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Abstract: In many cancer genomic studies, investigators are interested in testing the presence of as-
sociation between a time-to-event outcome and covariates of interest. Such analyses are often com-
plicated by missing data. When covariates of interest are missing for some subjects, it is desirable
to leverage information from observed auxiliary variables, which are sometimes high-dimensional,
to improve statistical power. In this paper, we consider a class of semiparametric transformation
models for a potentially right-censored survival outcome and develop an association test between
the outcome and a partially observed covariate. We impute the missing covariate values using
high-dimensional auxiliary variables. To accommodate potential model misspecification, we com-
bine results from multiple plausible models for the survival time to improve power. We establish
the validity of the test under misspecification of the outcome model and an adaptively-selected
model for the incomplete covariate. We demonstrate the validity of the proposed methods and the
superiority over existing methods through extensive simulation studies and applications to major

cancer genomic studies.
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Variable selection.



1. Introduction

In cancer genomic studies, investigators are often interested in identifying genomic factors
associated with the time to events of interest, such as the time to tumor progression or
death since initial diagnosis. The recent advent of high-throughput technologies has
provided unprecedented opportunities for researchers to discover such associations from
massive collections of data. For example, multiple studies have been conducted for breast
(Lanczky et all [2016), lung (Valk et al., 2011)), and ovarian cancers (Sieh et all [2013),
among others, to identify genomic factors that are associated with the time to cancer
relapse or death. One common challenge in the analysis of event times is that they
are often not exactly observed, that is, censored. Also, full parametric assumptions on
the event time distribution are usually in doubt, and investigators typically adopt more
flexible semiparametric models. Censoring and nonparametric components in the model
complicate the likelihood and pose challenges on estimation and inference.

Another complication often encountered in cancer genomic studies is missing data,
where genomic factors of interest are not always observed. For example, The Can-
cer Genome Atlas (TCGA) program (https://cancergenome.nih.gov/) collected multiple
types of clinical, genomic, epigenomic, transcriptomic, and proteomic data, while the
proteomic data are missing for many subjects. Missing data may also arise by design.
Especially when some variables are difficult or expensive to measure, a two-phase design
is commonly adopted, where the outcome and inexpensive covariates are observed for
all subjects in the first phase and a sub-group of subjects are selected for measurements

on expensive covariates in the second phase. For instance, in the National Heart, Lung,



and Blood Institute Exome Sequencing Project (https://evs.gs.washington.edu/EVS/),
all subjects were measured for genotyping array data, and only a sub-group of subjects
with extreme values of the primary outcome was selected for whole-exome sequencing.
Statistical methods for the analysis of all study subjects need to accommodate missingness
in the covariates.

The simplest method to deal with missing data is the complete-case analysis, where
observations with incomplete data are discarded before the analysis. When the miss-
ingness is completely at random (MCAR) (Rubin, 1976), i.e., the missing mechanism
does not depend on any relevant data, the complete-case analysis is valid but statisti-
cally inefficient, as it discards information contained in the incomplete observations. By
contrast, the complete-case analysis may be inconsistent under the missing at random
(MAR) mechanism, where the missingness depends on the observed data. Another ap-
proach to handle missing data is imputation, where the missing values are imputed by
plausible values obtained from the observed data, and conventional methods can then be
adopted to analyze the completed data. However, single imputation methods that do not
account for the variability in the imputation generally yield invalid inference. Although
many methods have been developed for estimation under incomplete data, few methods
focus on association tests. Most existing association testing methods that accommodate
incomplete covariates are based on the score test, which is formulated based on imputed
data or the full likelihood that includes the incomplete variable model (Hu et al., [2015}
Derkach, Lawless and Sun), 2015} |Bjgrnland et al., 2018; Lawless, 2018; Wong, Zeng and
Lin), 2019). These studies focus only on low-dimensional models.

In this paper, we focus on the association test between a right-censored survival out-



come and an incomplete covariate, where potentially high-dimensional auxiliary variables
are available to predict the missing values of the covariate of interest. The proposed
method is distinct from existing methods in two major respects. First, we impute the
missing covariate values from an adaptively-selected set of auxiliary variables to improve
power. Most existing works focus on a prespecified set of low-dimensional auxiliary vari-
ables, which may not be available in practice. Second, we consider multiple outcome
models and combine the testing results to yield higher power. We rigorously prove that
the proposed method preserves the type I error under model misspecification and under
general selection approaches for the auxiliary variables.

In general, when a model is selected based on the observed data, the distribution of
a statistic constructed from the model differs from that when the model is prespecified.
Drawing inference based on a selected model, i.e., post-selection inference, is highly chal-
lenging. Some investigators considered conditional inference for the model parameters
given a subset of selected covariates; see Fithian, Sun and Taylor| (2017)), |Lee et al. (2016])
and [Tibshirani et al.| (2016]). Others focused on constructing uniformly valid confidence
intervals regardless of the preceding model selection procedure; see Berk et al.| (2013)),
Bachoc, Leeb and Pdtscher (2019) and Bachoc, Preinerstorfer and Steinberger (2020)).
This line of work, nevertheless, is not directly applicable to the current problem, as in
the current setting, the selected model is not the model of interest, and modifications
of the inferential procedures due to model selection are in fact not necessary. Recently,
Wong and Feng| (2023) developed a score test under a generalized linear regression setting,
where missing covariates are imputed from a set of adaptively-selected auxiliary variables.

Nevertheless, the model is restricted to be fully parametric.



