Statistica Si	nica Preprint No: SS-2024-0369
Title	Quantile Residual Lifetime Regression for Multivariate
	Failure Time Data
Manuscript ID	SS-2024-0369
URL	http://www.stat.sinica.edu.tw/statistica/
DOI	10.5705/ss.202024.0369
Complete List of Authors	Tonghui Yu,
	Liming Xiang and
	Jong-Hyeon Jeong
Corresponding Authors	Liming Xiang
E-mails	lmxiang@ntu.edu.sg

Tonghui Yu¹, Liming Xiang^{1,*}, and Jong-Hyeon Jeong ^{2,3}

¹School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

²Department of Biostatistics, Public Health, University of Pittsburgh, U.S.A.

³Biometric Research Program, Division of Cancer Treatment and Diagnosis,

National Institutes of Health/National Cancer Institute, U.S.A.

* Corresponding author. Email: LMXiang@ntu.edu.sq

Abstract: The quantile residual lifetime (QRL) regression is an attractive tool for assessing covariate effects on the distribution of residual life expectancy, which is often of interest in clinical studies. When study subjects may experience multiple events of interest, the resulting failure times for the same subject are likely to be correlated. To accommodate such correlation in assessing the covariate effects on QRL, we propose a marginal semiparametric QRL regression model for multivariate failure time data. Our proposal facilitates parameter estimation using unbiased estimating equations, yielding estimators that are consistent and asymptotically normal. To address additional challenges in inference, we develop three approaches for variance estimation based on resampling techniques and a sandwich estimator, and further construct a Wald-type test statistic for hypothesis testing. The simulation studies and an application to real data offer evidence of the satisfactory performance and practical utility of the proposed method.

Key words and phrases: Multivariate failure times; quantile residual lifetime; inverse

probability of censoring weighting; perturbation resampling; sandwich estimator.

1. Introduction

Multivariate failure times arise frequently in biomedical research when study subjects are exposed to multiple types of failure events, experience recurrent events in longitudinal studies, or are nested within clusters such as time to blindness in two eyes (Diabetic Retinopathy Study Research Group, 1976) and tooth extraction times (Caplan et al., 2005). Failure times obtained within the same cluster typically exhibit inherent association, which needs to be appropriately accounted for in the analysis of such data.

Studying the distribution of residual lifetime generally provides valuable insights into disease prevention or treatment strategies for individuals at different life stages, especially for those who may not be at short-term risk of disease (Conner et al., 2022). In the Framingham heart study (Tsao and Vasan, 2015), each study subject may experience several cardiovascular diseases (events), such as coronary heart disease, myocardial infarction and hypertension, and potential dependence arises among the multiple disease event times obtained from a subject (cluster). It is interesting in this study to assess the effects of risk factors, e.g., BMI, blood pressure, cholesterol level, smoking and gender, on the distribution of remaining life times to the occurrence of each disease given that a subject is known to be disease-free at some followup time point. Since the dependence structure among

multiple residual life times of a subject is unknown in practice, it poses both theoretical and computational challenges in regression analysis.

Conventional methods for handling correlated failure times can be basically divided into three classes. The first explicitly models the dependence among multivariate failure times within a subject/cluster through frailty, which is often assumed to follow a known distribution from some positive scale family (Aalen, 1988; Duchateau and Janssen, 2008). The second employs copula functions to capture within-cluster association (Othus and Li, 2010; Kwon et al., 2022; He et al., 2024). The third, consisting of marginal models initially proposed by Liang and Zeger (1986) for longitudinal outcomes, has been widely adopted and remains an active area of research. In particular, the marginal approach has been extensively studied in the context of multivariate survival data under the Cox proportional hazards and AFT models (e.g. Cai and Prentice, 1995; Jin et al., 2006; Chen et al., 2010; Spiekerman and Lin, 1998; Xu et al., 2023), as well as censored quantile regression (Yin and Cai, 2005; Wang and Fygenson, 2009). The basic idea of marginal models is to model the marginal distributions of multivariate outcomes as for independent observations, and treats associations among outcomes as a nuisance. Without specifying the correlation structure, this approach allows for more flexible, parsimonious models and is computationally more efficient than frailty or copula-based models.

In this paper, we focus on the marginal method for regression analysis of mul-

tivariate residual lifetimes. As an alternative to conventional marginal models, residual lifetime—based regression has attracted considerable attention in clinical studies due to its ease of understanding and capability to align with the demands in practice. For example, in cancer studies with patients who survived after some initial treatments, their remaining lifetimes are often of interest in evaluating the efficacy of the followup therapies. Compared to relative risks, the remaining life expectancy is more straightforward and readily understandable for patients. Recently, the frailty model was extended to regression analysis of mean residual lifetimes in multicenter studies by Huang et al. (2019) using a hierarchical likelihood approach. It is noted that failure times in biomedical studies often exhibit censorship, outliers and heteroscedasticity, which particularly leads to covariate effects on the remaining lifetimes varying over different follow-up stages. To this end, quantile regression appears more appropriate than the mean-based regression for the remaining lifetimes.

The quantile residual lifetime (QRL) regression, which leverages the strengths of censored quantile regression (Peng and Huang, 2008; Wang and Wang, 2009), examines the relationship between the quantile residual lifetimes and covariates and has gained growing attention recently. An overview of early developments can be found in the monograph by Jeong (2014). Semiparametric QRL regression analysis has been investigated for univariate failure time outcomes. Jung et al. (2009) extended Ying et al. (1995)'s median regression model to quantile residual

lifetimes and mimicked the least square estimating equations to construct an estimating equation for quantile coefficients. They suggested a grid search method to find some appropriate roots, which is computationally expensive especially in the presence of a large number of covariates because the estimating equation is neither monotone nor continuous. For testing significance, they studied a score-type test. Zhou and Jeong (2011) and Kim et al. (2012) proposed case-weighted empirical-likelihood ratio test. Built upon Jung et al. (2009)'s method, Ma and Wei (2012) estimated quantile coefficient by spline smoothing instead and suggested a Wald-type test statistic. For data with longitudinal covariates, Li et al. (2016) and Lin et al. (2019) developed an unbiased estimating equation that is solved via linear programming. All these existing inferential methods for QRL models are under the independence assumption for failure times.

In the presence of multivariate or clustered failure times, applying these methods by ignoring possible correlations among outcome data may result in biases in variance estimation and loss of statistical power for testing hypotheses in consequence. To circumvent this issue, we study a marginal QRL regression model for multivariate failure time data, extending the idea of QRL regression (Li et al., 2016) to accommodate the correlation among multiple failure time outcomes of a subject. We develop semiparametric estimating equations for parameter estimation and show theoretical properties of the resulting estimator regardless of the true dependence structures. A major hurdle in inference for QRL regression is variance

estimation of parameter estimators. To this end, we propose three methods to estimate the covariance matrix of the estimated regression coefficients accounting for the dependence of the multivariate failure times properly and compare their performance numerically.

The rest of this article is organized as follows. In Section 2, we introduce notation for data and the proposed marginal QRL regression model first, and then provide the estimating equations for model parameters. In Section 3, we establish asymptotic properties of the resulting estimator and further develop variance estimation methods to facilitate inference. The performance of the proposed estimators is examined through extensive simulation studies in Section 4. We present an application to the analysis of the Flamingham Heart data in Section 5, followed by concluding remarks in Section 6.

2. Methodology

2.1 Data and marginal QRL regression model

Consider a sample comprising n clusters with each cluster containing m_i observations. Consequently, the total number of observations in the sample amounts to $N = \sum_{i=1}^{n} m_i$. Let T_{ij} represent the j-th event time of cluster i for $j = 1, \ldots, m_i$ and $i = 1, \ldots, n$, and \mathbf{X}_{ij} be the associated baseline covariate vector with the first element being one. At a specific time point t_0 , we define θ_{τ,t_0} as the τ -th conditional quantile of the residual lifetime on a logarithmic scale, i.e., $\log(T_{ij} - t_0)$,

conditional on the covariates \mathbf{X}_{ij} and subject to the constraint $T_{ij} > t_0$. As a result, θ_{τ,t_0} satisfies the equation $\Pr(\log(T_{ij} - t_0) \leq \theta_{\tau,t_0} | T_{ij} \geq t_0, \mathbf{X}_{ij}) = \tau$, which is equivalent to

$$\Pr(t_0 \le T_{ij} \le t_0 + \exp(\theta_{\tau,t_0}) | \mathbf{X}_{ij}) = \tau \Pr(T_{ij} \ge t_0 | \mathbf{X}_{ij}).$$
 (2.1)

For the τ -th quantile of the remaining lifetimes among clusters whose event times are beyond time t_0 , the linear QRL regression is assumed in the form of

$$\theta_{\tau,t_0} = \mathbf{X}_{ij}^T \boldsymbol{\alpha}_{\tau,t_0},\tag{2.2}$$

where α_{τ,t_0} is the vector of coefficients at time t_0 for covariate vector \mathbf{X}_{ij} at some quantile level $\tau \in (0,1)$. Under model (2.2), T_{ij} can be modeled as

$$\log(T_{ij} - t_0) = \mathbf{X}_{ij}^T \boldsymbol{\alpha}_{\tau, t_0} + e_{ij}^{\tau}, j = 1, \dots, m_i, i = 1, \dots, n,$$
(2.3)

where e_{ij}^{τ} 's are correlated within the same cluster but independent across clusters. For the sake of identifiability, we set the conditional τ th quantile of e_{ij}^{τ} to zero given \mathbf{X}_{ij} and $T_{ij} > t_0$.

