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Abstract: The quantile residual lifetime (QRL) regression is an attractive tool for assessing

covariate effects on the distribution of residual life expectancy, which is often of interest

in clinical studies. When study subjects may experience multiple events of interest, the

resulting failure times for the same subject are likely to be correlated. To accommo-

date such correlation in assessing the covariate effects on QRL, we propose a marginal

semiparametric QRL regression model for multivariate failure time data. Our proposal

facilitates parameter estimation using unbiased estimating equations, yielding estimators

that are consistent and asymptotically normal. To address additional challenges in infer-

ence, we develop three approaches for variance estimation based on resampling techniques

and a sandwich estimator, and further construct a Wald-type test statistic for hypothe-

sis testing. The simulation studies and an application to real data offer evidence of the

satisfactory performance and practical utility of the proposed method.

Key words and phrases: Multivariate failure times; quantile residual lifetime; inverse
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probability of censoring weighting; perturbation resampling; sandwich estimator.

1. Introduction

Multivariate failure times arise frequently in biomedical research when study

subjects are exposed to multiple types of failure events, experience recurrent events

in longitudinal studies, or are nested within clusters such as time to blindness in

two eyes (Diabetic Retinopathy Study Research Group, 1976) and tooth extrac-

tion times (Caplan et al., 2005). Failure times obtained within the same cluster

typically exhibit inherent association, which needs to be appropriately accounted

for in the analysis of such data.

Studying the distribution of residual lifetime generally provides valuable in-

sights into disease prevention or treatment strategies for individuals at different life

stages, especially for those who may not be at short-term risk of disease (Conner

et al., 2022). In the Framingham heart study (Tsao and Vasan, 2015), each study

subject may experience several cardiovascular diseases (events), such as coronary

heart disease, myocardial infarction and hypertension, and potential dependence

arises among the multiple disease event times obtained from a subject (cluster).

It is interesting in this study to assess the effects of risk factors, e.g., BMI, blood

pressure, cholesterol level, smoking and gender, on the distribution of remaining

life times to the occurrence of each disease given that a subject is known to be

disease-free at some followup time point. Since the dependence structure among
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multiple residual life times of a subject is unknown in practice, it poses both

theoretical and computational challenges in regression analysis.

Conventional methods for handling correlated failure times can be basically

divided into three classes. The first explicitly models the dependence among mul-

tivariate failure times within a subject/cluster through frailty, which is often as-

sumed to follow a known distribution from some positive scale family (Aalen, 1988;

Duchateau and Janssen, 2008). The second employs copula functions to capture

within-cluster association (Othus and Li, 2010; Kwon et al., 2022; He et al., 2024).

The third, consisting of marginal models initially proposed by Liang and Zeger

(1986) for longitudinal outcomes, has been widely adopted and remains an active

area of research. In particular, the marginal approach has been extensively studied

in the context of multivariate survival data under the Cox proportional hazards

and AFT models (e.g. Cai and Prentice, 1995; Jin et al., 2006; Chen et al., 2010;

Spiekerman and Lin, 1998; Xu et al., 2023), as well as censored quantile regression

(Yin and Cai, 2005; Wang and Fygenson, 2009). The basic idea of marginal models

is to model the marginal distributions of multivariate outcomes as for independent

observations, and treats associations among outcomes as a nuisance. Without

specifying the correlation structure, this approach allows for more flexible, parsi-

monious models and is computationally more efficient than frailty or copula-based

models.

In this paper, we focus on the marginal method for regression analysis of mul-
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tivariate residual lifetimes. As an alternative to conventional marginal models,

residual lifetime–based regression has attracted considerable attention in clinical

studies due to its ease of understanding and capability to align with the demands

in practice. For example, in cancer studies with patients who survived after some

initial treatments, their remaining lifetimes are often of interest in evaluating the

efficacy of the followup therapies. Compared to relative risks, the remaining life

expectancy is more straightforward and readily understandable for patients. Re-

cently, the frailty model was extended to regression analysis of mean residual

lifetimes in multicenter studies by Huang et al. (2019) using a hierarchical likeli-

hood approach. It is noted that failure times in biomedical studies often exhibit

censorship, outliers and heteroscedasticity, which particularly leads to covariate

effects on the remaining lifetimes varying over different follow-up stages. To this

end, quantile regression appears more appropriate than the mean-based regression

for the remaining lifetimes.

The quantile residual lifetime (QRL) regression, which leverages the strengths

of censored quantile regression (Peng and Huang, 2008; Wang and Wang, 2009),

examines the relationship between the quantile residual lifetimes and covariates

and has gained growing attention recently. An overview of early developments

can be found in the monograph by Jeong (2014). Semiparametric QRL regression

analysis has been investigated for univariate failure time outcomes. Jung et al.

(2009) extended Ying et al. (1995)’s median regression model to quantile residual
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lifetimes and mimicked the least square estimating equations to construct an esti-

mating equation for quantile coefficients. They suggested a grid search method to

find some appropriate roots, which is computationally expensive especially in the

presence of a large number of covariates because the estimating equation is neither

monotone nor continuous. For testing significance, they studied a score-type test.

Zhou and Jeong (2011) and Kim et al. (2012) proposed case-weighted empirical-

likelihood ratio test. Built upon Jung et al. (2009)’s method, Ma and Wei (2012)

estimated quantile coefficient by spline smoothing instead and suggested a Wald-

type test statistic. For data with longitudinal covariates, Li et al. (2016) and Lin

et al. (2019) developed an unbiased estimating equation that is solved via linear

programming. All these existing inferential methods for QRL models are under

the independence assumption for failure times.

In the presence of multivariate or clustered failure times, applying these meth-

ods by ignoring possible correlations among outcome data may result in biases in

variance estimation and loss of statistical power for testing hypotheses in conse-

quence. To circumvent this issue, we study a marginal QRL regression model for

multivariate failure time data, extending the idea of QRL regression (Li et al.,

2016) to accommodate the correlation among multiple failure time outcomes of a

subject. We develop semiparametric estimating equations for parameter estima-

tion and show theoretical properties of the resulting estimator regardless of the true

dependence structures. A major hurdle in inference for QRL regression is variance
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estimation of parameter estimators. To this end, we propose three methods to

estimate the covariance matrix of the estimated regression coefficients accounting

for the dependence of the multivariate failure times properly and compare their

performance numerically.

The rest of this article is organized as follows. In Section 2, we introduce no-

tation for data and the proposed marginal QRL regression model first, and then

provide the estimating equations for model parameters. In Section 3, we estab-

lish asymptotic properties of the resulting estimator and further develop variance

estimation methods to facilitate inference. The performance of the proposed esti-

mators is examined through extensive simulation studies in Section 4. We present

an application to the analysis of the Flamingham Heart data in Section 5, followed

by concluding remarks in Section 6.

2. Methodology

2.1 Data and marginal QRL regression model

Consider a sample comprising n clusters with each cluster containing mi ob-

servations. Consequently, the total number of observations in the sample amounts

to N =
∑n

i=1mi. Let Tij represent the j-th event time of cluster i for j = 1, . . . ,mi

and i = 1, . . . , n, and Xij be the associated baseline covariate vector with the first

element being one. At a specific time point t0, we define θτ,t0 as the τ -th condi-

tional quantile of the residual lifetime on a logarithmic scale, i.e., log(Tij − t0),
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2.1 Data and marginal QRL regression model

conditional on the covariates Xij and subject to the constraint Tij > t0. As a

result, θτ,t0 satisfies the equation Pr(log(Tij − t0) ≤ θτ,t0|Tij ≥ t0,Xij) = τ , which

is equivalent to

Pr(t0 ≤ Tij ≤ t0 + exp(θτ,t0)|Xij) = τ Pr(Tij ≥ t0|Xij). (2.1)

For the τ -th quantile of the remaining lifetimes among clusters whose event times

are beyond time t0, the linear QRL regression is assumed in the form of

θτ,t0 = XT
ijατ,t0 , (2.2)

where ατ,t0 is the vector of coefficients at time t0 for covariate vector Xij at some

quantile level τ ∈ (0, 1). Under model (2.2), Tij can be modeled as

log(Tij − t0) = XT
ijατ,t0 + eτij, j = 1, · · · ,mi, i = 1, · · · , n, (2.3)

where eτij’s are correlated within the same cluster but independent across clusters.