To model a survival time, we adopt a general class of transformation models (Dabrowska
and Doksum), |1988]), which includes the proportional hazards (PH) model (Cox,|1972)) and
the proportional odds (PO) model (Bennett, 1983; Pettitt, 1984)) as special cases. This
class of models has been studied by |Cheng, Wei and Ying (1995, 1997)), Chen, Jin and
Ying (2002), and [Zeng and Lin| (2006)), among others. In the transformation models, there
is a transformation parameter that is typically prespecified or chosen by some information
criterion in practice. In this paper, instead of fixing the transformation parameter, we
perform separate tests under different choices of the transformation parameter values and
combine the results by taking the largest test statistic. We demonstrate that the proposed
test tends to be more powerful than assuming a single (incorrect) model, so the proposed
procedure is particularly useful when the true outcome model is unclear. Our theoretical
development needs to account for model misspecification and thus is more challenging
than the existing works on transformation models.

Although related, the current work represents substantial advances over our previous
work in Wong and Feng| (2023). First, Wong and Feng] (2023)) focused on fully parametric
models, whereas we consider semiparametric transformation models. While parametric
models may be suitable in specific cases, the majority of studies of event times prefer the
semiparametric Cox model due to its flexibility and the availability of a simple partial
likelihood for estimation and inference. Second, we develop an approach to accommodate
multiple outcome models within a single framework, whereas [Wong and Feng (2023)) only
considered a single outcome model.

The rest of this paper is structured as follows. In Section [2| we formulate the model,

the hypothesis, and the proposed score test. In Section [3| we establish the asymptotic



properties of the proposed test. In Section [ we report the results from simulation
studies. In Section [5 we provide applications to real bladder urothelial carcinoma and
breast cancer datasets. Finally, we conclude the paper with a few remarks. Technical
details and additional numerical results are provided in the Appendix and Supplementary

Material.

2. Methods

2.1 Model, hypothesis, and the imputation score test

Let T denote a time-to-event outcome, S denote a covariate of interest, X denote a
vector of other covariates, and A denote a potentially high-dimensional vector of auxiliary
variables. Assume that S = 4% X + €5 for some regression parameter vector 7y, and €g

is a random variable independent of X. The null hypothesis of interest is

Hy : €g is independent of T.

It states that besides the component explained by X, S is independent of the event time.
In this paper, we focus on testing Hy under a (set of) semiparametric transformation
model(s). In particular, the model assumes that the cumulative hazard function of T

conditional on (X, 95) is

A(t] X,S) = GIA(t) exp(a™X + BS)}, (2.1)

where A is an unknown increasing function in [0, 7] with 7 being the end-of-study time
and A(0) =0, G is a pre-specified transformation function that is strictly increasing with

G(0) = 0, and @ and f are regression parameters. For example, we may consider the
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2.1 Model, hypothesis, and the imputation score test

class of Box—Cox transformations

{(1+=x)—1}/p for p>0,
G(z) = (2.2)
log(1 + z) for p =0,
where p is a pre-specified transformation parameter. In this family, p = 1 corresponds to

the PH model, and p = 0 corresponds to the PO model. Alternatively, we may consider

the class of logarithmic transformations

r~tlog(l +rz) forr >0,
G(z) = (2.3)
x for r =0,
where r is a pre-specified transformation parameter. The choices of r = 0 and r = 1

correspond to the PH and PO models, respectively. Note that model ({2.1)) can be written

as a linear transformation model
log A(T) = —a™ X — B3S + er,

where e is an error term with P(er < z) = 1 — exp[—G{exp(z)}]. Particularly, the
choices of the extreme value distribution and standard logistic error distribution for er
yield the PH and PO models, respectively. In this formulation, # can be interpreted as
the linear effect of the covariate S on a transformation of 7'.

Suppose that T is possibly right-censored at C, which is assumed to be independent
of (T, S, A) given X. Let Y = min(7,C) and A = I(T < ('), where I(-) is the indicator
function. Also, suppose that S may be missing, and let R be the indicator of whether S
is observed, i.e., R = 1 if S is observed, and R = 0 if otherwise. We assume that R is
conditionally independent of (S, A) given (Y, A, X). The observed data from a random
sample of n subjects consist of (Y;, A;, X, A;, R;S;, R;) for i =1,... n.

7



2.1 Model, hypothesis, and the imputation score test

Under the transformation model , we test the null hypothesis H|, : f = 0, that
the covariate of interest S does not have an effect on the (transformed) hazard of T" given
X. Note that under [2.1), A(t | X,S) = GIA(t) exp{(a + Bvx)" X + Bes}], so H is
equivalent to Hy. To construct a test, we first fit a working model of S against (X, A)
and use this model to impute the missing values. Because the auxiliary variables A may
be high-dimensional, we propose to select a low-dimensional subset of the components of
A to construct the model of S. Let K denote the indices of the selected components of A,
where K C {1, ..., p} with p being the dimension of A. We can select the components of
A using existing variable selection approaches, such as lasso (Tibshirani, |[1996) or feature
screening (Fan and Lv} 2008} Fan and Song, 2010); a formal formulation of the selection
procedure is given in Section 3] Let W denote the vector that consists of X and the
components of A indexed by K. We fit a working model of S = vf-W i + 6, where §
is a mean-zero error term, and 7y is a vector of regression parameters. We estimate v
by solving D1 | Ri(S; — Yx W)W, = 0, and let 4, denote the estimator. Note that
this working model of S is introduced only to enhance the power of the test and does not
alter the formulation of the outcome model or the null hypothesis.

We then perform a score test based on the outcome model and the imputed
values of S. First, we estimate a and A under the null hypothesis. Because the model
involves the nonparametric component A, we adopt the nonparametric maximum likeli-
hood estimation (NPMLE) approach of Zeng and Lin| (2007). In particular, we treat A
as a step function with jumps only at the observed survival times. Let t; < --- < ¢,
denote the set of observed survival times, with m being the number of unique observed

survival times, and A\, denote the jump size of A at ¢, for k = 1,...,m. The log-likelihood



2.1 Model, hypothesis, and the imputation score test

function pertaining to (o, A) is

iAi {log G’{ exp(a’ X ;) Z )\k} + log Ak + aTXl} — G{ exp(a’ X ;) Z )\k},

i=1 tp<Y; th<Y;
(2.4)

where Aj(;) is the jump size of A at time Y;, and G’ is the first derivative of G.
Let E = (&,Xl, o ,Xm) be the maximizer of 1} and ¢ = (a, A1,...,\n) be the
corresponding generic vector of parameters. Also, let &(¢) = exp(at X)) ZtkSYi Ak,
Gi(¢) = G'{&(Q)}, GY(¢) = G"{&(€)}, and G” denote the second derivative of G. The

(scaled) score statistic for § evaluated at the NPMLE ¢ and Y is

-~

U@ Ae) =Y {8+ 85 860 ~ OGO} RS+ (- RFEW )
=1 A

Note that this statistic coincides with the score statistic derived based on the full likeli-
hood, with the error term ¢ in the model of S following a mean-zero normal distribution.

