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Abstract: The quantile residual lifetime (QRL) regression is an attractive tool for assessing
covariate effects on the distribution of residual life expectancy, which is often of interest
in clinical studies. When study subjects may experience multiple events of interest, the
resulting failure times for the same subject are likely to be correlated. To accommo-
date such correlation in assessing the covariate effects on QRL, we propose a marginal
semiparametric QRL regression model for multivariate failure time data. Our proposal
facilitates parameter estimation using unbiased estimating equations, yielding estimators
that are consistent and asymptotically normal. To address additional challenges in infer-
ence, we develop three approaches for variance estimation based on resampling techniques
and a sandwich estimator, and further construct a Wald-type test statistic for hypothe-
sis testing. The simulation studies and an application to real data offer evidence of the

satisfactory performance and practical utility of the proposed method.

Key words and phrases: Multivariate failure times; quantile residual lifetime; inverse



probability of censoring weighting; perturbation resampling; sandwich estimator.

1. Introduction

Multivariate failure times arise frequently in biomedical research when study
subjects are exposed to multiple types of failure events, experience recurrent events
in longitudinal studies, or are nested within clusters such as time to blindness in
two eyes (Diabetic Retinopathy Study Research Group) [1976) and tooth extrac-
tion times (Caplan et al., 2005). Failure times obtained within the same cluster
typically exhibit inherent association, which needs to be appropriately accounted
for in the analysis of such data.

Studying the distribution of residual lifetime generally provides valuable in-
sights into disease prevention or treatment strategies for individuals at different life
stages, especially for those who may not be at short-term risk of disease (Conner
et al., 2022). In the Framingham heart study (Tsao and Vasan, 2015), each study
subject may experience several cardiovascular diseases (events), such as coronary
heart disease, myocardial infarction and hypertension, and potential dependence
arises among the multiple disease event times obtained from a subject (cluster).
It is interesting in this study to assess the effects of risk factors, e.g., BMI, blood
pressure, cholesterol level, smoking and gender, on the distribution of remaining
life times to the occurrence of each disease given that a subject is known to be

disease-free at some followup time point. Since the dependence structure among



multiple residual life times of a subject is unknown in practice, it poses both
theoretical and computational challenges in regression analysis.

Conventional methods for handling correlated failure times can be basically
divided into three classes. The first explicitly models the dependence among mul-
tivariate failure times within a subject/cluster through frailty, which is often as-
sumed to follow a known distribution from some positive scale family (Aalen| (1988}
Duchateau and Janssen|, [2008). The second employs copula functions to capture
within-cluster association (Othus and Li, 2010; Kwon et al.; 2022; He et al., [2024)).
The third, consisting of marginal models initially proposed by |Liang and Zeger
(1986) for longitudinal outcomes, has been widely adopted and remains an active
area of research. In particular, the marginal approach has been extensively studied
in the context of multivariate survival data under the Cox proportional hazards
and AFT models (e.g. |Cai and Prentice, 1995; Jin et al., [2006; Chen et al., [2010;
Spiekerman and Lin| [1998; Xu et al., 2023), as well as censored quantile regression
(Yin and Cail, 2005; Wang and Fygenson, [2009). The basic idea of marginal models
is to model the marginal distributions of multivariate outcomes as for independent
observations, and treats associations among outcomes as a nuisance. Without
specifying the correlation structure, this approach allows for more flexible, parsi-
monious models and is computationally more efficient than frailty or copula-based
models.

In this paper, we focus on the marginal method for regression analysis of mul-



tivariate residual lifetimes. As an alternative to conventional marginal models,
residual lifetime—based regression has attracted considerable attention in clinical
studies due to its ease of understanding and capability to align with the demands
in practice. For example, in cancer studies with patients who survived after some
initial treatments, their remaining lifetimes are often of interest in evaluating the
efficacy of the followup therapies. Compared to relative risks, the remaining life
expectancy is more straightforward and readily understandable for patients. Re-
cently, the frailty model was extended to regression analysis of mean residual
lifetimes in multicenter studies by Huang et al.| (2019) using a hierarchical likeli-
hood approach. It is noted that failure times in biomedical studies often exhibit
censorship, outliers and heteroscedasticity, which particularly leads to covariate
effects on the remaining lifetimes varying over different follow-up stages. To this
end, quantile regression appears more appropriate than the mean-based regression
for the remaining lifetimes.

The quantile residual lifetime (QRL) regression, which leverages the strengths
of censored quantile regression (Peng and Huang), |2008; Wang and Wang), 2009,
examines the relationship between the quantile residual lifetimes and covariates
and has gained growing attention recently. An overview of early developments
can be found in the monograph by Jeong| (2014)). Semiparametric QRL regression
analysis has been investigated for univariate failure time outcomes. |Jung et al.

(2009) extended |Ying et al. (1995))’s median regression model to quantile residual



lifetimes and mimicked the least square estimating equations to construct an esti-
mating equation for quantile coefficients. They suggested a grid search method to
find some appropriate roots, which is computationally expensive especially in the
presence of a large number of covariates because the estimating equation is neither
monotone nor continuous. For testing significance, they studied a score-type test.
Zhou and Jeong| (2011) and Kim et al.| (2012) proposed case-weighted empirical-
likelihood ratio test. Built upon |Jung et al.| (2009)’s method, [Ma and Wei| (2012)
estimated quantile coefficient by spline smoothing instead and suggested a Wald-
type test statistic. For data with longitudinal covariates, Li et al.| (2016)) and Lin
et al. (2019)) developed an unbiased estimating equation that is solved via linear
programming. All these existing inferential methods for QRL models are under
the independence assumption for failure times.

In the presence of multivariate or clustered failure times, applying these meth-
ods by ignoring possible correlations among outcome data may result in biases in
variance estimation and loss of statistical power for testing hypotheses in conse-
quence. To circumvent this issue, we study a marginal QRL regression model for
multivariate failure time data, extending the idea of QRL regression (Li et al.,
2016) to accommodate the correlation among multiple failure time outcomes of a
subject. We develop semiparametric estimating equations for parameter estima-
tion and show theoretical properties of the resulting estimator regardless of the true

dependence structures. A major hurdle in inference for QRL regression is variance



estimation of parameter estimators. To this end, we propose three methods to
estimate the covariance matrix of the estimated regression coefficients accounting
for the dependence of the multivariate failure times properly and compare their
performance numerically.

The rest of this article is organized as follows. In Section 2, we introduce no-
tation for data and the proposed marginal QRL regression model first, and then
provide the estimating equations for model parameters. In Section 3, we estab-
lish asymptotic properties of the resulting estimator and further develop variance
estimation methods to facilitate inference. The performance of the proposed esti-
mators is examined through extensive simulation studies in Section 4. We present
an application to the analysis of the Flamingham Heart data in Section 5, followed

by concluding remarks in Section 6.

