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Large dimensional Spearman’s rank correlation matrices:

The central limit theorem and its applications
Hantao Chen and Cheng Wang

School of Mathematical Sciences, MOE-LSC, Shanghai Jiao Tong University

Abstract: This paper is concerned with Spearman’s correlation matrices under large dimensional
regime, in which the data dimension diverges to infinity proportionally with the sample size. We es-
tablish the central limit theorem for the linear spectral statistics of Spearman’s correlation matrices,
which extends the results of [Bao et al.| (2015). We also study the improved Spearman’s correlation
matrices of [Hoeffding] (1948|) which is a standard U-statistic of order 3. As applications, we propose
three new test statistics for large dimensional independent test and numerical studies demonstrate

the applicability of our proposed methods.

Key words and phrases: Central limit theorem, large-dimensional independence test, linear spectral

statistics, Spearman’s rank correlation matrices, U-statistics.

1. Introduction

In multivariate statistical analyses, the covariance matrix is a fundamental tool used to
describe the relationships among features. Its theoretical property is crucial for under-
standing many statistical methods. For the classical setting where the data dimension p

is fixed and the sample size n tends to infinity, these properties and their applications in



various methods are summarized in textbooks, e.g., Anderson| (2003).

In the last few decades, large amounts of work are focused on the large dimensional

regime,

n—oo, p=pn)—o0, p/n=y,—yec(0,00). (1.1)

Random matrix theory, as a powerful tool, provides insights into the behavior of large di-

mensional sample covariance matrices, extending the famous Wishart distribution theory.

The pioneering work [Marcenko and Pastur| (1967)) derived the limiting spectral distribu-

tion (LSD) which is called Marcenko-Pastur (MP) law. With the LSD, we can describe

the limits of linear spectral statistics (LSS). Furthermore, Bai and Silverstein (2004) firstly

derived the central limit theorem (CLT) of LSS. The following works include [Pan and Zhou

(2008); |Anderson and Zeitounil (2008); Lytova and Pastur| (2009); [Pan (2014)); Zheng et al.|

(2015) and so on. As applications of RMT on the sample covariance matrix,

and Wager| (2018)) and [Wang and Jiang (2018) studied the prediction errors of ridge re-

gression and regularized linear discriminant analysis; Hastie et al. (2022)) demonstrated

the double descent phenomenon in the simple linear regression; Bai et al. (2009) proposed

a bias correction to the likelihood ratio test; Wang et al.| (2013)) and Wang and Yao, (2013))

considered the identify test and the sphericity test of covariance matrices, respectively.

For more results on large dimensional covariance matrices, it is referred to |Paul and Aue

(2014) and [Yao et al| (2015) for a comprehensive review.




Normalization is a common procedure in data analysis. By standardizing the sample
covariance matrix, we obtain Pearson’s correlation matrix, a scale-invariant measure. Re-
cent research has extensively studied Pearson’s correlation matrices. |Jiang (2004b) first
derived the limiting spectral distribution. Bao et al. (2012) and |Pillai and Yin| (2012)
established limiting distributions for the extreme eigenvalues. |Mestre and Vallet| (2017)
and |Gao et al.| (2017) developed the CLT of LSS of Pearson’s correlation matrices. Zheng
et al.| (2019)) extended the CLT to general covariance structures. See also |Jiang (2019)
and Parolya et al.|(2024]). For a large class of population distributions, El Karoui (2009)
demonstrated that the spectral properties of Pearson’s correlation matrices resemble those
of sample covariance matrices. Typically, these studies assume finite fourth moments for
the features. However, for distributions with infinite fourth moments, such as heavy-tailed
populations, the applicability of these results may require additional verification or may no
longer hold. For instance, Heiny and Parolyal (2024)) justified the CLT of log-determinant
statistics of Pearson’s correlation matrices and Heiny and Yao (2022) discovered a new
LSD result for heavy-tailed distributions.

To address the challenges posed by heavy-tailed data, non-parametric statistics of-
fer robust correlation measures. Among these, Spearman’s rank correlation matrix and
Kendall’s rank correlation matrix are particularly popular due to their distribution-free
nature, making them suitable for heavy-tailed data. Recent research has explored the
properties of these rank-based correlation matrices. For example, |Leung and Drton| (2018)

and Wang et al. (2024) studied a class of rank-based U-statistics for independence test.



In the realm of random matrix theory, Bai and Zhou| (2008) and [Wu and Wang) (2022)
investigated the LSD of Spearman’s correlation matrices. Bandeira et al. (2017)) and |Li
et al. (2023)) studied the LSD of Kendall’s correlation matrices. As far as the CLT, Bao
et al.| (2015) considered asymptotic distributions of polynomial functions of Spearman’s
correlation matrices and |Li et al.| (2021) studied the CLT of LSS of Kendall’s correlation
matrices.