To derive the null distribution of the score statistic, we first calculate the (asymptotic)
variance of Ug(f, ~) using a linear expansion around the “true” parameter values. To

define the true values under a possibly misspecified model, let
f(9,6 | X, S;0.8,A,G) = exp [ = C{AW)e™ X} [G {A(y)e™ XA (y)e" X+

for y > 0 and § = 0, 1, where \(¢) = dA(t)/dt. We define ay, By and Ag to be the values

that solve the following equations simultaneously:

dlog f(Y,A | X, S, B,A,G)\
E{ oh) }_0, (2.5)
E[Glogf{Y,A|X,S;a,B,A—i-efh(s)dA(s),G}‘ } 0 for all [|Afl < 1 (2.6)
Oe =0 = ’



2.1 Model, hypothesis, and the imputation score test

Clearly, if the transformation model is correctly specified, then (e, Sy, Ag) are just the
true parameter values.

Let ¢y = (o, Ao1,---5Aom), where Nop = Ag(tx) — Ag(tg—1) for k = 1,...,m with
to = 0. For a given K, define 7 = argmin, E{R(S —yTW)?} as the true value of .
Also, define ¥;(¢) = G7(¢)/G%(¢). The Taylor series expansion of Ug(f, Yie) at (Cos Yorc)

yields

n

Us(C,A) =n~V/? Z [{Az + Aii(€o)&i(Co) — Gi(Co)&i(Co) H{ RiSi + (1 — R) vy Wi }

i=1

-1

AT ~ T AT ~—1
T T WGBS = Y Wik) = LI U] +0,1) (27)

T
Urxiiir-- - Unpi) s

under some regularity conditions, where U, ,; = (U T

o,

Ua,i = {8 + Dithi(€0)&(Co) — Gi(Co)&i(€o) } X,

and Uy, ; (k=1,...,m) is the derivative of the ith term of log-likelihood function with

respect to Ag:

Ak )
Ux.i = )\s(k) +1(Y; > tk){Ai%(Co) - Gi(CO)} exp(ay X ),

and TCO jﬁc, /I\w and jgv correspond to second derivatives of the nonparametric log-
likelihood function; detailed formulations of the second derivative terms are given in the
Appendix. The first term in the summation in corresponds to the score statistic for
B. The second term arises from expanding Us(Cy, Y) at Yo and expressing ¥ — Yor
as its linear approximation. Similarly, the third term results from expanding Uﬁ(f,'m)
at ¢, and expressing E— ¢, as its linear approximation. These linear approximations are
derived from viewing 4 and Z as solutions to estimating equations obtained from the

derivatives of the squared error loss and the log-likelihood.
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2.1 Model, hypothesis, and the imputation score test

~

Based on this expansion, we can estimate the asymptotic variance of Us({,~x) by

g(K)2=n"1t3Y" {0:(K) —a(K)}?, where

5.(K) = {2 + Ahi(©)&(C) — GUOEC) MRSy + (1 — R)ALW i}

-1 AT ~—1 ~

~T ~ ~T
- Iﬂ’YI’Y’Y W/C,ZRZ(S’L - ’Y]CWICJ) - IﬁCICC U(,i;

7(K) = ntY ", 0:(K), and ﬁg’i is U, with true parameter values replaced by es-
timators. Note that in the definition of 7;(K), the true parameter values in TCCa TBCa
/I\W and /I\ﬂw are replaced by estimators. For an asymptotic size « test, we reject Hy if
UB(E, x)?/5(K)* > x1,. When Hy is rejected, we suggest to use the sign of UB(Z, Yi)
as an estimate of the direction of the effect of S on the hazard of T
Although the test is derived under the transformation model, it remains valid under
the general hypothesis Hy regardless of whether this model is correctly specified. We
make two remarks about this robustness property. First, under Hj, the score statistic
for 6 under the transformation model is mean zero at (a,A) = (ay,Ag) and 5 = 0, so
the score test for H| is a test for Hy. Note that the contribution of a generic data point
(Y, A, X, S) to the log-likelihood is
Alog [G{A(Y)e™ XTIV )e™ XH55] — G{A(Y)e X+55) = g(@T X + BS;Y, A, A).
Under Hy, we have
E{%g(aTX + BS;Y, A N)

0
—FE! Zg(uwY. A A
{8M9(u, JAA)

)

d
TX E{ —g(u: Y. A, A
7X }+ {aﬂg(uv ] ) )

}E(€s)-

pu=aTX p=aTX

At (e, M), the first term and the first expectation of the second term on the right-

hand side above are 0. Therefore, under Hy, the score statistic of g is mean zero even if

11



2.2 Supremum test

the transformation model is misspecified. By contrast, when Hy does not hold, e€g and
dlog g/0p|,—ar x are generally correlated.

Second, the variance estimator o(K)? is robust against misspecification of the trans-
formation model, because it is based on a sum-of-squares expression, rather than the
Hessian of the (nonparametric) log-likelihood. The sum-of-squares estimator is based on
a linear expansion of Ug(z, ), which does not rely on the correct specification of the
transformation model. By contrast, the standard variance estimator based on the Hessian

of the log-likelihood is generally inconsistent if the transformation model is misspecified.