2.2 Estimation procedure

For ease of presentation, we omit τ and t_0 in the coefficient vector $\boldsymbol{\alpha}$ in the following. When all survival times are exactly observed, the estimator of $\boldsymbol{\alpha}$ can be obtained by solving the following estimating equations for $\boldsymbol{\alpha}$:

$$\sum_{i} \sum_{j} \mathbf{X}_{ij} I(T_{ij} \ge t_0) [I\{T_{ij} \le t_0 + \exp(\mathbf{X}_{ij}^T \boldsymbol{\alpha})\} - \tau] = 0.$$
 (2.4)

In the presence of right censoring, the survival outcome T_{ij} is observed as $Y_{ij} = \min(T_{ij}, C_{ij})$ along with the censoring indicator $\Delta_{ij} = I(T_{ij} \leq C_{ij})$, and C_{ij} is the corresponding censoring time. It is assumed that T_{ij} and C_{ij} are independent, with C_{ij} independently following a distribution characterized by the survival function $G(\cdot)$. With right-censored multivariate failure time data, one may modify equations in (2.4) by adjusting censoring. Let α_0 be the true value of α . Note that

$$E\left[\frac{\Delta_{ij}}{G(Y_{ij})}I\{Y_{ij} \leq t_0 + \exp(\mathbf{X}_{ij}^T\boldsymbol{\alpha}_0)\} \middle| Y_{ij} \geq t_0, \mathbf{X}_{ij}\right]$$

$$= \frac{\Pr\left\{t_0 \leq T_{ij} = Y_{ij} \leq C_{ij}, T_{ij} \leq t_0 + \exp(\mathbf{X}_{ij}^T\boldsymbol{\alpha}_0) \middle| \mathbf{X}_{ij}\right\}}{\Pr\left\{C_{ij} \geq Y_{ij}, Y_{ij} \geq t_0 \middle| \mathbf{X}_{ij}\right\}}$$

$$= \frac{\Pr\left\{t_0 \leq T_{ij} \leq t_0 + \exp(\mathbf{X}_{ij}^T\boldsymbol{\alpha}_0) \middle| \mathbf{X}_{ij}\right\}}{\Pr\left\{T_{ij} \geq t_0 \middle| \mathbf{X}_{ij}\right\} G(t_0)} = \frac{\tau}{G(t_0)}.$$
(2.5)

This motivates us to form a modified estimating equation for α as

$$S_N(\boldsymbol{\alpha}) = \frac{1}{N} \sum_{i} \sum_{j} \mathbf{X}_{ij} I(Y_{ij} \ge t_0) \left[\frac{\Delta_{ij} I\left\{Y_{ij} \le t_0 + \exp(\mathbf{X}_{ij}^T \boldsymbol{\alpha})\right\}}{\widehat{G}(Y_{ij})/\widehat{G}(t_0)} - \tau \right] = 0,$$
(2.6)

where $\widehat{G}(\cdot)$ is the Kaplan-Meier estimator of G based on observations $\{Y_{ij}, 1-\Delta_{ij}\}$. The estimating equation (6) can be viewed as a multivariate version of Li et al. (2016)'s method, designed to account for the correlation among multivariate time-to-event data. In the independent cases with time-independent covariates, $S_N(\alpha)$ in (2.6) reduces to the estimating function used in Li et al. (2016). The estimator for α , denoted by $\widehat{\alpha}$, can be obtained as the solution to the estimating equations in (2.6). Equivalently, it is the minimizer of the following linear programming problem:

$$\frac{1}{N} \sum_{i} \sum_{j} \frac{I(Y_{ij} \ge t_0) \Delta_{ij}}{\widehat{G}(Y_{ij}) / \widehat{G}(t_0)} \rho_{\tau} \left\{ \log(Y_{ij} - t_0) - \mathbf{X}_{ij}^{T} \boldsymbol{\alpha} \right\} + I(Y_{ij} \ge t_0) \rho_{\tau} \left\{ A - \mathbf{X}_{ij}^{T} \boldsymbol{\alpha} \left[1 - \frac{\Delta_{ij}}{\widehat{G}(Y_{ij}) / \widehat{G}(t_0)} \right] \right\},$$
(2.7)

where $\rho_{\tau}(u) = u[\tau - I(u < 0)]$ is the quantile loss function, and A is a constant chosen to be exceptionally large such that $A > \max_{i,j} \{\log(Y_{ij} - t_0)\}$. We adopt the fast interior point algorithm (Portnoy and Koenker, 1997) to solve this linear programming problem, which can be readily implemented via function rq()in R library quantreg using the weighted QR model on the augmented data set comprising of pseudo responses $\{(\log(Y_{11}-t_0),\cdots,\log(Y_{nm_n}-t_0),A,\cdots,A\}$ with corresponding covariates $\{\mathbf{X}_{11},\cdots,\mathbf{X}_{nm_n},\mathbf{X}_{11}^*,\cdots,\cdots,\mathbf{X}_{nm_n}^*\}$ with $\mathbf{X}_{ij}^*=$ $\left[1-\Delta_{ij}\widehat{G}(t_0)/\widehat{G}(Y_{ij})\right]\mathbf{X}_{ij}$. An alternative optimization algorithm analogue to Li and Peng (2015) may be considered, in which all artificial observations $\{\mathbf{X}_{ij}^*\}_{i,j}$ are treated as a whole unit. In some cases, these two competing optimization algorithms have negligible differences in parameter estimation when there is enough number of exactly observed residual lifetimes. For our motivating data, the optimization (2.7) produces much more reasonable results compared to results from a classical censored quantile regression (that is, $t_0=0$). This may be because Li and Peng (2015)'s method requires a large enough constant A to bound the unified value $\sum_i \sum_j \left[1 - \frac{\Delta_{ij}}{\widehat{G}(Y_{ij})/\widehat{G}(t_0)}\right] I(Y_{ij} \geq t_0) \mathbf{X}_{ij}^T \boldsymbol{\alpha}$ for any $\boldsymbol{\alpha}$ in the parameter space, possibly leading to unstable estimation procedure especially when the magnitude of $\boldsymbol{\alpha}$ or sample size is large.

Remark 1. Once obtaining $\hat{\alpha}$, the τ -th conditional quantile of the logarithm of the residual lifetime for a specific individual with covariates \mathbf{x} can be estimated as $\hat{\theta}_{\tau,t_0} = \mathbf{x}^T \hat{\alpha}_{\tau,t_0}$. In practice, the estimated conditional quantiles $\hat{\theta}_{\tau,t_0}$ may not be monotonically increasing in τ due to lack of sufficient data and/or quantile crossing. To account for the nonmonotonicity problem, one may follow the rearrangement method developed by Chernozhukov et al. (2010) to construct monotone quantile curves by using the order statistics of the rearranged quantile estimates. The rearrangement procedure has been commonly used in various quantile regression

models (Wang et al., 2012; Wang and Li, 2013; Yu et al., 2021). Given asymptotic properties of $\widehat{\alpha}$ and the Wald-type inference discussed in Section 3, the confidence intervals for $\widehat{\theta}_{\tau,t_0}$ can be subsequently constructed. As shown by Chernozhukov et al. (2010) and Wang et al. (2012) either theoretically or numerically, the quantile estimators with/without rearrangement exhibited nearly identical performance in estimation and inference.

3. Asymptotic Properties and Inference

3.1 Consistency and asymptotic normality

The following conditions are necessary to derive the asymptotic properties of the proposed estimator obtained from solving the estimating equation in (2.6). To associate with the total sample size N, in this section, we rewrite $\hat{\alpha}$ as $\hat{\alpha}_N$.

Condition 1. The parameter space \mathcal{D} for $\boldsymbol{\alpha}$ is a compact region with $\boldsymbol{\alpha}_0$ in the interior. For any $\boldsymbol{\alpha} \in \mathcal{D}$, there exists t_u such that $\Pr \{ \log(Y_{ij} - t_0) \geq t_u | \mathbf{X}_{ij} \}$ is uniformly bounded away from zero and $\mathbf{X}_{ij}^T \boldsymbol{\alpha} \leq t_u$ with probability one.

Condition 2. The estimator \widehat{G} has $\sup_{t \le t_u} |\widehat{G}(t) - G(t)| = o(N^{-1/2 + \epsilon})$ for any $\epsilon > 0$.

Condition 3. Given $T_{ij} > t_0$, the conditional distribution functions $F_e(e|\mathbf{X}_{ij}) = \Pr(e_{ij}^{\tau} \leq e|\mathbf{X}_{ij})$ have densities $f_e(\cdot|\mathbf{X}_{ij})$ which is Lipschitz continuous in the neighborhood of 0. We assume that $N^{-1} \sum_{ij} \Pr(T_{ij} \geq t_0|\mathbf{X}_{ij}) f_e(0|\mathbf{X}_{ij}) \mathbf{X}_{ij} \mathbf{X}_{ij}^T$ converges almost surely to a positive definite and bounded matrix, denoted by Λ .

Condition 4. 1) The cluster size m_i is finite. 2) \mathbf{X}_{ij} are uniformly bounded for $j = 1, \dots, m_i$ and $i = 1, \dots, n$.

Condition 1 is an standard condition for quantile residual lifetime regression and commonly imposed in literature (Jung et al., 2009). Condition 2 holds in most cases when \hat{G} is the Kaplan-Meier estimator (Csörgő and Horváth, 1983). Condition 3 is to ensure $\inf_{\alpha:||\alpha-\alpha_0||=\epsilon}||\overline{S}_N(\alpha)|| > 0$ for any $\epsilon > 0$, which is needed to establish consistency of the estimator $\hat{\alpha}_N$. Matrix Λ , defined in Condition 3, will be part of the slope matrix in estimator' asymptotic variance, and its positive definiteness and boundness guarantee the asymptotic normality of the estimator $\hat{\alpha}_N$. Condition 4 is a weak assumption and commonly seen in literature.

To justify the asymptotic properties of the proposed estimator, we consider the conditional expectation of the proposed estimating function (2.6) with substitution of true censoring distribution and define

$$\overline{S}_{N}(\boldsymbol{\alpha}) = \frac{1}{N} \sum_{i} \sum_{j} \mathbf{X}_{ij} G(t_{0}) \left[\Pr \left\{ t_{0} \leq T_{ij} \leq t_{0} + \exp(\mathbf{X}_{ij}^{T} \boldsymbol{\alpha}) | \mathbf{X}_{ij} \right\} - \tau \Pr \left\{ T_{ij} \geq t_{0} | \mathbf{X}_{ij} \right\} \right].$$
(3.8)

By the definition of quantile residual lifetime function in equation (2.1), it follows that α_0 is the unique root of $\overline{S}_N(\alpha) = 0$ for some commonly used distributions of the failure time T, provided that its survival function is continuous and strictly decreasing with a closed form (Jeong, 2014).

Theorem 1. (Consistency.) Under Conditions 1-3, $\widehat{\alpha}_N$ satisfying $S_N(\widehat{\alpha}_N) = o(1)$

converges almost surely to α_0 as $N \to \infty$.