2. Methodology

2.1 Data and marginal QRL regression model

Consider a sample comprising n clusters with each cluster containing m; ob-
servations. Consequently, the total number of observations in the sample amounts
to N =>""  m;. Let T;; represent the j-th event time of cluster i for j = 1,...,m;
and ¢ = 1,...,n, and X;; be the associated baseline covariate vector with the first
element being one. At a specific time point ¢y, we define 6, ,, as the 7-th condi-

tional quantile of the residual lifetime on a logarithmic scale, i.e., log(T;; — to),



2.1 Data and marginal QRL regression model

conditional on the covariates X;; and subject to the constraint 7j; > ¢;. As a
result, 0, ,, satisfies the equation Pr(log(7;; — to) < 0r4,|Ti; > to, Xi;) = 7, which

is equivalent to

Pl"(to S T%j S to + exp(977t0)|X,-j) = TPI’(T‘U 2 tO’ng) (21)

For the 7-th quantile of the remaining lifetimes among clusters whose event times

are beyond time ¢, the linear QRL regression is assumed in the form of

9T,t0 = Xz;-amo, (22)

where a4, is the vector of coefficients at time ¢, for covariate vector X;; at some

quantile level 7 € (0,1). Under model (2.2)), 7;; can be modeled as

log(Ti; — to) = X{;0rgy + e, j=1,-+- ;mgi=1---n, (2.3)

T

where e;;’s are correlated within the same cluster but independent across clusters.
For the sake of identifiability, we set the conditional Tth quantile of e]; to zero

given Xij and T‘ij > t().



2.2 Estimation procedure

2.2 Estimation procedure

For ease of presentation, we omit 7 and tg in the coefficient vector a in the
following. When all survival times are exactly observed, the estimator of o can be

obtained by solving the following estimating equations for a:

DY XGI(Ty > to)[I{Ty < to + exp(X[a)} — 7] = 0. (2.4)

? J

In the presence of right censoring, the survival outcome 7;; is observed as
Y;; = min(7};, C;;) along with the censoring indicator A;; = I(T;; < C;), and Cj;
is the corresponding censoring time. It is assumed that T;; and C;; are indepen-
dent, with C;; independently following a distribution characterized by the survival
function G(-). With right-censored multivariate failure time data, one may modify
equations in by adjusting censoring. Let ag be the true value of a. Note
that

Ay
J I{YZJ S to =+ exp(Xgao)}

Plamy)

Yi; > to, Xij]

Pr {to < Tj; =Y < Cij, T < to+ exp(XTap)

Xij} (2.5)

Pr{Ci; > Yy, Yi; > to|Xy;}
C Prft < Ty <to+exp(Xew) Xy} 7
Pr{Ti; > to|Xi;} G(to) G(to)




2.2 Estimation procedure

This motivates us to form a modified estimating equation for a as

1 AZJI {Y;] < t() + exp(XZ;a)}

Sy(a) = N Z Z Xii1(Yi; > to) (/}\(_Yij)/@(to) —7| =0,

7

(2.6)
where G(-) is the Kaplan-Meier estimator of G based on observations {Y;;, 1—A;;}.
The estimating equation (6) can be viewed as a multivariate version of Li et al.
(2016))’s method, designed to account for the correlation among multivariate time-
to-event data. In the independent cases with time-independent covariates, Sy ()
in ([2.6) reduces to the estimating function used in |Li et al. (2016). The estimator
for e, denoted by @, can be obtained as the solution to the estimating equations
in . Equivalently, it is the minimizer of the following linear programming
problem:

LI 208 oy, ) - XTa)

i G(Yij)/G<t0) (27)

+1(Yy; = to)pr s A—XLa |1 - #
G(Yy5)/G(to)

2

where p.(u) = u[r — I(u < 0)] is the quantile loss function, and A is a constant
chosen to be exceptionally large such that A > rrllejyx{log(}/;j — to)}. We adopt
the fast interior point algorithm (Portnoy and Koenker, 1997) to solve this lin-
ear programming problem, which can be readily implemented via function rq()

in R library quantreg using the weighted QR model on the augmented data



2.2 Estimation procedure

set comprising of pseudo responses {(log(Y11 — to),- - ,10g(Yom, — to), 4, , A}
with corresponding covariates {Xi1, -+, Xpm,, Xip, -+, X, } with X, =
[1 — Aij@(to) / @(Yij) X;. An alternative optimization algorithm analogue to [Li
and Peng| (2015) may be considered, in which all artificial observations {X};}; ;
are treated as a whole unit. In some cases, these two competing optimization al-
gorithms have negligible differences in parameter estimation when there is enough
number of exactly observed residual lifetimes. For our motivating data, the opti-
mization produces much more reasonable results compared to results from
a classical censored quantile regression (that is, ¢y = 0). This may be because |Li
and Peng (2015))’s method requires a large enough constant A to bound the uni-
fied value Zl: zj: [1 — m] I(Y;j > to) X, for any « in the parameter space,
possibly leading to unstable estimation procedure especially when the magnitude

of o or sample size is large.

Remark 1. Once obtaining &, the 7-th conditional quantile of the logarithm of
the residual lifetime for a specific individual with covariates x can be estimated as
57,,50 = xT&mo. In practice, the estimated conditional quantiles @io may not be
monotonically increasing in 7 due to lack of sufficient data and /or quantile crossing.
To account for the nonmonotonicity problem, one may follow the rearrangement
method developed by (Chernozhukov et al.| (2010) to construct monotone quantile

curves by using the order statistics of the rearranged quantile estimates. The

rearrangement procedure has been commonly used in various quantile regression



models (Wang et al.; 2012; |Wang and Li, 2013; |Yu et al., 2021)). Given asymptotic
properties of @& and the Wald-type inference discussed in Section 3, the confidence
intervals for «/9\”0 can be subsequently constructed. As shown by |Chernozhukov
et al.[(2010) and [Wang et al.| (2012) either theoretically or numerically, the quantile
estimators with /without rearrangement exhibited nearly identical performance in

estimation and inference.

3. Asymptotic Properties and Inference

3.1 Consistency and asymptotic normality

The following conditions are necessary to derive the asymptotic properties of
the proposed estimator obtained from solving the estimating equation in ([2.6]). To

associate with the total sample size IV, in this section, we rewrite & as ay.

Condition 1. The parameter space D for a is a compact region with ay in the
interior. For any a € D, there exists ¢, such that Pr{log(Y;; —to) > ¢,)|X;;} is

uniformly bounded away from zero and XiTja < t, with probability one.

Condition 2. The estimator G has sup |G(t) — G(t)| = o( N~/2+¢) for any € > 0.

t<ty

Condition 3. Given T;; > ty, the conditional distribution functions F.(e|X;;) =
Pr(ef; < e|Xy;) have densities f(-[X;;) which is Lipschitz continuous in the neigh-
borhood of 0. We assume that N~ 3~ Pr(Tj; > to]Xy;) fe (01Xi5) X, X7, converges

almost surely to a positive definite and bounded matrix, denoted by A.



3.1 Consistency and asymptotic normality

Condition 4. 1) The cluster size m; is finite. 2) X;; are uniformly bounded for

j=1,--- - myandi=1,--- n.

Condition [I] is an standard condition for quantile residual lifetime regression
and commonly imposed in literature (Jung et al., |2009). Condition 2| holds in
most cases when G is the Kaplan-Meier estimator (Csorgd and Horvéth, [1983).
Condition [3|is to ensure . ||ainc£ - [Sx(e)|| > 0 for any € > 0, which is needed

Jja—aol|=
to establish consistency of the estimator ay. Matrix A, defined in Condition [3]
will be part of the slope matrix in estimator’ asymptotic variance, and its positive
definiteness and boundness guarantee the asymptotic normality of the estimator
ay. Condition [4]is a weak assumption and commonly seen in literature.