2.2 Supremum test

The above score test is based on a single transformation function G, and the misspecifica-
tion of G would result in power loss. To improve power, we propose a supremum test that
combines the results from multiple choices of G. Suppose that we have ¢ plausible choices
of monotonically increasing transformation functions, denoted by {GU) : j = 1,... ¢}
with GU)(0) = 0. Let o, BU), and AY) be the parameters under the jth transforma-
tion. For each j, we construct the proposed imputation score test statistic developed in
Section 2.1. In particular, let Z(j) denote the NPMLE under transformation function G
and BY) = 0. Let Uéj)(z(j), ) and 79 (K) denote the corresponding score statistic and

estimated standard deviation, respectively. Define

S N al)
Z7(¢, Ax) = max [Z9(C, Ak, (2.8)

1<5<q

=)

where ZW(¢™, ) = Uéj) (E(j),'Ay,C)/E(j)(IC). For simplicity of presentation, we write

Z (j)(E(J),ﬁ,C) and Uléj) (Z(J),’)\/,C) as Z0) and ﬁéj ), respectively. The supremum test effec-

12



tively takes the transformation model that yields the strongest evidence against the null
hypothesis.

We approximate the distribution of (2 SN Z (q)) by a multivariate normal with
mean 0 and variance ‘A/'(IC) and then approximate the distribution of Z™** (Z, i) by the
maximum of the absolute multivariate normal random vector. The variance matrix V(IC)

is a (¢ x g)-matrix with diagonal elements 1 and the (j, k)th element being

Vi) = n/a\(j)(lCi’a\(k)(/C) Z <U(j ZU )( ZU ) TESLA ¢

=1

where [/J\'(ji) is the ith term in the summation of ﬁéj) fori=1,...,nand j=1,...,q
To obtain an asymptotic size «a test, we use the Monte-Carlo method to obtain the

critical value of the test. The algorithm is as follows:

Algorithm 1 Supremum test

1. Generate M i.i.d. random samples (z,(,i), . ,zﬁ‘i)) (m=1,..., M) from a multivariate
normal distribution with mean 0 and variance V (K):
2: Compute the test statistic T, from the mth sample: T, = max;<;<, |z7(,{)|;

3: Reject Hy if ZmaX(Z’, ~) is larger than the (1 — «)th quantile of (77, ...,Ty).

3. Theoretical Properties

In this section, we present the asymptotic joint distribution of the score statistics ((7 él), U (q))
from which we can obtain the validity of the proposed (supremum) score test. In general,
we use the superscript (7) to denote a statistic or quantity evaluated under the jth trans-
formation model. Let ﬁg(’C) = ([7 B(l), . U B(Q))T, where we suppressed the dependence

on K on the right-hand side.
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We prove that under some regularity conditions, 3(K)~"/ 2[75(IC) converges to a mul-
tivariate normal distribution under Hy even when K is chosen randomly, for some X(K)
defined in the proof of Theorem [I To precisely state the theoretical result, let * be a
general model selection operator, such that for an m-vector of outcome variables ) and
an (m x p)-matrix of covariates Z, K*(), Z) : R™ x R™*? — C,, where C, is the collection
of subsets of {1,...,p}. We assume that the model for S is selected based on the resid-
ual S — 7y X and A, where ¥, = (37, R X X[) 13" R, X,S; is the least-squares
estimator of S on X using the subjects with R = 1. The selected components of A are
K*(S — X7, A), where S is a vector that consists of {S; : R; = 1}, and X and A are
matrices that consist of rows of {X; : R; = 1} and {A; : R; = 1}, respectively. For
simplicity of presentation, we write K* = K*(S — X7y, A). Therefore, K can be viewed
as the observed value of C*.

Let || - ||y, be an Orlicz norm, such that || X[y, = inf{n > 0 : E{exp(|X|*/n*)} < 2},
and || - || be the Euclidean norm. We establish the asymptotic property of ﬁg(’C*) under

the following conditions. Some conditions involve a generic positive constant M.

(C1) For some & € (0,2], [|S||y, +max; [|A;]|4 < M. The covariate X is bounded, so

that P(||X]|| < M) = 1.

(C2) There exists a sequence of collections of models €2, such that P(K* € Q,) — 1,
SUpkeq, K| = O(n”), and log|Q,| = O(n*), where v and x are constants that
satisfy v < 4&/(5¢ + 12), bv/4 + 3k/§ < 1, and 4v/3 + 8k/(3) < 1, and |C|
denotes the cardinality of the set C. Also, infxeq, Amin{E(RW W)} > M1,

supceq, E{(voxWk)*} < M, where Apin(C) denotes the minimum eigenvalue of

14



the matrix C. In addition, infiecq, Amn{X(K)} > ML
(C3) The probability P(R=1]|Y,A, X) > M~ almost surely.

(C4) Under Hy, A is independent of (Y, A, X).

(C5) The models selected based on the estimated residuals (S; — 9y X ;)i:z,—1 and the

actual residuals (5; — 'ngX i)i:r;=1 are such that
P{I(S = XA, A) £ K'(S = Xyox, A) | = o(1)
and

P{ic*(s —XFA) = lc}
Ko, P{/C*(s ~ Xy, A) = /C}

< M,

where 7,y is the true value of .

(C6) For a random sample of size m, let S = (Si,...,5,)T, X = (X1,...,X,»)T, and
A= (Aq,...,A,)T. The random variable
wp |PIEE = Frox ) =K A}
ke | P{K*(S — Xvox,A) = K}
converges to 0 in mean as m — oo.
(C7) For j =1,...,q, the transformation function GV is continuously differentiable up

to the fourth order. Also, equations (2.5)) and (2.6), with G = GU) for j = 1,...,q,

() U

have unique solutions (a(()j), ﬁ(()j),AO ), where aoj) lies in the interior of a known

compact set, and A((]j ) is continuously differentiable with positive derivative in [0, 7].