In this paper, we focus on Spearman’s correlation matrices and aim to establish a
central limit theorem for general linear spectral statistics. Due to introducing ranking,
the independence among samples are violated and thus, we turn to consider Gram matri-
ces. The rescaled Gram matrix is a sample covariance matrix related to the distribution
which are independent and uniformly distributed on the permutations of {1,---,n}. In
Bao et al. (2015)), they adopted the celebrated moment method and derived the CLT for
polynomial functions. In this work, we follow the classical technique developed by Bai and
Silverstein (2004) and consider the asymptotic distribution of Stieltjes transforms. Key
challenges arise in computing the covariance of quadratic forms and establishing concentra-
tion inequalities for these forms. For uniform distribution on {1,--- ,n}, it is challenging
to derive the explicit covariance of quadratic forms. We derive the three leading terms
which all contribute to the final CLT. More details can be found in our Lemma S2.1
and Lemma S2.2 of Supplement Materials. The obtained results are consistent with |Bao
et al.|(2015) for polynomial functions and are also applicable to more general LSS such as

log-determinant functions. The resulting CLT of Stieltjes transform can connect to many



other covariance or correlation matrices.

In non-parametric statistics, Hoeffding (1948) theoretical analyzed the Spearman’s
correlation from the perspective of U-statistics and proposed an improved version. Specif-
ically, Spearman’s correlation can be expressed as a U-statistics of order 3 with an ad-
ditional term. To address this, Hoeffding (1948) introduced an improved Spearman’s
correlation which is a standard U-statistic of order 3. Sample covariance matrices and
Kendall’s correlation matrices are well-known examples of U-statistics of order 2, and
their CLTs have been extensively studied in |Pan (2014) and |Li et al. (2021)), respectively.
To the best of our knowledge, there are no CLTs for general LSS of U-statistics of order
higher than 2. While the improved Spearman’s correlation matrix is challenging to analyze
directly, we can evaluate the difference between it and the classical Spearman’s correlation
matrix. This approach enables us to establish a CLT for standard U-statistics of order 3.
This result is of interest for covariance/correlation matrices of U-statistic types and may
contribute to the development of CLTs for LSS of general U-statistics of higher order.

As applications of such CLTs, we revisit hypothesis testing for independence. Numer-
ous studies have proposed various test statistics based on different correlation matrices,
including Jiang (2004a), [Zhou| (2007), |Gao et al.| (2017), |Bao et al| (2015)), Leung and
Drton (2018), Bao (2019), |Li et al. (2021). Our proposed test statistics fall into two
categories: those based on Euclidean distance and those based on Stein’s loss. Through
extensive numerical experiments, we demonstrate the competitive performance of our pro-

posed methods compared to well-established approaches.



Our contributions are summarized as follows:

1. For Gram matrices, we study a novel population distribution which is uniformly
distributed on the permutations of {1,--- ,n}. Unlike the independent component
model or elliptical distributions, the quadratic forms associated with this distribution
exhibit a complex covariance structure. By carefully analyzing three leading terms,

we derive a new central limit theorem.

2. For Spearman’s correlation matrices, we establish a CLT of general linear spectral
statistics, extending the work of [Bao et al.| (2015) which focused on polynomial func-
tions. Our approach, based on classical random matrix techniques and the Stieltjes
transform, provides a more direct connection to other classical results, shedding light

on the underlying structure of Spearman’s correlation.

3. From a U-statistic perspective, Spearman’s correlation is not a standard U-statistic.
Hoeflding (1948) proposed an improved version which is a U-statistic of order 3. By
carefully evaluating the difference between the classical and improved Spearman’s
correlation matrices, we derive the explicit impact on the asymptotic mean and
establish a CLT for the improved Spearman’s correlation matrix. As we know, this

is the first CLT for standard U-statistic of order 3 in random matrix theory.

4. Spearman’s correlation matrices, derived from ranking and standardizing the original
data matrix, can be viewed as both sample covariance and Pearson-type correlation

matrices. From a U-statistic perspective, Spearman’s correlation matrices are of



order 3, while Kendall’s correlation matrices are of order 2. Thus, Spearman’s
correlation matrices can be connected with many existing random matrix models
and the corresponding CLT results can also be connected with well-established CLT
results. The obtained results allow us to gain deeper insights into the asymptotic
distribution of linear spectral statistics for various sample covariance and correlation

matrices.

The remainder of the paper is structured as follows: Section 2 introduces the necessary
background knowledge and tools from random matrix theory. Section 3 presents our
main results, including the CLTs for Gram matrices, Spearman’s correlation matrices,
and improved Spearman’s correlation matrices. Section 4 applies our theoretical results to
hypothesis testing for independence and conducts numerical experiments to demonstrate
the effectiveness of our proposed methods. In Section 5, we summarize our CLTs with

discussions and the Appendix provides detailed proofs of our theoretical results.

