)dFn/p(x)

)
. (3.4)
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3.1 Gram matrix

Our central limit theorem is presented as follows.

Theorem 1. Assume that {Xij : i = 1, . . . , n; j = 1, . . . , p} are doubly independent and

absolutely continuous with respect to the Lebesgue measure. Let f1, . . . , fk be functions

on R and analytic on an open interval containing

[I(y0 < 1)(1−√
y0)

2, (1 +
√
y0)

2]. (3.5)

Then, as n/p → y0 ∈ (0,∞), the random vector

(∫
f1(x)dGn(x), · · · ,

∫
fk(x)dGn(x)

)

converges weakly to a Gaussian vector (Gf1 , · · · , Gfk) with the asymptotic mean

EGf = − 1

2πi

∮
C
f(z)µ(z)dz,

and the asymptotic covariance function

cov(Gf , Gg) = − 1

4π2

∮
C1

∮
C2
f(z1)g(z2)σ(z1, z2)dz1dz2,

where

µ(z) =
y0s

3(z) (1 + s(z))(
(1 + s(z))2 − y0s2(z)

)2 − 2y0s
3(z)(

(1 + s(z))2 − y0s2(z)
)
(1 + s(z))
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3.1 Gram matrix

+
s3(z)

(1 + s(z))2 − y0s2(z)
,

σ(z1, z2) =
2s′(z1)s

′(z2)

(s(z1)− s(z2))
2 − 2

(z1 − z2)2
− 2y0s

′(z1)s
′(z2)

(1 + s(z1))
2 (1 + s(z2))

2 .

The contour
∮
C is closed and taken in the positive direction, each enclosing the support

(3.5).

For concrete functions such as logarithms and polynomials, we will derive CLTs in

next section. In details, the integral involving s(z) can be calculated explicitly for most

cases.

Remark 1. Interestingly, our CLT is quite related to the existing results for sample

covariance matrices based on independent components model. For instance, we consider a

spike model with population covariance matrix being diag(0, n
n−1

, · · · , n
n−1

) whose elements

are the eigenvalues of Σ. The CLT for LSS of the sample covariance matrix is derived by

Pan and Zhou (2008), where the centering term is
∫
f(x)dF yn,Hn(x), the asymptotic mean

is

EGf =− 1

2πi

∫
f(z)

ym3(z) (1 +m(z))(
(1 +m(z))2 − ym2(z)

)2dz
− EZ4

11 − 3

2πi

∫
f(z)

2ym3(z)(
(1 +m(z))2 − ym2(z)

)
(1 +m(z))

dz,
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3.1 Gram matrix

and the asymptotic covariance is

cov(Gf , Gg) =− 1

4π2

∫∫
f(z1)g(z2)

(
2m′(z1)m

′(z2)

(m(z1)−m(z2))
2 − 2

(z1 − z2)2

)
dz1dz2

− EZ4
11 − 3

4π2

∫∫
f(z1)g(z2)

ym′(z1)m
′(z2)

(1 +m(z1))
2 (1 +m(z2))

2dz1dz2.

As can be seen, the asymptotic covariance and the first two terms of asymptotic mean

are essentially the same, with only the coefficients differing. For the new term in the

asymptotic mean, it comes from the discrepancy between Σ and I. More specifically, the

Marc̆enko-Pastur equation of Fn/p is

s(0)n (z) =
1

(1− n
p
− n

p
zs

(0)
n (z))− z

.

For Σ which has n− 1 eigenvalues equal to n/(n− 1) and one zero eigenvalue, the corre-

sponding Marc̆enko-Pastur equation is

s(1)n (z) =

∫
1

t(1− n
p
− n

p
zs

(1)
n (z))− z

dFΣ(t)

=
n− 1

n

[
n

n− 1

(
1− n

p
− n

p
zs

)
− z

]−1

− 1

nz
.

Through careful calculation, we can conclude

n
(
s(1)n (z)− s(0)n (z)

)
→ s3(z)

(1 + s(z))2 − y0s2(z)
.
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3.2 Spearman’s rank correlation matrix

More details can be found in the proof, e.g., the equation (S1.24) of Supplement Materials.

