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Abstract: In many cancer genomic studies, investigators are interested in testing the presence of as-

sociation between a time-to-event outcome and covariates of interest. Such analyses are often com-

plicated by missing data. When covariates of interest are missing for some subjects, it is desirable

to leverage information from observed auxiliary variables, which are sometimes high-dimensional,

to improve statistical power. In this paper, we consider a class of semiparametric transformation

models for a potentially right-censored survival outcome and develop an association test between

the outcome and a partially observed covariate. We impute the missing covariate values using

high-dimensional auxiliary variables. To accommodate potential model misspecification, we com-

bine results from multiple plausible models for the survival time to improve power. We establish

the validity of the test under misspecification of the outcome model and an adaptively-selected

model for the incomplete covariate. We demonstrate the validity of the proposed methods and the

superiority over existing methods through extensive simulation studies and applications to major

cancer genomic studies.

Key words and phrases: Imputation; Missing data; Post-selection inference; Survival analysis;

Variable selection.
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1. Introduction

In cancer genomic studies, investigators are often interested in identifying genomic factors

associated with the time to events of interest, such as the time to tumor progression or

death since initial diagnosis. The recent advent of high-throughput technologies has

provided unprecedented opportunities for researchers to discover such associations from

massive collections of data. For example, multiple studies have been conducted for breast

(Lánczky et al., 2016), lung (Välk et al., 2011), and ovarian cancers (Sieh et al., 2013),

among others, to identify genomic factors that are associated with the time to cancer

relapse or death. One common challenge in the analysis of event times is that they

are often not exactly observed, that is, censored. Also, full parametric assumptions on

the event time distribution are usually in doubt, and investigators typically adopt more

flexible semiparametric models. Censoring and nonparametric components in the model

complicate the likelihood and pose challenges on estimation and inference.

Another complication often encountered in cancer genomic studies is missing data,

where genomic factors of interest are not always observed. For example, The Can-

cer Genome Atlas (TCGA) program (https://cancergenome.nih.gov/) collected multiple

types of clinical, genomic, epigenomic, transcriptomic, and proteomic data, while the

proteomic data are missing for many subjects. Missing data may also arise by design.

Especially when some variables are difficult or expensive to measure, a two-phase design

is commonly adopted, where the outcome and inexpensive covariates are observed for

all subjects in the first phase and a sub-group of subjects are selected for measurements

on expensive covariates in the second phase. For instance, in the National Heart, Lung,
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and Blood Institute Exome Sequencing Project (https://evs.gs.washington.edu/EVS/),

all subjects were measured for genotyping array data, and only a sub-group of subjects

with extreme values of the primary outcome was selected for whole-exome sequencing.

Statistical methods for the analysis of all study subjects need to accommodate missingness

in the covariates.

The simplest method to deal with missing data is the complete-case analysis, where

observations with incomplete data are discarded before the analysis. When the miss-

ingness is completely at random (MCAR) (Rubin, 1976), i.e., the missing mechanism

does not depend on any relevant data, the complete-case analysis is valid but statisti-

cally inefficient, as it discards information contained in the incomplete observations. By

contrast, the complete-case analysis may be inconsistent under the missing at random

(MAR) mechanism, where the missingness depends on the observed data. Another ap-

proach to handle missing data is imputation, where the missing values are imputed by

plausible values obtained from the observed data, and conventional methods can then be

adopted to analyze the completed data. However, single imputation methods that do not

account for the variability in the imputation generally yield invalid inference. Although

many methods have been developed for estimation under incomplete data, few methods

focus on association tests. Most existing association testing methods that accommodate

incomplete covariates are based on the score test, which is formulated based on imputed

data or the full likelihood that includes the incomplete variable model (Hu et al., 2015;

Derkach, Lawless and Sun, 2015; Bjørnland et al., 2018; Lawless, 2018; Wong, Zeng and

Lin, 2019). These studies focus only on low-dimensional models.

In this paper, we focus on the association test between a right-censored survival out-
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come and an incomplete covariate, where potentially high-dimensional auxiliary variables

are available to predict the missing values of the covariate of interest. The proposed

method is distinct from existing methods in two major respects. First, we impute the

missing covariate values from an adaptively-selected set of auxiliary variables to improve

power. Most existing works focus on a prespecified set of low-dimensional auxiliary vari-

ables, which may not be available in practice. Second, we consider multiple outcome

models and combine the testing results to yield higher power. We rigorously prove that

the proposed method preserves the type I error under model misspecification and under

general selection approaches for the auxiliary variables.

In general, when a model is selected based on the observed data, the distribution of

a statistic constructed from the model differs from that when the model is prespecified.

Drawing inference based on a selected model, i.e., post-selection inference, is highly chal-

lenging. Some investigators considered conditional inference for the model parameters

given a subset of selected covariates; see Fithian, Sun and Taylor (2017), Lee et al. (2016)

and Tibshirani et al. (2016). Others focused on constructing uniformly valid confidence

intervals regardless of the preceding model selection procedure; see Berk et al. (2013),

Bachoc, Leeb and Pötscher (2019) and Bachoc, Preinerstorfer and Steinberger (2020).

This line of work, nevertheless, is not directly applicable to the current problem, as in

the current setting, the selected model is not the model of interest, and modifications

of the inferential procedures due to model selection are in fact not necessary. Recently,

Wong and Feng (2023) developed a score test under a generalized linear regression setting,

where missing covariates are imputed from a set of adaptively-selected auxiliary variables.

Nevertheless, the model is restricted to be fully parametric.
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To model a survival time, we adopt a general class of transformation models (Dabrowska

and Doksum, 1988), which includes the proportional hazards (PH) model (Cox, 1972) and

the proportional odds (PO) model (Bennett, 1983; Pettitt, 1984) as special cases. This

class of models has been studied by Cheng, Wei and Ying (1995, 1997), Chen, Jin and

Ying (2002), and Zeng and Lin (2006), among others. In the transformation models, there

is a transformation parameter that is typically prespecified or chosen by some information

criterion in practice. In this paper, instead of fixing the transformation parameter, we

perform separate tests under different choices of the transformation parameter values and

combine the results by taking the largest test statistic. We demonstrate that the proposed

test tends to be more powerful than assuming a single (incorrect) model, so the proposed

procedure is particularly useful when the true outcome model is unclear. Our theoretical

development needs to account for model misspecification and thus is more challenging

than the existing works on transformation models.

Although related, the current work represents substantial advances over our previous

work in Wong and Feng (2023). First, Wong and Feng (2023) focused on fully parametric

models, whereas we consider semiparametric transformation models. While parametric

models may be suitable in specific cases, the majority of studies of event times prefer the

semiparametric Cox model due to its flexibility and the availability of a simple partial

likelihood for estimation and inference. Second, we develop an approach to accommodate

multiple outcome models within a single framework, whereas Wong and Feng (2023) only

considered a single outcome model.