For the sake of identifiability, we set the conditional τth quantile of eτij to zero

given Xij and Tij > t0.
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2.2 Estimation procedure

2.2 Estimation procedure

For ease of presentation, we omit τ and t0 in the coefficient vector α in the

following. When all survival times are exactly observed, the estimator of α can be

obtained by solving the following estimating equations for α:

∑
i

∑
j

XijI(Tij ≥ t0)[I{Tij ≤ t0 + exp(XT
ijα)} − τ ] = 0. (2.4)

In the presence of right censoring, the survival outcome Tij is observed as

Yij = min(Tij, Cij) along with the censoring indicator ∆ij = I(Tij ≤ Cij), and Cij

is the corresponding censoring time. It is assumed that Tij and Cij are indepen-

dent, with Cij independently following a distribution characterized by the survival

function G(·). With right-censored multivariate failure time data, one may modify

equations in (2.4) by adjusting censoring. Let α0 be the true value of α. Note

that

E

[
∆ij

G(Yij)
I{Yij ≤ t0 + exp(XT

ijα0)}

∣∣∣∣∣Yij ≥ t0,Xij

]

=

Pr

{
t0 ≤ Tij = Yij ≤ Cij, Tij ≤ t0 + exp(XT

ijα0)

∣∣∣∣∣Xij

}
Pr {Cij ≥ Yij, Yij ≥ t0|Xij}

=
Pr

{
t0 ≤ Tij ≤ t0 + exp(XT

ijα0)|Xij

}
Pr {Tij ≥ t0|Xij}G(t0)

=
τ

G(t0)
.

(2.5)
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2.2 Estimation procedure

This motivates us to form a modified estimating equation for α as

SN(α) =
1

N

∑
i

∑
j

XijI(Yij ≥ t0)

[
∆ijI

{
Yij ≤ t0 + exp(XT

ijα)
}

Ĝ(Yij)/Ĝ(t0)
− τ

]
= 0,

(2.6)

where Ĝ(·) is the Kaplan-Meier estimator of G based on observations {Yij, 1−∆ij}.

The estimating equation (6) can be viewed as a multivariate version of Li et al.

(2016)’s method, designed to account for the correlation among multivariate time-

to-event data. In the independent cases with time-independent covariates, SN(α)

in (2.6) reduces to the estimating function used in Li et al. (2016). The estimator

for α, denoted by α̂, can be obtained as the solution to the estimating equations

in (2.6). Equivalently, it is the minimizer of the following linear programming

problem:

1

N

∑
i

∑
j

I(Yij ≥ t0)∆ij

Ĝ(Yij)/Ĝ(t0)
ρτ

{
log(Yij − t0)−XT

ijα
}

+ I(Yij ≥ t0)ρτ

{
A−XT

ijα

[
1− ∆ij

Ĝ(Yij)/Ĝ(t0)

]}
,

(2.7)

where ρτ (u) = u[τ − I(u < 0)] is the quantile loss function, and A is a constant

chosen to be exceptionally large such that A > max
i,j

{log(Yij − t0)}. We adopt

the fast interior point algorithm (Portnoy and Koenker, 1997) to solve this lin-

ear programming problem, which can be readily implemented via function rq()

in R library quantreg using the weighted QR model on the augmented data
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2.2 Estimation procedure

set comprising of pseudo responses {(log(Y11 − t0), · · · , log(Ynmn − t0), A, · · · , A}

with corresponding covariates {X11, · · · ,Xnmn ,X
∗
11, · · · , · · · ,X∗

nmn
} with X∗

ij =[
1−∆ijĜ(t0)/Ĝ(Yij)

]
Xij. An alternative optimization algorithm analogue to Li

and Peng (2015) may be considered, in which all artificial observations {X∗
ij}i,j

are treated as a whole unit. In some cases, these two competing optimization al-

gorithms have negligible differences in parameter estimation when there is enough

number of exactly observed residual lifetimes. For our motivating data, the opti-

mization (2.7) produces much more reasonable results compared to results from

a classical censored quantile regression (that is, t0 = 0). This may be because Li

and Peng (2015)’s method requires a large enough constant A to bound the uni-

fied value
∑
i

∑
j

[
1− ∆ij

Ĝ(Yij)/Ĝ(t0)

]
I(Yij ≥ t0)X

T
ijα for any α in the parameter space,

possibly leading to unstable estimation procedure especially when the magnitude

of α or sample size is large.

Remark 1. Once obtaining α̂, the τ -th conditional quantile of the logarithm of

the residual lifetime for a specific individual with covariates x can be estimated as

θ̂τ,t0 = xT α̂τ,t0 . In practice, the estimated conditional quantiles θ̂τ,t0 may not be

monotonically increasing in τ due to lack of sufficient data and/or quantile crossing.

To account for the nonmonotonicity problem, one may follow the rearrangement

method developed by Chernozhukov et al. (2010) to construct monotone quantile

curves by using the order statistics of the rearranged quantile estimates. The

rearrangement procedure has been commonly used in various quantile regression
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models (Wang et al., 2012; Wang and Li, 2013; Yu et al., 2021). Given asymptotic

properties of α̂ and the Wald-type inference discussed in Section 3, the confidence

intervals for θ̂τ,t0 can be subsequently constructed. As shown by Chernozhukov

et al. (2010) and Wang et al. (2012) either theoretically or numerically, the quantile

estimators with/without rearrangement exhibited nearly identical performance in

estimation and inference.

3. Asymptotic Properties and Inference

3.1 Consistency and asymptotic normality

The following conditions are necessary to derive the asymptotic properties of

the proposed estimator obtained from solving the estimating equation in (2.6). To

associate with the total sample size N , in this section, we rewrite α̂ as α̂N .

Condition 1. The parameter space D for α is a compact region with α0 in the

interior. For any α ∈ D, there exists tu such that Pr {log(Yij − t0) ≥ tu)|Xij} is

uniformly bounded away from zero and XT
ijα ≤ tu with probability one.

Condition 2. The estimator Ĝ has sup
t≤tu

|Ĝ(t)−G(t)| = o(N−1/2+ϵ) for any ϵ > 0.

Condition 3. Given Tij > t0, the conditional distribution functions Fe(e|Xij) =

Pr(eτij ≤ e|Xij) have densities fe(·|Xij) which is Lipschitz continuous in the neigh-

borhood of 0. We assume that N−1
∑

ij Pr(Tij ≥ t0|Xij)fe(0|Xij)XijX
T
ij converges

almost surely to a positive definite and bounded matrix, denoted by Λ.
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3.1 Consistency and asymptotic normality

Condition 4. 1) The cluster size mi is finite. 2) Xij are uniformly bounded for

j = 1, · · · ,mi and i = 1, · · · , n.