3.2 Spearman’s rank correlation matrix

For Spearman’s rank correlation matrix ρn ∈ Rp×p which has the same non-zero eigenval-

ues as the ones of yngn ∈ Rn×n, we have

∫
f(x)dF ρn(x) =

1

p

p∑
i=1

f(λi(ρn)) =
1

p

n∑
i=1

f(ynλi(gn)) +
p− n

p
f(0)

=
1

yn

∫
f(ynx)dF

gn(x) +
p− n

p
f(0).

In addition, by the property of M-P law,

∫
f(ynx)dFn/p(x) = yn

∫
f(x)dFyn(x) + (1− yn)f(0),

which yields

∫
f(x)dFyn(x) =

1

yn

∫
f(ynx)dFn/p(x) +

p− n

p
f(0).

Therefore, we can study the asymptotic distribution of

T (f) = p

(∫
f(x)dF ρn(x)−

∫
f(x)dFyn(x)

)
=

∫
f(ynx)dGn(x).

By Theorem 1, we have proven the CLT of
∫
f(yx)dGn(x) and the remaining is to
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3.2 Spearman’s rank correlation matrix

show

∫
f(ynx)dGn(x)−

∫
f(yx)dGn(x) = op(1),

whose details can be found in the proof. Based on these observations, we state the CLT

for ρn in the following theorem.

Theorem 2. Assume that {Xij : i = 1, . . . , n; j = 1, . . . , p} are doubly independent and

absolutely continuous with respect to the Lebesgue measure. Let f1, · · · , fk be functions

analytic on an open interval containing

[
I(y < 1)(1−√

y)2, (1 +
√
y)2

]
. (3.6)

Then, as p/n → y ∈ (0,∞), the random vector (T (f1), · · · , T (fk)) converges weakly to a

Gaussian vector (Zf1 , · · · , Zfk) with mean function

EZf = − 1

2πi

∮
C′
f(yz)µ(z)dz = − 1

2πi

∮
C
f(z)

µ(z/y)

y
dz, (3.7)

and covariance function

cov(Zf , Zg) = − 1

4π2

∮
C′
1

∮
C′
2

f(yz1)g(yz2)σ(z1, z2)dz1dz2,

= − 1

4π2

∮
C1

∮
C2
f(z1)g(z2)

σ(z1/y, z2/y)

y2
dz1dz2, (3.8)
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3.2 Spearman’s rank correlation matrix

where µ(z) and σ(z1, z2) are defined in Theorem 1, and the contour
∮
C is closed and taken

in the positive direction, each enclosing the support (3.6).

Remark 2. In Bao et al. (2015), they derived the asymptotic distribution of tr(ρk
n) for

any positive integer k ≥ 2. Technically, they utilized Anderson and Zeitouni’s cumulant

method (Anderson and Zeitouni, 2008) and proposed a two-step comparison approach

to obtain the explicit mean and covariance of CLTs. Here we adopt the classical proof

technique from the seminal work of Bai and Silverstein (2004). Taking f(x) = xk, we refer

to results (4.3) in Bao et al. (2015).

Remark 3. Note that ρn is a correlation matrix which means tr(ρn) = p. Thus, f(x) = x

is a degenerate case. In Theorem 4, we derive the asymptotic mean and the asymptotic

variance for f(x) = xk with k ≥ 1. Taking k = 1, we can obtain µx = 0 and σ2
x = 0.

Remark 4. For sample covariance matrices, using the sample mean or the true population

mean has impacts on the final CLT and Pan (2014) compared the two types of sample co-

variance matrices. More specifically, Zheng et al. (2015) proposed a substitution principle

which adjusted the sample size from n to n− 1 for the sample covariance matrix based on

the sample mean. For Spearman’s rank correlation matrices, although the sample mean

of the rank statistics is constant, e.g.,

1

n

n∑
i=1

ri =
n+ 1

2
1p,

it still contributes to the CLT. In details, the population covariance matrix Σ ∈ Rn×n
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3.3 Improved Spearman’s correlation matrix

related the Gram matrix gn has one zero eigenvalue. Following Zheng et al. (2015), we

can also use n − 1 and consider the ratio p/(n − 1). Then, the additional term such as

µ3(z) can be removed and more details can be found in Remark 1.