The rest of this paper is structured as follows. In Section 2, we formulate the model,

the hypothesis, and the proposed score test. In Section 3, we establish the asymptotic
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properties of the proposed test. In Section 4, we report the results from simulation

studies. In Section 5, we provide applications to real bladder urothelial carcinoma and

breast cancer datasets. Finally, we conclude the paper with a few remarks. Technical

details and additional numerical results are provided in the Appendix and Supplementary

Material.

2. Methods

2.1 Model, hypothesis, and the imputation score test

Let T denote a time-to-event outcome, S denote a covariate of interest, X denote a

vector of other covariates, and A denote a potentially high-dimensional vector of auxiliary

variables. Assume that S = γT
XX + ϵS for some regression parameter vector γX , and ϵS

is a random variable independent of X. The null hypothesis of interest is

H0 : ϵS is independent of T.

It states that besides the component explained by X, S is independent of the event time.

In this paper, we focus on testing H0 under a (set of) semiparametric transformation

model(s). In particular, the model assumes that the cumulative hazard function of T

conditional on (X, S) is

Λ(t | X, S) = G{Λ(t) exp(αTX + βS)}, (2.1)

where Λ is an unknown increasing function in [0, τ ] with τ being the end-of-study time

and Λ(0) = 0, G is a pre-specified transformation function that is strictly increasing with

G(0) = 0, and α and β are regression parameters. For example, we may consider the

6

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0391



2.1 Model, hypothesis, and the imputation score test

class of Box–Cox transformations

G(x) =


{(1 + x)ρ − 1}/ρ for ρ > 0,

log(1 + x) for ρ = 0,

(2.2)

where ρ is a pre-specified transformation parameter. In this family, ρ = 1 corresponds to

the PH model, and ρ = 0 corresponds to the PO model. Alternatively, we may consider

the class of logarithmic transformations

G(x) =


r−1 log(1 + rx) for r > 0,

x for r = 0,

(2.3)

where r is a pre-specified transformation parameter. The choices of r = 0 and r = 1

correspond to the PH and PO models, respectively. Note that model (2.1) can be written

as a linear transformation model

log Λ(T ) = −αTX − βS + ϵT ,

where ϵT is an error term with P (ϵT < x) = 1 − exp[−G{exp(x)}]. Particularly, the

choices of the extreme value distribution and standard logistic error distribution for ϵT

yield the PH and PO models, respectively. In this formulation, β can be interpreted as

the linear effect of the covariate S on a transformation of T .

Suppose that T is possibly right-censored at C, which is assumed to be independent

of (T, S,A) given X. Let Y = min(T,C) and ∆ = I(T ≤ C), where I(·) is the indicator

function. Also, suppose that S may be missing, and let R be the indicator of whether S

is observed, i.e., R = 1 if S is observed, and R = 0 if otherwise. We assume that R is

conditionally independent of (S,A) given (Y,∆,X). The observed data from a random

sample of n subjects consist of (Yi,∆i,X i,Ai, RiSi, Ri) for i = 1, . . . , n.
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2.1 Model, hypothesis, and the imputation score test

Under the transformation model (2.1), we test the null hypothesis H ′
0 : β = 0, that

the covariate of interest S does not have an effect on the (transformed) hazard of T given

X. Note that under (2.1), Λ(t | X, S) = G[Λ(t) exp{(α + βγX)
TX + βϵS}], so H ′

0 is

equivalent to H0. To construct a test, we first fit a working model of S against (X,A)

and use this model to impute the missing values. Because the auxiliary variables A may

be high-dimensional, we propose to select a low-dimensional subset of the components of

A to construct the model of S. Let K denote the indices of the selected components of A,

where K ⊂ {1, . . . , p} with p being the dimension of A. We can select the components of

A using existing variable selection approaches, such as lasso (Tibshirani, 1996) or feature

screening (Fan and Lv, 2008; Fan and Song, 2010); a formal formulation of the selection

procedure is given in Section 3. Let WK denote the vector that consists of X and the

components of A indexed by K. We fit a working model of S = γT
KWK + δ, where δ

is a mean-zero error term, and γK is a vector of regression parameters. We estimate γK

by solving
∑n

i=1Ri(Si − γT
KWK,i)WK,i = 0, and let γ̂K denote the estimator. Note that

this working model of S is introduced only to enhance the power of the test and does not

alter the formulation of the outcome model or the null hypothesis.

We then perform a score test based on the outcome model (2.1) and the imputed

values of S. First, we estimate α and Λ under the null hypothesis. Because the model

involves the nonparametric component Λ, we adopt the nonparametric maximum likeli-

hood estimation (NPMLE) approach of Zeng and Lin (2007). In particular, we treat Λ

as a step function with jumps only at the observed survival times. Let t1 < · · · < tm

denote the set of observed survival times, with m being the number of unique observed

survival times, and λk denote the jump size of Λ at tk for k = 1, . . . ,m. The log-likelihood
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2.1 Model, hypothesis, and the imputation score test

function pertaining to (α,Λ) is

n∑
i=1

∆i

[
logG′

{
exp(αTX i)

∑
tk≤Yi

λk

}
+ log λk(i) +αTX i

]
−G

{
exp(αTX i)

∑
tk≤Yi

λk

}
,

(2.4)

where λk(i) is the jump size of Λ at time Yi, and G
′ is the first derivative of G.

Let ζ̂ ≡ (α̂, λ̂1, . . . , λ̂m) be the maximizer of (2.4) and ζ ≡ (α, λ1, . . . , λm) be the

corresponding generic vector of parameters. Also, let ξi(ζ) = exp(αTX i)
∑

tk≤Yi λk,

G′
i(ζ) = G′{ξi(ζ)}, G′′

i (ζ) = G′′{ξi(ζ)}, and G′′ denote the second derivative of G. The

(scaled) score statistic for β evaluated at the NPMLE ζ̂ and γ̂K is

Uβ(ζ̂, γ̂K) =n−1/2

n∑
i=1

{
∆i +∆i

G′′
i (ζ̂)

G′
i(ζ̂)

ξi(ζ̂)−G′
i(ζ̂)ξi(ζ̂)

}{
RiSi + (1−Ri)γ̂

T
KWK,i

}
.

Note that this statistic coincides with the score statistic derived based on the full likeli-

hood, with the error term δ in the model of S following a mean-zero normal distribution.