2. Preliminary result in RMT

Let H,, be any n x n Hermitian matrix with eigenvalues \; > --- > \,. The empirical

spectral distribution (ESD) is defined as

PR () — %Z[(Ai <), (2.1)



where I(+) is the indicator function. If F'H» converges weakly to some limiting distribution
F, then we call F' the limiting spectral distribution of H,,.

With the LSD, we can study the linear spectral statistic which is defined as

—Zf ~ [ f@yirt(a

Here f(-) is any bounded and continuous function. By the property of weak convergence,

we can conclude

[ t@art@ - [ ar)

Some common functions in statistics include

s 1
> N=—tr(H), k=12,
n < n

n

1 2 1 2
n Z()‘z —1) :ﬁHHn — L[,

=1

1 1
— Z Ai — log(A :—tr(H ) — - logdet(H,,) — 1,

and so on. If H,, is a random matrix, we can further consider the central limit theorem of
linear spectral statistics.

In random matrix theory, one of the most powerful tools is Stieltjes transform, which



is defined as

mF(z):/ L ir@), zect (2.2)

r—z

with respect to any distribution function F. Here C* is the upper half space of the
complex plane. Similar to the characteristic function in probability, there is a one-to-one
correspondence between the probability distribution and its Stieltjes transform. With the

Stieltjes transform, by the residue theorem of complex analysis,

%gf( /f JdFHn( mff 2ympm, (2

where fc is closed and taken in the positive direction, enclosing the support of FHr,

Furthermore, we can study the asymptotic distribution, e.g.,

[ t@art@) - [ fadre - ]5 £(2) (mi(2) — mpm, (2)) d=.

In summary, to find the LSD of a random matrix H,,, we can study its Stieltjes

transform

1
mpn, (2) = Etr (H, — 21,)"".

To explore the asymptotic distribution of the LSS, we need to find the asymptotic distri-



bution of

mp(z) — mpn, (2),

which is usually a Gaussian process. The Gaussian process further yields the asymptot-
ically normal distribution of the LSS. It is referred to |Bai and Silverstein (2010) for a

comprehensive survey on random matrix theory.

3. Main result

For independent and identically distributed (i.i.d.) samples X;,...,X,, € RP, we denote

their rank statistics as r; = (ry,--- ,7,) ", @ =1,...,n. For each feature j € {1,---,p},
(114, ..., rn;) are uniformly distributed on the permutations of {1,--- ,n}. Then,
n+1 n?—1
]E’f'ij = T, Var(n-j) = 12 .

With the rank statistics, the Spearman’s rank correlation matrix is defined by

12 & n+1 n+1,
= ——— ry — —1,)(ry — 1), 3.1
which is the Pearson’s correlation matrix based on ry,...,r, € RP. Due to ranking,
ry,...,r, € RP are not independent anymore and it is hard to tackle the Spearman’s rank

correlation matrix directly. Here we turn to its Gram matrix.



3.1 Gram matrix

3.1 Gram matrix

Standardizing rank statistics, we denote

= nTH Tip — n;rl
12 B
n?_l —\S1, 0, Sp
1 1
If the features are completely independent, si,...,s, € R" are i.i.d. and have been
centered, e.g.,
n 1 T
Es; = 0,, X = cov(s;) = . I, — ﬁlnln .
Then, we can study the sample covariance matrix of si,...,s,,
1 p
g =~ )_sis, . (3:2)
L

This sample covariance matrix can also be regarded as the Gram matrix of the original

rank statistics, that is,

12 n+1_  + n+1
n=———" | (r; — 1 P — 1 .

Thus, g, and p,/y, share the same non-zero eigenvalues.



3.1 Gram matrix

Denoting m,,(z) as the Stieltjes transforms of p,, i.e.,

1
my(2) = =tr(p, — 21,) 7,
p

it is proven in Bai and Zhou (2008) that m,(z) — m(z) almost surely and

Cl-y—z+/(Q+y—2)?—4y
N 2yz '

m(z) (3.3)

This result shows that the LSD of p,, converges weakly to the M-P law F}, almost surely,

whose density function is

Ve = 0= Ve + V) —2),

2y

py(T) =

(= vy <z<(1+vy)),

for y < 1 and has a point mass 1 — 1/y at origin for y > 1.
We further denote s, (z) and s,(z) as the Stieltjes transform of g, and p,,/y,, respec-

tively




3.1 Gram matrix

and almost surely

1—yo— 2+ /(1L +yo—2)* —dyo

202 ’
—(L—yo+2)+ /(1 +y0—2)2— dyo
22 ’

sn(z) = s(z) =

5,(2) = s(2) =

where yo = 1/y. Then, the LSD of g,, converges weakly to the M-P law F},, almost surely.