Condition 1 is an standard condition for quantile residual lifetime regression

and commonly imposed in literature (Jung et al., 2009). Condition 2 holds in

most cases when Ĝ is the Kaplan-Meier estimator (Csörgő and Horváth, 1983).

Condition 3 is to ensure inf
α:||α−α0||=ϵ

||SN(α)|| > 0 for any ϵ > 0, which is needed

to establish consistency of the estimator α̂N . Matrix Λ, defined in Condition 3,

will be part of the slope matrix in estimator’ asymptotic variance, and its positive

definiteness and boundness guarantee the asymptotic normality of the estimator

α̂N . Condition 4 is a weak assumption and commonly seen in literature.

To justify the asymptotic properties of the proposed estimator, we consider the

conditional expectation of the proposed estimating function (2.6) with substitution

of true censoring distribution and define

SN(α) =
1

N

∑
i

∑
j

XijG(t0)
[
Pr

{
t0 ≤ Tij ≤ t0 + exp(XT

ijα)|Xij

}
− τ Pr {Tij ≥ t0|Xij}

]
.

(3.8)

By the definition of quantile residual lifetime function in equation (2.1), it follows

that α0 is the unique root of SN(α) = 0 for some commonly used distributions

of the failure time T , provided that its survival function is continuous and strictly

decreasing with a closed form (Jeong, 2014).

Theorem 1. (Consistency.) Under Conditions 1-3, α̂N satisfying SN(α̂N) = o(1)

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0369



3.1 Consistency and asymptotic normality

converges almost surely to α0 as N → ∞.

Lemma 1. If Condition 1 holds, N1/2SN(α0) converges to a zero-mean normal

distribution with the asymptotic covariance matrix Σ as defined in the proof of this

lemma in the Appendix.

Theorem 2. (Asymptotic normality.) Under Conditions 1- 4, α̂N satisfying

SN(α̂N) = o(N−1/2) is asymptotically normal, i.e., N1/2(α̂N−α0)
d−→ N(0, V (α0)),

where V (α0) = Λ̃−1ΣΛ̃−1, Λ̃ = G(t0)Λ.

The proofs of Lemma 1 and Theorems 1-2 are provided in the Appendix.

The main challenge in proving asymptotic properties is to account for association

among multivariate failure time data. To our knowledge this issue has not been

addressed in the literature regarding parameter estimation in quantile residual

lifetime regression. To prove the consistency of the proposed estimator, we adopt

arguments established by Resnick (2019) in the Lévy’s theorem, White (1980) in

their Lemma 2.2 and Van der Vaart (2000) in Theorem 5.9. Based on martingale

processes involving in estimation of censoring distribution as well as the Lyapunov

central limit theorem, we can show results in our new Lemma 1. The asymptotic

normality of α̂N follows from Lemma 1 and similar arguments developed by He and

Shao (1996) and Wang and Fygenson (2009). It is worth noting that Condition 4 is

essential for applying He and Shao (1996)’s theorems to the model we considered.

In fact, this condition can be extended to the situation in which mi = o(nϱ) holds

for some constant 0 < ϱ < 1/5 and N−1
∑
i

∑
j,k

XijX
T
ik <∞.
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3.1 Consistency and asymptotic normality

Remark 2. Though our estimating function for the regression coefficients essen-

tially keeps the same form as that for univariate survival data given by Li et al.

(2016), the asymptotic variances of the estimated regression coefficients address

the association among multivariate data. To further illustrate this, we consider

the error terms in model (3) having an exchangeable correlation structure as an

example. Suppose that Pr(eij ≤ 0, eij′ ≤ 0|Tij > t0, Tij′ > t0,Xij,Xij′) = δ for any

j ̸= j′, where δ measures the within-cluster dependence. In this case, the middle

matrix Σ in variance matrix V (α0) is the sum of the following three components:

I1 =
1
N

n∑
i=1

Varψi(α0), I2 =
1
N

n∑
i=1

Var ηi(α0), I3 =
2
N

n∑
i=1

Cov(ψi(α0), ηi(α0)), where

ψi and ηi are defined in the supplementary material. After some calculations, I1

can be written as

I1 =
1

N

n∑
i=1

∑
j

XijX
T
ijI(Yij ≥ t0)

(
τG(t0)

G(Yij)
− τ 2

)

+
1

N

n∑
i=1

∑
j,j′

XijX
T
ij′I(Yij ≥ t0, Yij′ ≥ t0)

(
δ − τ 2

)
.

The explicit expressions for I2 and I3 are complicated and lengthy, and thus omit-

ted here for brevity. It is noted that when δ ∈ (τ 2, τ ], the errors are positively

correlated, whereas for δ ∈ [0, τ 2), they are negatively correlated. When δ = τ 2,

the errors are independent. Ignoring the within-cluster dependence by assuming

δ = τ 2 leads to biased estimation for the asymptotic standard deviation of the

estimator α̂N .
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3.2 Inference

3.2 Inference

The asymptotic normality of the proposed estimator established in Theorem

2 offers evidence for the feasibility of the Wald-type inference and construction

of confidence intervals. An additional challenge for inference is to estimate the

variance of the proposed estimator. To directly estimate the asymptotic variance

matrix V (α0) is impractical since it takes a complicated form involving the un-

known error density function fe(0|Xij) for computing Λ and unknown censoring

distribution function in Σ. To overcome this problem, we develop three approaches,

including a perturbation resampling, sandwich estimators and multiplier bootstrap

based sandwich estimators, for asymptotic variance estimation of α̂N .

3.2.1 Resampling method

It is worthwhile noted that the conventional bootstrapping by sampling with

replacement is not appropriate for data from the longitudinal/clustered studies.

To this end, a feasible way is to bootstrap and repeatedly solve a perturbation

version of (2.6). Jin et al. (2003) proposed analogous perturbation resampling

procedure for estimating the limiting variance matrices in AFT models without

requiring density estimation or numerical derivatives and showed its validity. This

resampling approach has been widely applied to survival data especially when

estimating equations are non-smooth (Yin and Cai, 2005; Peng and Huang, 2008;

Li et al., 2016). It is also applicable for a wide variety of models and not limited to
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3.2 Inference

independent cases (Hagemann, 2017; Galvao et al., 2023). To obtain a consistent

variance estimator, we consider a similar perturbation resampling method and

account for the possible heterogeneity in the data.

In particular, we first generate independent and identically distributed positive

multipliers γi from an exponential distribution with E(γi) = Var(γi) = 1, for

i = 1, .., n. We define the randomly perturbed version of SN(α) as

S∗
N(α) =

1

N

∑
i

γi
∑
j

XijI(Yij ≥ t0)

[
∆ijI

{
Yij ≤ t0 + exp(XT

ijα)
}

G∗(Yij)/G∗(t0)
− τ

]
(3.9)

and G∗(·) in (3.9) is a perturbed version of the Kaplean-Meier estimator in the

form of

G∗(t) =
∏

ij:Yij≤t

{
1− dN

∗
(Yij)

Y
∗
(Yij)

}
,

where N
∗
(t) =

n∑
k=1

γk
mi∑
l=1

I(δkl = 0, Ykl ≤ t), Y
∗
(t) =

n∑
k=1

γk
mi∑
l=1

I(Ykl ≥ t) and

dN
∗
(t) = N

∗
(t)−N∗

(t−). Then the resampled estimate α̂∗ is obtained by solving

the updated estimating equations S∗
N(α) = 0.

Theorem 3. Under Conditions 1- 4, the conditional distribution of N1/2(α̂∗− α̂)

given the observed data converges to the same limiting distribution of N1/2(α̂N −

α0).