To derive the null distribution of the score statistic, we first calculate the (asymptotic)

variance of Uβ(ζ̂, γ̂K) using a linear expansion around the “true” parameter values. To

define the true values under a possibly misspecified model, let

f(y, δ | X, S;α, β,Λ, G) = exp
[
−G{Λ(y)eαTX+βS}

][
G

′{Λ(y)eαTX+βS}λ(y)eαTX+βS
]δ

for y > 0 and δ = 0, 1, where λ(t) = dΛ(t)/dt. We define α0, β0 and Λ0 to be the values

that solve the following equations simultaneously:

E
{∂ log f(Y,∆ | X, S;α, β,Λ, G)

∂(α, β)

}
= 0, (2.5)

E
[∂ log f{Y,∆ | X, S;α, β,Λ + ϵ

∫
h(s) dΛ(s), G}

∂ϵ

∣∣∣
ϵ=0

]
= 0 for all ∥h∥∞ ≤ 1. (2.6)
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2.1 Model, hypothesis, and the imputation score test

Clearly, if the transformation model is correctly specified, then (α0, β0,Λ0) are just the

true parameter values.

Let ζ0 = (α0, λ0,1, . . . , λ0,m), where λ0,k = Λ0(tk) − Λ0(tk−1) for k = 1, . . . ,m with

t0 = 0. For a given K, define γ0K ≡ argminγ E{R(S −γTWK)
2} as the true value of γK.

Also, define ψi(ζ) = G′′
i (ζ)/G

′
i(ζ). The Taylor series expansion of Uβ(ζ̂, γ̂K) at (ζ0,γ0K)

yields

Uβ(ζ̂, γ̂K) =n−1/2

n∑
i=1

[{
∆i +∆iψi(ζ0)ξi(ζ0)−G′

i(ζ0)ξi(ζ0)
}{
RiSi + (1−Ri)γ

T
0KWK,i

}
− Î

T

βγ Î
−1

γγWK,iRi(Si − γT
0KWK,i)− Î

T

βζ Î
−1

ζζ U ζ,i

]
+ op(1) (2.7)

under some regularity conditions, where U ζ,i = (UT
α,i, Uλ1,i, . . . , Uλm,i)

T,

Uα,i =
{
∆i +∆iψi(ζ0)ξi(ζ0)−G′

i(ζ0)ξi(ζ0)
}
X i,

and Uλk,i (k = 1, . . . ,m) is the derivative of the ith term of log-likelihood function with

respect to λk:

Uλk,i =
∆k(i)

λ0,k
+ I(Yi ≥ tk)

{
∆iψi(ζ0)−G′

i(ζ0)
}
exp(αT

0X i),

and Îζζ , Îβζ , Îγγ and Îβγ correspond to second derivatives of the nonparametric log-

likelihood function; detailed formulations of the second derivative terms are given in the

Appendix. The first term in the summation in (2.7) corresponds to the score statistic for

β. The second term arises from expanding Uβ(ζ0, γ̂K) at γ0K and expressing γ̂K − γ0K

as its linear approximation. Similarly, the third term results from expanding Uβ(ζ̂,γ0K)

at ζ0 and expressing ζ̂ − ζ0 as its linear approximation. These linear approximations are

derived from viewing γ̂K and ζ̂ as solutions to estimating equations obtained from the

derivatives of the squared error loss and the log-likelihood.
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2.1 Model, hypothesis, and the imputation score test

Based on this expansion, we can estimate the asymptotic variance of Uβ(ζ̂, γ̂K) by

σ̂(K)2 = n−1
∑n

i=1{σ̂i(K)− σ(K)}2, where

σ̂i(K) =
{
∆i +∆iψi(ζ̂)ξi(ζ̂)−G′

i(ζ̂)ξi(ζ̂)
}{
RiSi + (1−Ri)γ̂

T
KWK

}
− Î

T

βγ Î
−1

γγWK,iRi(Si − γ̂T
KWK,i)− Î

T

βζ Î
−1

ζζ Û ζ,i,

σ(K) = n−1
∑n

i=1 σ̂i(K), and Û ζ,i is U ζ,i with true parameter values replaced by es-

timators. Note that in the definition of σ̂i(K), the true parameter values in Îζζ , Îβζ ,

Îγγ and Îβγ are replaced by estimators. For an asymptotic size α test, we reject H0 if

Uβ(ζ̂, γ̂K)
2/σ̂(K)2 ≥ χ2

1,α. When H0 is rejected, we suggest to use the sign of Uβ(ζ̂, γ̂K)

as an estimate of the direction of the effect of S on the hazard of T .

Although the test is derived under the transformation model, it remains valid under

the general hypothesis H0 regardless of whether this model is correctly specified. We

make two remarks about this robustness property. First, under H0, the score statistic

for β under the transformation model is mean zero at (α,Λ) = (α0,Λ0) and β = 0, so

the score test for H ′
0 is a test for H0. Note that the contribution of a generic data point

(Y,∆,X, S) to the log-likelihood is

∆ log
[
G

′{Λ(Y )eα
TX+βS}λ(Y )eα

TX+βS
]
−G{Λ(Y )eα

TX+βS} ≡ g(αTX + βS;Y,∆,Λ).

Under H0, we have

E

{
∂

∂β
g(αTX + βS;Y,∆,Λ)

∣∣∣∣
β=0

}
=E

{
∂

∂µ
g(µ;Y,∆,Λ)

∣∣∣∣
µ=αTX

γT
XX

}
+ E

{
∂

∂µ
g(µ;Y,∆,Λ)

∣∣∣∣
µ=αTX

}
E(ϵS).

At (α0,Λ0), the first term and the first expectation of the second term on the right-

hand side above are 0. Therefore, under H0, the score statistic of β is mean zero even if
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2.2 Supremum test

the transformation model is misspecified. By contrast, when H0 does not hold, ϵS and

∂ log g/∂µ|µ=αTX are generally correlated.

Second, the variance estimator σ̂(K)2 is robust against misspecification of the trans-

formation model, because it is based on a sum-of-squares expression, rather than the

Hessian of the (nonparametric) log-likelihood. The sum-of-squares estimator is based on

a linear expansion of Uβ(ζ̂, γ̂K), which does not rely on the correct specification of the

transformation model. By contrast, the standard variance estimator based on the Hessian

of the log-likelihood is generally inconsistent if the transformation model is misspecified.