For the LSS of g,,

[ fware s Zf

where f is an analytic function and A\(g,) > -+ > A\,(g,) are eigenvalues of g,,, we have

almost surely

/ f(a)dFe (z) — / f(a)dF

Further, we study the asymptotic distribution of the LSS. Let
Gu(x) =n (F&"(2) — Fpyp())

and we focus on

/f( VAG, ( —n(/f VAP (2 /f 2)dF, ) (x ) (3.4)



3.1 Gram matrix

Our central limit theorem is presented as follows.

Theorem 1. Assume that {X;; :i=1,...,n;j5 =1,...,p} are doubly independent and
absolutely continuous with respect to the Lebesgue measure. Let fi,..., fi be functions

on R and analytic on an open interval containing

I(yo < (1= /o)* (1 + v/o)?]. (3:5)

Then, as n/p — yo € (0,00), the random vector

(Jricnof s

converges weakly to a Gaussian vector (Gy,,--- , Gy, ) with the asymptotic mean

EGf——%ff

and the asymptotic covariance function

1
on(Gr.Gy) =~ § § FEala)o(r m)dadzn

where




3.1 Gram matrix

s3(2)
T+ 5() - pst(2)
25'(21)8'(22) 2 2105’ (21)8' (22)

The contour 560 is closed and taken in the positive direction, each enclosing the support

B3).

For concrete functions such as logarithms and polynomials, we will derive CLTs in
next section. In details, the integral involving s(z) can be calculated explicitly for most

cases.

Remark 1. Interestingly, our CLT is quite related to the existing results for sample

covariance matrices based on independent components model. For instance, we consider a

spike model with population covariance matrix being diag(0, -"5,- - - , ~5) whose elements

are the eigenvalues of 3. The CLT for LSS of the sample covariance matrix is derived by

Pan and Zhou| (2008), where the centering term is [ f(z)dE¥""(z), the asymptotic mean

18

ym?®(2) (1 + m(2))
EG; = f(z 5dz
! 27”/ m(2))” — ym?(z))
_EZ} -3 2ym®(2)
271 /f (1+m( ))2 - ymz(Z)) (1+m(2)) 7



3.1 Gram matrix

and the asymptotic covariance is

cov(Gr, Gy) = = 2/ F(z1)9(z < o () )mm(( ))) —(Z1_222)2)dz1dz2
Ezﬁ //f 21)g(22) (m( ) (z) 5dz1dzs.

A )" (1+m(22))

As can be seen, the asymptotic covariance and the first two terms of asymptotic mean
are essentially the same, with only the coefficients differing. For the new term in the
asymptotic mean, it comes from the discrepancy between 3 and I. More specifically, the

Marcenko-Pastur equation of F,,/, is

(1—2—2z50(2) — 2

p

For ¥ which has n — 1 eigenvalues equal to n/(n — 1) and one zero eigenvalue, the corre-

sponding Marcenko-Pastur equation is




3.2 Spearman’s rank correlation matrix

More details can be found in the proof, e.g., the equation (S1.24) of Supplement Materials.

3.2 Spearman’s rank correlation matrix

For Spearman’s rank correlation matrix p,, € RP*? which has the same non-zero eigenval-

ues as the ones of y,g, € R"*" we have

[ @) =LY 1) = 33 s e+ 0

_ - T gn (o p—
—yn/f(yn JdF® (z) +

2 1(0).

In addition, by the property of M-P law,

[ Fona)aFupy() =y, [ F@AE, (@) + (1= w)f(0),

which yields

[ 1@ab @) = — [ fna)apupta) + 2= 10)

Therefore, we can study the asymptotic distribution of

)= ( [ s@ire@) - [ @0aF, @) = [ faic,)

By Theorem , we have proven the CLT of [ f(yz)dG,(x) and the remaining is to



3.2 Spearman’s rank correlation matrix

show

/ F (42)dG () — / F(y)dG () = 0,(1),

whose details can be found in the proof. Based on these observations, we state the CLT

for p, in the following theorem.

Theorem 2. Assume that {X;; :i=1,...,n;j =1,...,p} are doubly independent and

absolutely continuous with respect to the Lebesgue measure. Let fi,---, fi be functions

analytic on an open interval containing

Ly <D —v)* 1+ V)]

(3.6)

Then, as p/n — y € (0,00), the random vector (T'(f1),---,T(fx)) converges weakly to a

Gaussian vector (Zy,,- - , Zy, ) with mean function
1 1 p(2/y)

and covariance function

1
472

1 b reae T2 b,

cov(Zy, Z,) = ]{ 3 fyz1)g(yz2)o(z1, 22)dz1dz,
1 2

(3.8)



3.2 Spearman’s rank correlation matrix

where yu(z) and o(z1, 22) are defined in Theorem [1} and the contour ¢, is closed and taken

in the positive direction, each enclosing the support (3.6]).