The proof of Theorem 3 is in line with that of Theorem 2 to some extent, with

its sketch given in the Appendix. Therefore, the variance of α̂N can be estimated
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3.2 Inference

using the sample variance of B resampled estimates, (α̂∗(1), · · · , α̂∗(B)), which are

obtained by repeating the above resampling procedure for B times.

3.2.2 A closed-form sandwich estimator

We consider estimation of Λ first, in which fe(0|Xij) is unknown. Wang et al.

(2019) proposed quantile regression with correlated data and estimate fe(0|Xij)

by a well-known quotient estimation method. Specifically, based on the large-

sample behavior of regression quantile spacing shown by Goh and Knight (2009),

the conditional density function fe(0|Xij) can be consistently estimated using the

difference quotient

f̂e(0|Xij) =
2hN

XT
ij [α̂τ+hN ,t0 − α̂τ−hN ,t0 ]

, (3.10)

where hN is a bandwidth parameter such that hN → 0 as N goes to infinity,

α̂τ+hN ,t0 and α̂τ−hN ,t0 are the roots of the estimating equation in (2.6) at the

residual time point t0 and two specific quantile levels τ + hN and τ − hN . In

practice, we follow Hall and Sheather (1988) and take

hN = 1.57N−1/3
[
1.5ϕ2

{
Φ−1(τ)

}
/(2

{
Φ−1(τ)

}2
+ 1)

]1/3
,

where ϕ and Φ are the density and distribution functions of the standard normal

distribution, respectively. It follows from Hendricks and Koenker (1992) that
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3.2 Inference

̂̃
Λ = N−1

∑
ij Ĝ(t0)I(Yij ≥ t0)f̂e(0|Xij)XijX

T
ij

P−→ Λ̃. As pointed by Koenker

(2005), the crossing issues may occur in the estimated conditional quantile planes,

and so for implementation we may replace f̂e(0|Xij) simply by its positive part in

(3.10), that is,

f̂e(0|Xij) = max

{
0,

2hN
XT

ij [α̂τ+hN ,t0 − α̂τ−hN ,t0 ]− ϵ

}
, (3.11)

where ϵ is a small positive constant used to avoid dividing by zero in some rare

cases. In addition to equations (3.10)-(3.11), another approach based on a kernel

density estimation can be adopted for estimating fe(0|Xij) and the consistency of̂̃
Λ maintains as well (Koenker, 2005).

To estimate Σ, we can use a closed-form direct approximation given by

Σ̂ = N−1

n∑
i=1

(ψ̂i + η̂i)(ψ̂i + η̂i)
T ,

where

ψ̂i =

mi∑
j=1

XijI(Yij ≥ t0)

[
∆ijI

{
Yij ≤ t0 + exp(XT

ijα̂N)
}

Ĝ(Yij)/Ĝ(t0)
− τ

]
,

η̂i =
∑
k,j

XkjδkjI
{
t0 ≤ Ykj ≤ t0 + exp(XT

kjα̂N)
}

Ĝ(Ykj)/Ĝ(t0)
×[∑

l

(1− δil)I(t0 ≤ Yil ≤ Ykj)∑
r,s I(Yrs ≥ Yil)

−
∑
l

∑
u,v

(1− δuv)I{Yuv ≤ min(Yil, Ykj)}
(
∑

r,s I(Yrs ≥ Yuv))2

]
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3.2 Inference

with plugging in the Kaplan-Meier estimator Ĝ(·) of G(·). This direct approxi-

mation replaces all unknown quantities in Σ with their sample version estimates,

which have closed forms but are complicated owing to the martingale processes

and non-parametric estimation for cumulative hazard function of the censoring

variable.

Based on the sandwich estimator with estimated slope matrix
̂̃
Λ and estimated

middle matrix Σ̂, the Wald-type statistic for testing the hypothesis H0 : α =

α0 can be consequently constructed by WN = N(α̂N − α0)
T (
̂̃
Λ

−1

Σ̂
̂̃
Λ

−1

)−1(α̂N −

α0). It follows from the Slutsky’s theorem that WN converges in distribution to

the same limiting distribution as N(α̂N − α0)
T (Λ̃−1ΣΛ̃−1)−1(α̂N − α0). Then

the conventional χ2 test can be applied to test the hypothesis about regression

coefficients at some specific quantile level.

3.2.3 Resampling-based Sandwich estimator

By integrating the strengths of both the resampling and sandwich estimator

approaches, we develop a resampling-based sandwich estimator to improve the ac-

curacy of the sandwich estimator, while circumventing repeatedly solving equation

(3.9) in the resampling method. Similar methods have been studied by Zeng and

Lin (2008) and Chiou et al. (2015) under different models to achieve consistent

variance estimators.

For the asymptotic variance matrix V (α0) = Λ̃−1ΣΛ̃−1, estimators of Λ̃ and
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Σ can be obtained from a computationally efficient resampling procedure with-

out the need of solving estimating equations. Given a set of random multipliers

(γ1, · · · , γn) generated as in Subsection 3.2.1, the perturbed estimating function

S∗
N(α) in (3.9) evaluated at the estimate α̂N (the root of equations in (2.6)) is ob-

tained. Then repeating this B times, we obtain the set {S∗(k)
N (α̂N), k = 1, · · · , B},

and the sample variance of {
√
NS

∗(k)
N (α̂N), k = 1, · · · , B} provides the resampled

estimate of Σ, denoted by Σ̂∗. Next, we generate B random samples, denoted by

{Zk, k = 1, · · · , B}, from a multivariate normal distribution with mean zero and

covariance matrix (Σ̂∗)−1. Following the resampling method given by Zeng and Lin

(2008), the inverse of the sample covariance matrix of {
√
NSN(α̂N+N−1/2Zk), k =

1, · · · , B} can be used as a consistent estimator of V (α0).

4. Simulation studies

In this section, we conduct simulation studies to assess the performance of the

proposed estimators in various situations. Particularly, data are generated with

individual-level covariates in Scenarios 1, with cluster-level covariates and different

marginal distributions of error terms in Scenarios 2-3, and with heterogeneous

errors in Scenario 4. We also examine the performance of the proposed methods

under various types of dependence structures in Scenarios 5-7, and for the case

with multiple covariates in Scenario 8. The simulation setups for Scenarios 1-4 are

provided below, while those for Scenarios 5-8 are detailed in the Supplementary
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Material.

Scenario 1 is designed to evaluate the finite sample performance of our pro-

posal under the longitudinal study with an individual-level covariate. For each

observation case j of individual i with j = 1, · · · ,m and i = 1, · · · , n, we generate

a single baseline covariate, xij, independently from a uniform distribution on the

interval [0, 1], and survival outcome Tij following a multivariate accelerated failure

time model in the form of

log Tij = β0 + β1xij + ϵij, (4.12)

where exp(ϵij) marginally follows an exponential distribution with the rate pa-

rameter λ = 0.69. We construct the joint distribution of (ϵi1, · · · , ϵim) through

a Clayton copula with Kendall’s tau of 0, 0.5 and 0.8, corresponding to the in-

dependent, moderate correlated and strongly correlated cases, respectively. We

take the values of (β0, β1) as (1, 1). Under model (4.12) with the above setting,

parameters in the corresponding quantile residual lifetime model (2.3) are given

by α0(τ, t0) = (α0(τ, t0), α1(τ, t0)), where α0(τ, t0) = log[−λ−1 log(1− τ)] + β0 and

α1(τ, t0) = β1.