2.2 Supremum test

The above score test is based on a single transformation function G, and the misspecifica-

tion of G would result in power loss. To improve power, we propose a supremum test that

combines the results from multiple choices of G. Suppose that we have q plausible choices

of monotonically increasing transformation functions, denoted by {G(j) : j = 1, . . . , q}

with G(j)(0) = 0. Let α(j), β(j), and Λ(j) be the parameters under the jth transforma-

tion. For each j, we construct the proposed imputation score test statistic developed in

Section 2.1. In particular, let ζ̂
(j)

denote the NPMLE under transformation function G(j)

and β(j) = 0. Let U
(j)
β (ζ̂

(j)
, γ̂K) and σ̂

(j)(K) denote the corresponding score statistic and

estimated standard deviation, respectively. Define

Zmax(ζ̂, γ̂K) = max
1≤j≤q

|Z(j)(ζ̂
(j)
, γ̂K)|, (2.8)

where Z(j)(ζ̂
(j)
, γ̂K) = U

(j)
β (ζ̂

(j)
, γ̂K)/σ̂

(j)(K). For simplicity of presentation, we write

Z(j)(ζ̂
(j)
, γ̂K) and U

(j)
β (ζ̂

(j)
, γ̂K) as Ẑ

(j) and Û
(j)
β , respectively. The supremum test effec-
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tively takes the transformation model that yields the strongest evidence against the null

hypothesis.

We approximate the distribution of
(
Ẑ(1), . . . , Ẑ(q)

)
by a multivariate normal with

mean 0 and variance V̂ (K) and then approximate the distribution of Zmax(ζ̂, γ̂K) by the

maximum of the absolute multivariate normal random vector. The variance matrix V̂ (K)

is a (q × q)-matrix with diagonal elements 1 and the (j, k)th element being

V̂jk(K) =
1

nσ̂(j)(K)σ̂(k)(K)

n∑
i=1

(
Û

(j)
β,i −

1

n

n∑
i′=1

Û
(j)
β,i′

)(
Û

(k)
β,i −

1

n

n∑
i′=1

Û
(k)
β,i′

)
, j, k = 1, . . . , q,

where Û
(j)
β,i is the ith term in the summation of Û

(j)
β for i = 1, . . . , n and j = 1, . . . , q.

To obtain an asymptotic size α test, we use the Monte-Carlo method to obtain the

critical value of the test. The algorithm is as follows:

Algorithm 1 Supremum test

1: GenerateM i.i.d. random samples (z
(1)
m , . . . , z

(q)
m ) (m = 1, . . . ,M) from a multivariate

normal distribution with mean 0 and variance V̂ (K);

2: Compute the test statistic Tm from the mth sample: Tm = max1≤j≤q |z(j)m |;

3: Reject H0 if Zmax(ζ̂, γ̂K) is larger than the (1− α)th quantile of (T1, . . . , TM).

3. Theoretical Properties

In this section, we present the asymptotic joint distribution of the score statistics (Û
(1)
β , . . . , Û

(q)
β ),

from which we can obtain the validity of the proposed (supremum) score test. In general,

we use the superscript (j) to denote a statistic or quantity evaluated under the jth trans-

formation model. Let Ûβ(K) =
(
Û

(1)
β , . . . , Û

(q)
β

)T
, where we suppressed the dependence

on K on the right-hand side.
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We prove that under some regularity conditions, Σ(K)−1/2Ûβ(K) converges to a mul-

tivariate normal distribution under H0 even when K is chosen randomly, for some Σ(K)

defined in the proof of Theorem 1. To precisely state the theoretical result, let K∗ be a

general model selection operator, such that for an m-vector of outcome variables Y and

an (m×p)-matrix of covariates Z, K∗(Y ,Z) : Rm×Rm×p → Cp, where Cp is the collection

of subsets of {1, . . . , p}. We assume that the model for S is selected based on the resid-

ual S − γ̂T
XX and A, where γ̂X ≡ (

∑n
i=1RiX iX

T
i )

−1
∑n

i=1RiX iSi is the least-squares

estimator of S on X using the subjects with R = 1. The selected components of A are

K∗(S −Xγ̂X ,A), where S is a vector that consists of {Si : Ri = 1}, and X and A are

matrices that consist of rows of {X i : Ri = 1} and {Ai : Ri = 1}, respectively. For

simplicity of presentation, we write K∗ = K∗(S −Xγ̂X ,A). Therefore, K can be viewed

as the observed value of K∗.

Let ∥ · ∥ψξ
be an Orlicz norm, such that ∥X∥ψξ

= inf{η > 0 : E{exp(|X|ξ/ηξ)} ≤ 2},

and ∥ · ∥ be the Euclidean norm. We establish the asymptotic property of Ûβ(K∗) under

the following conditions. Some conditions involve a generic positive constant M .

(C1) For some ξ ∈ (0, 2], ∥S∥ψξ
+ maxj ∥Aj∥ψξ

< M . The covariate X is bounded, so

that P (∥X∥ < M) = 1.

(C2) There exists a sequence of collections of models Ωn, such that P (K∗ ∈ Ωn) → 1,

supK∈Ωn
|K| = O(nν), and log |Ωn| = O(nκ), where ν and κ are constants that

satisfy ν < 4ξ/(5ξ + 12), 5ν/4 + 3κ/ξ < 1, and 4ν/3 + 8κ/(3ξ) < 1, and |C|

denotes the cardinality of the set C. Also, infK∈Ωn λmin{E(RWKW
T
K)} > M−1,

supK∈Ωn
E{(γT

0KWK)
4} < M , where λmin(C) denotes the minimum eigenvalue of
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the matrix C. In addition, infK∈Ωn λmin{Σ(K)} > M−1.

(C3) The probability P (R = 1 | Y,∆,X) > M−1 almost surely.

(C4) Under H0, A is independent of (Y,∆,X).

(C5) The models selected based on the estimated residuals (Si − γ̂T
XX i)i:Ri=1 and the

actual residuals (Si − γT
0XX i)i:Ri=1 are such that

P
{
K∗(S − X γ̂X ,A) ̸= K∗(S − Xγ0X ,A)

}
= o(1)

and

sup
K∈Ωn

P
{
K∗(S − X γ̂X ,A) = K

}
P
{
K∗(S − Xγ0X ,A) = K

} < M,

where γ0X is the true value of γX .

(C6) For a random sample of size m, let S̃ = (S1, . . . , Sm)
T, X̃ = (X1, . . . ,Xm)

T, and

Ã = (A1, . . . ,Am)
T. The random variable

sup
K∈Ωm

∣∣∣∣P
{
K∗(S̃ − X̃γ0X , Ã) = K | Ã

}
P
{
K∗(S̃ − X̃γ0X , Ã) = K

} − 1

∣∣∣∣
converges to 0 in mean as m→ ∞.

(C7) For j = 1, . . . , q, the transformation function G(j) is continuously differentiable up

to the fourth order. Also, equations (2.5) and (2.6), with G = G(j) for j = 1, . . . , q,

have unique solutions (α
(j)
0 , β

(j)
0 ,Λ

(j)
0 ), where α

(j)
0 lies in the interior of a known

compact set, and Λ
(j)
0 is continuously differentiable with positive derivative in [0, τ ].