Remark 2. In [Bao et al| (2015)), they derived the asymptotic distribution of tr(pk) for
any positive integer k > 2. Technically, they utilized Anderson and Zeitouni’s cumulant
method (Anderson and Zeitouni, 2008|) and proposed a two-step comparison approach
to obtain the explicit mean and covariance of CLTs. Here we adopt the classical proof
technique from the seminal work of Bai and Silverstein| (2004)). Taking f(x) = z*, we refer

to results (4.3) in Bao et al. (2015).

Remark 3. Note that p,, is a correlation matrix which means tr(p,) = p. Thus, f(z) =z
is a degenerate case. In Theorem [ we derive the asymptotic mean and the asymptotic

variance for f(z) = z* with k > 1. Taking k = 1, we can obtain p, = 0 and o2 = 0.

Remark 4. For sample covariance matrices, using the sample mean or the true population
mean has impacts on the final CLT and Pan| (2014) compared the two types of sample co-
variance matrices. More specifically, Zheng et al. (2015]) proposed a substitution principle
which adjusted the sample size from n to n — 1 for the sample covariance matrix based on
the sample mean. For Spearman’s rank correlation matrices, although the sample mean

of the rank statistics is constant, e.g.,

it still contributes to the CLT. In details, the population covariance matrix 3 € R"™*"



3.3 Improved Spearman’s correlation matrix

related the Gram matrix g, has one zero eigenvalue. Following Zheng et al. (2015)), we
can also use n — 1 and consider the ratio p/(n — 1). Then, the additional term such as

p3(z) can be removed and more details can be found in Remark [1]
3.3 Improved Spearman’s correlation matrix
The Spearman’s rank correlation is a classical method in non-parametric statistics. We

note that the rank statistics can be transformed into the sum of indicators, which implies

n+1 1 i
Tij — 9 = 5 §81gn(Xij — X@)

Here sign(+) is the sign function. Denoting the sign vector

sign(X;1 — X;1)

J

Aj; = sign(X; - X;) = : :

SigH(Xip — ij>

we have

3 n
Pr= i) 2 2 A

i=1 jk#i



3.3 Improved Spearman’s correlation matrix

In the form of non-parametric U-statistics, it can be decomposed into two U-statistics,

3 u 3 - 3 n—2
=Y AGAT+ —— ST A AL - — K, Bn
P n(nQ—l)ZJ J U+7’L(7’LQ—1)Z 74Xk n+1 +7’L—|—1p’

1,5,k

where

1 *
K,=—— A A
n(n—l)izj "]

is Kendall’s rank correlation matrix and

3 *
~n = AZAT
N n(n—l)(n—Q); [k

is the improved Spearman’s rank correlation matrix proposed by Hoeffding (1948)). Here
>~" denotes summation over mutually different indices and more details can be found in
Wu and Wang| (2022).

As can be seen, the Kendall’s correlation matrix K,, is a U-statistic of order 2 and
Li et al| (2021) studied the asymptotic distribution of its linear spectral statistics. The
improved Spearman’s rank correlation matrix p,, is a U-statistic of order 3, that is difficult
to analyze it directly. Based on the CLT of p,, we can study the difference between p,
and p,, which is 3(K,, — p,)/(n+1). For LSD (Wu and Wang, 2022)), this difference can be

ignored. However, for the CLT of LSS, this deviation does contribute a non-trivial term



3.3 Improved Spearman’s correlation matrix

to the asymptotic distribution. Considering the centered statistic

= ([ oo = [ o).

we present the main result in the following theorem.

Theorem 3. Under the conditions of Theorem as vy, — v, the random vector (f( fi), - T (fx))

converges weakly to a Gaussian vector (2 FIRES ,2 f,) with mean function

EZ; =5 75 (y +7i(2)) dz, (3.9)

and covariance function

COV(Zf,Z) 47r2j£ ) f(yz1)g(yzoe)o (21, 22)dz1dzo, (3.10)

where 4i(2), o(z1, 22) are defined in Theorem [I, and

Compared with Theorem [2| for p,, the asymptotic variance is the same and there
is a new additional term to the asymptotic mean which is due to the difference p,, — p,.
Specifically, this difference can be depicted by the discrepancy of their Stieltjes transforms,

i.e., p(mpsn(2) — Mpen(z)). Through rigorous derivation, we find that its limit is a non-



random term. Consequently, it only introduces a drift to the asymptotic mean and does
not affect the asymptotic variance. For more details, please refer to the proof in the

Supplementary Material.

4. Application

For sample correlation matrices, one important application is to test mutual independence

among features. More specifically, we consider the hypotheses testing problem

Hy:R=1,

where R is a population correlation matrix such as the classical Pearson’s correlation
matirx, Spearman’s correlation matrix, Kendall’s correlation matrix and so on.