Lemma 1. If Condition 1 holds, $N^{1/2}S_N(\boldsymbol{\alpha}_0)$ converges to a zero-mean normal distribution with the asymptotic covariance matrix Σ as defined in the proof of this lemma in the Appendix.

Theorem 2. (Asymptotic normality.) Under Conditions 1- 4, $\widehat{\boldsymbol{\alpha}}_N$ satisfying $S_N(\widehat{\boldsymbol{\alpha}}_N) = o(N^{-1/2})$ is asymptotically normal, i.e., $N^{1/2}(\widehat{\boldsymbol{\alpha}}_N - \boldsymbol{\alpha}_0) \xrightarrow{d} N(0, V(\boldsymbol{\alpha}_0))$, where $V(\boldsymbol{\alpha}_0) = \widetilde{\Lambda}^{-1} \Sigma \widetilde{\Lambda}^{-1}$, $\widetilde{\Lambda} = G(t_0) \Lambda$.

The proofs of Lemma 1 and Theorems 1-2 are provided in the Appendix. The main challenge in proving asymptotic properties is to account for association among multivariate failure time data. To our knowledge this issue has not been addressed in the literature regarding parameter estimation in quantile residual lifetime regression. To prove the consistency of the proposed estimator, we adopt arguments established by Resnick (2019) in the Lévy's theorem, White (1980) in their Lemma 2.2 and Van der Vaart (2000) in Theorem 5.9. Based on martingale processes involving in estimation of censoring distribution as well as the Lyapunov central limit theorem, we can show results in our new Lemma 1. The asymptotic normality of $\widehat{\alpha}_N$ follows from Lemma 1 and similar arguments developed by He and Shao (1996) and Wang and Fygenson (2009). It is worth noting that Condition 4 is essential for applying He and Shao (1996)'s theorems to the model we considered. In fact, this condition can be extended to the situation in which $m_i = o(n^\varrho)$ holds for some constant $0 < \varrho < 1/5$ and $N^{-1} \sum_i \sum_{j,k} \mathbf{X}_{ij} \mathbf{X}_{ik}^T < \infty$.

Remark 2. Though our estimating function for the regression coefficients essentially keeps the same form as that for univariate survival data given by Li et al. (2016), the asymptotic variances of the estimated regression coefficients address the association among multivariate data. To further illustrate this, we consider the error terms in model (3) having an exchangeable correlation structure as an example. Suppose that $\Pr(e_{ij} \leq 0, e_{ij'} \leq 0 | T_{ij} > t_0, T_{ij'} > t_0, \mathbf{X}_{ij}, \mathbf{X}_{ij'}) = \delta$ for any $j \neq j'$, where δ measures the within-cluster dependence. In this case, the middle matrix Σ in variance matrix $\mathbf{V}(\alpha_0)$ is the sum of the following three components: $I_1 = \frac{1}{N} \sum_{i=1}^{n} \operatorname{Var} \psi_i(\alpha_0), I_2 = \frac{1}{N} \sum_{i=1}^{n} \operatorname{Var} \eta_i(\alpha_0), I_3 = \frac{2}{N} \sum_{i=1}^{n} \operatorname{Cov}(\psi_i(\alpha_0), \eta_i(\alpha_0)),$ where ψ_i and η_i are defined in the supplementary material. After some calculations, I_1 can be written as

$$I_{1} = \frac{1}{N} \sum_{i=1}^{n} \sum_{j} \mathbf{X}_{ij} \mathbf{X}_{ij}^{T} I(Y_{ij} \ge t_{0}) \left(\frac{\tau G(t_{0})}{G(Y_{ij})} - \tau^{2} \right)$$

$$+ \frac{1}{N} \sum_{i=1}^{n} \sum_{j,j'} \mathbf{X}_{ij} \mathbf{X}_{ij'}^{T} I(Y_{ij} \ge t_{0}, Y_{ij'} \ge t_{0}) \left(\delta - \tau^{2} \right).$$

The explicit expressions for I_2 and I_3 are complicated and lengthy, and thus omitted here for brevity. It is noted that when $\delta \in (\tau^2, \tau]$, the errors are positively correlated, whereas for $\delta \in [0, \tau^2)$, they are negatively correlated. When $\delta = \tau^2$, the errors are independent. Ignoring the within-cluster dependence by assuming $\delta = \tau^2$ leads to biased estimation for the asymptotic standard deviation of the estimator $\widehat{\alpha}_N$.

3.2 Inference

The asymptotic normality of the proposed estimator established in Theorem 2 offers evidence for the feasibility of the Wald-type inference and construction of confidence intervals. An additional challenge for inference is to estimate the variance of the proposed estimator. To directly estimate the asymptotic variance matrix $V(\alpha_0)$ is impractical since it takes a complicated form involving the unknown error density function $f_e(0|\mathbf{X}_{ij})$ for computing Λ and unknown censoring distribution function in Σ . To overcome this problem, we develop three approaches, including a perturbation resampling, sandwich estimators and multiplier bootstrap based sandwich estimators, for asymptotic variance estimation of $\widehat{\alpha}_N$.

3.2.1 Resampling method

It is worthwhile noted that the conventional bootstrapping by sampling with replacement is not appropriate for data from the longitudinal/clustered studies. To this end, a feasible way is to bootstrap and repeatedly solve a perturbation version of (2.6). Jin et al. (2003) proposed analogous perturbation resampling procedure for estimating the limiting variance matrices in AFT models without requiring density estimation or numerical derivatives and showed its validity. This resampling approach has been widely applied to survival data especially when estimating equations are non-smooth (Yin and Cai, 2005; Peng and Huang, 2008; Li et al., 2016). It is also applicable for a wide variety of models and not limited to

independent cases (Hagemann, 2017; Galvao et al., 2023). To obtain a consistent variance estimator, we consider a similar perturbation resampling method and account for the possible heterogeneity in the data.

In particular, we first generate independent and identically distributed positive multipliers γ_i from an exponential distribution with $E(\gamma_i) = \text{Var}(\gamma_i) = 1$, for i = 1, ..., n. We define the randomly perturbed version of $S_N(\boldsymbol{\alpha})$ as

$$S_N^*(\boldsymbol{\alpha}) = \frac{1}{N} \sum_i \gamma_i \sum_j \mathbf{X}_{ij} I(Y_{ij} \ge t_0) \left[\frac{\Delta_{ij} I\left\{Y_{ij} \le t_0 + \exp(\mathbf{X}_{ij}^T \boldsymbol{\alpha})\right\}}{G^*(Y_{ij})/G^*(t_0)} - \tau \right]$$
(3.9)

and $G^*(\cdot)$ in (3.9) is a perturbed version of the Kaplean-Meier estimator in the form of

$$G^*(t) = \prod_{ij:Y_{ij} \le t} \left\{ 1 - \frac{d\overline{N}^*(Y_{ij})}{\overline{Y}^*(Y_{ij})} \right\},$$

where $\overline{N}^*(t) = \sum_{k=1}^n \gamma_k \sum_{l=1}^{m_i} I(\delta_{kl} = 0, Y_{kl} \leq t)$, $\overline{Y}^*(t) = \sum_{k=1}^n \gamma_k \sum_{l=1}^{m_i} I(Y_{kl} \geq t)$ and $d\overline{N}^*(t) = \overline{N}^*(t) - \overline{N}^*(t-1)$. Then the resampled estimate $\widehat{\alpha}^*$ is obtained by solving the updated estimating equations $S_N^*(\alpha) = 0$.

Theorem 3. Under Conditions 1- 4, the conditional distribution of $N^{1/2}(\widehat{\alpha}^* - \widehat{\alpha})$ given the observed data converges to the same limiting distribution of $N^{1/2}(\widehat{\alpha}_N - \alpha_0)$.

The proof of Theorem 3 is in line with that of Theorem 2 to some extent, with its sketch given in the Appendix. Therefore, the variance of $\widehat{\alpha}_N$ can be estimated

using the sample variance of B resampled estimates, $(\widehat{\alpha}^{*(1)}, \dots, \widehat{\alpha}^{*(B)})$, which are obtained by repeating the above resampling procedure for B times.

3.2.2 A closed-form sandwich estimator

We consider estimation of Λ first, in which $f_e(0|\mathbf{X}_{ij})$ is unknown. Wang et al. (2019) proposed quantile regression with correlated data and estimate $f_e(0|\mathbf{X}_{ij})$ by a well-known quotient estimation method. Specifically, based on the large-sample behavior of regression quantile spacing shown by Goh and Knight (2009), the conditional density function $f_e(0|\mathbf{X}_{ij})$ can be consistently estimated using the difference quotient

$$\hat{f}_e(0|\mathbf{X}_{ij}) = \frac{2h_N}{\mathbf{X}_{ij}^T \left[\widehat{\boldsymbol{\alpha}}_{\tau+h_N,t_0} - \widehat{\boldsymbol{\alpha}}_{\tau-h_N,t_0}\right]},$$
(3.10)

where h_N is a bandwidth parameter such that $h_N \to 0$ as N goes to infinity, $\widehat{\alpha}_{\tau+h_N,t_0}$ and $\widehat{\alpha}_{\tau-h_N,t_0}$ are the roots of the estimating equation in (2.6) at the residual time point t_0 and two specific quantile levels $\tau + h_N$ and $\tau - h_N$. In practice, we follow Hall and Sheather (1988) and take

$$h_N = 1.57 N^{-1/3} \left[1.5 \phi^2 \left\{ \Phi^{-1}(\tau) \right\} / (2 \left\{ \Phi^{-1}(\tau) \right\}^2 + 1) \right]^{1/3},$$

where ϕ and Φ are the density and distribution functions of the standard normal distribution, respectively. It follows from Hendricks and Koenker (1992) that

 $\widehat{\widetilde{\Lambda}} = N^{-1} \sum_{ij} \widehat{G}(t_0) I(Y_{ij} \geq t_0) \widehat{f}_e(0|\mathbf{X}_{ij}) \mathbf{X}_{ij} \mathbf{X}_{ij}^T \stackrel{P}{\to} \widetilde{\Lambda}$. As pointed by Koenker (2005), the crossing issues may occur in the estimated conditional quantile planes, and so for implementation we may replace $\widehat{f}_e(0|\mathbf{X}_{ij})$ simply by its positive part in (3.10), that is,

$$\hat{f}_e(0|\mathbf{X}_{ij}) = \max\left\{0, \frac{2h_N}{\mathbf{X}_{ij}^T \left[\widehat{\boldsymbol{\alpha}}_{\tau+h_N,t_0} - \widehat{\boldsymbol{\alpha}}_{\tau-h_N,t_0}\right] - \epsilon}\right\},\tag{3.11}$$

where ϵ is a small positive constant used to avoid dividing by zero in some rare cases. In addition to equations (3.10)-(3.11), another approach based on a kernel density estimation can be adopted for estimating $f_e(0|\mathbf{X}_{ij})$ and the consistency of $\widehat{\Lambda}$ maintains as well (Koenker, 2005).