3.3 Improved Spearman’s correlation matrix

The Spearman’s rank correlation is a classical method in non-parametric statistics. We

note that the rank statistics can be transformed into the sum of indicators, which implies

rij −
n+ 1

2
=

1

2

∑
k ̸=i

sign(Xij −Xkj).

Here sign(·) is the sign function. Denoting the sign vector

Aij = sign(Xi −Xj) =


sign(Xi1 −Xj1)

...

sign(Xip −Xjp)

 ,

we have

ρn =
3

n(n2 − 1)

n∑
i=1

∑
j,k ̸=i

AijA
⊤
ik.
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3.3 Improved Spearman’s correlation matrix

In the form of non-parametric U-statistics, it can be decomposed into two U-statistics,

ρn =
3

n(n2 − 1)

∗∑
i,j

AijA
⊤
ij +

3

n(n2 − 1)

∗∑
i,j,k

AijA
⊤
ik =

3

n+ 1
Kn +

n− 2

n+ 1
ρ̃n,

where

Kn =
1

n(n− 1)

∗∑
i,j

AijA
⊤
ij

is Kendall’s rank correlation matrix and

ρ̃n =
3

n(n− 1)(n− 2)

∗∑
i,j,k

AijA
⊤
ik

is the improved Spearman’s rank correlation matrix proposed by Hoeffding (1948). Here∑∗ denotes summation over mutually different indices and more details can be found in

Wu and Wang (2022).

As can be seen, the Kendall’s correlation matrix Kn is a U-statistic of order 2 and

Li et al. (2021) studied the asymptotic distribution of its linear spectral statistics. The

improved Spearman’s rank correlation matrix ρ̃n is a U-statistic of order 3, that is difficult

to analyze it directly. Based on the CLT of ρn, we can study the difference between ρ̃n

and ρn which is 3(Kn− ρ̃n)/(n+1). For LSD (Wu and Wang, 2022), this difference can be

ignored. However, for the CLT of LSS, this deviation does contribute a non-trivial term
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3.3 Improved Spearman’s correlation matrix

to the asymptotic distribution. Considering the centered statistic

T̃ (f) = p

(∫
f(x)dF ρ̃n(x)−

∫
f(x)dFyn(x)

)
,

we present the main result in the following theorem.

Theorem 3. Under the conditions of Theorem 2, as yn → y, the random vector (T̃ (f1), · · · , T̃ (fk))

converges weakly to a Gaussian vector (Z̃f1 , · · · , Z̃fk) with mean function

EZ̃f = − 1

2πi

∮
C
f(yz) (µ(z) + µ̃(z)) dz, (3.9)

and covariance function

cov(Z̃f , Z̃g) = − 1

4π2

∮
C1

∮
C2
f(yz1)g(yz2)σ(z1, z2)dz1dz2, (3.10)

where µ(z), σ(z1, z2) are defined in Theorem 1, and

µ̃(z) =
s3(z) (2 + s(z))

(1 + s(z))2 − s2(z)/y
.

Compared with Theorem 2 for ρn, the asymptotic variance is the same and there

is a new additional term to the asymptotic mean which is due to the difference ρ̃n − ρn.

Specifically, this difference can be depicted by the discrepancy of their Stieltjes transforms,

i.e., p(mF ρ̃n (z) −mFρn (z)). Through rigorous derivation, we find that its limit is a non-
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random term. Consequently, it only introduces a drift to the asymptotic mean and does

not affect the asymptotic variance. For more details, please refer to the proof in the

Supplementary Material.

4. Application

For sample correlation matrices, one important application is to test mutual independence

among features. More specifically, we consider the hypotheses testing problem

H0 : R = I,

where R is a population correlation matrix such as the classical Pearson’s correlation

matirx, Spearman’s correlation matrix, Kendall’s correlation matrix and so on.

To evaluate R = I, we have the following equivalent definitions

ℓ2 loss: ∥R− I∥22 = tr(R2)− 2tr(R) + p = 0;

Stein’s loss: tr(R)− log(R)− p = 0;

ℓ∞ loss: ∥R− I∥∞ = 0.

Based on an estimator R̂, intuitively one can conduct test statistics

T1(R̂) =tr(R̂2)− 2tr(R̂) + p,
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T2(R̂) =tr(R̂)− log(R̂)− p,

T3(R̂) =∥R̂− I∥∞.