To evaluate R = I, we have the following equivalent definitions

by loss:  ||R —1I||3 = tr(R?) — 2tr(R) +p = 0;
Stein’s loss:  tr(R) — log(R) — p = 0;

U loss:  ||R —1fjo = 0.

Based on an estimator ﬁ, intuitively one can conduct test statistics

Ti(R) =tr(R?) — 2tr(R) + p,



A~ ~

Ty(R) =tr(R) — log(R) — p,

T3(R) =R = T[|o.

For large dimensional data, it is challenging to derive the asymptotic distribution of these
statistics. In the past 20 years, significant progress has been made in this field and many
important methods were proposed in literature. In special, ¢y loss and Stein’s loss can
be expressed by linear spectral statistics and in RMT, they motivate the study on the
LSS of these correlation matrices. We summarize the developments of testing correlation

matrices in Table [

Table 1: Developments of testing correlation matrices in RMT

Sample correlation Kendall’s 7 Spearman’s p
{5 loss Gao et al.[(2017); [Zheng et al.[(2019)  [Li et al.[(2021) [Bao et al.[(2015)
Stein’s loss Gao et al.| (2017) Li et al.|(2021)
U loss: Zhou (2007) Han et al.|(2017) Han et al.|(2017)

In special, |(Chen et al.| (2010) proposed a U-statistic’s trick to estimate the ¢y loss
directly which can obtain a better convergence rate. Using this trick, several statistics
based on T 1(ﬁ) can be extended to high-dimensional data case where p > n. See |Leung
and Drton| (2018) for more details.

As application of Theorem [2] for Spearman’s correlation matrix p,,, we can fill the gap
for Stein’s loss, i.e., obtaining the asymptotic distribution of T5(p,,). Similarly, based on

the improved Spearman’s correlation matrix p,, we can also conduct three test statistics.

Han et al. (2017)) has studied 75(p,,) and here we can derive the distributions of 7} (py)



and Ty(py).
Taking f(x) being logarithm log(z) or polynomial z* for k > 2, by direct calculations

of Theorem [2| and Theorem |3, we obtain the following asymptotic distributions.

Theorem 4. Under the conditions of Theorem [2| we have

log |pn| + (n - p) log(l - yn) + p i> N(ﬂloga 0120g)7 (41)
~ d ~
10g |pn| + (n - p) 10g(1 - yn) +p— N(Nlog7 ‘7120g)7 (42)
k—1 -
py.  (k\[(k—-1\ 4 o
tr(pk) — — ()( , — N (ptr, 051), 4.3
-0 (120,0%) (1.3
()~ 3 BIR RS (1.4
r(p,) — ; . . ks Opk ), :
—G+D\J/\ )

where the asymptotic means are

3
Piog =3 log(1 —y) + 2y,
2
Hlog =Hlog — 77—

e (25 (o ()



and the asymptotic variances are

Ulog -2 lOg(l - y) - 2y7

M_g}jﬁi(k>( > jﬁmgfl(m—1— 1+D>Cm-;:frH)
S (e ()

For polynomials of p,,, our results are consistent with ones of Bao et al.| (2015)
and the other three asymptotic distributions are new which can be used to derive the
asymptotic distribution of test statistics.

Noting tr(p,) = p and tr(p,) = p, we can simplify the test statistics of T1(p,), T1(pn),

To(pn), To(pn) and consider

Loz =tx(p}),  Lpiog =log(lpul), Lz2 =1tr(p;), Lziog = log(|pul).

With Theorem {4} we can get four rejection regions for testing the null distribution

2
Ry :{LPQ - % —p> y?l, —Yn+ 2ynZa}a

3
Ry ={Lpjog + (n — p)log(l —yn) +p < 3 log(1 — yn) + 2yn

— \/—210g(1 —Yn) — 2YnZat,
p?
Ry ={Lp> = — —p >3y, — yn + 2nZa},



3
Ry ={Lz10g + (n —p)log(l —yn) +p < B log(1 —y,) +

- \/—210g(1 —Yn) — 2YnZat,

where Z, is the upper-a quantile of N (0, 1).
To examine the finite sample performance of these test statistics, we conduct the fol-
lowing null hypotheses with data X,, = (X;;)nxp generated from different models. Specif-

ically, we consider three types of null distributions:
e Normal distribution: Xj; are i.i.d. N(0,1) for 1 <i<mand 1<j<p.

e Cauchy distribution: Xj; are i.i.d. Cauchy distribution with location 0 and scale 1

(Cauchy(0,1)) for 1 <i<mand 1 <j <p.

e Mixed distribution: X;;, are iid. Cauchy(0,1) for 1 <i<mn, 1<y < |p/4]; Xij,
are i.i.d. N(0,1) for 1 < i < n, |p/4] +1 < jo < |p/2]; Xij, are i.i.d. x*(2) for

1<i<n,|p/2]+1<j <p.