To estimate Σ , we can use a closed-form direct approximation given by

$$\widehat{\Sigma} = N^{-1} \sum_{i=1}^{n} (\widehat{\psi}_i + \widehat{\eta}_i) (\widehat{\psi}_i + \widehat{\eta}_i)^T,$$

where

$$\widehat{\psi}_i = \sum_{j=1}^{m_i} \mathbf{X}_{ij} I(Y_{ij} \ge t_0) \left[\frac{\Delta_{ij} I\left\{Y_{ij} \le t_0 + \exp(\mathbf{X}_{ij}^T \widehat{\boldsymbol{\alpha}}_N)\right\}}{\widehat{G}(Y_{ij})/\widehat{G}(t_0)} - \tau \right],$$

$$\widehat{\eta}_{i} = \sum_{k,j} \frac{\mathbf{X}_{kj} \delta_{kj} I \left\{ t_{0} \leq Y_{kj} \leq t_{0} + \exp(\mathbf{X}_{kj}^{T} \widehat{\boldsymbol{\alpha}}_{N}) \right\}}{\widehat{G}(Y_{kj}) / \widehat{G}(t_{0})} \times \left[\sum_{l} \frac{(1 - \delta_{il}) I(t_{0} \leq Y_{il} \leq Y_{kj})}{\sum_{r,s} I(Y_{rs} \geq Y_{il})} - \sum_{l} \sum_{u,v} \frac{(1 - \delta_{uv}) I\{Y_{uv} \leq \min(Y_{il}, Y_{kj})\}}{(\sum_{r,s} I(Y_{rs} \geq Y_{uv}))^{2}} \right]$$

with plugging in the Kaplan-Meier estimator $\hat{G}(\cdot)$ of $G(\cdot)$. This direct approximation replaces all unknown quantities in Σ with their sample version estimates, which have closed forms but are complicated owing to the martingale processes and non-parametric estimation for cumulative hazard function of the censoring variable.

Based on the sandwich estimator with estimated slope matrix $\widehat{\Lambda}$ and estimated middle matrix $\widehat{\Sigma}$, the Wald-type statistic for testing the hypothesis $H_0: \boldsymbol{\alpha} = \boldsymbol{\alpha}_0$ can be consequently constructed by $\mathcal{W}_N = N(\widehat{\boldsymbol{\alpha}}_N - \boldsymbol{\alpha}_0)^T (\widehat{\Lambda}^{-1} \widehat{\Sigma} \widehat{\Lambda}^{-1})^{-1} (\widehat{\boldsymbol{\alpha}}_N - \boldsymbol{\alpha}_0)$. It follows from the Slutsky's theorem that \mathcal{W}_N converges in distribution to the same limiting distribution as $N(\widehat{\boldsymbol{\alpha}}_N - \boldsymbol{\alpha}_0)^T (\widehat{\Lambda}^{-1} \Sigma \widehat{\Lambda}^{-1})^{-1} (\widehat{\boldsymbol{\alpha}}_N - \boldsymbol{\alpha}_0)$. Then the conventional χ^2 test can be applied to test the hypothesis about regression coefficients at some specific quantile level.

3.2.3 Resampling-based Sandwich estimator

By integrating the strengths of both the resampling and sandwich estimator approaches, we develop a resampling-based sandwich estimator to improve the accuracy of the sandwich estimator, while circumventing repeatedly solving equation (3.9) in the resampling method. Similar methods have been studied by Zeng and Lin (2008) and Chiou et al. (2015) under different models to achieve consistent variance estimators.

For the asymptotic variance matrix $V(\boldsymbol{\alpha}_0) = \widetilde{\Lambda}^{-1} \Sigma \widetilde{\Lambda}^{-1}$, estimators of $\widetilde{\Lambda}$ and

 Σ can be obtained from a computationally efficient resampling procedure without the need of solving estimating equations. Given a set of random multipliers $(\gamma_1, \dots, \gamma_n)$ generated as in Subsection 3.2.1, the perturbed estimating function $S_N^*(\boldsymbol{\alpha})$ in (3.9) evaluated at the estimate $\widehat{\boldsymbol{\alpha}}_N$ (the root of equations in (2.6)) is obtained. Then repeating this B times, we obtain the set $\{S_N^{*(k)}(\widehat{\boldsymbol{\alpha}}_N), k=1,\dots,B\}$, and the sample variance of $\{\sqrt{N}S_N^{*(k)}(\widehat{\boldsymbol{\alpha}}_N), k=1,\dots,B\}$ provides the resampled estimate of Σ , denoted by $\widehat{\Sigma}^*$. Next, we generate B random samples, denoted by $\{Z_k, k=1,\dots,B\}$, from a multivariate normal distribution with mean zero and covariance matrix $(\widehat{\Sigma}^*)^{-1}$. Following the resampling method given by Zeng and Lin (2008), the inverse of the sample covariance matrix of $\{\sqrt{N}S_N(\widehat{\boldsymbol{\alpha}}_N+N^{-1/2}Z_k), k=1,\dots,B\}$ can be used as a consistent estimator of $V(\boldsymbol{\alpha}_0)$.

4. Simulation studies

In this section, we conduct simulation studies to assess the performance of the proposed estimators in various situations. Particularly, data are generated with individual-level covariates in Scenarios 1, with cluster-level covariates and different marginal distributions of error terms in Scenarios 2-3, and with heterogeneous errors in Scenario 4. We also examine the performance of the proposed methods under various types of dependence structures in Scenarios 5-7, and for the case with multiple covariates in Scenario 8. The simulation setups for Scenarios 1-4 are provided below, while those for Scenarios 5-8 are detailed in the Supplementary

Material.

Scenario 1 is designed to evaluate the finite sample performance of our proposal under the longitudinal study with an individual-level covariate. For each observation case j of individual i with $j = 1, \dots, m$ and $i = 1, \dots, n$, we generate a single baseline covariate, x_{ij} , independently from a uniform distribution on the interval [0, 1], and survival outcome T_{ij} following a multivariate accelerated failure time model in the form of

$$\log T_{ij} = \beta_0 + \beta_1 x_{ij} + \epsilon_{ij}, \tag{4.12}$$

where $\exp(\epsilon_{ij})$ marginally follows an exponential distribution with the rate parameter $\lambda = 0.69$. We construct the joint distribution of $(\epsilon_{i1}, \dots, \epsilon_{im})$ through a Clayton copula with Kendall's tau of 0, 0.5 and 0.8, corresponding to the independent, moderate correlated and strongly correlated cases, respectively. We take the values of (β_0, β_1) as (1, 1). Under model (4.12) with the above setting, parameters in the corresponding quantile residual lifetime model (2.3) are given by $\alpha_0(\tau, t_0) = (\alpha_0(\tau, t_0), \alpha_1(\tau, t_0))$, where $\alpha_0(\tau, t_0) = \log[-\lambda^{-1}\log(1-\tau)] + \beta_0$ and $\alpha_1(\tau, t_0) = \beta_1$.

In **Scenario 2**, a cluster-level covariate is considered in the working AFT model (4.12) to mimic community randomized studies or patients with multiple disease progressions in practice. The scheme for data generation is same as in

Scenario 1 except taking $x_{ij} = x_i$ with x_i being generated from Uniform(0, 1) for all $j = 1, \dots, m$ observations of cluster i. A Clayton copula joint distribution is also considered for the error terms with Kendall's tau equal 0.5.

Scenario 3 considers a residual lifetime model with error term marginally from a logistic distribution. Same as in Scenario 2, a cluster-level covariate x_i is independently from Uniform[0, 1]. The failure time outcome T_{ij} is generated from the residual lifetime model:

$$\log(T_{ij} - t_m) = \beta_0 + \beta_1 x_i + \sigma \epsilon_{ij}, \tag{4.13}$$

where ϵ_{ij} marginally follows a standard logistic distribution, leading to a baseline log-logistic distribution for the residual lifetime $T_{ij} - t_m$. The joint distribution of $(\epsilon_{i1}, \dots, \epsilon_{im})$ is given by a Clayton copula with Kendall's tau equal 0.5. We take $t_m = 1$, $\beta_0 = 1$, $\beta_1 = 0$ and $\sigma = 0.5$ in (4.13), corresponding to $\alpha_1(\tau, t_0) = 0$ and

$$\alpha_0(\tau, t_0) = \begin{cases} \log\left[\exp\left(\sigma\log\left(\frac{\tau}{1 - \tau}\right) + \beta_0\right) - t_0 + t_m\right], & t_0 \le t_m \\ \log\left[\left(\frac{\tau + \exp\left(-\frac{\beta_0}{\sigma}\right)(t_0 - t_m)^{\frac{1}{\sigma}}}{1 - \tau}\right)^{\sigma} \exp(\beta_0) - t_0 + t_m\right], & t_0 > t_m \end{cases}$$

in model (2.3).