For large dimensional data, it is challenging to derive the asymptotic distribution of these

statistics. In the past 20 years, significant progress has been made in this field and many

important methods were proposed in literature. In special, ℓ2 loss and Stein’s loss can

be expressed by linear spectral statistics and in RMT, they motivate the study on the

LSS of these correlation matrices. We summarize the developments of testing correlation

matrices in Table 1.

Table 1: Developments of testing correlation matrices in RMT
Sample correlation Kendall’s τ Spearman’s ρ

ℓ2 loss Gao et al. (2017); Zheng et al. (2019) Li et al. (2021) Bao et al. (2015)
Stein’s loss Gao et al. (2017) Li et al. (2021)
ℓ∞ loss: Zhou (2007) Han et al. (2017) Han et al. (2017)

In special, Chen et al. (2010) proposed a U-statistic’s trick to estimate the ℓ2 loss

directly which can obtain a better convergence rate. Using this trick, several statistics

based on T1(R̂) can be extended to high-dimensional data case where p ≫ n. See Leung

and Drton (2018) for more details.

As application of Theorem 2 for Spearman’s correlation matrix ρn, we can fill the gap

for Stein’s loss, i.e., obtaining the asymptotic distribution of T2(ρn). Similarly, based on

the improved Spearman’s correlation matrix ρ̃n, we can also conduct three test statistics.

Han et al. (2017) has studied T3(ρ̃n) and here we can derive the distributions of T1(ρ̃n)
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and T2(ρ̃n).

Taking f(x) being logarithm log(x) or polynomial xk for k ≥ 2, by direct calculations

of Theorem 2 and Theorem 3, we obtain the following asymptotic distributions.

Theorem 4. Under the conditions of Theorem 2, we have

log |ρn|+ (n− p) log(1− yn) + p
d−→N(µlog, σ

2
log), (4.1)

log |ρ̃n|+ (n− p) log(1− yn) + p
d−→N(µ̃log, σ

2
log), (4.2)

tr(ρk
n)−

k−1∑
j=0

pyjn
(j + 1)

(
k

j

)(
k − 1

j

)
d−→N(µxk , σ2

xk), (4.3)

tr(ρ̃k
n)−

k−1∑
j=0

pyjn
(j + 1)

(
k

j

)(
k − 1

j

)
d−→N(µ̃xk , σ2

xk), (4.4)

where the asymptotic means are

µlog =
3

2
log(1− y) + 2y,

µ̃log =µlog −
y2

1− y
,

µxk =
1

4

[
(1−√

y)2k + (1 +
√
y)2k

]
− 1

2

k∑
j=0

(
k

j

)2

yk−j − 2

y

k∑
j=0

(
k

j

)
(y − 1)j

(
2k − j

k − 2

)

+
k∑

j=0

(
k

j

)
(y − 1)j

(
2k − j − 1

k − 2

)
,

µ̃xk =µxk −
k−1∑
j=0

(
k

j

)
(y − 1)j

(
2k − j − 2

k − 1

)
+

k∑
j=0

(
k

j

)
(y − 1)j

(
2k − j

k − 1

)
,
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and the asymptotic variances are

σ2
log =− 2 log(1− y)− 2y,

σ2
xk =2

k−1∑
j1=0

k∑
j2=0

(
k

j1

)(
k

j2

)
(y − 1)j1+j2

k−j1∑
l=1

l

(
2k − 1− (j1 + l)

k − 1

)(
2k − 1− j2 + l

k − 1

)

− 2

y

k∑
j1=0

k∑
j2=0

(
k

j1

)(
k

j2

)
(y − 1)j1+j2

(
2k − j1
k − 1

)(
2k − j2
k − 1

)
.

For polynomials of ρn, our results (4.3) are consistent with ones of Bao et al. (2015)

and the other three asymptotic distributions are new which can be used to derive the

asymptotic distribution of test statistics.

Noting tr(ρn) = p and tr(ρ̃n) = p, we can simplify the test statistics of T1(ρn), T1(ρ̃n),

T2(ρn), T2(ρ̃n) and consider

Lρ,2 = tr(ρ2
n), Lρ,log = log(|ρn|), Lρ̃,2 = tr(ρ̃2

n), Lρ̃,log = log(|ρ̃n|).