In addition, with probability one, P (C ≥ τ | X, S) = P (C = τ | X, S) > M−1 and

P (T ≥ τ | X, S) > M−1.
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(C8) The operator (W (j)
α ,W

(j)
Λ ) defined in the Supplementary Material is continuously

invertible for j = 1, . . . , q.

Remark 1. Conditions (C1)–(C6) are adopted from Wong and Feng (2023). Condition

(C4) can be similarly relaxed to Condition (C4’) of Wong and Feng (2023). Essentially,

Condition (C5) requires that the models selected based on the true and estimated residuals

of S on X are (asymptotically) the same, and Condition (C6) requires that the model

selection probabilities are the same whether conditional on the covariates or not. See

the Supplementary Material of Wong and Feng (2023) for the verification of Conditions

(C5) and (C6) under marginal screening. Condition (C7) is standard for semiparametric

transformation models. In particular, it requires an end-of-study time τ , such that no

events beyond τ could be observed, and there exists a nonvanishing proportion of subjects

whose censoring time is equal to τ . This ensures that the NPMLE of Λ is uniformly

consistent over the entire closed interval [0, τ ]. Condition (C8) essentially consists of

assumptions for the Z-estimator master theorem (Theorem 3.3.1 of van der Vaart and

Wellner (1996)), which guarantees the asymptotic normality of (α̂(j), Λ̂(j)) for j = 1, . . . , q.

In this paper, we directly assume the required conditions instead of proving them based

on properties of the true model, because we do not assume the form of the true model.

By contrast, if we specify the true model, then we may establish Condition (C8) based

on properties of the true model along the lines of, for example, Zeng, Lin and Lin (2008).

We have the following results.

Theorem 1. Under Conditions (C1)–(C8) and H0, Σ(K∗)−1/2Ûβ(K∗) converges weakly

to the standard multivariate normal distribution.
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Note that K∗ is a random object, reflecting the data-dependent nature of the selected

model of S. In the special case where K∗ is prespecified, the theorem simplifies to the

standard result of asymptotic normality of the score statistic.

Theorem 2. Under Conditions (C1)–(C8) and H0,

sup
K∈Ωn

∥Σ̂(K)−Σ(K)∥F
p−→ 0,

where ∥ · ∥F denotes the Frobenius norm.

The proofs of Theorems 1 and 2 are given in the Supplementary Material. From these

two theorems, we have the following result that implies the validity of the proposed test.

Theorem 3. Under Conditions (C1)–(C8) and H0, for any t ∈ R,

P
{
Zmax(ζ̂, γ̂K∗) < t

}
− P

{
∥V̂ (K∗)1/2Z∥∞ < t

}
→ 0,

where Z ∼ N(0, Iq) and is independent of the observed data.

4. Simulation studies

4.1 Study 1 — Single model tests

LetX = (X1, . . . , X5)
T, where (X1, X2, X3) are mean-zero normal variables with Cov(Xj, Xk) =

0.5|j−k| (j, k = 1, 2, 3), X4 ∼ Bernoulli(0.25), X5 ∼ Bernoulli(0.35), and X4 and X5 are

independent of each other and of (X1, X2, X3). Let A be a p-vector of independent stan-

dard normal random variables. We set S = γT
XX + γT

AA + γT
A,2A

2 + δ, where A2 is a

p-vector of the squared components of A, δ is standard normal, and γX = (0.1, . . . , 0.1)T.

We set γA to be 0.25 at the first 20 components and 0 elsewhere, and set γA,2 to be 0.1

at the first 5 components and 0 elsewhere.
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4.1 Study 1 — Single model tests

We considered three failure time models:

Model 1: Λ(t | X, S) = Λ(t) exp(αTX + βS);

Model 2: Λ(t | X, S) = log{1 + Λ(t) exp(αTX + βS)};

Model 3: T = exp(−αTX − βS) + ϵ, where ϵ ∼ Exp(1).

In all models, we set α = (0.2,−0.2, 0.2,−0.2, 0.2)T and Λ(t) = 0.01t. Model 1 and

Model 2 are the PH and PO models, respectively, whereas Model 3 does not take the

form of a transformation model. We generated the censoring time C from an exponential

distribution with mean λ0 + λ1X4, where λ0 and λ1 were chosen to yield a censoring

rate of approximately 50–60%, and the means of the exponential distributions differ by

25% or more. We considered two missing-data mechanisms. The first mechanism is

MCAR. The second mechanism is MAR, where we first randomly selected 40% of the

subjects with X5 = 1 and 10% of the subjects with X5 = 0 into a subcohort, and the

selected subjects would have observed S. For subjects outside the subcohort, we selected

a fraction of subjects with censored event time to have missing S to attain the desired

missing proportion. If the missing proportion was not attained by setting all censored

subjects to have missing S, then a subset of subjects with observed event time would

also be selected. We set the number of Monte-Carlo replicates for approximating the

null distribution of the test statistics to be M = 500,000. We considered sample sizes of

n = 500 and 1000, and numbers of auxiliary variables of p = 200, 500, 1000 and 1500.

For the alternative hypothesis, we set β = 3n−1/2 for Models 1 and 2, and β = 1.5n−1/2

for Model 3. For each setting, we simulated 50,000 and 10,000 replicates for β = 0 and

β ̸= 0, respectively.
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4.1 Study 1 — Single model tests

In this subsection, we consider the performance of the proposed test under a given

transformation model and compare it with existing methods. We compare the perfor-

mance of six tests: (1) the score test using complete data only; (2) the score test with

missing values imputed under a working linear model of S on X and components of A

selected using marginal screening, where a component of A is selected if its absolute em-

pirical correlation with S − γ̂T
XX among the subjects with complete data is larger than

a certain threshold; (3) the score test based on the full likelihood with a working linear

model of S against X only, which is similar to the method proposed by Lawless (2018);

(4) the score test based on the full likelihood with the same model of S as (2); (5) the

proposed test, where the working model of S is selected in the same way as (2); and

(6) the score test based on the full likelihood with a linear model of S against X and

the components of A that are associated with S. We refer to methods (1)–(6) as the

complete-case analysis, the simple imputation method, the covariate-only method, the

full likelihood method, the proposed method, and the true model method. For methods

(2), (4), and (5), the threshold for screening is selected using BIC. For the true model

method, the variance of the score statistic is estimated using the proposed empirical vari-

ance estimator. For all methods, we fit the correct failure time model under Models 1

and 2, and under Model 3, we fit both the PH and PO models.