In addition, with probability one, P(C > 7| X,S)=P(C=71|X,S) > M~! and

PT>7|X,8)>M"

15



(C8) The operator (W), W/(\j )) defined in the Supplementary Material is continuously

«

invertible for j =1,...q.

Remark 1. Conditions (C1)-(C6) are adopted from Wong and Feng (2023). Condition
(C4) can be similarly relaxed to Condition (C4’) of Wong and Feng| (2023)). Essentially,
Condition (C5) requires that the models selected based on the true and estimated residuals
of S on X are (asymptotically) the same, and Condition (C6) requires that the model
selection probabilities are the same whether conditional on the covariates or not. See
the Supplementary Material of Wong and Feng| (2023) for the verification of Conditions
(C5) and (C6) under marginal screening. Condition (C7) is standard for semiparametric
transformation models. In particular, it requires an end-of-study time 7, such that no
events beyond 7 could be observed, and there exists a nonvanishing proportion of subjects
whose censoring time is equal to 7. This ensures that the NPMLE of A is uniformly
consistent over the entire closed interval [0,7]. Condition (C8) essentially consists of
assumptions for the Z-estimator master theorem (Theorem 3.3.1 of van der Vaart and
Wellner| (1996)) ), which guarantees the asymptotic normality of (a(j), /AX(j)) forj=1,...,q.
In this paper, we directly assume the required conditions instead of proving them based
on properties of the true model, because we do not assume the form of the true model.
By contrast, if we specify the true model, then we may establish Condition (C8) based

on properties of the true model along the lines of, for example, |Zeng, Lin and Lin| (2008]).
We have the following results.

Theorem 1. Under Conditions (C1)-(C8) and Hy, E(K*)_l/Zﬁg(lC*) converges weakly

to the standard multivariate normal distribution.
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Note that K£* is a random object, reflecting the data-dependent nature of the selected
model of S. In the special case where K* is prespecified, the theorem simplifies to the

standard result of asymptotic normality of the score statistic.

Theorem 2. Under Conditions (C1)-(C8) and H,,

sup [ Z(K) = Z(K)||» 20,
KeQn,

where || - || denotes the Frobenius norm.

The proofs of Theorems |l| and [2] are given in the Supplementary Material. From these

two theorems, we have the following result that implies the validity of the proposed test.

Theorem 3. Under Conditions (C1)-(C8) and Hy, for any t € R,

-~

P{ZmaX(CﬁK*) < t} - P{||‘7(IC*)1/2Z||OO < t} 0,

where Z ~ N(0,1,) and is independent of the observed data.

4. Simulation studies

4.1 Study 1 — Single model tests

Let X = (X1,...,X5)", where (X7, X, X3) are mean-zero normal variables with Cov(X;, Xj) =
0.59=k (5, k = 1,2,3), X4 ~ Bernoulli(0.25), X5 ~ Bernoulli(0.35), and X4 and X5 are
independent of each other and of (Xj, X3, X3). Let A be a p-vector of independent stan-
dard normal random variables. We set S = v X +~v}A + 7572A2 + 8, where A” is a
p-vector of the squared components of A, § is standard normal, and vy = (0.1,...,0.1)T.
We set v, to be 0.25 at the first 20 components and 0 elsewhere, and set 45 to be 0.1

at the first 5 components and 0 elsewhere.
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4.1 Study 1 — Single model tests

We considered three failure time models:
Model 1: A(t| X,S) = A(t) exp(aT X + 9);
Model 2: A(t| X,S) =log{l + A(t) exp(aT X + 59)};
Model 3: T = exp(—a’™ X — 5) + ¢, where € ~ Exp(1).

In all models, we set a = (0.2,—0.2,0.2,—0.2,0.2)T and A(¢t) = 0.01¢. Model 1 and
Model 2 are the PH and PO models, respectively, whereas Model 3 does not take the
form of a transformation model. We generated the censoring time C' from an exponential
distribution with mean A\g + A\; X4, where Ay and A; were chosen to yield a censoring
rate of approximately 50-60%, and the means of the exponential distributions differ by
25% or more. We considered two missing-data mechanisms. The first mechanism is
MCAR. The second mechanism is MAR, where we first randomly selected 40% of the
subjects with X5 = 1 and 10% of the subjects with X5 = 0 into a subcohort, and the
selected subjects would have observed S. For subjects outside the subcohort, we selected
a fraction of subjects with censored event time to have missing S to attain the desired
missing proportion. If the missing proportion was not attained by setting all censored
subjects to have missing S, then a subset of subjects with observed event time would
also be selected. We set the number of Monte-Carlo replicates for approximating the
null distribution of the test statistics to be M = 500,000. We considered sample sizes of
n = 500 and 1000, and numbers of auxiliary variables of p = 200, 500, 1000 and 1500.
For the alternative hypothesis, we set 8 = 3n~'/2 for Models 1 and 2, and 8 = 1.5n~/2
for Model 3. For each setting, we simulated 50,000 and 10,000 replicates for § = 0 and
B # 0, respectively.
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4.1 Study 1 — Single model tests

In this subsection, we consider the performance of the proposed test under a given
transformation model and compare it with existing methods. We compare the perfor-
mance of six tests: (1) the score test using complete data only; (2) the score test with
missing values imputed under a working linear model of S on X and components of A
selected using marginal screening, where a component of A is selected if its absolute em-
pirical correlation with S — ’)\/E(X among the subjects with complete data is larger than
a certain threshold; (3) the score test based on the full likelihood with a working linear
model of S against X only, which is similar to the method proposed by [Lawless| (2018]);
(4) the score test based on the full likelihood with the same model of S as (2); (5) the
proposed test, where the working model of S is selected in the same way as (2); and
(6) the score test based on the full likelihood with a linear model of S against X and
the components of A that are associated with S. We refer to methods (1)—(6) as the
complete-case analysis, the simple imputation method, the covariate-only method, the
full likelihood method, the proposed method, and the true model method. For methods
(2), (4), and (5), the threshold for screening is selected using BIC. For the true model
method, the variance of the score statistic is estimated using the proposed empirical vari-
ance estimator. For all methods, we fit the correct failure time model under Models 1
and 2, and under Model 3, we fit both the PH and PO models.