With Theorem 4, we can get four rejection regions for testing the null distribution

R1 ={Lρ,2 −
p2

n
− p > y2n − yn + 2ynZα},

R2 ={Lρ,log + (n− p) log(1− yn) + p <
3

2
log(1− yn) + 2yn

−
√

−2 log(1− yn)− 2ynZα},

R3 ={Lρ̃,2 −
p2

n
− p > 3y2n − yn + 2ynZα},
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R4 ={Lρ̃,log + (n− p) log(1− yn) + p <
3

2
log(1− yn) +

2yn − 3y2n
1− yn

−
√

−2 log(1− yn)− 2ynZα},

where Zα is the upper-α quantile of N(0, 1).

To examine the finite sample performance of these test statistics, we conduct the fol-

lowing null hypotheses with data Xn = (Xij)n×p generated from different models. Specif-

ically, we consider three types of null distributions:

• Normal distribution: Xij are i.i.d. N(0, 1) for 1 ≤ i ≤ n and 1 ≤ j ≤ p.

• Cauchy distribution: Xij are i.i.d. Cauchy distribution with location 0 and scale 1

(Cauchy(0, 1)) for 1 ≤ i ≤ n and 1 ≤ j ≤ p.

• Mixed distribution: Xij1 are i.i.d. Cauchy(0, 1) for 1 ≤ i ≤ n, 1 ≤ j1 ≤ ⌊p/4⌋; Xij2

are i.i.d. N(0, 1) for 1 ≤ i ≤ n, ⌊p/4⌋ + 1 ≤ j2 ≤ ⌊p/2⌋; Xij3 are i.i.d. χ2(2) for

1 ≤ i ≤ n, ⌊p/2⌋+ 1 ≤ j2 ≤ p.

It is noted that Cauchy(0, 1) is a well known heavy-tailed distribution without expectation,

and the mixed distribution is from Li et al. (2021).

As for comparison, we consider other 8 test statistics based on Spearman, Kendall and

Pearson’s correlation matrices:

1. Lρ,max: maximum test based on Spearman’s correlations (Han et al., 2017);

2. Lρ̃,max: maximum test based on improved Spearman’s correlations (Han et al., 2017);
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3. LK,2: ℓ2 test based on Kendall’s correlations (Li et al., 2021);

4. LK,log: Stein’s test based on Kendall’s correlations (Li et al., 2021);

5. LK,max: maximum test based on Kendall’s correlations (Han et al., 2017);

6. LR,2: ℓ2 test based on Pearson’s correlations (Han et al., 2017);

7. LR,log: Stein’s test based on Pearson’s correlations (Han et al., 2017);

8. LR,max: maximum test based on Pearson’s correlations (Zhou, 2007).

We conduct numerical experiments to evaluate the performance of our proposed test

statistics. We consider various combinations of sample size n, dimension p, and underly-

ing distributions, and compare our methods with existing approaches. Table 2 presents

the empirical sizes of the tests at a nominal significance level of 5% based on 1000 repli-

cations. Our results demonstrate that Pearson’s correlation-based tests are sensitive to

distributional assumptions and may not perform well under heavy-tailed distributions. In

contrast, rank-based test statistics, including our proposed Lρ,log, Lρ̃,2, and Lρ̃,log, exhibit

robust performance across different distributions. The empirical sizes of our proposed

tests are close to the nominal 5% level, confirming the validity of our theoretical results.

To evaluate the power of our proposed test statistics, we generate data under various

alternative hypotheses. We start with data generated from the above three null distribu-

tions and then generate the correlated data Xn as follows:
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Table 2: Empirical sizes of independence test statistics based on Pearson, Spearman and
Kendall’s correlations.

n 100 200 400 100 200 400 100 200 400
p 50 100 200 70 140 280 200 400 800
y 0.5 0.5 0.5 0.7 0.7 0.7 2 2 2