Scenario 4 is designed to illustrate the substantial gains of the quantile residual lifetime regression compared to the Cox or AFT model, particularly in handling heterogeneous data and revealing how covariate effects vary across dif-

ferent quantile levels. The failure time outcome T_{ij} follows the model given by $\log T_{ij} = \beta_0 + \beta_1 x_{ij} + (1 - a x_{ij}) \epsilon_{ij}$, where $\beta_0 = 1$, $\beta_1 = 2$, covariate $x_{ij} = x_i$ and $x_i \sim \text{Bernoulli}(0.5)$. The degree of heteroscedasticity rises with increasing values of a. The generation of $(\epsilon_{i1}, \dots, \epsilon_{im})$ is the same as in Scenario 2 except the rate parameter $\lambda = 2$. Consequently, the true regression coefficients in model (3) are $\alpha_0(\tau, t_0) = \log[-\lambda^{-1}\log(1-\tau)] + \beta_0$ and

$$\alpha_1(\tau, t_0) = \begin{cases} -a \log(-\lambda^{-1} \log(1 - \tau)) + \beta_1, & t_0 = 0, \\ \log\left\{\frac{t_0[1 - \lambda^{-1} t_0^{-1/(1-a)} \log(1 - \tau) \exp(\frac{\beta_0 + \beta_1}{1-a})]^{1-a} - t_0}{-\lambda^{-1} \log(1 - \tau) \exp(\beta_0)}\right\}, & t_0 \neq 0. \end{cases}$$

Their values, determined for $\tau = 0.25, 0.5$ and $t_0 = 0, 1, 2$, can be found in Table 4. Under this setup, with a fixed quantile level, the covariate effect decreases as t_0 increases. While given a fixed t_0 , the covariate effect decreases as the quantile level increases.

In all scenarios, we consider the cluster size m=3 or 10. The number of clusters is configured as n=200 or 500. The censoring time variable C_{ij} is generated from a uniform distribution over the interval [0,20], achieving a censoring rate between 20% and 40%.

Based on 500 simulated data sets for each simulation setting, results of the estimation of regression coefficients α_0 and α_1 are summarized in Tables 1-4 for Scenarios 1-4 and Tables S.1-S.4 for Scenarios 5-8 in the Supplementary Material, respectively, in terms of averaged bias of point estimates, the Monte Carlo

standard derivation (MCSD) of point estimates, the average of standard error (ASE), and the empirical coverage percentage (CP) of the 95% confidence intervals. For standard errors, we report the results of three variance estimators: the fully resampling method (FR), the closed-form sandwich estimator (CFS) and the resampling-based sandwich estimator (RBS) proposed in subsection 3.2, in comparison with the fully resampling estimator of variance proposed by Li et al. (2016) for independent failure times (IFR) with time-independent covariates. All perturbation resampling-based estimators of variance are computed based on B = 500 multiplier replicates.

In general, it can be seen from these tables that the estimated regression coefficients appear to be asymptotically unbiased. Biases and standard deviations of point estimates decrease as the number of clusters or cluster size increases. Their standard errors obtained from FR/CFS/RBS are generally close to the Monte Carlo empirical standard deviation of the estimates. The coverage probabilities based on FR/CFS/RBS variance estimators also reasonably approach the nominal level 0.95.

To be specific, as shown in Supplementary Table S.1 under Scenario 1 with independent survival outcomes, IFR, FR, CFS and RBS variance estimators yield similar results in terms of average estimated standard error as well as coverage probability. With stronger dependence among failure time outcomes, corresponding to higher values of Kendall's tau as demonstrated in Table 1 and Table S.2,

Table 1: Estimation results based on 500 replicates for quantile level $\tau=0.5$ under Scenario 1 with Kendall's tau=0.5.

			$\alpha_0(0.5, t_0)$				(runtime		
(n,m)			$t_0 = 0$	$t_0 = 1$	$t_0 = 2$	_	$t_0 = 0$	$t_0 = 1$	$t_0 = 2$	(s)
(200,3)	bias		-0.007	-0.009	-0.005		0.008	0.019	0.017	
	MCSD		0.146	0.155	0.174		0.235	0.259	0.289	
	ASE	IFR	0.130	0.150	0.173		0.235	0.267	0.303	
		FR	0.146	0.158	0.178		0.24	0.268	0.303	5.75
		CFS	0.142	0.164	0.196		0.234	0.276	0.332	0.262
		RBS	0.139	0.149	0.167		0.227	0.249	0.281	3.502
	CP	IFR	0.924	0.932	0.942		0.956	0.938	0.958	
		FR	0.958	0.95	0.958		0.96	0.958	0.964	
		CFS	0.948	0.958	0.964		0.956	0.948	0.98	
		RBS	0.95	0.932	0.94		0.946	0.944	0.94	
(500,3)	bias		0.002	0.003	0.001		0.004	0.005	0.008	
	MCSD		0.087	0.096	0.109		0.138	0.161	0.186	
	ASE	IFR	0.082	0.094	0.108		0.147	0.166	0.188	
		FR	0.09	0.099	0.11		0.148	0.167	0.188	9.948
		CFS	0.09	0.104	0.122		0.146	0.173	0.206	0.673
		RBS	0.087	0.096	0.106		0.142	0.161	0.178	6.265
	CP	IFR	0.920	0.936	0.952		0.940	0.950	0.963	
		FR	0.956	0.956	0.948		0.958	0.96	0.942	
		CFS	0.95	0.954	0.978		0.938	0.962	0.98	
		RBS	0.946	0.95	0.938		0.954	0.95	0.938	
(200,10)	bias		-0.007	-0.003	0		0.004	0.001	-0.002	
	MCSD		0.104	0.099	0.105		0.129	0.144	0.163	
	ASE	IFR	0.070	0.081	0.092		0.127	0.143	0.159	
		FR	0.1	0.102	0.106		0.129	0.147	0.165	10.978
		CFS	0.099	0.105	0.116		0.126	0.151	0.181	0.825
		RBS	0.096	0.098	0.103		0.125	0.141	0.159	6.363
	CP	IFR	0.868	0.906	0.946		0.946	0.952	0.960	
		FR	0.954	0.962	0.95		0.954	0.95	0.944	
		CFS	0.952	0.972	0.97		0.946	0.966	0.972	
		RBS	0.948	0.948	0.944		0.948	0.942	0.932	

the IFR estimator is more likely to underestimate standard errors particularly for α_0 as the cluster size increases. Similar trends can be found across various situations in Scenarios 2-8. As shown in Tables 2-4 and Tables S.3-S.4, the IFR estimator generally yields considerably lower ASEs than the benchmark MCSDs in most cases, along with the empirical CPs below the nominal 95%. Such an issue becomes more pronounced–particularly for coefficients associated with cluster-level covariates—as the correlation among failure times strengthens, the cluster size grows, or t_0 is small. This underperformance is mainly attributed to the fact that the IFR method utilizes a conventional resampling approach, which treats the data $\{(Y_{ij}, \delta_{ij}, \mathbf{X}_{ij})\}$ as if they are independent and samples from them with replacement across all (i, j), thereby ignoring the correlation among multivariate failure times. It is observed that the performance of the IFR estimator improves as t_0 increases, especially when $t_0 = 2$ in our simulation setups. A possible reason for this improvement is that both the values of MCSD and ASE increase as a result of smaller sample sizes under the restricted population where $T_{ij} > t_0$.

On the other hand, the proposed estimators closely match MCSD and produce reasonable coverage probabilities near the nominal level, highlighting the importance of accounting for within-cluster dependence to ensure accurate variance estimation and reliable inference. Results summarized in Supplementary Tables S.3-S.4 demonstrate the outperformance of the proposed marginal method in accommodating diverse dependence structures for multivariate failure times even

Table 2: Estimation results based on 500 replicates for quantile level $\tau=0.5$ under Scenario 2.

			($\alpha_0(0.5, t_0)$)		(runtime		
(n, m)			$t_0 = 0$	$t_0 = 1$	$t_0 = 2$	-	$t_0 = 0$	$t_0 = 1$	$t_0 = 2$	(s)
(200,3)	bias		-0.008	-0.002	-0.014		0.003	0.001	0.006	
	MCSD		0.174	0.19	0.191		0.313	0.33	0.334	
	ASE	IFR	0.131	0.15	0.173		0.238	0.269	0.303	
		FR	0.179	0.184	0.164		0.317	0.328	0.291	9.672
		CFS	0.178	0.191	0.179		0.314	0.34	0.315	0.358
		RBS	0.169	0.173	0.154		0.295	0.306	0.268	5.806
	CP	IFR	0.848	0.90	0.929		0.844	0.894	0.927	
		FR	0.948	0.94	0.908		0.948	0.944	0.925	
		CFS	0.948	0.948	0.939		0.946	0.95	0.946	
		RBS	0.936	0.926	0.892		0.936	0.93	0.894	
(500,3)	bias		-0.009	-0.009	-0.011		0.011	0.012	0.013	
	MCSD		0.109	0.111	0.123		0.197	0.195	0.212	
	ASE	IFR	0.082	0.093	0.108		0.148	0.166	0.188	
		FR	0.112	0.116	0.118		0.198	0.205	0.208	13.584
		CFS	0.111	0.121	0.129		0.196	0.213	0.227	0.905
		RBS	0.107	0.111	0.114		0.188	0.195	0.199	7.001
	CP	IFR	0.868	0.896	0.909		0.850	0.908	0.909	
		FR	0.946	0.966	0.942		0.954	0.96	0.952	
		CFS	0.946	0.972	0.963		0.952	0.964	0.969	
		RBS	0.932	0.956	0.927		0.942	0.952	0.944	
(200,10)	bias		-0.003	-0.002	-0.006		0.002	-0.003	0.002	
	MCSD		0.166	0.148	0.142		0.283	0.264	0.256	
	ASE	IFR	0.071	0.081	0.094		0.127	0.143	0.163	
		FR	0.156	0.147	0.132		0.274	0.262	0.239	14.968
		CFS	0.155	0.153	0.145		0.272	0.273	0.262	0.879
		RBS	0.151	0.142	0.128		0.263	0.254	0.23	7.404
	CP	IFR	0.606	0.692	0.780		0.612	0.708	0.766	
		FR	0.926	0.938	0.927		0.938	0.954	0.936	
		CFS	0.926	0.946	0.951		0.934	0.964	0.953	
		RBS	0.92	0.922	0.91		0.92	0.94	0.925	

Table 3: Estimation results based on 500 replicates for quantile level $\tau=0.5$ under Scenario 3.