The results under a missing proportion of 60% are plotted in Figures |1 and [2| and
the results under a missing proportion of 30% are presented in Figures S1 and S2 in
the Supplementary Material; for methods that inflate the type I error, their performance
under the alternative hypothesis is not presented. The significance level is set to be 0.05.

Under Models 1 and 2 with sample size 1000, all methods appear to preserve the type I
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4.2  Study 2 — Supremum tests

error. Theoretically, the complete-case analysis and the simple imputation method would
inflate the type I error under MAR, but the empirical results do not clearly exhibit such a
pattern under the current setting. Under Model 3, the complete-case analysis, the simple
imputation method, the covariate-only analysis, and the full likelihood generally inflate
the type I error, because these methods estimate the variance based on the Hessian of the
log-likelihood, which is misspecified in this setting. As expected, the proposed method
utilizes information about missing data contained in the auxiliary variables and tends to
yield higher power than the complete-case analysis and covariate-only method. Under
Models 1 and 2, the full likelihood method tends to be slightly more powerful than the
proposed method, but the corresponding type I errors for the full likelihood method are
also slightly inflated. In fact, both methods have the same numerator in the score statistic,
so the difference is due to small-sample differences in the variance estimators. We also
evaluate the sign of the score statistic Ug (E, ~) when Hj is rejected. In all models under
the alternative hypotheses, whenever Hy is rejected, Ug (E, ~) is of the same sign as the

true value of f3.

4.2 Study 2 — Supremum tests

Having established the validity of the proposed method under a prespecified transforma-
tion model, in this subsection, we consider the supremum test under the same Models 1-3
and covariate distributions. The supremum test is performed with 6 working outcome
models (¢ = 6), including transformation models with the Box—Cox transformation
at p =0, 0.5, 1, and 1.5 and the logarithm transformation at r = 0 and 1.5. Note

that p = 0 and p = 1 correspond to the PO and PH models, respectively. For comparison,
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Figure 1: Study 1 — Rejection probabilities under a missing proportion of 60% and the
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4.3 Study 3 — Single model tests with strong and weak signals

we also present the results of the proposed single-model score test with the PH and PO
models. The results under a missing proportion of 60% are plotted in Figures [3| and [4]
and the results under a missing proportion of 30% are presented Figures S3 and S4 in the
Supplementary Material. All three tests preserve the type I error under all three models.
Under Models 1 and 2, the supremum test does not lose much power compared with the
single-model test with the correct model specification. Under Model 3, the PO model is
the most powerful, as it tends to yield a large value of the (standardized) score statistic.
The supremum test, while having a test statistic value larger than or equal to that under
the PO model, has a larger rejection threshold. Therefore, its power is slightly lower than
the PO model. The PH model has the smallest test statistic value and thus is the least
powerful. This illustrates that even when the outcome model is unknown or misspeci-
fied, we can perform the supremum test to achieve a relatively high power. In general,
we recommend considering a few interpretable working models. It is difficult to derive
a general rule on what or how many models to consider, but based on some additional
simulation studies, the empirical results under the current simulation setting are similar

for q varying from 2 to 6.

4.3 Study 3 — Single model tests with strong and weak signals

In this subsection, we consider a case with a larger degree of variability in the model
selection step. In particular, we adopt the setting in Section 4.1 but generated S with a
mixture of strong and weak signals of the auxiliary variables. Specifically, we set 4 to
be 0.25 at the first 20 components, 0.02 at the subsequent 80 components, and 0 at the

remaining components. The results are presented in Figures S5 — S8 in the Supplementary
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4.4 Study 4 — Supremum tests with discrete S

Material. Similar to the results of Study 1, the proposed method yields satisfactory
performance under this setting. Under the alternative hypothesis, the true model method
tends to have high power, but the proposed method is more powerful than the true
model method in some scenarios. This is because the true model contains many auxiliary
variables with weak signals, and the extra information contained in the variables does not
compensate for the variability involved in the estimation of their effects, so it is beneficial
to select a subset of variables with stronger signals. Therefore, to select the model of
S, we could perform feature screening with a relatively large selection threshold or use
penalization methods, such as lasso, with a large penalty. These tuning parameters could
be selected based on conservative information criteria or methods with false discovery

rate control.

4.4 Study 4 — Supremum tests with discrete S

In this subsection, we further evaluate the robustness of the proposed methods under
a misspecified distribution of S. Specifically, we adopt the setting in Section 4.1 but
generated S from a binomial distribution with the number of trials equals 2 and success

probability
o OPORX + AR A+ 7], A)
L+exp(yx X + 54 +7],A%)

Such a covariate distribution would arise when S is a genotype. The values of vy, 4
and v, 5 are equal to those in Section 4.1. Note that in this setting, S does not depend
linearly on X. The null hypotheses being tested are § = 0 for the single-model test and
pU) =0 for j = 1,...,q for the supremum test. The results are presented in Figures

S9-S12. Similar to the results in Section 4.2, the proposed method preserves the type I
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error across all three models. Under Models 1 and 2, the supremum test demonstrated
power comparable to the single-model test under the correct model. Under Model 3, the
power of the supremum test is substantially larger than that of the single-model test with

PH and is comparable to that of the single-model test with PO.

5. Real Data Analysis

5.1 TCGA: Bladder Urothelial Carcinoma

We analyze a dataset of patients with bladder urothelial carcinoma (BLCA) from TCGA
(The Cancer Genome Atlas Network) 2014]). In the study, most subjects had available
clinical variables, including sex, age at diagnosis, time to tumor progression, and time
to death since the initial diagnosis. The expressions of 18224 genes, generated by RNA
sequencing, were measured for most subjects. The expressions of 208 proteins or phospho-
proteins are available for 82% of the subjects. After removing subjects with missing
clinical data, the sample size is 348. The median follow-up time was about 1.3 years, and
about 49% of the patients were lost to follow-up before tumor progression or death.