To justify the asymptotic properties of the proposed estimator, we consider the

conditional expectation of the proposed estimating function ({2.6) with substitution

of true censoring distribution and define

Sy(a) = % Z Z X;;G(to) [Pr{to < Ty < to + exp(X[a)| X5} — 7 Pr{T;; > to|Xy;}] .
L (3.8)

By the definition of quantile residual lifetime function in equation , it follows

that g is the unique root of Sy(a) = 0 for some commonly used distributions

of the failure time 7', provided that its survival function is continuous and strictly

decreasing with a closed form (Jeong, [2014)).

Theorem 1. (Consistency.) Under Conditions[1{3, ay satisfying Sn(an) = o(1)



3.1 Consistency and asymptotic normality

converges almost surely to ag as N — o0.

Lemma 1. If Condition 1| holds, N'/2Sx(ap) converges to a zero-mean normal
distribution with the asymptotic covariance matriz ¥ as defined in the proof of this

lemma in the Appendizx.

Theorem 2. (Asymptotic normality.) Under Conditions [1- ay satisfying
Sy(ay) = o( N~Y?) is asymptotically normal, i.e., N'/?(ay—ap) 4 N(0,V(a)),

where V(o) = A'SAL, A = G(to)A.

The proofs of Lemma 1 and Theorems 1-2 are provided in the Appendix.
The main challenge in proving asymptotic properties is to account for association
among multivariate failure time data. To our knowledge this issue has not been
addressed in the literature regarding parameter estimation in quantile residual
lifetime regression. To prove the consistency of the proposed estimator, we adopt
arguments established by |[Resnick| (2019) in the Lévy’s theorem, [White| (1980) in
their Lemma 2.2 and [Van der Vaart| (2000)) in Theorem 5.9. Based on martingale
processes involving in estimation of censoring distribution as well as the Lyapunov
central limit theorem, we can show results in our new Lemma 1. The asymptotic
normality of & follows from Lemma 1 and similar arguments developed by He and
Shao| (1996) and [Wang and Fygenson! (2009)). It is worth noting that Condition [4]is
essential for applying He and Shao| (1996))’s theorems to the model we considered.
In fact, this condition can be extended to the situation in which m; = o(n?) holds

for some constant 0 < p < 1/5 and N7' > > X, X} < oo.
i gk



3.1 Consistency and asymptotic normality

Remark 2. Though our estimating function for the regression coefficients essen-
tially keeps the same form as that for univariate survival data given by |Li et al.
(2016)), the asymptotic variances of the estimated regression coefficients address
the association among multivariate data. To further illustrate this, we consider
the error terms in model (3) having an exchangeable correlation structure as an
example. Suppose that Pr(e;; < 0,e;; < 0|T}; > to, Tij > to, X5, X;5r) = 0 for any
j # j', where § measures the within-cluster dependence. In this case, the middle
matrix ¥ in variance matrix V' (ayp) is the sum of the following three components:
L=y il\/ar bila), I = 5 ilvaf ni(a), Is = & Zn:lCov(w,-(ao), ni(c)), where
i= i= iz
1; and n; are defined in the supplementary material. After some calculations, I

can be written as

I & TG (1)
b=y DX = 0 (G )
i=1 j K

1 n
+ N ZZX”XZII(KJ Z to,Y;j/ Z to) (5 — 7'2) .

=1 jj'

The explicit expressions for Is and I3 are complicated and lengthy, and thus omit-
ted here for brevity. It is noted that when 6 € (72,7], the errors are positively
correlated, whereas for § € [0,72), they are negatively correlated. When § = 72,
the errors are independent. Ignoring the within-cluster dependence by assuming
§ = 72 leads to biased estimation for the asymptotic standard deviation of the

estimator ay.



3.2 Inference

3.2 Inference

The asymptotic normality of the proposed estimator established in Theorem
2 offers evidence for the feasibility of the Wald-type inference and construction
of confidence intervals. An additional challenge for inference is to estimate the
variance of the proposed estimator. To directly estimate the asymptotic variance
matrix V' (ay) is impractical since it takes a complicated form involving the un-
known error density function f.(0|X;;) for computing A and unknown censoring
distribution function in 3. To overcome this problem, we develop three approaches,
including a perturbation resampling, sandwich estimators and multiplier bootstrap

based sandwich estimators, for asymptotic variance estimation of ay.

3.2.1 Resampling method

It is worthwhile noted that the conventional bootstrapping by sampling with
replacement is not appropriate for data from the longitudinal /clustered studies.
To this end, a feasible way is to bootstrap and repeatedly solve a perturbation
version of . Jin et al.| (2003)) proposed analogous perturbation resampling
procedure for estimating the limiting variance matrices in AFT models without
requiring density estimation or numerical derivatives and showed its validity. This
resampling approach has been widely applied to survival data especially when
estimating equations are non-smooth (Yin and Cai, [2005; Peng and Huang, 2008}

Li et al., 2016)). It is also applicable for a wide variety of models and not limited to



3.2 Inference

independent cases (Hagemann| 2017; Galvao et al} 2023)). To obtain a consistent
variance estimator, we consider a similar perturbation resampling method and
account for the possible heterogeneity in the data.

In particular, we first generate independent and identically distributed positive
multipliers v; from an exponential distribution with E(v;) = Var(y;) = 1, for

i =1,..,n. We define the randomly perturbed version of Sy () as

Aij] {Y;J <tp+ eXp(XZ;OL)}
G*(Yy;)/G*(to)

Z%ZXUJY > to

— T] (3.9)

and G*(-) in (3.9) is a perturbed version of the Kaplean-Meier estimator in the

form of

o AN (Yy)
at)=]] {1 ?*(nj)}’

i§:Yi;<t

*

where N* (t) = Z Yk ZZ ](5kl = 0, Ykl S t), ?*(t) = Z Y ZZ I(Y}gl Z t) and
k=1 =1 = =1
AN"(t) =N (t)—= N (t-)

. Then the resampled estimate a* is obtained by solving

the updated estimating equations Sy () = 0.

Theorem 3. Under Conditions the conditional distribution of N'/*(a* — @)

given the observed data converges to the same limiting distribution of NI/Q(&N —

ap).

The proof of Theorem 3 is in line with that of Theorem 2 to some extent, with

its sketch given in the Appendix. Therefore, the variance of ay can be estimated



3.2 Inference

>k

using the sample variance of B resampled estimates, (a*("), ..., @*(®)), which are

obtained by repeating the above resampling procedure for B times.