It is noted that Cauchy(0, 1) is a well known heavy-tailed distribution without expectation,
and the mixed distribution is from |Li et al.| (2021).
As for comparison, we consider other 8 test statistics based on Spearman, Kendall and

Pearson’s correlation matrices:
1. L,max: maximum test based on Spearman’s correlations (Han et al., 2017);

2. Ljmax: maximum test based on improved Spearman’s correlations (Han et al., 2017);



3. Lk : {5 test based on Kendall’s correlations (Li et al., 2021);

4. Lk og: Stein’s test based on Kendall’s correlations (Li et al., [2021));

5. Lk max: maximum test based on Kendall’s correlations (Han et al., 2017);

6. Lra: {2 test based on Pearson’s correlations (Han et al., 2017);

7. L og: Stein’s test based on Pearson’s correlations (Han et al., 2017);

8. LR max: maximum test based on Pearson’s correlations (Zhou, 2007).

We conduct numerical experiments to evaluate the performance of our proposed test
statistics. We consider various combinations of sample size n, dimension p, and underly-
ing distributions, and compare our methods with existing approaches. Table [2| presents
the empirical sizes of the tests at a nominal significance level of 5% based on 1000 repli-
cations. Our results demonstrate that Pearson’s correlation-based tests are sensitive to
distributional assumptions and may not perform well under heavy-tailed distributions. In
contrast, rank-based test statistics, including our proposed L 105, Lp2, and Lz og, exhibit
robust performance across different distributions. The empirical sizes of our proposed
tests are close to the nominal 5% level, confirming the validity of our theoretical results.

To evaluate the power of our proposed test statistics, we generate data under various
alternative hypotheses. We start with data generated from the above three null distribu-

tions and then generate the correlated data X,, as follows:



Table 2: Empirical sizes of independence test statistics based on Pearson, Spearman and
Kendall’s correlations.

n 100 200 400 100 200 400 100 200 400
p 50 100 200 70 140 280 200 400 800
y 0.5 0.5 0.5 0.7 0.7 0.7 2 2 2

Normal distribution
L, 0.046 0.05 0.046 0.044 0.041 0.045 0.051 0.059 0.058

L, iog 0.037 0.049 0.041 0.052 0.043 0.048 - - -

Lpmax 0.023  0.028 0.037 0.025 0.033 0.041 0.022 0.023 0.049
Lo 0.047 0.052 0.047 0.047 0.042 0.046 0.063 0.062 0.059
Li0g 0.068 0.075 0.05 0.069 0.049 0.052 - - -

Lmax  0.023  0.027 0.037 0.025 0.033 0.042 0.022 0.023  0.049
Lk 0.043 0.05 0.047 0.046 0.045 0.047 0.059 0.067 0.06
Lk 0.047 0.054 0.045 0.055 0.045 0.046 0.119 0.09 0.064

Lxmax 0.039 0.039 0.048 0.035 0.042 0.048 0.034 0.029 0.058
Ly 0.053 0.046 0.051 0.041 0.044 0.04 0.065 0.055 0.051
Lrye 0.053 0.06 0.051 0.045 0.039 0.041 = - -

Lrmax 0.027 0.023 0.04 0.027 0.028 0.037 0.012 0.029 0.039

Cauchy distribution
L,s 0.056 0.055 0.039 0.042 0.058 0.041 0.048 0.051 0.044

L iog 0.065 0.05 0.055 0.056 0.052 0.045 - - -

Lpmax  0.023  0.029 0.044 0.03 0.031 0.039 0.016 0.02 0.038
Lz 0.058 0.058 0.04 0.047 0.058 0.041 0.057 0.057 0.05
L10g 0.072 0.064 0.064 0.072 0.061 0.049 - - -

Limax 0.023  0.027 0.044 0.03 0.031 0.039 0.016 0.02 0.038
Lk 0.06  0.058 0.041 0.043 0.06 0.045 0.056 0.058 0.052
Lk 0.062 0.063 0.0563 0.057 0.051 0.05 0.125 0.074 0.072

Lk max 0.031 0.041 0.051 0.037 0.037 0.042 0.029 0.032 0.038
Lgro 0.303 0.329 0.394 0.306 0.331 0.396 0.305 0.343 0.385
Lrye 0.766 0924 0989 0.896 0.984 1 - - -

LR max 1 1 1 1 1 1 1 1 1

Mixed distribution
L, 0.053 0.061 0.051 0.038 0.054 0.049 0.043 0.041 0.044

L iog 0.057 0.052 0.055 0.056 0.0563  0.05 - - -

L p max 0.02 0.033 0.036 0.021 0.034 0.031 0.017 0.028 0.032
Lz 0.056 0.063 0.052 0.042 0.054 0.049 0.049 0.043 0.045
L10g 0.071 0.066 0.065 0.077 0.063 0.056 - - -