Normal distribution
Lρ,2 0.046 0.05 0.046 0.044 0.041 0.045 0.051 0.059 0.058
Lρ,log 0.037 0.049 0.041 0.052 0.043 0.048 - - -
Lρ,max 0.023 0.028 0.037 0.025 0.033 0.041 0.022 0.023 0.049
Lρ̃,2 0.047 0.052 0.047 0.047 0.042 0.046 0.063 0.062 0.059
Lρ̃,log 0.068 0.075 0.05 0.069 0.049 0.052 - - -
Lρ̃,max 0.023 0.027 0.037 0.025 0.033 0.042 0.022 0.023 0.049
LK,2 0.043 0.05 0.047 0.046 0.045 0.047 0.059 0.067 0.06
LK,log 0.047 0.054 0.045 0.055 0.045 0.046 0.119 0.09 0.064
LK,max 0.039 0.039 0.048 0.035 0.042 0.048 0.034 0.029 0.058
LR,2 0.053 0.046 0.051 0.041 0.044 0.04 0.065 0.055 0.051
LR,log 0.053 0.06 0.051 0.045 0.039 0.041 - - -
LR,max 0.027 0.023 0.04 0.027 0.028 0.037 0.012 0.029 0.039

Cauchy distribution
Lρ,2 0.056 0.055 0.039 0.042 0.058 0.041 0.048 0.051 0.044
Lρ,log 0.065 0.05 0.055 0.056 0.052 0.045 - - -
Lρ,max 0.023 0.029 0.044 0.03 0.031 0.039 0.016 0.02 0.038
Lρ̃,2 0.058 0.058 0.04 0.047 0.058 0.041 0.057 0.057 0.05
Lρ̃,log 0.072 0.064 0.064 0.072 0.061 0.049 - - -
Lρ̃,max 0.023 0.027 0.044 0.03 0.031 0.039 0.016 0.02 0.038
LK,2 0.06 0.058 0.041 0.043 0.06 0.045 0.056 0.058 0.052
LK,log 0.062 0.063 0.053 0.057 0.051 0.05 0.125 0.074 0.072
LK,max 0.031 0.041 0.051 0.037 0.037 0.042 0.029 0.032 0.038
LR,2 0.303 0.329 0.394 0.306 0.331 0.396 0.305 0.343 0.385
LR,log 0.766 0.924 0.989 0.896 0.984 1 - - -
LR,max 1 1 1 1 1 1 1 1 1

Mixed distribution
Lρ,2 0.053 0.061 0.051 0.038 0.054 0.049 0.043 0.041 0.044
Lρ,log 0.057 0.052 0.055 0.056 0.053 0.05 - - -
Lρ,max 0.02 0.033 0.036 0.021 0.034 0.031 0.017 0.028 0.032
Lρ̃,2 0.056 0.063 0.052 0.042 0.054 0.049 0.049 0.043 0.045
Lρ̃,log 0.071 0.066 0.065 0.077 0.063 0.056 - - -
Lρ̃,max 0.02 0.033 0.036 0.021 0.034 0.031 0.017 0.028 0.032
LK,2 0.06 0.064 0.054 0.047 0.061 0.048 0.049 0.042 0.044
LK,log 0.071 0.062 0.059 0.052 0.065 0.049 0.115 0.066 0.061
LK,max 0.036 0.047 0.043 0.03 0.043 0.036 0.033 0.044 0.04
LR,2 1 1 1 1 1 1 1 1 1
LR,log 1 1 1 1 1 1 - - -
LR,max 0.91 1 1 0.712 0.988 1 1 1 1
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• Global correlation: Xn = ZnΣ, where Σ = (σij)p×p is the Toeplitz matrix with

σii = 1, σij = ρ|i−j|;

• Sparse correlation: Xn = ZnΣ, where Σ = (σij)p×p is the Toeplitz matrix with

σii = 1, σi−1,i = σi,i+1 = ρ, σij = 0 for |i− j| > 1;

By combining these data generation methods, we obtain six different alternative hypothe-

ses. For each alternative hypothesis, we set (n, p) = (100, 200) or (n, p) = (200, 100) to

assess the power of the tests for y < 1 or y > 1. Since Pearson’s correlation-based tests

are sensitive to distributional assumptions and maximum-norm-type tests are always un-

dersized when (n, p) are not large enough, we focus on rank-based tests (Spearman and

Kendall) with ℓ2 loss and Stein’s loss in our power analysis. Simulations are presented in

Figure 1 and Figure 2.