The results under a missing proportion of 60% are plotted in Figures 1 and 2, and

the results under a missing proportion of 30% are presented in Figures S1 and S2 in

the Supplementary Material; for methods that inflate the type I error, their performance

under the alternative hypothesis is not presented. The significance level is set to be 0.05.

Under Models 1 and 2 with sample size 1000, all methods appear to preserve the type I
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4.2 Study 2 — Supremum tests

error. Theoretically, the complete-case analysis and the simple imputation method would

inflate the type I error under MAR, but the empirical results do not clearly exhibit such a

pattern under the current setting. Under Model 3, the complete-case analysis, the simple

imputation method, the covariate-only analysis, and the full likelihood generally inflate

the type I error, because these methods estimate the variance based on the Hessian of the

log-likelihood, which is misspecified in this setting. As expected, the proposed method

utilizes information about missing data contained in the auxiliary variables and tends to

yield higher power than the complete-case analysis and covariate-only method. Under

Models 1 and 2, the full likelihood method tends to be slightly more powerful than the

proposed method, but the corresponding type I errors for the full likelihood method are

also slightly inflated. In fact, both methods have the same numerator in the score statistic,

so the difference is due to small-sample differences in the variance estimators. We also

evaluate the sign of the score statistic Uβ(ζ̂, γ̂K) when H0 is rejected. In all models under

the alternative hypotheses, whenever H0 is rejected, Uβ(ζ̂, γ̂K) is of the same sign as the

true value of β.

4.2 Study 2 — Supremum tests

Having established the validity of the proposed method under a prespecified transforma-

tion model, in this subsection, we consider the supremum test under the same Models 1–3

and covariate distributions. The supremum test is performed with 6 working outcome

models (q = 6), including transformation models with the Box–Cox transformation (2.2)

at ρ = 0, 0.5, 1, and 1.5 and the logarithm transformation (2.3) at r = 0 and 1.5. Note

that ρ = 0 and ρ = 1 correspond to the PO and PH models, respectively. For comparison,
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4.2 Study 2 — Supremum tests

Model 1, MAR Model 1, MCAR Model 2, MAR Model 2, MCAR

n=
500

n=
1000

2 5 10 15 2 5 10 15 2 5 10 15 2 5 10 15

0.040

0.045

0.050

0.055

0.040

0.045

0.050

0.055

Number of auxiliary variables (× 100)

R
ej

ec
tio

n 
pr

ob
ab

ili
ty

Models 1 & 2

PH, MAR PH, MCAR PO, MAR PO, MCAR

n=
500

n=
1000

2 5 10 15 2 5 10 15 2 5 10 15 2 5 10 15

0.06

0.08

0.10

0.06

0.08

0.10

Number of auxiliary variables (× 100)

R
ej

ec
tio

n 
pr

ob
ab

ili
ty

Model 3

Figure 1: Study 1 — Rejection probabilities under a missing proportion of 60% and the

null hypothesis. 21
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4.2 Study 2 — Supremum tests
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Figure 2: Study 1 — Rejection probabilities under a missing proportion of 60% and the

alternative hypothesis. 22
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4.3 Study 3 — Single model tests with strong and weak signals

we also present the results of the proposed single-model score test with the PH and PO

models. The results under a missing proportion of 60% are plotted in Figures 3 and 4,

and the results under a missing proportion of 30% are presented Figures S3 and S4 in the

Supplementary Material. All three tests preserve the type I error under all three models.

Under Models 1 and 2, the supremum test does not lose much power compared with the

single-model test with the correct model specification. Under Model 3, the PO model is

the most powerful, as it tends to yield a large value of the (standardized) score statistic.

The supremum test, while having a test statistic value larger than or equal to that under

the PO model, has a larger rejection threshold. Therefore, its power is slightly lower than

the PO model. The PH model has the smallest test statistic value and thus is the least

powerful. This illustrates that even when the outcome model is unknown or misspeci-

fied, we can perform the supremum test to achieve a relatively high power. In general,

we recommend considering a few interpretable working models. It is difficult to derive

a general rule on what or how many models to consider, but based on some additional

simulation studies, the empirical results under the current simulation setting are similar

for q varying from 2 to 6.

4.3 Study 3 — Single model tests with strong and weak signals

In this subsection, we consider a case with a larger degree of variability in the model

selection step. In particular, we adopt the setting in Section 4.1 but generated S with a

mixture of strong and weak signals of the auxiliary variables. Specifically, we set γA to

be 0.25 at the first 20 components, 0.02 at the subsequent 80 components, and 0 at the

remaining components. The results are presented in Figures S5 – S8 in the Supplementary
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4.3 Study 3 — Single model tests with strong and weak signals
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4.3 Study 3 — Single model tests with strong and weak signals
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4.4 Study 4 — Supremum tests with discrete S

Material. Similar to the results of Study 1, the proposed method yields satisfactory

performance under this setting. Under the alternative hypothesis, the true model method

tends to have high power, but the proposed method is more powerful than the true

model method in some scenarios. This is because the true model contains many auxiliary

variables with weak signals, and the extra information contained in the variables does not

compensate for the variability involved in the estimation of their effects, so it is beneficial

to select a subset of variables with stronger signals. Therefore, to select the model of

S, we could perform feature screening with a relatively large selection threshold or use

penalization methods, such as lasso, with a large penalty. These tuning parameters could

be selected based on conservative information criteria or methods with false discovery

rate control.

4.4 Study 4 — Supremum tests with discrete S

In this subsection, we further evaluate the robustness of the proposed methods under

a misspecified distribution of S. Specifically, we adopt the setting in Section 4.1 but

generated S from a binomial distribution with the number of trials equals 2 and success

probability

p =
exp(γT

XX + γT
AA+ γT

A,2A
2)

1 + exp(γT
XX + γT

AA+ γT
A,2A

2)
.

Such a covariate distribution would arise when S is a genotype. The values of γX , γA

and γA,2 are equal to those in Section 4.1. Note that in this setting, S does not depend

linearly on X. The null hypotheses being tested are β = 0 for the single-model test and

β(j) = 0 for j = 1, . . . , q for the supremum test. The results are presented in Figures

S9–S12. Similar to the results in Section 4.2, the proposed method preserves the type I
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error across all three models. Under Models 1 and 2, the supremum test demonstrated

power comparable to the single-model test under the correct model. Under Model 3, the

power of the supremum test is substantially larger than that of the single-model test with

PH and is comparable to that of the single-model test with PO.