			($\alpha_0(0.5, t_0)$)	($\alpha_1(0.5, t_0)$)	runtime
(n,m)			$t_0 = 0$	$t_0 = 1$	$t_0 = 2$	$t_0 = 0$	$t_0 = 1$	$t_0 = 2$	(s)
(200,3)	bias		0.003	0.004	-0.003	-0.01	-0.015	-0.009	
	MCSD		0.088	0.119	0.165	0.161	0.217	0.296	
	ASE	IFR	0.069	0.094	0.133	0.123	0.165	0.235	9.662
		FR	0.092	0.126	0.167	0.163	0.221	0.295	10.724
		CFS	0.092	0.131	0.185	0.161	0.229	0.324	0.445
		RBS	0.09	0.12	0.161	0.158	0.212	0.283	6.031
	CP	IFR	0.884	0.888	0.884	0.856	0.848	0.874	
		FR	0.968	0.966	0.956	0.952	0.948	0.936	
		CFS	0.968	0.972	0.974	0.948	0.962	0.96	
		RBS	0.958	0.962	0.95	0.94	0.928	0.93	
(500,3)	bias		-0.001	-0.003	-0.004	0.003	0.005	0.006	
	MCSD		0.057	0.077	0.1	0.1	0.136	0.175	
	ASE	IFR	0.043	0.057	0.082	0.075	0.101	0.142	21.31
		FR	0.057	0.077	0.104	0.1	0.135	0.18	23.796
		CFS	0.057	0.082	0.115	0.1	0.143	0.2	1.286
		RBS	0.056	0.076	0.101	0.098	0.133	0.175	12.957
	CP	IFR	0.852	0.856	0.88	0.852	0.846	0.892	
		FR	0.946	0.946	0.958	0.95	0.952	0.954	
		CFS	0.948	0.962	0.97	0.95	0.968	0.97	
		RBS	0.94	0.94	0.952	0.944	0.946	0.95	
(200,10)	bias		0	-0.001	-0.003	-0.005	-0.008	-0.007	
	MCSD		0.075	0.102	0.131	0.131	0.18	0.234	
	ASE	IFR	0.037	0.05	0.071	0.065	0.087	0.124	31.27
		FR	0.079	0.108	0.136	0.138	0.189	0.237	35.872
		CFS	0.079	0.114	0.152	0.138	0.198	0.264	1.609
		RBS	0.077	0.105	0.132	0.135	0.183	0.231	13.949
	CP	IFR	0.696	0.688	0.734	0.706	0.684	0.722	
		FR	0.966	0.964	0.95	0.948	0.948	0.944	
		CFS	0.966	0.972	0.974	0.948	0.96	0.966	
		RBS	0.962	0.958	0.942	0.936	0.932	0.944	

Table 4: Estimation results based on 500 replicates under Scenario 4 (n=200, m=10).

			$\alpha_0(0.25, t_0)$			$_{1}(0.25,t)$		$\alpha_0(0.5, t_0)$			$\alpha_1(0.5, t_0)$			
a				$t_0 = 1$			$t_0 = 1$	$t_0 = 2$		$t_0 = 1$	$t_0 = 2$		$t_0 = 1$	
0.1	truth		-0.939		-0.939	2.194	2.127	2.09	-0.06	-0.06	-0.06	2.106	2.068	2.044
	bias		-0.009		-0.003		-0.007	-0.01	-0.005	-0.008	0.002		-0.003	
	MCSD		0.16	0.118	0.15	0.211	0.188	0.218	0.102	0.09	0.108	0.142	0.14	0.157
	ASE	IFR	0.064	0.095	0.144	0.089	0.118	0.163	0.047	0.07	0.106	0.068	0.089	0.122
		FR	0.166	0.116	0.147	0.226	0.186	0.203	0.109	0.091	0.109	0.15	0.138	0.15
		CFS	0.166	0.123	0.162	0.226	0.198	0.225	0.109	0.097	0.12	0.15	0.146	0.166
		RBS	0.155	0.111	0.138	0.213	0.178	0.191	0.106	0.088	0.105	0.145	0.133	0.145
	CP	IFR	0.552	0.89	0.936	0.59	0.768	0.848	0.642	0.878	0.932	0.672	0.782	0.872
		FR	0.954	0.944	0.946	0.964	0.952	0.94	0.97	0.95	0.94	0.962	0.956	0.94
		CFS	0.954	0.952	0.966	0.964	0.96	0.966	0.97	0.96	0.966	0.962	0.96	0.964
		RBS	0.938	0.936	0.928	0.952	0.946	0.92	0.962	0.94	0.93	0.956	0.95	0.928
0.2	truth		-0.939	-0.939	-0.939	2.388	2.276	2.202	-0.06	-0.06	-0.06	2.212	2.148	2.101
	bias		-0.009	-0.005	-0.003	-0.003	-0.007	-0.01	-0.005	-0.008	0.002	-0.005	-0.002	-0.012
	MCSD		0.16	0.118	0.15	0.201	0.183	0.213	0.102	0.09	0.108	0.135	0.134	0.153
	ASE	IFR	0.064	0.095	0.144	0.086	0.115	0.161	0.047	0.07	0.106	0.065	0.086	0.12
		FR	0.165	0.116	0.147	0.215	0.181	0.201	0.109	0.091	0.109	0.143	0.132	0.147
		CFS	0.166	0.123	0.162	0.216	0.192	0.223	0.109	0.097	0.12	0.143	0.14	0.162
		RBS	0.156	0.111	0.138	0.204	0.174	0.191	0.106	0.087	0.105	0.138	0.127	0.141
	CP	IFR	0.554	0.89	0.938	0.596	0.766	0.864	0.642	0.876	0.932	0.672	0.802	0.866
		FR	0.954	0.942	0.946	0.97	0.944	0.94	0.972	0.948	0.94	0.956	0.954	0.948
		CFS	0.954	0.952	0.966	0.97	0.95	0.96	0.972	0.962	0.966	0.956	0.96	0.97
		RBS	0.938	0.936	0.928	0.956	0.936	0.932	0.962	0.938	0.928	0.952	0.944	0.94
0.5	truth		-0.939	-0.939	-0.939	2.97	2.839	2.71	-0.06	-0.06	-0.06	2.53	2.445	2.361
	bias		-0.009	-0.005	-0.003	0.001	-0.004	-0.008	-0.005	-0.008	0.002	-0.002	0.001	-0.01
	MCSD		0.16	0.118	0.15	0.176	0.152	0.185	0.102	0.09	0.107	0.117	0.111	0.131
	ASE	IFR	0.064	0.095	0.144	0.075	0.105	0.153	0.047	0.07	0.106	0.057	0.079	0.113
		FR	0.165	0.116	0.147	0.188	0.152	0.183	0.109	0.091	0.109	0.125	0.112	0.13
		CFS	0.166	0.123	0.162	0.188	0.161	0.203	0.109	0.097	0.12	0.125	0.119	0.143
		RBS	0.156	0.111	0.139	0.177	0.146	0.174	0.105	0.088	0.105	0.12	0.108	0.126
	CP	IFR	0.554	0.89	0.936	0.584	0.838	0.894	0.642	0.876	0.932	0.686	0.858	0.912
		FR	0.954	0.942	0.944	0.968	0.94	0.956	0.972	0.948	0.942	0.966	0.952	0.954
		CFS	0.954	0.952	0.966	0.968	0.954	0.978	0.972	0.962	0.968	0.966	0.958	0.974
		RBS	0.938	0.936	0.928	0.958	0.926	0.94	0.962	0.938	0.93	0.954	0.938	0.942

though an independent working model is used. These promising findings further exhibit a degree of robustness of the method across different types of copula.

Each of the three variance estimators we proposed has unique advantages. The FR estimator provides the best performance but is less computationally efficient, requiring at least 55% more time than the RBS estimator. The CFS estimator stands out for its elegant form and computational efficiency. However, the CFS estimator tends to be slightly conservative with higher CP for larger t_0 , possibly due to bandwidth selection, and becomes inestimable at high quantile level as indicated by the difference quotient in Equation (3.10). The RBS estimator is a trade-off between computational efficiency and accuracy, performing well in most scenarios. While it falls behind the FR estimator in a few cases, its performance improves with larger sample sizes, making it the most practical choice.

As a final remark, it is worth noting that when t_0 and the quantile level τ are large, the number of individuals with exactly observed failure times would become limited, leading to potential identifiability issues. To ensure identifiability, we therefore consider estimation at $\tau = 0.5$ under various scenarios restricting the censoring rate to below 50% in the simulation studies. When using a quantile level $\tau \in (0,0.4)$ and a higher censoring rate, e.g., 62% as in the following real data analysis, the proposed estimator exhibits similar performance. Thus, the corresponding simulation results are omitted.

5. An illustrative example

In this section, we utilized the proposed method to analyze a subset of data from the renowned Framingham heart study (Tsao and Vasan, 2015) discussed in Section 1. The data set is available in the R package riskCommunicator. Participants in this study have undergone biennial examinations since the study entry, and all subjects are continually monitored for cardiovascular outcomes. Our specific focus was on middle-aged patients aged between 30 and 50 years who were part of the first examination cycle. We excluded subjects with a history of prevalent coronary heart disease, prevalent hypertension, myocardial infarction, or fatal coronary heart disease prior to the first examination. Additionally, subjects who passed away without experiencing any of these diseases were removed to avoid issues related to semi-competing risks. Missing observations were also excluded, resulting in a remaining sample size of 1753 patients in our analysis.

Researchers aimed to identify the effects of covariates on the occurrence of angina pectoris, myocardial infarction, coronary insufficiency, or fatal coronary heart disease (ANYCHD) and as well as hypertensive (HYPERTEN) events. The latter were defined as instances where high blood pressure was treated during the first examination or during the second examination when either the systolic blood pressure reached 140 mmHg or the diastolic blood pressure reached 90 mmHg. The survival times of interest were the time until the first ANYCHD event and the time until the first HYPERTEN event. The two times were measured in days

and recorded from the same individual might be correlated. The bivariate times can either be observed directly or subjected to censoring due to death or loss of follow-up, resulting in a censoring rate of 62.3%. The risk factors of interest included body mass index (BMI), systolic blood pressure (SYSBP, measured in mmHg), current cigarette smoking at the time of examination (CURSMOKE, yes= 1 and no= 0), sex (female= 1 and male= 0), and serum total cholesterol level (measured in mg/dL) in logarithmic transformation. Preliminary analysis indicated that these risk factors had no significant effects on censoring variables. Given that only 37.7% of the survival times are observable, it's important to note that coefficients at quantile levels exceeding 0.4 cannot be reliably estimated.