In Scenario 2, a cluster-level covariate is considered in the working AFT

model (4.12) to mimic community randomized studies or patients with multiple

disease progressions in practice. The scheme for data generation is same as in
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Scenario 1 except taking xij = xi with xi being generated from Uniform(0, 1) for

all j = 1, · · ·m observations of cluster i. A Clayton copula joint distribution is

also considered for the error terms with Kendall’s tau equal 0.5.

Scenario 3 considers a residual lifetime model with error term marginally

from a logistic distribution. Same as in Scenario 2, a cluster-level covariate xi is

independently from Uniform[0, 1]. The failure time outcome Tij is generated from

the residual lifetime model:

log(Tij − tm) = β0 + β1xi + σϵij, (4.13)

where ϵij marginally follows a standard logistic distribution, leading to a baseline

log-logistic distribution for the residual lifetime Tij − tm. The joint distribution of

(ϵi1, · · · , ϵim) is given by a Clayton copula with Kendall’s tau equal 0.5. We take

tm = 1, β0 = 1, β1 = 0 and σ = 0.5 in (4.13), corresponding to α1(τ, t0) = 0 and

α0(τ, t0) =


log

[
exp

(
σ log

(
τ

1−τ

)
+ β0

)
− t0 + tm

]
, t0 ≤ tm

log

[(
τ+exp(−β0

σ
)(t0−tm)

1
σ

1−τ

)σ

exp(β0)− t0 + tm

]
, t0 > tm

in model (2.3).

Scenario 4 is designed to illustrate the substantial gains of the quantile

residual lifetime regression compared to the Cox or AFT model, particularly in

handling heterogeneous data and revealing how covariate effects vary across dif-
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ferent quantile levels. The failure time outcome Tij follows the model given by

log Tij = β0 + β1xij + (1 − axij)ϵij, where β0 = 1, β1 = 2, covariate xij = xi and

xi ∼ Bernoulli(0.5). The degree of heteroscedasticity rises with increasing values

of a. The generation of (ϵi1, · · · , ϵim) is the same as in Scenario 2 except the rate

parameter λ = 2. Consequently, the true regression coefficients in model (3) are

α0(τ, t0) = log[−λ−1 log(1− τ)] + β0 and

α1(τ, t0) =


−a log(−λ−1 log(1− τ)) + β1, t0 = 0,

log

{
t0[1−λ−1t

−1/(1−a)
0 log(1−τ) exp(

β0+β1
1−a

)]1−a−t0

−λ−1 log(1−τ) exp(β0)

}
, t0 ̸= 0.

Their values, determined for τ = 0.25, 0.5 and t0 = 0, 1, 2, can be found in Table

4. Under this setup, with a fixed quantile level, the covariate effect decreases as

t0 increases. While given a fixed t0, the covariate effect decreases as the quantile

level increases.

In all scenarios, we consider the cluster size m = 3 or 10. The number of

clusters is configured as n = 200 or 500. The censoring time variable Cij is gen-

erated from a uniform distribution over the interval [0, 20], achieving a censoring

rate between 20% and 40%.

Based on 500 simulated data sets for each simulation setting, results of the

estimation of regression coefficients α0 and α1 are summarized in Tables 1-4 for

Scenarios 1-4 and Tables S.1-S.4 for Scenarios 5-8 in the Supplementary Mate-

rial, respectively, in terms of averaged bias of point estimates, the Monte Carlo
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standard derivation (MCSD) of point estimates, the average of standard error

(ASE), and the empirical coverage percentage (CP) of the 95% confidence inter-

vals. For standard errors, we report the results of three variance estimators: the

fully resampling method (FR), the closed-form sandwich estimator (CFS) and the

resampling-based sandwich estimator (RBS) proposed in subsection 3.2, in com-

parison with the fully resampling estimator of variance proposed by Li et al. (2016)

for independent failure times (IFR) with time-independent covariates. All pertur-

bation resampling-based estimators of variance are computed based on B = 500

multiplier replicates.

In general, it can be seen from these tables that the estimated regression

coefficients appear to be asymptotically unbiased. Biases and standard deviations

of point estimates decrease as the number of clusters or cluster size increases. Their

standard errors obtained from FR/CFS/RBS are generally close to the Monte

Carlo empirical standard deviation of the estimates. The coverage probabilities

based on FR/CFS/RBS variance estimators also reasonably approach the nominal

level 0.95.

To be specific, as shown in Supplementary Table S.1 under Scenario 1 with

independent survival outcomes, IFR, FR, CFS and RBS variance estimators yield

similar results in terms of average estimated standard error as well as coverage

probability. With stronger dependence among failure time outcomes, correspond-

ing to higher values of Kendall’s tau as demonstrated in Table 1 and Table S.2,
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Table 1: Estimation results based on 500 replicates for quantile level τ = 0.5 under
Scenario 1 with Kendall’s tau=0.5.

α0(0.5, t0) α1(0.5, t0) runtime
(n,m) t0 = 0 t0 = 1 t0 = 2 t0 = 0 t0 = 1 t0 = 2 (s)
(200,3) bias -0.007 -0.009 -0.005 0.008 0.019 0.017

MCSD 0.146 0.155 0.174 0.235 0.259 0.289
ASE IFR 0.130 0.150 0.173 0.235 0.267 0.303

FR 0.146 0.158 0.178 0.24 0.268 0.303 5.75
CFS 0.142 0.164 0.196 0.234 0.276 0.332 0.262
RBS 0.139 0.149 0.167 0.227 0.249 0.281 3.502

CP IFR 0.924 0.932 0.942 0.956 0.938 0.958
FR 0.958 0.95 0.958 0.96 0.958 0.964
CFS 0.948 0.958 0.964 0.956 0.948 0.98
RBS 0.95 0.932 0.94 0.946 0.944 0.94

(500,3) bias 0.002 0.003 0.001 0.004 0.005 0.008
MCSD 0.087 0.096 0.109 0.138 0.161 0.186
ASE IFR 0.082 0.094 0.108 0.147 0.166 0.188

FR 0.09 0.099 0.11 0.148 0.167 0.188 9.948
CFS 0.09 0.104 0.122 0.146 0.173 0.206 0.673
RBS 0.087 0.096 0.106 0.142 0.161 0.178 6.265

CP IFR 0.920 0.936 0.952 0.940 0.950 0.963
FR 0.956 0.956 0.948 0.958 0.96 0.942
CFS 0.95 0.954 0.978 0.938 0.962 0.98
RBS 0.946 0.95 0.938 0.954 0.95 0.938

(200,10) bias -0.007 -0.003 0 0.004 0.001 -0.002
MCSD 0.104 0.099 0.105 0.129 0.144 0.163
ASE IFR 0.070 0.081 0.092 0.127 0.143 0.159

FR 0.1 0.102 0.106 0.129 0.147 0.165 10.978
CFS 0.099 0.105 0.116 0.126 0.151 0.181 0.825
RBS 0.096 0.098 0.103 0.125 0.141 0.159 6.363

CP IFR 0.868 0.906 0.946 0.946 0.952 0.960
FR 0.954 0.962 0.95 0.954 0.95 0.944
CFS 0.952 0.972 0.97 0.946 0.966 0.972
RBS 0.948 0.948 0.944 0.948 0.942 0.932
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the IFR estimator is more likely to underestimate standard errors particularly for

α0 as the cluster size increases. Similar trends can be found across various sit-

uations in Scenarios 2-8. As shown in Tables 2-4 and Tables S.3-S.4, the IFR

estimator generally yields considerably lower ASEs than the benchmark MCSDs

in most cases, along with the empirical CPs below the nominal 95%. Such an is-

sue becomes more pronounced–particularly for coefficients associated with cluster-

level covariates–as the correlation among failure times strengthens, the cluster size

grows, or t0 is small. This underperformance is mainly attributed to the fact that

the IFR method utilizes a conventional resampling approach, which treats the data

{(Yij, δij,Xij)} as if they are independent and samples from them with replace-

ment across all (i, j), thereby ignoring the correlation among multivariate failure

times. It is observed that the performance of the IFR estimator improves as t0

increases, especially when t0 = 2 in our simulation setups. A possible reason for

this improvement is that both the values of MCSD and ASE increase as a result

of smaller sample sizes under the restricted population where Tij > t0.