3.2.2 A closed-form sandwich estimator

We consider estimation of A first, in which f,(0|X;;) is unknown. Wang et al.
(2019)) proposed quantile regression with correlated data and estimate f.(0|X;;)
by a well-known quotient estimation method. Specifically, based on the large-
sample behavior of regression quantile spacing shown by Goh and Knight| (2009)),
the conditional density function f.(0|X;;) can be consistently estimated using the

difference quotient

2hy

X£ [aT-i-hN,to N aT—hN,to]

f(01X;;) = : (3.10)

where hy is a bandwidth parameter such that hy — 0 as N goes to infinity,
Orinyto, a0d Oy, are the roots of the estimating equation in (2.6) at the
residual time point t; and two specific quantile levels 7 + hy and 7 — hy. In

practice, we follow Hall and Sheather| (1988)) and take

9

hy = 1.57N"1/3 [1.5¢>2 (o710} /2{o (")} + 1)} v

where ¢ and ® are the density and distribution functions of the standard normal

distribution, respectively. It follows from |[Hendricks and Koenker| (1992)) that
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~

A =Nt > i a(to)I(YU > to)fe(0|Xij)Xing; Ly A. As pointed by Koenker
(2005)), the crossing issues may occur in the estimated conditional quantile planes,

and so for implementation we may replace fe(O]Xij) simply by its positive part in

B-10), that s,

) 2hy }
(0]X;;) = max 40, = ’ -
J ( | J) { XT [aT+hN to — ar—hN,to] — ¢ ( )

where ¢ is a small positive constant used to avoid dividing by zero in some rare
cases. In addition to equations (3.10))-(3.11)), another approach based on a kernel
density estimation can be adopted for estimating f.(0|X;;) and the consistency of

A maintains as well (Koenker, 2005).

To estimate X, we can use a closed-form direct approximation given by
S=NY (i +0) (i + 20)7
i=1

where

ZX [ > t Az][ {K] <tp+ eXp<XZ;aN)} -
) 0 ~ ~ - )
( G(Yy)/Glto)

T ~
m = Z X 0ri L {to SAYk;j < t/o\—i— eXp(ijaN)} .
& G(Yi;)/G(to)

Z (1 - 5 )](tO < }/zl < Ykg ZZ 1 - uv I{Yuv < mln(y;laykj)}
2ors I(Yes 2 Ya) (e I(Yes = Vi)

l




3.2 Inference

with plugging in the Kaplan-Meier estimator é’() of G(+). This direct approxi-
mation replaces all unknown quantities in > with their sample version estimates,
which have closed forms but are complicated owing to the martingale processes
and non-parametric estimation for cumulative hazard function of the censoring
variable.

Based on the sandwich estimator with estimated slope matrix /:\ and estimated
middle matrix i, the Wald-type statistic for testing the hypothesis Hy : @ =
g can be consequently constructed by Wy = N(ay — aO)T(X_li\]]z\_l)_l(&N —
ay). It follows from the Slutsky’s theorem that Wy converges in distribution to
the same limiting distribution as N(@y — ao)”(A"'SA"1) " (@x — o). Then
the conventional y? test can be applied to test the hypothesis about regression

coefficients at some specific quantile level.

3.2.3 Resampling-based Sandwich estimator

By integrating the strengths of both the resampling and sandwich estimator
approaches, we develop a resampling-based sandwich estimator to improve the ac-
curacy of the sandwich estimator, while circumventing repeatedly solving equation
(3.9) in the resampling method. Similar methods have been studied by Zeng and
Lin| (2008) and |Chiou et al.| (2015)) under different models to achieve consistent
variance estimators.

For the asymptotic variance matrix V(o) = K_IEK_l, estimators of A and



Y. can be obtained from a computationally efficient resampling procedure with-
out the need of solving estimating equations. Given a set of random multipliers
(71, ,7n) generated as in Subsection 3.2.1, the perturbed estimating function
Sy (a) in evaluated at the estimate ay (the root of equations in (2.6)) is ob-
tained. Then repeating this B times, we obtain the set {S}k\,(k)(dN), k=1,--- B},
and the sample variance of {\/NS]*\,(k)(dN), k=1,---, B} provides the resampled
estimate of X, denoted by S, Next, we generate B random samples, denoted by
{Zk,k =1,--- B}, from a multivariate normal distribution with mean zero and
covariance matrix (i*)_l. Following the resampling method given by |Zeng and Lin
(2008), the inverse of the sample covariance matrix of {v/ NSy (ay+N""2Z;), k =

1,---, B} can be used as a consistent estimator of V(ay).

4. Simulation studies

In this section, we conduct simulation studies to assess the performance of the
proposed estimators in various situations. Particularly, data are generated with
individual-level covariates in Scenarios 1, with cluster-level covariates and different
marginal distributions of error terms in Scenarios 2-3, and with heterogeneous
errors in Scenario 4. We also examine the performance of the proposed methods
under various types of dependence structures in Scenarios 5-7, and for the case
with multiple covariates in Scenario 8. The simulation setups for Scenarios 1-4 are

provided below, while those for Scenarios 5-8 are detailed in the Supplementary



Material.

Scenario 1 is designed to evaluate the finite sample performance of our pro-
posal under the longitudinal study with an individual-level covariate. For each
observation case j of individual ¢ with j =1,--- ;mand i =1,--- ,n, we generate
a single baseline covariate, x;;, independently from a uniform distribution on the
interval [0, 1], and survival outcome T}; following a multivariate accelerated failure

time model in the form of

log Ti; = Bo + Bixsj + €5, (4.12)

where exp(e;;) marginally follows an exponential distribution with the rate pa-
rameter A = 0.69. We construct the joint distribution of (&, ,€;,) through
a Clayton copula with Kendall’s tau of 0, 0.5 and 0.8, corresponding to the in-
dependent, moderate correlated and strongly correlated cases, respectively. We
take the values of (5o, 51) as (1,1). Under model with the above setting,
parameters in the corresponding quantile residual lifetime model are given
by a(T,t0) = (a(7,to), a1 (T, to)), where ag(T,to) = log[—A"log(1 —7)] + By and
a1 (7, t0) = B

In Scenario 2, a cluster-level covariate is considered in the working AFT
model to mimic community randomized studies or patients with multiple

disease progressions in practice. The scheme for data generation is same as in



Scenario 1 except taking z;; = x; with z; being generated from Uniform(0,1) for
all j = 1,---m observations of cluster i. A Clayton copula joint distribution is
also considered for the error terms with Kendall’s tau equal 0.5.

Scenario 3 considers a residual lifetime model with error term marginally
from a logistic distribution. Same as in Scenario 2, a cluster-level covariate x; is
independently from Uniform[0, 1]. The failure time outcome T;; is generated from

the residual lifetime model:

log(Tij — tm) = 50 + /611'1' -+ O0€i5, (413)

where ¢;; marginally follows a standard logistic distribution, leading to a baseline
log-logistic distribution for the residual lifetime 7;; — ¢,,,. The joint distribution of
(€1, ,€im) is given by a Clayton copula with Kendall’s tau equal 0.5. We take

tm =1, Bo=1, p1 =0 and o = 0.5 in (4.13)), corresponding to a;(7,%y) = 0 and

log [exp (alog (ﬁ) + 50) —to+ tm} , to <tn
aO(T,t()): : (7@)t7t )% ez
log KT e ) exp(Bo) —to +tm|, to>tm

in model (2.3]).

Scenario 4 is designed to illustrate the substantial gains of the quantile
residual lifetime regression compared to the Cox or AFT model, particularly in

handling heterogeneous data and revealing how covariate effects vary across dif-



ferent quantile levels. The failure time outcome Tj; follows the model given by
log T;j = Bo + Bizij + (1 — aw;j)e;;, where By = 1, 1 = 2, covariate z;; = z; and
x; ~ Bernoulli(0.5). The degree of heteroscedasticity rises with increasing values
of a. The generation of (€;1,- - ,€;,) is the same as in Scenario 2 except the rate
parameter A = 2. Consequently, the true regression coefficients in model (3) are

ap(T,t9) = log[—=A"tlog(1 — 7)] + By and

—alog(=A"tlog(1 — 7)) + B4, to =0,
Oél(T, tO) = t0[17r1t5”(1_a) log(1—7) exp(ﬂgffl L= —t
log X Tog(L—7) exp(B0) » to 7 0.