From Figure 1 and Figure 2, we observe that the power of all test statistics increases as

the absolute value of correlation strength ρ increases. This demonstrates the effectiveness

of rank-based tests, especially under heavy-tailed distributions. When (n, p) = (100, 200),

although LK,log always exhibits much higher power, it fails to control the size under the

null hypothesis. Therefore, for both correlation structures, tests based on the ℓ2 loss

demonstrate superior performance. Interestingly, for all the alternative hypotheses, LK,2

always performs the best and Lρ̃,2 always performs better than Lρ,2 since it is a combination

of ρn and Kn. We leave the theoretical analysis of these powers as a future work. Overall,

our proposed test statistics Lρ,log, Lρ̃,2, and Lρ̃,log demonstrate comparable performance
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Figure 1: The empirical powers of the tests with the variation of correlation strength ρ
when (n, p) = (200, 100).
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Figure 2: The empirical powers of the tests with the variation of correlation strength ρ
when (n, p) = (100, 200).
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across various scenarios.

5. Discussion

For the Stieltjes transform of the considered matrix, we can get study its limit which yields

the limit of LSS and the CLT which yields the CLT of LSS. We summarize the results as

following for ℑ(z) > c.

• For the Gram matrix gn ∈ Rn×n, we have

LSD : F gn d−→F1/y, a.s.;

Stieltjes transform: sn(z) =
1

n
tr(gn − zIn)

−1 a.s.−→ s(z) = m(1/y, z);

CLT: n (sn(z)− Esn(z))
d−→Gaussian Processes (0, σ(z1, z2)) ,

where

nEsn(z) = n ·m(n/p, z) + µ(z) + o(1).

• For re-scaled Spearman’s rank correlation matrix ρn/yn ∈ Rp×p,

LSD : F ρn/yn d−→F 1/y, a.s.;

Stieltjes transform: sn(z) =
1

p
tr(ρn/yn − zIn)

−1 =
n

p

(
sn(z) +

1

z

)
− 1

z

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0395



a.s.−→ s(z) =
1

y

(
s(z) +

1

z

)
− 1

z
;

CLT: p (sn(z)− Esn(z))
d−→Gaussian Processes (0, σ(z1, z2)) ,

where

pEsn(z) =n ·m(n/p, z) + µ(z) +
n− p

z
+ o(1)

=n

(
m(n/p, z) + (1− p

n
)
1

z

)
+ µ(z) + o(1).

• For Spearman’s rank correlation matrix ρn ∈ Rp×p

LSD : F ρn d−→Fy, a.s.;

Stieltjes transform: mn(z) =
1

p
tr(ρn − zIn)

−1 =
1

yn
sn(z/yn)

a.s.−→ 1

y
s(z/y) = m(z) = m(y, z);

CLT: p (mn(z)− Emn(z))
d−→Gaussian Processes

(
0,

σ(z1/y, z2/y)

y2

)
,

where

pEmn(z) = p ·m(p/n, z) +
µ(z/y)

y
+ o(1).
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• For improved Spearman’s rank correlation matrix ρ̃n ∈ Rp×p

LSD : F ρ̃n d−→Fy, a.s.;

Stieltjes transform: m̃n(z) =
1

p
tr(ρ̃n − zIn)

−1 a.s.−→m(z) = m(y, z);

CLT: p (m̃n(z)− Em̃n(z))
d−→Gaussian Processes

(
0,

σ(z1/y, z2/y)

y2

)
,

where

pEm̃n(z) = p ·m(p/n, z) +
µ(z/y)

y
+

µ̃(z/y)

y
+ o(1).

With these CLTs, we can construct hypothesis tests based on Spearman’s and improved

Spearman’s correlation matrices. Our simulation studies demonstrate the practical appli-

cability of these new test statistics.

In this work, we study the improved Pearson’s correlation which is a standard U-

statistic of order 3. Studying general U-statistic typed correlation matrices could be

a topic of future work. Moreover, we compare the test statistics through simulations.

Investigating the asymptotic distribution of test statistics under local alternatives could

be another interesting future work.
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The online Supplementary Material includes the detailed proofs of the main theorems and
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Journal of Statistics 66 (1), 35–48.