Supplementary Figures S.1-S.2 illustrate the comprehensive trajectories of coefficient estimations as τ increases with some particular values of t_0 . In these figures, the black curves represent coefficient estimates, accompanied by their 95% RBS (red dashed curves) confidence intervals. At lower quantile levels and smaller t_0 , RBS and CFS show similar trends. However, CFS estimator becomes unstable and unestimable for higher quantile levels and larger t_0 , thus CFS estimator is omitted in Supplementary Figures S.1-S.2. Table 5 summarizes estimates of regression coefficients and their significance as well as τ -th conditional quantile of the logarithm of residual lifetime $\theta_{\tau,t_0}^{(k)}$ for selected patient k for k=1,2 under $\tau=0.1,0.2,0.3$ quantile level and $t_0=0,1200,2400$ (days). Patient 1 is a female and non-smoker and has the minimum BMI, SYSBP, TOTCHOL among the

sample, while Patient 2 is a female and smoker who has the maxmimum values of BMI, SYSBP and TOTCHOL. The IFR/RBS variance estimator with the number of replicates B = 500 are used to compute the significance. It is noteworthy that the intercept exhibits a significant impact on event times. Moreover, both BMI and systolic blood pressure demonstrate significance, particularly at lower quantiles or for smaller values of t_0 .

Table 5: Estimation of regression coefficients and quantile of the residual lifetime $\theta_{\tau,t_0}^{(k)}$ (k=1,2) for the Framingham heart data with $\tau=0.1,0.2,0.3$ quantiles of ANYCHD/HYPERTEN times after the first examination at $t_0=0,1200,2400$ (days), respectively.

		$t_0 = 0$		$t_0 = 1$	200		$t_0 = 2$		
	$\tau = 0.1$	$\tau = 0.2$	$\tau = 0.3$	$\tau = 0.1$	$\tau = 0.2$	$\tau = 0.3$	$\tau = 0.1$	$\tau = 0.2$	$\tau = 0.3$
Estimates									
Intercept	17.046	14.916	13.862	17.808	14.218	13.071	12.641	12.842	11.446
BMI	-0.045	-0.039	-0.023	-0.076	-0.034	-0.023	-0.021	-0.016	-0.011
SYSBP	-0.045	-0.038	-0.029	-0.046	-0.034	-0.022	-0.033	-0.024	-0.014
CURSMOKE	0.061	0.01	-0.026	0.082	-0.026	-0.051	-0.113	-0.086	-0.053
SEX	0.07	0.077	0.015	-0.014	0.131	0.035	0.253	0.071	0.049
log(TOTCHOL)	-0.512	-0.196	-0.197	-0.536	-0.202	-0.217	-0.093	-0.215	-0.158
$\theta_{ au,t_0}^{(1)}$	10.125	10.171	10.075	10.07	9.932	9.813	9.295	9.543	9.422
$\theta_{ au,t_0}^{(1)*}$	9.973	10.105	10.163	9.785	9.904	10.07	9.295	9.473	9.543
$\theta_{ au,t_0}^{(2)}$	4.699	5.836	6.824	3.763	6.008	7.087	5.846	6.762	7.786
$\theta_{\tau,t_0}^{(1)}$ $\theta_{\tau,t_0}^{(1)*}$ $\theta_{\tau,t_0}^{(2)}$ $\theta_{\tau,t_0}^{(2)*}$ $\theta_{\tau,t_0}^{(2)*}$	4.699	5.836	6.824	3.763	6.008	7.087	5.846	6.762	7.786
SE- RBS									
(Intercept)	1.161**	0.982**	1.101**	1.686**	1.093**	1.391**	1.382**	1.357**	1.934**
BMI	0.01**	0.009**	0.008**	0.017**	0.011**	0.012*	0.013	0.013	0.016
SYSBP	0.003**	0.003**	0.004**	0.004**	0.004**	0.005**	0.004**	0.004**	0.009
CURSMOKE	0.078	0.066	0.061	0.104	0.068	0.068	0.092	0.069	0.112
SEX	0.069	0.066	0.056	0.106	0.069*	0.075	0.091**	0.071	0.106
$\log(\text{TOTCHOL})$	0.226**	0.185	0.172	0.292*	0.188	0.208	0.266	0.215	0.285
$ heta_{ au,t_0}^{(1)}$	0.158**	0.151**	0.218**	0.267**	0.2**	0.276**	0.216**	0.234**	0.439**
$ heta_{ au,t_0}^{(1)} \ heta_{ au,t_0}^{(2)}$	0.231**	0.204**	0.267**	0.461**	0.295**	0.369**	0.317**	0.339**	0.415**
SE- IFR									
(Intercept)	1.118**	0.742**	0.562**	1.387**	0.761**	0.617**	1.47**	0.907**	0.539**
BMI	0.01**	0.008**	0.006**	0.016**	0.011**	0.009**	0.014	0.011	0.006*
SYSBP	0.003**	0.002**	0.002**	0.004**	0.002**	0.002**	0.004**	0.002**	0.002**
CURSMOKE	0.077	0.053	0.033	0.109	0.053	0.039	0.114	0.052*	0.028*
SEX	0.079	0.062	0.04	0.115	0.068*	0.053	0.095**	0.072	0.07
$\log(\text{TOTCHOL})$	0.221**	0.143	0.105*	0.282*	0.146	0.117*	0.288	0.166	0.085*
$ heta_{ au,t_0}^{(1)} \ heta_{ au,t_0}^{(2)}$	0.134**	0.101**	0.076**	0.182**	0.104**	0.081**	0.207**	0.114**	0.067
$ heta_{ au,t_0}^{(2)}$	0.231**	0.187**	0.138**	0.34**	0.229**	0.175**	0.324**	0.218**	0.185**

^{*} and ** indicate significance at levels 0.1 and 0.05, respectively. The significance is computed based on RBS/IFR variance estimators.

Note that the estimates of $\theta_{\tau,t_0}^{(1)}$ in Table 5 do not increase as τ increases, suggesting a crossing quantile problem in the analysis. Thus we further use a rearrangement procedure proposed by Chernozhukov et al. (2010) to construct a monotone quantile curve, denoted by $\theta_{\tau,t_0}^{(k)*}$ in the table. It can be seen from this table that patients with smoke hobby and higher values of BMI, SYSBP and TOTCHOL face higher risks and have shorter remaining time until the occurrence of severe cardiovascular diseases. Moreover, to illustrate the effects of the rearrangement procedure in prediction, we consider $t_0 = 1200$ and calculate the complete estimated $\theta_{\tau,t_0}^{(k)*}$ at different quantile levels τ for both selected patients. Figure 1 visualizes the prediction intervals at different quantile levels for the first and second patients, respectively. Notably, the difference between the two typical patients is quite large at small quantile levels, and lessens as quantile level increases.

6. Discussion

This article introduces a marginal QRL regression approach to accommodate the potentially clustered failure times when there are multiple failure event types or groups of subjects in the study. The estimation process is computationally simple and stable, making it attractive for practical applications. Our proposed variance estimators in Section 3.2 are particularly tailored for the estimator $\hat{\alpha}_N$, which is obtained by solving the estimation equation (6). These asymptotic variance esti-

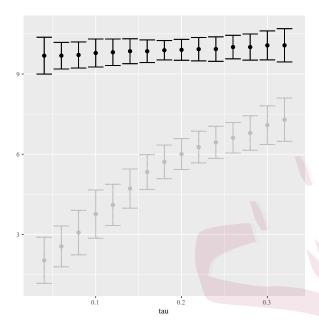


Figure 1: Prediction intervals of the logarithm residual lifetime with $t_0 = 1200$ over different quantile levels of τ for the selected patient 1 (in black color) and patient 2 (in grey color).

mators address the within-cluster dependence, making subsequent inference more reliable. This marginal approach is valuable when the relationship between quantile residual lifetimes and covariates is of interest, given that a subject is known to be disease-free at a specific time point. Our proposal leaves the underlying correlation structure completely unspecified, making it robust to potential misspecification and flexible in modeling various multivariate failure times.

The estimating equation (6) is analogous to the well-known generalized estimating equations (GEE) approach with an independent working correlation structure. The GEE method has been extended to quantile regression for longitudinal data in the literature, such as Jung (1996), Fu and Wang (2012) and Leng and

Zhang (2014). We adopt the independent working model in light of the considerations as follows. 1) The choice of the working correlation structure should be a trade-off between simplicity and potential efficiency loss from misspecification. 2) Since the association is considered as nuisance in the marginal models, a simpler working correlation will generally suffice, with the independent working structure being recommended by Fahrmeir and Tutz (2013). Our simulation results demonstrate the promising performance of the proposed method across various dependence structures and copula types.

While we acknowledge that incorporating within-cluster dependence may improve efficiency, integrating the idea of the GEE approach within the framework of the multivariate quantile residual lifetime model poses challenges. As a potential direction for future work, we consider the following weighted estimating equations for residual lifetimes:

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}^{T} \boldsymbol{\mathcal{W}}_{i}^{-1} \boldsymbol{\zeta}_{i} = \mathbf{0}, \tag{6.14}$$

where $\mathbf{X}_i = (\mathbf{X}_{i1}, \cdots, \mathbf{X}_{im_i})^T$, $\boldsymbol{\zeta_i} = (\zeta_{i1}, \cdots, \zeta_{im_i})^T$ with

$$\zeta_{ij} = I(Y_{ij} \ge t_0) \left[\Delta_{ij} I \left\{ Y_{ij} \le t_0 + \exp(\mathbf{X}_{ij}^T \boldsymbol{\alpha}) \right\} \widehat{G}(t_0) / \widehat{G}(Y_{ij}) - \tau \right].$$

 \mathcal{W}_i is a working covariance matrix of ζ_i and can be expressed as $\mathcal{W}_i = \Gamma_i^{\frac{1}{2}} \mathbf{A}_i \Gamma_i^{\frac{1}{2}}$, where $\Gamma_i = \text{diag}\{\sigma_{i1}^2, \dots, \sigma_{im_i}^2\}$ with σ_{ij}^2 being the dispersion of ζ_{ij} . \mathbf{A}_i is a correlation matrix that can be specified with some unknown parameters or as a linear

combination of some known basis matrices (Qu et al., 2000). It is noted that potential issues may arise from (6.14) demanding more in-depth exploration. First, the dependence may vary with quantile levels or the time points t_0 , making it difficult to specify a proper working correlation structure. Second, as t_0 increases, the number of individuals with $T_{ij} \geq t_0$ will decrease, and the unstable estimation may become more severe for larger t_0 if an inappropriate correlation structure is imposed. Besides, the potential efficiency gains from incorporating a weight function require further investigation through theoretical justification and numerical studies.