Their values, determined for 7 = 0.25,0.5 and ¢t = 0,1, 2, can be found in Table
[ Under this setup, with a fixed quantile level, the covariate effect decreases as
to increases. While given a fixed ¢y, the covariate effect decreases as the quantile
level increases.

In all scenarios, we consider the cluster size m = 3 or 10. The number of
clusters is configured as n = 200 or 500. The censoring time variable Cj; is gen-
erated from a uniform distribution over the interval [0, 20], achieving a censoring
rate between 20% and 40%.

Based on 500 simulated data sets for each simulation setting, results of the
estimation of regression coefficients oy and «; are summarized in Tables for
Scenarios 1-4 and Tables S.1-S.4 for Scenarios 5-8 in the Supplementary Mate-

rial, respectively, in terms of averaged bias of point estimates, the Monte Carlo



standard derivation (MCSD) of point estimates, the average of standard error
(ASE), and the empirical coverage percentage (CP) of the 95% confidence inter-
vals. For standard errors, we report the results of three variance estimators: the
fully resampling method (FR), the closed-form sandwich estimator (CFS) and the
resampling-based sandwich estimator (RBS) proposed in subsection 3.2, in com-
parison with the fully resampling estimator of variance proposed by |Li et al.| (2016))
for independent failure times (IFR) with time-independent covariates. All pertur-
bation resampling-based estimators of variance are computed based on B = 500
multiplier replicates.

In general, it can be seen from these tables that the estimated regression
coefficients appear to be asymptotically unbiased. Biases and standard deviations
of point estimates decrease as the number of clusters or cluster size increases. Their
standard errors obtained from FR/CFS/RBS are generally close to the Monte
Carlo empirical standard deviation of the estimates. The coverage probabilities
based on FR/CFS/RBS variance estimators also reasonably approach the nominal
level 0.95.

To be specific, as shown in Supplementary Table S.1 under Scenario 1 with
independent survival outcomes, IFR, FR, CFS and RBS variance estimators yield
similar results in terms of average estimated standard error as well as coverage
probability. With stronger dependence among failure time outcomes, correspond-

ing to higher values of Kendall’s tau as demonstrated in Table |1| and Table S.2,



Table 1: Estimation results based on 500 replicates for quantile level 7 = 0.5 under
Scenario 1 with Kendall’s tau=0.5.

ap(0.5,%0) a1(0.5,10) runtime
(n,m) toZO t():l t(): t(): f():l t0:2 (S)
(200,3)  bias -0.007  -0.009 -0.005 0.008 0.019 0.017
MCSD 0.146 0.155 0.174 0.235 0.259  0.289
ASE IFR 0.130 0.150 0.173 0.235 0.267 0.303
FR 0.146  0.158  0.178 0.24 0.268  0.303 5.75
CFS 0.142 0.164 0.196 0.234 0.276  0.332 0.262
RBS 0.139 0.149 0.167 0.227 0.249 0.281 3.502
CPp IFR 0924 0932 0.942 0.956  0.938  0.958
FR 0958 0.95 0.958 0.96 0.958 0.964
CFS 0.948 0.958 0.964 0.956  0.948  0.98
RBS 0.95 0.932 094 0.946 0944 0.94
(500,3)  bias 0.002  0.003  0.001 0.004  0.005 0.008
MCSD 0.087 0.096 0.109 0.138 0.161 0.186
ASE IFR 0.082 0.094 0.108 0.147  0.166  0.188
FR 0.09 0.099 0.11 0.148 0.167  0.188 9.948
CFS 0.09 0.104 0.122 0.146  0.173  0.206 0.673
RBS 0.087 0.096 0.106 0.142 0.161 0.178 6.265
Cp IFR 0920 0.936 0.952 0.940 0.950 0.963
FR 0956 0.956  0.948 0.958  0.96 0.942
CFS 0.95 0.954  0.978 0.938 0.962 0.98
RBS 0.946 0.95 0.938 0.954  0.95 0.938
(200,10) bias -0.007 -0.003 O 0.004 0.001  -0.002
MCSD 0.104 0.099 0.105 0.129 0.144 0.163
ASE IFR  0.070 0.081  0.092 0.127  0.143  0.159
FR 0.1 0.102  0.106 0.129  0.147  0.165 10.978
CFS 0.099 0.105 0.116 0.126  0.151  0.181 0.825
RBS 0.096 0.098 0.103 0.125  0.141  0.159 6.363
CP IFR 0.868 0.906 0.946 0.946 0.952  0.960
FR 0954 0.962 0.95 0.954  0.95 0.944
CFS 0.952 0.972 0.97 0.946 0.966 0.972

RBS 0.948 0.948 0.944 0.948 0942 0.932




the IFR estimator is more likely to underestimate standard errors particularly for
ap as the cluster size increases. Similar trends can be found across various sit-
uations in Scenarios 2-8. As shown in Tables and Tables S.3-S.4, the IFR
estimator generally yields considerably lower ASEs than the benchmark MCSDs
in most cases, along with the empirical CPs below the nominal 95%. Such an is-
sue becomes more pronounced—particularly for coefficients associated with cluster-
level covariates—as the correlation among failure times strengthens, the cluster size
grows, or tq is small. This underperformance is mainly attributed to the fact that
the IFR method utilizes a conventional resampling approach, which treats the data
{(Yi;,0i;,X;;)} as if they are independent and samples from them with replace-
ment across all (¢, j), thereby ignoring the correlation among multivariate failure
times. It is observed that the performance of the IFR estimator improves as tg
increases, especially when ¢y = 2 in our simulation setups. A possible reason for
this improvement is that both the values of MCSD and ASE increase as a result
of smaller sample sizes under the restricted population where T;; > %,.

On the other hand, the proposed estimators closely match MCSD and pro-
duce reasonable coverage probabilities near the nominal level, highlighting the im-
portance of accounting for within-cluster dependence to ensure accurate variance
estimation and reliable inference. Results summarized in Supplementary Tables
S.3-S.4 demonstrate the outperformance of the proposed marginal method in ac-

commodating diverse dependence structures for multivariate failure times even



Table 2: Estimation results based on 500 replicates for quantile level 7 = 0.5 under
Scenario 2.