On the other hand, the proposed estimators closely match MCSD and pro-

duce reasonable coverage probabilities near the nominal level, highlighting the im-

portance of accounting for within-cluster dependence to ensure accurate variance

estimation and reliable inference. Results summarized in Supplementary Tables

S.3-S.4 demonstrate the outperformance of the proposed marginal method in ac-

commodating diverse dependence structures for multivariate failure times even
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Table 2: Estimation results based on 500 replicates for quantile level τ = 0.5 under
Scenario 2.

α0(0.5, t0) α1(0.5, t0) runtime
(n,m) t0 = 0 t0 = 1 t0 = 2 t0 = 0 t0 = 1 t0 = 2 (s)
(200,3) bias -0.008 -0.002 -0.014 0.003 0.001 0.006

MCSD 0.174 0.19 0.191 0.313 0.33 0.334
ASE IFR 0.131 0.15 0.173 0.238 0.269 0.303

FR 0.179 0.184 0.164 0.317 0.328 0.291 9.672
CFS 0.178 0.191 0.179 0.314 0.34 0.315 0.358
RBS 0.169 0.173 0.154 0.295 0.306 0.268 5.806

CP IFR 0.848 0.90 0.929 0.844 0.894 0.927
FR 0.948 0.94 0.908 0.948 0.944 0.925
CFS 0.948 0.948 0.939 0.946 0.95 0.946
RBS 0.936 0.926 0.892 0.936 0.93 0.894

(500,3) bias -0.009 -0.009 -0.011 0.011 0.012 0.013
MCSD 0.109 0.111 0.123 0.197 0.195 0.212
ASE IFR 0.082 0.093 0.108 0.148 0.166 0.188

FR 0.112 0.116 0.118 0.198 0.205 0.208 13.584
CFS 0.111 0.121 0.129 0.196 0.213 0.227 0.905
RBS 0.107 0.111 0.114 0.188 0.195 0.199 7.001

CP IFR 0.868 0.896 0.909 0.850 0.908 0.909
FR 0.946 0.966 0.942 0.954 0.96 0.952
CFS 0.946 0.972 0.963 0.952 0.964 0.969
RBS 0.932 0.956 0.927 0.942 0.952 0.944

(200,10) bias -0.003 -0.002 -0.006 0.002 -0.003 0.002
MCSD 0.166 0.148 0.142 0.283 0.264 0.256
ASE IFR 0.071 0.081 0.094 0.127 0.143 0.163

FR 0.156 0.147 0.132 0.274 0.262 0.239 14.968
CFS 0.155 0.153 0.145 0.272 0.273 0.262 0.879
RBS 0.151 0.142 0.128 0.263 0.254 0.23 7.404

CP IFR 0.606 0.692 0.780 0.612 0.708 0.766
FR 0.926 0.938 0.927 0.938 0.954 0.936
CFS 0.926 0.946 0.951 0.934 0.964 0.953
RBS 0.92 0.922 0.91 0.92 0.94 0.925
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Table 3: Estimation results based on 500 replicates for quantile level τ = 0.5 under
Scenario 3.

α0(0.5, t0) α1(0.5, t0) runtime
(n,m) t0 = 0 t0 = 1 t0 = 2 t0 = 0 t0 = 1 t0 = 2 (s)
(200,3) bias 0.003 0.004 -0.003 -0.01 -0.015 -0.009

MCSD 0.088 0.119 0.165 0.161 0.217 0.296
ASE IFR 0.069 0.094 0.133 0.123 0.165 0.235 9.662

FR 0.092 0.126 0.167 0.163 0.221 0.295 10.724
CFS 0.092 0.131 0.185 0.161 0.229 0.324 0.445
RBS 0.09 0.12 0.161 0.158 0.212 0.283 6.031

CP IFR 0.884 0.888 0.884 0.856 0.848 0.874
FR 0.968 0.966 0.956 0.952 0.948 0.936
CFS 0.968 0.972 0.974 0.948 0.962 0.96
RBS 0.958 0.962 0.95 0.94 0.928 0.93

(500,3) bias -0.001 -0.003 -0.004 0.003 0.005 0.006
MCSD 0.057 0.077 0.1 0.1 0.136 0.175
ASE IFR 0.043 0.057 0.082 0.075 0.101 0.142 21.31

FR 0.057 0.077 0.104 0.1 0.135 0.18 23.796
CFS 0.057 0.082 0.115 0.1 0.143 0.2 1.286
RBS 0.056 0.076 0.101 0.098 0.133 0.175 12.957

CP IFR 0.852 0.856 0.88 0.852 0.846 0.892
FR 0.946 0.946 0.958 0.95 0.952 0.954
CFS 0.948 0.962 0.97 0.95 0.968 0.97
RBS 0.94 0.94 0.952 0.944 0.946 0.95

(200,10) bias 0 -0.001 -0.003 -0.005 -0.008 -0.007
MCSD 0.075 0.102 0.131 0.131 0.18 0.234
ASE IFR 0.037 0.05 0.071 0.065 0.087 0.124 31.27

FR 0.079 0.108 0.136 0.138 0.189 0.237 35.872
CFS 0.079 0.114 0.152 0.138 0.198 0.264 1.609
RBS 0.077 0.105 0.132 0.135 0.183 0.231 13.949

CP IFR 0.696 0.688 0.734 0.706 0.684 0.722
FR 0.966 0.964 0.95 0.948 0.948 0.944
CFS 0.966 0.972 0.974 0.948 0.96 0.966
RBS 0.962 0.958 0.942 0.936 0.932 0.944
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Table 4: Estimation results based on 500 replicates under Scenario 4 (n = 200,m =
10).

α0(0.25, t0) α1(0.25, t0) α0(0.5, t0) α1(0.5, t0)
a t0 = 0 t0 = 1 t0 = 2 t0 = 0 t0 = 1 t0 = 2 t0 = 0 t0 = 1 t0 = 2 t0 = 0 t0 = 1 t0 = 2
0.1 truth -0.939 -0.939 -0.939 2.194 2.127 2.09 -0.06 -0.06 -0.06 2.106 2.068 2.044

bias -0.009 -0.005 -0.003 -0.003 -0.007 -0.01 -0.005 -0.008 0.002 -0.007 -0.003 -0.013
MCSD 0.16 0.118 0.15 0.211 0.188 0.218 0.102 0.09 0.108 0.142 0.14 0.157
ASE IFR 0.064 0.095 0.144 0.089 0.118 0.163 0.047 0.07 0.106 0.068 0.089 0.122

FR 0.166 0.116 0.147 0.226 0.186 0.203 0.109 0.091 0.109 0.15 0.138 0.15
CFS 0.166 0.123 0.162 0.226 0.198 0.225 0.109 0.097 0.12 0.15 0.146 0.166
RBS 0.155 0.111 0.138 0.213 0.178 0.191 0.106 0.088 0.105 0.145 0.133 0.145