Additionally, we assume the censoring variable C_{ij} 's are i.i.d from a distribution independent from \mathbf{X}_{ij} . In practice, it may be necessary to verify this assumption about the censoring distribution before applying the proposed method. Our method can be simply improved by incorporating covariates in modeling the censoring times through Cox proportional hazards model for example, and replace $\widehat{G}(\cdot)$ in (2.6) with $\widehat{G}(\cdot|X)$. Further study of its theoretical justification is also warranted.

Supplementary Material

The online Supplementary Material contains an appendix for technical proofs of the lemma and theorems referenced in Section 3 and additional numerical results referenced in Sections 4-5.

Acknowledgements

We are grateful to the editor, the associate editor, and three referees for their valuable comments and suggestions, which have greatly improved the article. This research was supported by the Singapore Ministry of Education Academic Research Fund Tier 2 Grant (MOE-T2EP20121-0004).

References

- Aalen, O. O. (1988). Heterogeneity in survival analysis. Statistics in medicine 7(11), 1121–1137.
- Cai, J. and R. L. Prentice (1995). Estimating equations for hazard ratio parameters based on correlated failure time data. Biometrika 82(1), 151–164.
- Caplan, D. J., J. Cai, G. Yin, and B. A. White (2005). Root canal filled versus non-root canal filled teeth: A retrospective comparison of survival times. *Journal of Public Health Dentistry* 65(2), 90–96.
- Chen, Y., K. Chen, and Z. Ying (2010). Analysis of multivariate failure time data using marginal proportional hazards model. *Statistica Sinica* 20(33), 1025–1041.
- Chernozhukov, V., I. Fernández-Val, and A. Galichon (2010). Quantile and probability curves without crossing. *Econometrica* 78(3), 1093–1125.
- Chiou, S. H., S. Kang, and J. Yan (2015). Semiparametric accelerated failure time modeling for clustered failure times from stratified sampling. *Journal of the American Statistical Association* 110 (510), 621–629.
- Conner, S. C., A. Beiser, E. J. Benjamin, M. P. LaValley, M. G. Larson, and L. Trinquart (2022).

- A comparison of statistical methods to predict the residual lifetime risk. European Journal of Epidemiology 37(2), 173–194.
- Csörgő, S. and L. Horváth (1983). The rate of strong uniform consistency for the product-limit estimator.

 Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 62(3), 411–426.
- Diabetic Retinopathy Study Research Group (1976). reliminary report on effects of photocoagulation therapy. American Journal of Ophthalmology 81(4), 383–396.
- Duchateau, L. and P. Janssen (2008). The frailty model. Springer.
- Fahrmeir, L. and G. Tutz (2013). Multivariate Statistical Modelling Based on Generalized Linear Models.

 Springer Science & Business Media.
- Fu, L. and Y.-G. Wang (2012). Quantile regression for longitudinal data with a working correlation model. Computational Statistics & Data Analysis 56(8), 2526–2538.
- Galvao, A. F., T. Parker, and Z. Xiao (2023). Bootstrap inference for panel data quantile regression.

 *Journal of Business & Economic Statistics 42(2), 628–639.
- Goh, S. C. and K. Knight (2009). Nonstandard quantile-regression inference. Econometric Theory 25(5), 1415–1432.
- Hagemann, A. (2017). Cluster-robust bootstrap inference in quantile regression models. Journal of the American Statistical Association 112 (517), 446–456.
- Hall, P. and S. J. Sheather (1988). On the distribution of a studentized quantile. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 50(3), 381–391.
- He, W., G. Y. Yi, and A. Yuan (2024). Analysis of multivariate survival data under semiparametric

- copula models. Canadian Journal of Statistics 52(2), 380-413.
- He, X. and Q.-M. Shao (1996). A general bahadur representation of m-estimators and its application to linear regression with nonstochastic designs. *The Annals of Statistics* 24(6), 2608–2630.
- Hendricks, W. and R. Koenker (1992). Hierarchical spline models for conditional quantiles and the demand for electricity. *Journal of the American statistical Association* 87(417), 58–68.
- Huang, R., L. Xiang, and I. D. Ha (2019). Frailty proportional mean residual life regression for clustered survival data: A hierarchical quasi-likelihood method. *Statistics in Medicine* 38(24), 4854–4870.
- Jeong, J.-H. (2014). Statistical inference on residual life. Springer.
- Jin, Z., D. Lin, L. Wei, and Z. Ying (2003). Rank-based inference for the accelerated failure time model.

 Biometrika 90(2), 341–353.
- Jin, Z., D. Lin, and Z. Ying (2006). Rank regression analysis of multivariate failure time data based on marginal linear models. Scandinavian Journal of Statistics 33(1), 1–23.
- Jung, S.-H. (1996). Quasi-likelihood for median regression models. Journal Of the American Statistical Association 91 (433), 251–257.
- Jung, S.-H., J. H. Jeong, and H. Bandos (2009). Regression on quantile residual life. *Biometrics* 65(4), 1203–1212.
- Kim, M.-O., M. Zhou, and J.-H. Jeong (2012). Censored quantile regression for residual lifetimes.

 Lifetime data analysis 18, 177–194.
- Koenker, R. (2005). Quantile regression. Cambridge University Press.
- Kwon, S., I. D. Ha, J.-H. Shih, and T. Emura (2022). Flexible parametric copula modeling approaches

- for clustered survival data. Pharmaceutical Statistics 21(1), 69-88.
- Leng, C. and W. Zhang (2014). Smoothing combined estimating equations in quantile regression for longitudinal data. Statistics and Computing 24(1), 123–136.
- Li, R., X. Huang, and J. Cortes (2016). Quantile residual life regression with longitudinal biomarker measurements for dynamic prediction. *Journal of the Royal Statistical Society Series C: Applied Statistics* 65(5), 755–773.
- Li, R. and L. Peng (2015). Quantile regression adjusting for dependent censoring from semicompeting risks. The Journal of the Royal Statistical Society, Series B (Statistical Methodology) 77(1), 107–130.
- Liang, K.-Y. and S. L. Zeger (1986, 04). Longitudinal data analysis using generalized linear models. Biometrika 73(1), 13–22.
- Lin, X., R. Li, F. Yan, T. Lu, and X. Huang (2019). Quantile residual lifetime regression with functional principal component analysis of longitudinal data for dynamic prediction. Statistical Methods

 Medical Research 28(4), 1216–1229.
- Ma, Y. and Y. Wei (2012). Analysis on censored quantile residual life model via spline smoothing.

 Statistic Sinina 22(1), 47–68.
- Othus, M. and Y. Li (2010). A gaussian copula model for multivariate survival data. Statistics in biosciences 2, 154–179.
- Peng, L. and Y. Huang (2008). Survival analysis with quantile regression models. *Journal of the American Statistical Association* 103 (482), 637–649.
- Portnoy, S. and R. Koenker (1997). The gaussian hare and the laplacian tortoise: computability of

- squared-error versus absolute-error estimators. Statistical Science 12(4), 279–300.
- Qu, A., B. G. Lindsay, and B. Li (2000). Improving generalised estimating equations using quadratic inference functions. *Biometrika* 87(4), 823–836.
- Resnick, S. I. (2019). A probability path. Springer Science & Business Media.
- Spiekerman, C. F. and D. Lin (1998). Marginal regression models for multivariate failure time data.

 *Journal of the American Statistical Association 93(443), 1164–1175.
- Tsao, C. W. and R. S. Vasan (2015). The Framingham Heart Study: past, present and future. *International Journal of Epidemiology* 44(6), 1763–1766.
- Van der Vaart, A. W. (2000). Asymptotic statistics. Cambridge University Press.
- Wang, H. J., X. Feng, and C. Dong (2019). Copula-based quantile regression for longitudinal data.

 Statistica Sinica 29, 245–264.
- Wang, H. J. and M. Fygenson (2009). Inference for censored quantile regression models in longitudinal studies. *The Annals of Statistics* 37(2), 756–781.
- Wang, H. J. and D. Li (2013). Estimation of extreme conditional quantiles through power transformation.

 *Journal of the American Statistical Association 108 (503), 1062–1074.
- Wang, H. J., D. Li, and X. He (2012). Estimation of high conditional quantiles for heavy-tailed distributions. *Journal of the American Statistical Association* 107(500), 1453–1464.
- Wang, H. J. and L. Wang (2009). Locally weighted censored quantile regression. *Journal of the American Statistical Association* 104 (487), 1117–1128.
- White, H. (1980). Nonlinear regression on cross-section data. Econometrica 48(3), 721-746.

- Xu, Y., D. Zeng, and D. Lin (2023). Marginal proportional hazards models for multivariate intervalcensored data. *Biometrika* 110(3), 815–830.
- Yin, G. and J. Cai (2005). Quantile regression models with multivariate failure time data. *Biometrics* 61(1), 151–161.
- Ying, Z., S. H. Jung, and L. J. Wei (1995). Survival analysis with median regression models. Journal of the American Statistical Association 90 (429), 178–184.
- Yu, T., L. Xiang, and H. J. Wang (2021). Quantile regression for survival data with covariates subject to detection limits. *Biometrics* 77(2), 610–621.
- Zeng, D. and D. Y. Lin (2008). Efficient resampling methods for nonsmooth estimating functions.

 Biostatistics 9(2), 355–363.
- Zhou, M. and J.-H. Jeong (2011). Empirical likelihood ratio test for median and mean residual lifetime. Statistics in Medicine 30(2), 152-159.

Tonghui Yu, Liming Xiang,

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

E-mail: LMXiang@ntu.edu.sg

Jong-Hyeon Jeong,

Department of Biostatistics, Public Health, University of Pittsburgh, U.S.A.

Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Institutes of Health/National Cancer Institute, U.S.A.