(0.5, tp) a1(0.5,tp) runtime
(n,m) tOZO t():]. t0:2 t():O t():]. t():Q (S)
(200,3) bias -0.008 -0.002 -0.014 0.003 0.001  0.006
MCSD 0.174  0.19 0.191 0.313 0.33 0.334
ASE IFR 0.131 0.15 0.173 0.238 0.269 0.303
FR 0.179 0.184 0.164 0.317 0328 0.291 9.672
CFS 0.178 0.191 0.179 0.314 0.34 0.315 0.358
RBS 0.169 0.173 0.154 0.295 0.306  0.268 5.806
CPp IFR 0.848 0.90 0.929 0.844 0.894 0.927
FR 0.948 0.94 0.908 0.948 0944  0.925
CFS 0948 0.948 0.939 0.946 0.95 0.946
RBS 0.936 0.926 0.892 0.936  0.93 0.894
(500,3) bias -0.009 -0.009 -0.011 0.011  0.012 0.013
MCSD 0.109 0.111  0.123 0.197 0.195  0.212
ASE IFR 0.082 0.093 0.108 0.148 0.166  0.188
FR 0.112  0.116  0.118 0.198 0.205 0.208 13.584
CFS 0.111 0.121 0.129 0.196 0.213 0.227 0.905
RBS 0.107 0.111 0.114 0.188 0.195  0.199 7.001
CP IFR 0.868 0.896  0.909 0.850  0.908  0.909
FR 0.946 0.966 0.942 0.954  0.96 0.952
CFS 0946 0972 0.963 0.952  0.964  0.969
RBS 0.932 0.956  0.927 0.942 0.952 0.944
(200,10)  bias -0.003 -0.002 -0.006 0.002 -0.003 0.002
MCSD 0.166  0.148  0.142 0.283 0.264 0.256
ASE IFR 0.071 0.081 0.094 0.127  0.143  0.163
FR 0.156 0.147 0.132 0.274 0.262 0.239 14.968
CFS 0.155 0.153 0.145 0.272  0.273  0.262 0.879
RBS 0.151 0.142 0.128 0.263  0.254  0.23 7.404
CP IFR 0.606 0.692  0.780 0.612 0.708  0.766
FR 0.926 0938  0.927 0.938 0.954 0.936
CFS 0926 0946 0.951 0.934 0964 0.953

RBS 0.92 0.922 091 0.92 0.94 0.925




Table 3: Estimation results based on 500 replicates for quantile level 7 = 0.5 under

Scenario 3.
ap(0.5,9) a1(0.5,10) runtime
(n,m) tOZO t():]. t0:2 t():O t():]. t():Q (S)
(200,3) bias 0.003 0.004 -0.003 -0.01 -0.015  -0.009
MCSD 0.088 0.119 0.165 0.161 0.217  0.296
ASE IFR  0.069 0.094 0.133 0.123  0.165 0.235 9.662
FR 0.092 0.126  0.167 0.163  0.221 0.295 10.724
CFS 0.092 0.131 0.185 0.161 0.229 0.324 0.445
RBS 0.09 0.12 0.161 0.158 0.212 0.283 6.031
CP IFR 0.884 0.888 0.884 0.856  0.848 0.874
FR  0.968 0.966 0.956 0.952  0.948 0.936
CFS 0.968 0972 0.974 0.948 0.962 0.96
RBS 0.958 0.962 0.95 0.94 0.928 0.93
(500,3)  bias -0.001  -0.003 -0.004 0.003  0.005  0.006
MCSD 0.057 0.077 0.1 0.1 0.136  0.175
ASE IFR  0.043 0.057 0.082 0.075 0.101 0.142 21.31
FR 0.057 0.077 0.104 0.1 0.135 0.18 23.796
CFS 0.057 0.082 0.115 0.1 0.143 0.2 1.286
RBS 0.056 0.076  0.101 0.098 0.133 0.175 12.957
CP IFR  0.852 0.856  0.88 0.852 0.846  0.892
FR 0946 0.946 0.958 0.95 0.952  0.954
CFS 0948 0.962 0.97 0.95 0.968 0.97
RBS 0.94 0.94 0.952 0.944 0.946 0.95
(200,10)  bias 0 -0.001 -0.003 -0.005 -0.008 -0.007
MCSD 0.075 0.102 0.131 0.131 0.18 0.234
ASE IFR 0.037 0.05 0.071 0.065 0.087 0.124 31.27
FR 0.079 0.108 0.136 0.138 0.189  0.237 35.872
CFS 0.079 0.114 0.152 0.138 0.198 0.264 1.609
RBS 0.077 0.105 0.132 0.135 0.183 0.231 13.949
CP IFR 0.696 0.688 0.734 0.706  0.684 0.722
FR 0.966 0.964 0.95 0.948 0.948 0.944
CFS 0.966 0.972 0.974 0.948  0.96 0.966
RBS 0.962 0.958 0.942 0.936 0.932 0.944




Table 4: Estimation results based on 500 replicates under Scenario 4 (n = 200, m =
10).

a0(0.25,t0) a1(0.25,t0) a0(0.5,t0) a1(0.5,t0)
a t0:0t0=1t0:2 tO:OtO:I ﬁ0:2 tozotozltOZQ t0:0t021t0=2
0.1 truth -0.939 -0.939 -0.939 2.194 2.127 2.09 -0.06 -0.06 -0.06 2.106 2.068 2.044
bias -0.009 -0.005 -0.003 -0.003 -0.007 -0.01 -0.005 -0.008 0.002 -0.007 -0.003 -0.013
MCSD 0.16 0.118 0.15 0.211 0.188 0.218 0.102 0.09 0.108 0.142 0.14 0.157

ASE IFR 0.064 0.095 0.144 0.089 0.118 0.163 0.047 0.07 0.106 0.068 0.089 0.122
FR 0.166 0.116 0.147 0.226 0.186 0.203 0.109 0.091 0.109 0.15 0.138 0.15
CFS 0.166 0.123 0.162 0.226 0.198 0.225 0.109 0.097 0.12 0.15 0.146 0.166
RBS 0.155 0.111 0.138 0.213 0.178 0.191  0.106 0.088 0.105 0.145 0.133 0.145
CPp IFR 0.552 0.89 0936 0.59 0.768 0.848 0.642 0.878 0.932 0.672 0.782 0.872
FR 0954 0.944 0946 0.964 0.952 0.94 097 095 094 0.962 0.956 0.94
CFS 0.954 0952 0.966 0.964 096 0966 0.97 096 0966 0.962 0.96 0.964
RBS 0.938 0.936 0.928 0.952 0.946 0.92 0.962 0.94 0.93 0.956 0.95 0.928

0.2 truth -0.939 -0.939 -0.939 2388 2276 2.202 -0.06 -0.06 -0.06 2212 2.148 2.101
bias -0.009 -0.005 -0.003 -0.003 -0.007 -0.01  -0.005 -0.008 0.002 -0.005 -0.002 -0.012
MCSD 0.16 0.118 0.15 0.201 0.183 0.213 0.102 0.09 0.108 0.135 0.134 0.153

ASE IFR 0.064 0.095 0.144 0.086 0.115 0.161 0.047 0.07 0.106 0.065 0.086 0.12
FR 0.165 0.116 0.147 0.215 0.181 0.201 0.109 0.091 0.109 0.143 0.132 0.147
CFS 0.166 0.123 0.162 0.216 0.192 0.223  0.109 0.097 0.12 0.143 0.14 0.162
RBS 0.156 0.111 0.138 0.204 0.174 0.191 0.106 0.087 0.105 0.138 0.127 0.141
CPp IFR 0.554 0.89 0.938 0.596 0.766 0.864 0.642 0.876 0.932 0.672 0.802 0.866
FR 0954 0942 0.946 0.97 0944 094 0.972 0.948 0.94 0.956 0.954 0.948
CFS 0.954 0.952 0.966 0.97 0.95 0.96 0.972 0.962 0.966 0.956 0.96 0.97
RBS 0.938 0.936 0.928 0.956 0.936 0.932 0.962 0.938 0.928 0.952 0.944 0.94