L5 max 0.02 0.033 0.036 0.021 0.034 0.031 0.017 0.028 0.032
Lk 0.06 0.064 0.054 0.047 0.061 0.048 0.049 0.042 0.044
Lk 0.071 0.062 0.059 0.052 0.065 0.049 0.115 0.066 0.061

Lk max 0.036  0.047 0.043 0.03 0.043 0.036 0.033 0.044 0.04
Ly 1 1 1 1 1 1 1 1 1
LR jog 1 1 1 1 1 1 - - -

LR max 091 1 1 0.712  0.988 1 1 1 1




e Global correlation: X, = Z,X, where X = (Uij)pxp is the Toeplitz matrix with

_ _ Ali—7].
O = 1a Uij - /0| J‘v

e Sparse correlation: X,, = Z,X, where X = (‘7ij)pxp is the Toeplitz matrix with

i =1,0i_1, =041 =p, 0;; =0 for [i — j| > 1;

By combining these data generation methods, we obtain six different alternative hypothe-
ses. For each alternative hypothesis, we set (n,p) = (100,200) or (n,p) = (200, 100) to
assess the power of the tests for y < 1 or y > 1. Since Pearson’s correlation-based tests
are sensitive to distributional assumptions and maximum-norm-type tests are always un-
dersized when (n,p) are not large enough, we focus on rank-based tests (Spearman and
Kendall) with ¢y loss and Stein’s loss in our power analysis. Simulations are presented in
Figure [1] and Figure [2]

From Figure|l|and Figure |2 we observe that the power of all test statistics increases as
the absolute value of correlation strength p increases. This demonstrates the effectiveness
of rank-based tests, especially under heavy-tailed distributions. When (n, p) = (100, 200),
although Lk jos always exhibits much higher power, it fails to control the size under the
null hypothesis. Therefore, for both correlation structures, tests based on the ¢y loss
demonstrate superior performance. Interestingly, for all the alternative hypotheses, Lk o
always performs the best and Lz 5 always performs better than L, 5 since it is a combination
of p, and K,,. We leave the theoretical analysis of these powers as a future work. Overall,

our proposed test statistics L,1og, Lp2, and Lz,, demonstrate comparable performance
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Figure 1: The empirical powers of the tests with the variation of correlation strength p
when (n,p) = (200, 100).
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Figure 2: The empirical powers of the tests with the variation of correlation strength p
when (n,p) = (100, 200).



across various scenarios.

5. Discussion

For the Stieltjes transform of the considered matrix, we can get study its limit which yields
the limit of LSS and the CLT which yields the CLT of LSS. We summarize the results as

following for J(z) > c.

e For the Gram matrix g, € R"*", we have

LSD : Fg”iﬂ’l/y, a.s.;

1 a.s.
Stieltjes transform: s,(z) = —tr(g, — 2I,) " == s(2) = m(1/y, 2);
n

CLT: n (sp(2) — Esp(2)) —2, Gaussian Processes (0,0(z1,29)),
where

nEs,(z) =n-m(n/p, z) + p(z) + o(1).

e For re-scaled Spearman’s rank correlation matrix p,,/y, € RP*?

LSD: Frelyn Ly aus;

1
Stieltjes transform: s, (2) = —tr(p,/yn — 21,) "' =
p

<3
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V)
3
&
+
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|
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CLT: p(s,(z) — Es,(2)) —Ly Gaussian Processes (0,0(z1, 22)),
where

PEs,(2) =n-m(n/p,2) + p(z) + == + o(1)

=n (m(n/p, 2)+ (1 — 2)l) + p(z) + o(1).

n z

e For Spearman’s rank correlation matrix p,, € RP*P

LSD: F" -5 F,, a.s.;

1 1
Stieltjes transform: m,,(2) = —tr(p, — z1,) "' = —s5,(2/yn)
p Yn

5 ~s(2/y) = mz) = m(y, 2);

CLT: p (my(z) — Em,(z)) —= Gaussian Processes (O, —0<Z1/y; ZQ/y)) ’
)

where




e For improved Spearman’s rank correlation matrix p, € RP*?

LSD : FPn i>Fy, a.s.;

—1 a.s,

~ 1,
Stieltjes transform: m,(z) = —tr(p, — z1,) " —> m(z) = m(y, 2);
p

CLT: p (7in(z) — Efftn(2)) > Gaussian Processes (07 a(zl/zy/; Za/ y)) |

where

With these CLTs, we can construct hypothesis tests based on Spearman’s and improved
Spearman’s correlation matrices. Our simulation studies demonstrate the practical appli-
cability of these new test statistics.

In this work, we study the improved Pearson’s correlation which is a standard U-
statistic of order 3. Studying general U-statistic typed correlation matrices could be
a topic of future work. Moreover, we compare the test statistics through simulations.
Investigating the asymptotic distribution of test statistics under local alternatives could

be another interesting future work.
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