CP IFR 0.552 0.89 0.936 0.59 0.768 0.848 0.642 0.878 0.932 0.672 0.782 0.872
FR 0.954 0.944 0.946 0.964 0.952 0.94 0.97 0.95 0.94 0.962 0.956 0.94
CFS 0.954 0.952 0.966 0.964 0.96 0.966 0.97 0.96 0.966 0.962 0.96 0.964
RBS 0.938 0.936 0.928 0.952 0.946 0.92 0.962 0.94 0.93 0.956 0.95 0.928

0.2 truth -0.939 -0.939 -0.939 2.388 2.276 2.202 -0.06 -0.06 -0.06 2.212 2.148 2.101
bias -0.009 -0.005 -0.003 -0.003 -0.007 -0.01 -0.005 -0.008 0.002 -0.005 -0.002 -0.012
MCSD 0.16 0.118 0.15 0.201 0.183 0.213 0.102 0.09 0.108 0.135 0.134 0.153
ASE IFR 0.064 0.095 0.144 0.086 0.115 0.161 0.047 0.07 0.106 0.065 0.086 0.12

FR 0.165 0.116 0.147 0.215 0.181 0.201 0.109 0.091 0.109 0.143 0.132 0.147
CFS 0.166 0.123 0.162 0.216 0.192 0.223 0.109 0.097 0.12 0.143 0.14 0.162
RBS 0.156 0.111 0.138 0.204 0.174 0.191 0.106 0.087 0.105 0.138 0.127 0.141

CP IFR 0.554 0.89 0.938 0.596 0.766 0.864 0.642 0.876 0.932 0.672 0.802 0.866
FR 0.954 0.942 0.946 0.97 0.944 0.94 0.972 0.948 0.94 0.956 0.954 0.948
CFS 0.954 0.952 0.966 0.97 0.95 0.96 0.972 0.962 0.966 0.956 0.96 0.97
RBS 0.938 0.936 0.928 0.956 0.936 0.932 0.962 0.938 0.928 0.952 0.944 0.94

0.5 truth -0.939 -0.939 -0.939 2.97 2.839 2.71 -0.06 -0.06 -0.06 2.53 2.445 2.361
bias -0.009 -0.005 -0.003 0.001 -0.004 -0.008 -0.005 -0.008 0.002 -0.002 0.001 -0.01
MCSD 0.16 0.118 0.15 0.176 0.152 0.185 0.102 0.09 0.107 0.117 0.111 0.131
ASE IFR 0.064 0.095 0.144 0.075 0.105 0.153 0.047 0.07 0.106 0.057 0.079 0.113

FR 0.165 0.116 0.147 0.188 0.152 0.183 0.109 0.091 0.109 0.125 0.112 0.13
CFS 0.166 0.123 0.162 0.188 0.161 0.203 0.109 0.097 0.12 0.125 0.119 0.143
RBS 0.156 0.111 0.139 0.177 0.146 0.174 0.105 0.088 0.105 0.12 0.108 0.126

CP IFR 0.554 0.89 0.936 0.584 0.838 0.894 0.642 0.876 0.932 0.686 0.858 0.912
FR 0.954 0.942 0.944 0.968 0.94 0.956 0.972 0.948 0.942 0.966 0.952 0.954
CFS 0.954 0.952 0.966 0.968 0.954 0.978 0.972 0.962 0.968 0.966 0.958 0.974
RBS 0.938 0.936 0.928 0.958 0.926 0.94 0.962 0.938 0.93 0.954 0.938 0.942
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though an independent working model is used. These promising findings further

exhibit a degree of robustness of the method across different types of copula.

Each of the three variance estimators we proposed has unique advantages. The

FR estimator provides the best performance but is less computationally efficient,

requiring at least 55% more time than the RBS estimator. The CFS estimator

stands out for its elegant form and computational efficiency. However, the CFS

estimator tends to be slightly conservative with higher CP for larger t0, possibly

due to bandwidth selection, and becomes inestimable at high quantile level as

indicated by the difference quotient in Equation (3.10). The RBS estimator is a

trade-off between computational efficiency and accuracy, performing well in most

scenarios. While it falls behind the FR estimator in a few cases, its performance

improves with larger sample sizes, making it the most practical choice.

As a final remark, it is worth noting that when t0 and the quantile level τ are

large, the number of individuals with exactly observed failure times would become

limited, leading to potential identifiability issues. To ensure identifiability, we

therefore consider estimation at τ = 0.5 under various scenarios restricting the

censoring rate to below 50% in the simulation studies. When using a quantile

level τ ∈ (0, 0.4) and a higher censoring rate, e.g., 62% as in the following real

data analysis, the proposed estimator exhibits similar performance. Thus, the

corresponding simulation results are omitted.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0369



5. An illustrative example

In this section, we utilized the proposed method to analyze a subset of data

from the renowned Framingham heart study (Tsao and Vasan, 2015) discussed in

Section 1. The data set is available in the R package riskCommunicator. Partic-

ipants in this study have undergone biennial examinations since the study entry,

and all subjects are continually monitored for cardiovascular outcomes. Our spe-

cific focus was on middle-aged patients aged between 30 and 50 years who were

part of the first examination cycle. We excluded subjects with a history of preva-

lent coronary heart disease, prevalent hypertension, myocardial infarction, or fatal

coronary heart disease prior to the first examination. Additionally, subjects who

passed away without experiencing any of these diseases were removed to avoid

issues related to semi-competing risks. Missing observations were also excluded,

resulting in a remaining sample size of 1753 patients in our analysis.

Researchers aimed to identify the effects of covariates on the occurrence of

angina pectoris, myocardial infarction, coronary insufficiency, or fatal coronary

heart disease (ANYCHD) and as well as hypertensive (HYPERTEN) events. The

latter were defined as instances where high blood pressure was treated during the

first examination or during the second examination when either the systolic blood

pressure reached 140 mmHg or the diastolic blood pressure reached 90 mmHg.

The survival times of interest were the time until the first ANYCHD event and

the time until the first HYPERTEN event. The two times were measured in days
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and recorded from the same individual might be correlated. The bivariate times

can either be observed directly or subjected to censoring due to death or loss

of follow-up, resulting in a censoring rate of 62.3%. The risk factors of interest

included body mass index (BMI), systolic blood pressure (SYSBP, measured in

mmHg), current cigarette smoking at the time of examination (CURSMOKE,

yes= 1 and no= 0), sex (female= 1 and male= 0), and serum total cholesterol

level (measured in mg/dL) in logarithmic transformation. Preliminary analysis

indicated that these risk factors had no significant effects on censoring variables.

Given that only 37.7% of the survival times are observable, it’s important to note

that coefficients at quantile levels exceeding 0.4 cannot be reliably estimated.

Supplementary Figures S.1-S.2 illustrate the comprehensive trajectories of co-

efficient estimations as τ increases with some particular values of t0. In these

figures, the black curves represent coefficient estimates, accompanied by their 95%

RBS (red dashed curves) confidence intervals. At lower quantile levels and smaller

t0, RBS and CFS show similar trends. However, CFS estimator becomes unstable

and unestimable for higher quantile levels and larger t0, thus CFS estimator is

omitted in Supplementary Figures S.1-S.2. Table 5 summarizes estimates of re-

gression coefficients and their significance as well as τ -th conditional quantile of

the logarithm of residual lifetime θ
(k)
τ,t0 for selected patient k for k = 1, 2 under

τ = 0.1, 0.2, 0.3 quantile level and t0 = 0, 1200, 2400 (days). Patient 1 is a fe-

male and non-smoker and has the minimum BMI, SYSBP, TOTCHOL among the
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sample, while Patient 2 is a female and smoker who has the maxmimum values of

BMI, SYSBP and TOTCHOL. The IFR/RBS variance estimator with the num-

ber of replicates B = 500 are used to compute the significance. It is noteworthy

that the intercept exhibits a significant impact on event times. Moreover, both

BMI and systolic blood pressure demonstrate significance, particularly at lower

quantiles or for smaller values of t0.