0.5 truth -0.939 -0.939 -0.939 297 2839 2.71 -0.06 -0.06 -0.06 253 2.445 2.361
bias -0.009 -0.005 -0.003 0.001 -0.004 -0.008 -0.005 -0.008 0.002 -0.002 0.001 -0.01
MCSD 0.16 0.118 0.15 0.176 0.152 0.18 0.102 0.09 0.107 0.117 0.111 0.131

ASE IFR 0.064 0.095 0.144 0.075 0.105 0.1563 0.047 0.07 0.106 0.057 0.079 0.113
FR 0.165 0.116 0.147 0.188 0.152 0.183 0.109 0.091 0.109 0.125 0.112 0.13
CFS 0.166 0.123 0.162 0.18 0.161 0.203 0.109 0.097 0.12 0.125 0.119 0.143
RBS 0.156 0.111 0.139  0.177 0.146 0.174 0.105 0.088 0.105 0.12 0.108 0.126
CPp IFR 0.554 0.89 0936 0.584 0.838 0.894 0.642 0.876 0.932 0.686 0.858 0.912
FR 0954 0.942 0944 0.968 0.94 0.956 0.972 0.948 0.942 0.966 0.952 0.954
CFS 0.954 0.952 0.966 0.968 0.954 0.978 0.972 0.962 0.968 0.966 0.958 0.974
RBS 0.938 0.936 0.928 0.958 0.926 0.94 0.962 0.938 0.93 0.954 0.938 0.942




though an independent working model is used. These promising findings further
exhibit a degree of robustness of the method across different types of copula.

Each of the three variance estimators we proposed has unique advantages. The
FR estimator provides the best performance but is less computationally efficient,
requiring at least 55% more time than the RBS estimator. The CFS estimator
stands out for its elegant form and computational efficiency. However, the CFS
estimator tends to be slightly conservative with higher CP for larger t,, possibly
due to bandwidth selection, and becomes inestimable at high quantile level as
indicated by the difference quotient in Equation (3.10). The RBS estimator is a
trade-off between computational efficiency and accuracy, performing well in most
scenarios. While it falls behind the FR estimator in a few cases, its performance
improves with larger sample sizes, making it the most practical choice.

As a final remark, it is worth noting that when tq and the quantile level 7 are
large, the number of individuals with exactly observed failure times would become
limited, leading to potential identifiability issues. To ensure identifiability, we
therefore consider estimation at 7 = 0.5 under various scenarios restricting the
censoring rate to below 50% in the simulation studies. When using a quantile
level 7 € (0,0.4) and a higher censoring rate, e.g., 62% as in the following real
data analysis, the proposed estimator exhibits similar performance. Thus, the

corresponding simulation results are omitted.



5. An illustrative example

In this section, we utilized the proposed method to analyze a subset of data
from the renowned Framingham heart study (Tsao and Vasan, [2015) discussed in
Section 1. The data set is available in the R package riskCommunicator. Partic-
ipants in this study have undergone biennial examinations since the study entry,
and all subjects are continually monitored for cardiovascular outcomes. Our spe-
cific focus was on middle-aged patients aged between 30 and 50 years who were
part of the first examination cycle. We excluded subjects with a history of preva-
lent coronary heart disease, prevalent hypertension, myocardial infarction, or fatal
coronary heart disease prior to the first examination. Additionally, subjects who
passed away without experiencing any of these diseases were removed to avoid
issues related to semi-competing risks. Missing observations were also excluded,
resulting in a remaining sample size of 1753 patients in our analysis.

Researchers aimed to identify the effects of covariates on the occurrence of
angina pectoris, myocardial infarction, coronary insufficiency, or fatal coronary
heart disease (ANYCHD) and as well as hypertensive (HYPERTEN) events. The
latter were defined as instances where high blood pressure was treated during the
first examination or during the second examination when either the systolic blood
pressure reached 140 mmHg or the diastolic blood pressure reached 90 mmHg.
The survival times of interest were the time until the first ANYCHD event and

the time until the first HYPERTEN event. The two times were measured in days



and recorded from the same individual might be correlated. The bivariate times
can either be observed directly or subjected to censoring due to death or loss
of follow-up, resulting in a censoring rate of 62.3%. The risk factors of interest
included body mass index (BMI), systolic blood pressure (SYSBP, measured in
mmHg), current cigarette smoking at the time of examination (CURSMOKE,
yes= 1 and no= 0), sex (female= 1 and male= 0), and serum total cholesterol
level (measured in mg/dL) in logarithmic transformation. Preliminary analysis
indicated that these risk factors had no significant effects on censoring variables.
Given that only 37.7% of the survival times are observable, it’s important to note
that coefficients at quantile levels exceeding 0.4 cannot be reliably estimated.
Supplementary Figures S.1-S.2 illustrate the comprehensive trajectories of co-
efficient estimations as 7 increases with some particular values of t5. In these
figures, the black curves represent coefficient estimates, accompanied by their 95%
RBS (red dashed curves) confidence intervals. At lower quantile levels and smaller
to, RBS and CFS show similar trends. However, CFS estimator becomes unstable
and unestimable for higher quantile levels and larger tqy, thus CFS estimator is
omitted in Supplementary Figures S.1-S.2. Table [5| summarizes estimates of re-
gression coefficients and their significance as well as 7-th conditional quantile of
the logarithm of residual lifetime 495?0 for selected patient k£ for £ = 1,2 under
7 = 0.1,0.2,0.3 quantile level and t, = 0,1200,2400 (days). Patient 1 is a fe-

male and non-smoker and has the minimum BMI, SYSBP, TOTCHOL among the



sample, while Patient 2 is a female and smoker who has the maxmimum values of
BMI, SYSBP and TOTCHOL. The IFR/RBS variance estimator with the num-
ber of replicates B = 500 are used to compute the significance. It is noteworthy
that the intercept exhibits a significant impact on event times. Moreover, both
BMI and systolic blood pressure demonstrate significance, particularly at lower

quantiles or for smaller values of .