5. Real Data Analysis

5.1 TCGA: Bladder Urothelial Carcinoma

We analyze a dataset of patients with bladder urothelial carcinoma (BLCA) from TCGA

(The Cancer Genome Atlas Network, 2014). In the study, most subjects had available

clinical variables, including sex, age at diagnosis, time to tumor progression, and time

to death since the initial diagnosis. The expressions of 18224 genes, generated by RNA

sequencing, were measured for most subjects. The expressions of 208 proteins or phospho-

proteins are available for 82% of the subjects. After removing subjects with missing

clinical data, the sample size is 348. The median follow-up time was about 1.3 years, and

about 49% of the patients were lost to follow-up before tumor progression or death.

We aim to identify protein expressions that are associated with the time to tumor

progression or death, whichever occurs first. The covariates in X include age at diagnosis,

sex and stage N. In the sample, 26.44% of patients are female. Stage N is classified into N0

(64.08%), N1(12.93%), N2(21.26%) and N3(1.72%) and is represented by a single variable

with values 0, 1, 2, and 3, respectively. In a single analysis, we set the covariate of interest

S to be the expression of a protein or phospho-protein. We set the gene expressions as

auxiliary variables. About 6% of the gene expression values are missing, and we impute
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5.1 TCGA: Bladder Urothelial Carcinoma

Table 1: p-values and references of significant proteins in the TCGA BLCA analysis.

Protein

expression

Proposed

method

Complete-case Covariate-only
Reference

PH PO PH PO

GATA3 3.40E−05 1.12E−04 5.00E−05 1.04E−04 4.40E−05 Higgins et al. (2007)

Src 1.48E−04 8.20E−04 4.86E−04 8.33E−04 4.62E−04 Xu et al. (2021)

TAZ 1.80E−04 1.38E−03 5.51E−04 1.09E−03 4.32E−04 Gao et al. (2014)

them using k-nearest neighbor imputation with k = 10.

We perform the supremum test with q = 2 and the two transformation functions

corresponding to the PH and PO models. The working model of S is selected in two steps:

first, select 1000 gene expressions by the correlation-based marginal screening procedure,

and then perform lasso on the selected gene expressions; the tuning parameter in lasso

is selected by BIC. For comparison, we also perform the complete-case analysis and the

covariate-only method described in the simulation studies under the PH and PO models.

Under a (family-wise) significance level of 0.05 and the Bonferroni correction, i.e., an

individual significance level of 0.05/208 = 0.00024, three proteins are identified to be

significantly associated with progression-free survival time under at least one of the five

tests. All three protein expressions are more significant under the proposed method than

under other methods with either outcome model. Also, the three proteins have been

identified to be related to the progression of BLCA in previous studies. The p-values

under all methods of the significant protein expressions and some relevant references are

given in Table 1.
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5.2 METABRIC

5.2 METABRIC

We also apply the proposed method to analyze data from the Molecular Taxonomy Of

Breast Cancer International Consortium (METABRIC) study (Curtis et al., 2012) to

investigate the association between gene expressions and the relapse-free survival time

of breast cancer patients. The data are available through the cBioPortal for Cancer

Genomics (https://www.cbioportal.org/study/summary?id=brca metabric). The study

contains data of clinical variables, gene expressions and copy number alterations (CNAs).

For the analysis, we select patients with subtypes Luminal A and Luminal B as study

subjects. Also, we select 1500 genes with the largest variances as the study variables.

After removing subjects with missing clinical data, the sample size is 1119. The median

follow-up time was about 119 months, and 35% of the patients were lost to follow-up before

tumor progression or death. We artificially introduce 50% of missingness with the MAR

mechanism described in the simulation studies for the gene expressions to demonstrate

the proposed method.

The covariates in X include age at diagnosis, Her2 status, indicator of chemotherapy,

indicator of hormone therapy, and indicator of radiotherapy. Her2 status is classified into

loss (6.08%), neutral (77.57%) and gain (16.35%) and is represented by a single variable

with values 0, 1 and 2, respectively. In a single analysis, we set the covariate of interest

S to be a single gene expression. We set the CNAs as auxiliary variables. For each CNA,

if there exists another CNA such that they have more than 95% same values, then we

delete it from the analysis. After deletion, the dimension of CNA is 385.

We perform the supremum test with q = 2 and the two transformation functions

29

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0391



corresponding to the PH and PO models. The auxiliary variables of CNA are selected by

lasso, and the tuning parameter of lasso is selected using BIC. For comparison, we include

the results under the complete-case analysis and the covariate-only method described in

the simulation studies with the PH and PO models. Also, we perform score tests using

all available gene expressions under the PH and PO models, and we refer to it as the

complete-data analysis. The results of the complete-data analysis can be viewed as the

gold standard since it uses all values of S.

There are seven gene expressions identified to be significantly associated with progression-

free survival time at the (Bonferroni-corrected) significance level of 0.05/1500 = 3.33 ×

10−5 under the complete-data analysis with either outcome model. Among these gene ex-

pressions, all of them are most significant under the complete-data analysis with the PO

model, and 5 are more significant under the proposed method than under the complete-

case analysis and the covariate-only method with either outcome model. This suggests

that the proposed method is more powerful than the other two methods. The p-values

under all methods of the significant gene expressions are given in Table 2. As the genes

tend to show higher significance under the PO model, the results highlight the advantage

of considering multiple outcome models. If we relied solely on the “default choice” of the

Cox model, then we might have missed some identified associations.

6. Discussion

In this paper, we develop a score test for the presence of association between a potentially

right-censored survival outcome and an incomplete covariate, where the missing values

of the incomplete covariate can be imputed using high-dimensional auxiliary variables.
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Table 2: p-values of significant gene expressions in the METABRIC data analysis.

Gene

expression

Proposed

method

Complete-data Complete-case Covariate-only

PH PO PH PO PH PO

CDCA5 2.92E−03 7.60E−06 7.57E−08 3.30E−02 1.24E−02 1.51E−02 1.37E−02

FAM164A 4.44E−03 2.30E−05 2.16E−05 1.44E−02 3.68E−02 3.17E−02 3.74E−02

S100P 4.39E−03 4.47E−05 3.87E−06 3.15E−03 6.02E−03 9.66E−03 9.31E−03

NFKBIZ 6.50E−03 2.73E−04 1.99E−05 1.35E−02 7.01E−03 3.08E−02 9.39E−03

PTTG1 4.08E−03 7.41E−05 2.22E−05 6.85E−02 1.73E−02 6.33E−02 2.06E−02

CCNB2 9.80E−05 1.50E−04 9.71E−06 8.40E−04 1.38E−04 1.07E−03 2.06E−04

AURKA 1.24E−02 7.94E−04 2.04E−05 1.07E−01 3.56E−03 5.85E−02 1.10E−02

We propose to select a subset of auxiliary variables before performing the score test.