Jiang, T. (2019). Determinant of sample correlation matrix with application. Annals of Applied Probability 29 (3),

1356–1397.

Leung, D. and M. Drton (2018). Testing independence in high dimensions with sums of rank correlations. Annals

of Statistics 46 (1), 280–307.

Li, Z., C. Wang, and Q. Wang (2023). On eigenvalues of a high-dimensional Kendall’s rank correlation matrix

with dependence. Science China Mathematics 66 (11), 2615–2640.

Li, Z., Q. Wang, and R. Li (2021). Central limit theorem for linear spectral statistics of large dimensional Kendall’s

rank correlation matrices and its applications. Annals of Statistics 49 (3), 1569–1593.

Lytova, A. and L. Pastur (2009). Central limit theorem for linear eigenvalue statistics of random matrices with

independent entries. Annals of Probability 37 (5), 1778–1840.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0395



REFERENCES

Marc̆enko, V. and L. Pastur (1967). Distribution of eigenvalues for some sets of random matrices. Sbornik:

Mathematics 1 (4), 457–483.

Mestre, X. and P. Vallet (2017). Correlation tests and linear spectral statistics of the sample correlation matrix.

IEEE Transactions on Information Theory 63 (7), 4585–4618.

Pan, G. (2014). Comparison between two types of large sample covariance matrices. Annales de l’IHP Probabilités

et statistiques 50 (2), 655–677.

Pan, G. and W. Zhou (2008). Central limit theorem for signal-to-interference ratio of reduced rank linear receiver.

Annals of Applied Probability 18 (3), 1232–1270.

Parolya, N., J. Heiny, and D. Kurowicka (2024). Logarithmic law of large random correlation matrices.

Bernoulli 30 (1), 346–370.

Paul, D. and A. Aue (2014). Random matrix theory in statistics: A review. Journal of Statistical Planning and

Inference 150, 1–29.

Pillai, N. S. and J. Yin (2012). Edge universality of correlation matrices. Annals of Statistics 40 (3), 1737–1763.

Wang, C. and B. Jiang (2018). On the dimension effect of regularized linear discriminant analysis. Electronic

Journal of Statistics 12 (2), 2709–2742.

Wang, C., J. Yang, B. Miao, and L. Cao (2013). Identity tests for high dimensional data using RMT. Journal of

Multivariate Analysis 118, 128–137.

Wang, H., B. Liu, L. Feng, and Y. Ma (2024). Rank-based max-sum tests for mutual independence of high-

dimensional random vectors. Journal of Econometrics 238 (1), 105578.

Wang, Q. and J. Yao (2013). On the sphericity test with large-dimensional observations. Electronic Journal of

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0395



REFERENCES

Statistics 7, 2164–2192.

Wu, Z. and C. Wang (2022). Limiting spectral distribution of large dimensional Spearman’s rank correlation

matrices. Journal of Multivariate Analysis 191, 105011.

Yao, J., S. Zheng, and Z. Bai (2015). Large sample covariance matrices and high-dimensional data analysis.

Cambridge: Cambridge University Press.

Zheng, S., Z. Bai, and J. Yao (2015). Substitution principle for CLT of linear spectral statistics of high-dimensional

sample covariance matrices with applications to hypothesis testing. Annals of Statistics 43 (2), 546–591.

Zheng, S., G. Cheng, J. Guo, and H. Zhu (2019). Test for high dimensional correlation matrices. Annals of

Statistics 47 (5), 2887–2921.

Zhou, W. (2007). Asymptotic distribution of the largest off-diagonal entry of correlation matrices. Transactions

of the American Mathematical Society 359 (11), 5345–5363.

Hantao Chen

School of Mathematical Sciences, MOE-LSC, Shanghai Jiao Tong University

E-mail: htchen2000@sjtu.edu.cn

Cheng Wang(corresponding author)

School of Mathematical Sciences, MOE-LSC, Shanghai Jiao Tong University

E-mail: chengwang@sjtu.edu.cn

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0395


	Introduction
	Preliminary result in RMT
	Main result
	Gram matrix
	Spearman's rank correlation matrix
	Improved Spearman's correlation matrix

	Application
	Discussion