Table 5: Estimation of regression coefficients and quantile of the residual lifetime
k) (k = 1,2) for the Framingham heart data with 7 = 0.1,0.2,0.3 quantiles

7,to

of ANYCHD/HYPERTEN times after the first examination at to = 0, 1200, 2400
(days), respectively.

to =0 to = 1200 to = 2400

7=0.1 T =0.2 T7=0.3 7=0.1 T =0.2 7=0.3 7=0.1 T=0.2 7=0.3
Estimates
Intercept 17.046 14.916 13.862 17.808 14.218 13.071 12.641 12.842 11.446
BMI -0.045 -0.039 -0.023 -0.076 -0.034 -0.023 -0.021 -0.016 -0.011
SYSBP -0.045 -0.038 -0.029 -0.046 -0.034 -0.022 -0.033 -0.024 -0.014
CURSMOKE 0.061 0.01 -0.026 0.082 -0.026 -0.051 -0.113 -0.086 -0.053
SEX 0.07 0.077 0.015 -0.014 0.131 0.035 0.253 0.071 0.049
log(TOTCHOL) -0.512 -0.196 -0.197 -0.536 -0.202 -0.217 -0.093 -0.215 -0.158
Gszo 10.125 10.171 10.075 10.07 9.932 9.813 9.295 9.543 9.422
992: 9.973 10.105 10.163 9.785 9.904 10.07 9.295 9.473 9.543
9522 4.699 5.836 6.824 3.763 6.008 7.087 5.846 6.762 7.786

sto
9522: 4.699 5.836 6.824 3.763 6.008 7.087 5.846 6.762 7.786
SE- RBS
(Intercept) 1.161**  0.982**  1.101** 1.686**  1.093**  1.391** 1.382*%*  1.357**  1.934**
BMI 0.01** 0.009**  0.008** 0.017**  0.011**  0.012* 0.013 0.013 0.016
SYSBP 0.003**  0.003**  0.004** 0.004**  0.004**  0.005** 0.004**  0.004**  0.009
CURSMOKE 0.078 0.066 0.061 0.104 0.068 0.068 0.092 0.069 0.112
SEX 0.069 0.066 0.056 0.106 0.069* 0.075 0.091*%*  0.071 0.106
log(TOTCHOL) 0.226*%*  0.185 0.172 0.292%* 0.188 0.208 0.266 0.215 0.285
.15 151 21 . . . 21 . .

0220 0.158**  0.151**  (0.218** 0.267**  0.2%* 0.276** 0.216**  0.234**  (0.439**
0&220 0.231%%  0.204**  0.267** 0.461%*%  0.295*%*  (0.369** 0.317**%  0.339**  0.415**
SE- IFR
(Intercept) 1.118*%*  0.742*%*  0.562** 1.387**  0.761**  0.617** 1.47*%* 0.907*%*  0.539**
BMI 0.01** 0.008**  0.006** 0.016**  0.011**  0.009** 0.014 0.011 0.006*
SYSBP 0.003**  0.002*¥*  0.002** 0.004**  0.002*¥*  0.002** 0.004**  0.002*¥*  0.002**
CURSMOKE 0.077 0.053 0.033 0.109 0.053 0.039 0.114 0.052* 0.028*
SEX 0.079 0.062 0.04 0.115 0.068%* 0.053 0.095*%*  0.072 0.07
log(TOTCHOL) 0.221*%*  0.143 0.105* 0.282* 0.146 0.117* 0.288 0.166 0.085*
ngo 0.134**  0.101*%*  0.076** 0.182**  0.104**  0.081** 0.207**  0.114**  0.067
05,220 0.231%%  0.187**  (0.138** 0.34** 0.229%*%  0.175%* 0.324**%  0.218**  (0.185**

* and ** indicate significance at levels 0.1 and 0.05, respectively. The significance is computed based on

RBS/IFR variance estimators.



Note that the estimates of (9%)0 in Table |5| do not increase as 7T increases,
suggesting a crossing quantile problem in the analysis. Thus we further use a
rearrangement procedure proposed by (Chernozhukov et al.| (2010) to construct
a monotone quantile curve, denoted by 95’;)0* in the table. It can be seen from
this table that patients with smoke hobby and higher values of BMI, SYSBP and
TOTCHOL face higher risks and have shorter remaining time until the occur-
rence of severe cardiovascular diseases. Moreover, to illustrate the effects of the
rearrangement procedure in prediction, we consider ¢, = 1200 and calculate the

(k)*

i, at different quantile levels 7 for both selected patients.

complete estimated 6
Figure [1] visualizes the prediction intervals at different quantile levels for the first
and second patients, respectively. Notably, the difference between the two typ-

ical patients is quite large at small quantile levels, and lessens as quantile level

increases.

6. Discussion

This article introduces a marginal QRL regression approach to accommodate
the potentially clustered failure times when there are multiple failure event types or
groups of subjects in the study. The estimation process is computationally simple
and stable, making it attractive for practical applications. Our proposed variance
estimators in Section 3.2 are particularly tailored for the estimator ay, which is

obtained by solving the estimation equation (6). These asymptotic variance esti-
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Figure 1: Prediction intervals of the logarithm residual lifetime with ¢, = 1200
over different quantile levels of 7 for the selected patient 1 (in black color) and
patient 2 (in grey color).

mators address the within-cluster dependence, making subsequent inference more
reliable. This marginal approach is valuable when the relationship between quan-
tile residual lifetimes and covariates is of interest, given that a subject is known
to be disease-free at a specific time point. Our proposal leaves the underlying
correlation structure completely unspecified, making it robust to potential mis-
specification and flexible in modeling various multivariate failure times.

The estimating equation (6) is analogous to the well-known generalized esti-
mating equations (GEE) approach with an independent working correlation struc-
ture. The GEE method has been extended to quantile regression for longitudinal

data in the literature, such as |Jung (1996), Fu and Wang (2012) and Leng and



Zhang| (2014)). We adopt the independent working model in light of the consider-
ations as follows. 1) The choice of the working correlation structure should be a
trade-off between simplicity and potential efficiency loss from misspecification. 2)
Since the association is considered as nuisance in the marginal models, a simpler
working correlation will generally suffice, with the independent working struc-
ture being recommended by |[Fahrmeir and Tutz (2013)). Our simulation results
demonstrate the promising performance of the proposed method across various
dependence structures and copula types.

While we acknowledge that incorporating within-cluster dependence may im-
prove efficiency, integrating the idea of the GEE approach within the framework of
the multivariate quantile residual lifetime model poses challenges. As a potential
direction for future work, we consider the following weighted estimating equations

for residual lifetimes:

1 n
- E XIW; ¢ =0, (6.14)
n

i=1

where X; = (Xz’h  © ° ,Ximi)T, Cz‘ = (Cil) T 7Cim,-)T with
Gij = 1(Yij > to) [Azﬂ Vi < to+exp(XLa)} Glto) /G (Vi) — T] :

1 1

W, is a working covariance matrix of ¢; and can be expressed as W, =T'? A;,I'?,
_ . 2 2 . 2 . . . = . .

where I'; = diag{c;;, -+ , 07, } with o7, being the dispersion of (;;. A; is a corre-

lation matrix that can be specified with some unknown parameters or as a linear



combination of some known basis matrices (Qu et al.l 2000). It is noted that po-
tential issues may arise from demanding more in-depth exploration. First,
the dependence may vary with quantile levels or the time points ¢y, making it
difficult to specify a proper working correlation structure. Second, as t; increases,
the number of individuals with T;; > t, will decrease, and the unstable estimation
may become more severe for larger t, if an inappropriate correlation structure is
imposed. Besides, the potential efficiency gains from incorporating a weight func-
tion require further investigation through theoretical justification and numerical
studies.

Additionally, we assume the censoring variable Cj;’s are i.i.d from a distri-
bution independent from X;;. In practice, it may be necessary to verify this as-
sumption about the censoring distribution before applying the proposed method.
Our method can be simply improved by incorporating covariates in modeling the
censoring times through Cox proportional hazards model for example, and replace
@() in (2.6) with @(|X ). Further study of its theoretical justification is also

warranted.

Supplementary Material

The online Supplementary Material contains an appendix for technical proofs
of the lemma and theorems referenced in Section 3 and additional numerical results

referenced in Sections 4-5.
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