We consider a flexible transformation model for the survival outcome and propose a

supremum test that combines multiple outcome models to improve power. Our theoretical

development requires only that S is linearly associated with covariatesX, and the validity

of the score test does not depend on the correctness of the working model.

In the simulation studies, we demonstrate that under alternative hypotheses, the sign

of the score statistic consistently aligns with the sign of β whenever the null hypothesis

is rejected. However, this result is merely empirical, and a theoretical guarantee has

yet to be established. The theoretical challenge lies in the fact that under (contiguous)

alternatives, the least-squares estimator γ̂K ≡ E(RWKW
T
K)

−1E(RSWK) converges to a

limit that depends on β through the distribution of R, which is unspecified. It is unclear

what the contribution of γ̂K to the asymptotic mean of the score statistic Uβ(ζ̂, γ̂K) is,

except in the simple case of MCAR, where the limit of γ̂K does not depend on β.
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We assume that R is independent of (S,A) given (Y,∆,X), which is more restrictive

than the conventional MAR assumption that allows R to be independent of S given

(Y,∆,X,A). If some components of A are not selected into the working model of S on

WK, and R depends on these unselected components of A, then S would be missing not

at random under the working model. To allow for the dependence of R on A, we would

need to identify the components of A that are associated with R and account for them

when fitting the working model of S.

Under the working model of S, we estimate γK using the complete cases only. Un-

der H0 (and contiguous alternatives), inverse probability weighting is possible but not

required, because estimation of γK is consistent regardless of whether weighting is used.

In fact, weighting may create a superpopulation under which the least-squares estimator

of γK is less efficient than the unweighted estimator. In addition, inclusion of weights

would affect the expansion of the score statistic (2.7), and the proof for Theorem 1 may

need to be substantially modified.

We focus on hypothesis testing rather than regression analysis in general. Although

association testing typically can be done under a regression framework, there are issues

of interest in hypothesis testing that are not pertinent under a general regression anal-

ysis framework. First, in estimation, strong assumptions concerning the distribution of

the incomplete variables are usually made to ensure desirable theoretical properties, such

as consistency of the estimators. By contrast, in hypothesis testing, we are primarily

concerned with the theoretical properties of estimators under the null hypothesis (or con-

tiguous alternatives), and correct specification of the full model is not required for a test

to be valid. As a result, much more relaxed model assumptions could be considered for
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association tests than for regression analyses in general. Second, estimation is generally

performed under a specific model, whereas in hypothesis testing, we may only be inter-

ested in the existence of association between a covariate and an outcome variable, not

necessarily under particular models. The proposed methods make use of the flexibility of

the hypothesis testing problem and are not simple by-products of an inferential procedure

under a general regression setting.

In the proposed method, the model of Y can be misspecified without compromising

the validity of the test. The proposed score test preserves the type I error with or without

correct specification of the outcome model, since the variance of score statistic is derived

using the sum of squares of the individual score statistics instead of the Hessian of the log-

likelihood. As expected, when the outcome model is misspecified, the power is adversely

affected. Nevertheless, the loss in power is relatively small based on our simulation studies.

Our work can be extended to allow for different types of outcome variables. First,

the survival data considered in this paper is right-censored. It is of interest to consider

other types of censoring, such as interval censoring, where the event of interest is known

only to occur within a time interval. For example, in HIV/AIDS studies, blood samples

are taken from study subjects periodically to look for evidence of HIV seroconversion.

Then one subject’s event time is only known to fall between two blood drawings. Second,

in the current study, the time-to-event outcome is univariate. In genomic studies, we

may encounter multivariate survival data, where each subject may experience more than

one event. In this case, the interested events may be correlated with each other. We

may consider modeling a joint survival function and performing a score test for multiple

parameters.
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Supplementary Material

The online Supplementary Material provides proofs of technical results and additional

simulation results.
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Appendix: Details of the variance estimator of the score statistic

In this Appendix, we give the expressions in the Taylor series expansion of the score

statistic presented in Section 2.1, which are used in the variance estimator of the score.

Define ηi(ζ) = G′′′
i (ζ)/G

′
i(ζ) − {G′′

i (ζ)/G
′
i(ζ)}2, with G′′′

i (ζ) = G′′′{ξi(ζ)} and G′′′ being

the third derivative of G. Let

Îαα = − 1

n

n∑
i=1

{
∆ηi(ζ0)ξi(ζ0)

2 +∆iψi(ζ0)ξi(ζ0)−G′′
i (ζ0)ξi(ζ0)

2 −G′
i(ζ0)ξi(ζ0)

}
X iX

T
i ,

and Îαλ be a (∥α∥0 ×m)-matrix with the kth column being

(Îαλ)k = − 1

n

n∑
i=1

I(Yi ≥ tk)
{
∆iηi(ζ0)ξi(ζ0)+∆iψi(ζ0)−G′′

i (ζ0)ξi(ζ0)−G′
i(ζ0)

}
exp(αT

0X i)X i.

Let Îλλ be an (m×m)-matrix with the (j, k)th element being

(Îλλ)jk =


− 1
n

∑n
i=1

[
− I(Yi=tj)

λ2j
+ I(Yi ≥ tj)

{
∆iηi(ζ0)−G′′

i (ζ0)
}
exp(2αT

0X i)
]

if k = j,

− 1
n

∑n
i=1 I{Yi ≥ max(tk, tj)}

{
∆iηi(ζ0)−G′′

i (ζ0)
}
exp(2αT

0X i) if k ̸= j.
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The matrix Îζζ is defined as

Îζζ =

Îαα Îαλ

Î
T

αλ Îλλ

 .

The vector Îβζ is defined as Îβζ = (Î
T

βα, Î
T

βλ)
T, where

Îβα = − 1

n

n∑
i=1

{
∆iηi(ζ0)ξi(ζ0)

2 +∆iψi(ζ0)ξi(ζ0)−G′′
i (ζ0)ξi(ζ0)

2 −G′
i(ζ0)ξi(ζ0)

}
×

{
RiSi + (1−Ri)γ

T
0KWK,i

}
X i,

and Îβλ is an m-vector with the kth component being

(Îβλ)k = − 1

n

n∑
i=1

I(Yi ≥ tk)
{
∆iηi(ζ0)ξi(ζ0) + ∆iψi(ζ0)−G′′

i (ζ0)ξi(ζ0)−G′
i(ζ0)

}
exp(αT

0X i)

×
{
RiSi + (1−Ri)γ

T
0KWK

}
.

Finally,

Îγγ =
1

n

n∑
i=1

RiWK,iW
T
K,i,

Îβγ = − 1

n

n∑
i=1

{
∆i +∆iψi(ζ0)ξi(ζ0)−G′

i(ζ0)ξi(ζ0)
}
(1−Ri)WK,i.
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