We aim to identify protein expressions that are associated with the time to tumor
progression or death, whichever occurs first. The covariates in X include age at diagnosis,
sex and stage N. In the sample, 26.44% of patients are female. Stage N is classified into NO
(64.08%), N1(12.93%), N2(21.26%) and N3(1.72%) and is represented by a single variable
with values 0, 1, 2, and 3, respectively. In a single analysis, we set the covariate of interest
S to be the expression of a protein or phospho-protein. We set the gene expressions as

auxiliary variables. About 6% of the gene expression values are missing, and we impute
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5.1 TCGA: Bladder Urothelial Carcinoma

Table 1: p-values and references of significant proteins in the TCGA BLCA analysis.

Protein Proposed Complete-case Covariate-only
Reference
expression method
PH PO PH PO
GATA3 3.40E—-05 1.12E—04 5.00E—05 1.04E—04 4.40E—05 [Higgins et al.| (2007)
Src 1.48E—04 8.20E—04 4.86E—04 8.33E—04 4.62E—04 [Xu et al. (2021))
TAZ 1.80E—04 1.38E—03 5.51E—04 1.09E—03 4.32E—04 |Gao et al. (2014)

them using k-nearest neighbor imputation with £ = 10.

We perform the supremum test with ¢ = 2 and the two transformation functions
corresponding to the PH and PO models. The working model of S is selected in two steps:
first, select 1000 gene expressions by the correlation-based marginal screening procedure,
and then perform lasso on the selected gene expressions; the tuning parameter in lasso
is selected by BIC. For comparison, we also perform the complete-case analysis and the
covariate-only method described in the simulation studies under the PH and PO models.

Under a (family-wise) significance level of 0.05 and the Bonferroni correction, i.e., an
individual significance level of 0.05/208 = 0.00024, three proteins are identified to be
significantly associated with progression-free survival time under at least one of the five
tests. All three protein expressions are more significant under the proposed method than
under other methods with either outcome model. Also, the three proteins have been
identified to be related to the progression of BLCA in previous studies. The p-values
under all methods of the significant protein expressions and some relevant references are

given in Table [T}
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5.2 METABRIC

5.2 METABRIC

We also apply the proposed method to analyze data from the Molecular Taxonomy Of
Breast Cancer International Consortium (METABRIC) study (Curtis et al., |2012)) to
investigate the association between gene expressions and the relapse-free survival time
of breast cancer patients. The data are available through the cBioPortal for Cancer
Genomics (https://www.cbioportal.org/study/summary?id=brca_metabric). The study
contains data of clinical variables, gene expressions and copy number alterations (CNAs).
For the analysis, we select patients with subtypes Luminal A and Luminal B as study
subjects. Also, we select 1500 genes with the largest variances as the study variables.
After removing subjects with missing clinical data, the sample size is 1119. The median
follow-up time was about 119 months, and 35% of the patients were lost to follow-up before
tumor progression or death. We artificially introduce 50% of missingness with the MAR
mechanism described in the simulation studies for the gene expressions to demonstrate
the proposed method.

The covariates in X include age at diagnosis, Her2 status, indicator of chemotherapy,
indicator of hormone therapy, and indicator of radiotherapy. Her2 status is classified into
loss (6.08%), neutral (77.57%) and gain (16.35%) and is represented by a single variable
with values 0, 1 and 2, respectively. In a single analysis, we set the covariate of interest
S to be a single gene expression. We set the CNAs as auxiliary variables. For each CNA,
if there exists another CNA such that they have more than 95% same values, then we
delete it from the analysis. After deletion, the dimension of CNA is 385.

We perform the supremum test with ¢ = 2 and the two transformation functions
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corresponding to the PH and PO models. The auxiliary variables of CNA are selected by
lasso, and the tuning parameter of lasso is selected using BIC. For comparison, we include
the results under the complete-case analysis and the covariate-only method described in
the simulation studies with the PH and PO models. Also, we perform score tests using
all available gene expressions under the PH and PO models, and we refer to it as the
complete-data analysis. The results of the complete-data analysis can be viewed as the
gold standard since it uses all values of S.

There are seven gene expressions identified to be significantly associated with progression-
free survival time at the (Bonferroni-corrected) significance level of 0.05/1500 = 3.33 X
10~? under the complete-data analysis with either outcome model. Among these gene ex-
pressions, all of them are most significant under the complete-data analysis with the PO
model, and 5 are more significant under the proposed method than under the complete-
case analysis and the covariate-only method with either outcome model. This suggests
that the proposed method is more powerful than the other two methods. The p-values
under all methods of the significant gene expressions are given in Table 2| As the genes
tend to show higher significance under the PO model, the results highlight the advantage
of considering multiple outcome models. If we relied solely on the “default choice” of the

Cox model, then we might have missed some identified associations.

6. Discussion

In this paper, we develop a score test for the presence of association between a potentially
right-censored survival outcome and an incomplete covariate, where the missing values

of the incomplete covariate can be imputed using high-dimensional auxiliary variables.
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Table 2: p-values of significant gene expressions in the METABRIC data analysis.

Gene Proposed Complete-data Complete-case Covariate-only
expression method PH PO PH PO PH PO
CDCA5 2.92E—03 7.60E—06 7.57E—-08 3.30E—02 1.24E—02 1.51E—-02 1.37E—02
FAM164A 4.44E-03 2.30E—-05 2.16E—05 1.44E—-02 3.68E—02 3.1TE—02 3.74E—02
S100P 4.39E—-03 4.47E-05 3.87TE—06 3.153E—03 6.02E—03 9.66E—03 9.31E—03
NFKBIZ 6.50E—-03 2.73E—-04 1.99E—05 1.35E—02 7.01E—03 3.08E—02 9.39E—03
PTTG1 4.08E—-03 741E-05 2.22E-05 6.85E—02 1.73E—02 6.33E—02 2.06E—02
CCNB2 9.80E—05 1.50E—-04 9.71E—-06 8.40E—-04 1.38E—-04 1.07E—03 2.06E—04
AURKA 1.24E—-02 7.94E-04 2.04E-05 1.07E—01 3.56E—03 5.85E—02 1.10E—02

We propose to select a subset of auxiliary variables before performing the score test.
We consider a flexible transformation model for the survival outcome and propose a
supremum test that combines multiple outcome models to improve power. Our theoretical
development requires only that S'is linearly associated with covariates X, and the validity
of the score test does not depend on the correctness of the working model.

In the simulation studies, we demonstrate that under alternative hypotheses, the sign
of the score statistic consistently aligns with the sign of # whenever the null hypothesis
is rejected. However, this result is merely empirical, and a theoretical guarantee has
yet to be established. The theoretical challenge lies in the fact that under (contiguous)
alternatives, the least-squares estimator ¥, = E(RW W ) 'E(RSW ) converges to a
limit that depends on 3 through the distribution of R, which is unspecified. It is unclear
what the contribution of 4, to the asymptotic mean of the score statistic UE(E, Yic) is,

except in the simple case of MCAR, where the limit of 4 does not depend on (.
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We assume that R is independent of (S, A) given (Y, A, X), which is more restrictive
than the conventional MAR assumption that allows R to be independent of S given
(YA, X, A). If some components of A are not selected into the working model of S on
Wi, and R depends on these unselected components of A, then S would be missing not
at random under the working model. To allow for the dependence of R on A, we would
need to identify the components of A that are associated with R and account for them
when fitting the working model of S.

Under the working model of S, we estimate -, using the complete cases only. Un-
der Hy (and contiguous alternatives), inverse probability weighting is possible but not
required, because estimation of v is consistent regardless of whether weighting is used.
In fact, weighting may create a superpopulation under which the least-squares estimator
of i is less efficient than the unweighted estimator. In addition, inclusion of weights
would affect the expansion of the score statistic , and the proof for Theorem 1 may
need to be substantially modified.

We focus on hypothesis testing rather than regression analysis in general. Although
association testing typically can be done under a regression framework, there are issues
of interest in hypothesis testing that are not pertinent under a general regression anal-
ysis framework. First, in estimation, strong assumptions concerning the distribution of
the incomplete variables are usually made to ensure desirable theoretical properties, such
as consistency of the estimators. By contrast, in hypothesis testing, we are primarily
concerned with the theoretical properties of estimators under the null hypothesis (or con-
tiguous alternatives), and correct specification of the full model is not required for a test

to be valid. As a result, much more relaxed model assumptions could be considered for
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association tests than for regression analyses in general. Second, estimation is generally
performed under a specific model, whereas in hypothesis testing, we may only be inter-
ested in the existence of association between a covariate and an outcome variable, not
necessarily under particular models. The proposed methods make use of the flexibility of
the hypothesis testing problem and are not simple by-products of an inferential procedure
under a general regression setting.

In the proposed method, the model of Y can be misspecified without compromising
the validity of the test. The proposed score test preserves the type I error with or without
correct specification of the outcome model, since the variance of score statistic is derived
using the sum of squares of the individual score statistics instead of the Hessian of the log-
likelihood. As expected, when the outcome model is misspecified, the power is adversely
affected. Nevertheless, the loss in power is relatively small based on our simulation studies.

Our work can be extended to allow for different types of outcome variables. First,
the survival data considered in this paper is right-censored. It is of interest to consider
other types of censoring, such as interval censoring, where the event of interest is known
only to occur within a time interval. For example, in HIV/AIDS studies, blood samples
are taken from study subjects periodically to look for evidence of HIV seroconversion.
Then one subject’s event time is only known to fall between two blood drawings. Second,
in the current study, the time-to-event outcome is univariate. In genomic studies, we
may encounter multivariate survival data, where each subject may experience more than
one event. In this case, the interested events may be correlated with each other. We
may consider modeling a joint survival function and performing a score test for multiple

parameters.
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Supplementary Material

The online Supplementary Material provides proofs of technical results and additional

simulation results.
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Appendix: Details of the variance estimator of the score statistic

In this Appendix, we give the expressions in the Taylor series expansion of the score

statistic presented in Section 2.1, which are used in the variance estimator of the score.

Define 1,(¢) = GY(C)/GH(C) — {GY(C)/GHC) Y, with GY'(C) = G"{&(C)} and G being

the third derivative of G. Let

Taa = = 3" { OG0 + MG (Co) — G (C)&G)* = GilG)&(C0) I XX,

and I, be a (||ex]|o x m)-matrix with the kth column being

~

1 n
(Lar)k = — Z I(Y; > tk:){Ami(CO)fi(Co)+Ai¢i(Co)_G;/(Co)fi(CO)—G;(Co)} exp(agX,-)Xi.
i=1
Let Iy be an (m x m)-matrix with the (7, k)th element being

Ao —E0 | = 1 2 ) {Ami(Go) — GI(Co)} exp(2ad X i k=,
ANk =

— iy HYs = max(ty, t;) H{Ami(Co) — GY(Co) } exp(2 X ) if k7 J.

n
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The matrix f« is defined as

~ ~

Ioaoz Ia)\

~T ~
I,, L.

I =

The vector Ty is defined as Tye = (T g, T5)T, where
Too = - % Z:: {Ami(€o)&i(Co)* + Aii(Co)&i(Co) — G (Co)€i(Co)* — GilGo)&i(Co)
x {RiS; + (1 — R)vox Wi } X,
and I, is an m-vector with the kth component being
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Finally,
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