Table 5: Estimation of regression coefficients and quantile of the residual lifetime
θ
(k)
τ,t0 (k = 1, 2) for the Framingham heart data with τ = 0.1, 0.2, 0.3 quantiles
of ANYCHD/HYPERTEN times after the first examination at t0 = 0, 1200, 2400
(days), respectively.

t0 = 0 t0 = 1200 t0 = 2400
τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.1 τ = 0.2 τ = 0.3

Estimates
Intercept 17.046 14.916 13.862 17.808 14.218 13.071 12.641 12.842 11.446
BMI -0.045 -0.039 -0.023 -0.076 -0.034 -0.023 -0.021 -0.016 -0.011
SYSBP -0.045 -0.038 -0.029 -0.046 -0.034 -0.022 -0.033 -0.024 -0.014
CURSMOKE 0.061 0.01 -0.026 0.082 -0.026 -0.051 -0.113 -0.086 -0.053
SEX 0.07 0.077 0.015 -0.014 0.131 0.035 0.253 0.071 0.049
log(TOTCHOL) -0.512 -0.196 -0.197 -0.536 -0.202 -0.217 -0.093 -0.215 -0.158

θ
(1)
τ,t0

10.125 10.171 10.075 10.07 9.932 9.813 9.295 9.543 9.422

θ
(1)∗
τ,t0

9.973 10.105 10.163 9.785 9.904 10.07 9.295 9.473 9.543

θ
(2)
τ,t0

4.699 5.836 6.824 3.763 6.008 7.087 5.846 6.762 7.786

θ
(2)∗
τ,t0

4.699 5.836 6.824 3.763 6.008 7.087 5.846 6.762 7.786

SE- RBS
(Intercept) 1.161** 0.982** 1.101** 1.686** 1.093** 1.391** 1.382** 1.357** 1.934**
BMI 0.01** 0.009** 0.008** 0.017** 0.011** 0.012* 0.013 0.013 0.016
SYSBP 0.003** 0.003** 0.004** 0.004** 0.004** 0.005** 0.004** 0.004** 0.009
CURSMOKE 0.078 0.066 0.061 0.104 0.068 0.068 0.092 0.069 0.112
SEX 0.069 0.066 0.056 0.106 0.069* 0.075 0.091** 0.071 0.106
log(TOTCHOL) 0.226** 0.185 0.172 0.292* 0.188 0.208 0.266 0.215 0.285

θ
(1)
τ,t0

0.158** 0.151** 0.218** 0.267** 0.2** 0.276** 0.216** 0.234** 0.439**

θ
(2)
τ,t0

0.231** 0.204** 0.267** 0.461** 0.295** 0.369** 0.317** 0.339** 0.415**

SE- IFR
(Intercept) 1.118** 0.742** 0.562** 1.387** 0.761** 0.617** 1.47** 0.907** 0.539**
BMI 0.01** 0.008** 0.006** 0.016** 0.011** 0.009** 0.014 0.011 0.006*
SYSBP 0.003** 0.002** 0.002** 0.004** 0.002** 0.002** 0.004** 0.002** 0.002**
CURSMOKE 0.077 0.053 0.033 0.109 0.053 0.039 0.114 0.052* 0.028*
SEX 0.079 0.062 0.04 0.115 0.068* 0.053 0.095** 0.072 0.07
log(TOTCHOL) 0.221** 0.143 0.105* 0.282* 0.146 0.117* 0.288 0.166 0.085*

θ
(1)
τ,t0

0.134** 0.101** 0.076** 0.182** 0.104** 0.081** 0.207** 0.114** 0.067

θ
(2)
τ,t0

0.231** 0.187** 0.138** 0.34** 0.229** 0.175** 0.324** 0.218** 0.185**

* and ** indicate significance at levels 0.1 and 0.05, respectively. The significance is computed based on
RBS/IFR variance estimators.
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Note that the estimates of θ
(1)
τ,t0 in Table 5 do not increase as τ increases,

suggesting a crossing quantile problem in the analysis. Thus we further use a

rearrangement procedure proposed by Chernozhukov et al. (2010) to construct

a monotone quantile curve, denoted by θ
(k)∗
τ,t0 in the table. It can be seen from

this table that patients with smoke hobby and higher values of BMI, SYSBP and

TOTCHOL face higher risks and have shorter remaining time until the occur-

rence of severe cardiovascular diseases. Moreover, to illustrate the effects of the

rearrangement procedure in prediction, we consider t0 = 1200 and calculate the

complete estimated θ
(k)∗
τ,t0 at different quantile levels τ for both selected patients.

Figure 1 visualizes the prediction intervals at different quantile levels for the first

and second patients, respectively. Notably, the difference between the two typ-

ical patients is quite large at small quantile levels, and lessens as quantile level

increases.

6. Discussion

This article introduces a marginal QRL regression approach to accommodate

the potentially clustered failure times when there are multiple failure event types or

groups of subjects in the study. The estimation process is computationally simple

and stable, making it attractive for practical applications. Our proposed variance

estimators in Section 3.2 are particularly tailored for the estimator α̂N , which is

obtained by solving the estimation equation (6). These asymptotic variance esti-
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Figure 1: Prediction intervals of the logarithm residual lifetime with t0 = 1200
over different quantile levels of τ for the selected patient 1 (in black color) and
patient 2 (in grey color).

mators address the within-cluster dependence, making subsequent inference more

reliable. This marginal approach is valuable when the relationship between quan-

tile residual lifetimes and covariates is of interest, given that a subject is known

to be disease-free at a specific time point. Our proposal leaves the underlying

correlation structure completely unspecified, making it robust to potential mis-

specification and flexible in modeling various multivariate failure times.

The estimating equation (6) is analogous to the well-known generalized esti-

mating equations (GEE) approach with an independent working correlation struc-

ture. The GEE method has been extended to quantile regression for longitudinal

data in the literature, such as Jung (1996), Fu and Wang (2012) and Leng and
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Zhang (2014). We adopt the independent working model in light of the consider-

ations as follows. 1) The choice of the working correlation structure should be a

trade-off between simplicity and potential efficiency loss from misspecification. 2)

Since the association is considered as nuisance in the marginal models, a simpler

working correlation will generally suffice, with the independent working struc-

ture being recommended by Fahrmeir and Tutz (2013). Our simulation results

demonstrate the promising performance of the proposed method across various

dependence structures and copula types.

While we acknowledge that incorporating within-cluster dependence may im-

prove efficiency, integrating the idea of the GEE approach within the framework of

the multivariate quantile residual lifetime model poses challenges. As a potential

direction for future work, we consider the following weighted estimating equations

for residual lifetimes:

1

n

n∑
i=1

XT
i W−1

i ζi = 0, (6.14)

where Xi = (Xi1, · · · ,Ximi
)T , ζi = (ζi1, · · · , ζimi

)T with

ζij = I(Yij ≥ t0)
[
∆ijI

{
Yij ≤ t0 + exp(XT

ijα)
}
Ĝ(t0)/Ĝ(Yij)− τ

]
.

W i is a working covariance matrix of ζi and can be expressed as W i = Γ
1
2
i AiΓ

1
2
i ,

where Γi = diag{σ2
i1, · · · , σ2

imi
} with σ2

ij being the dispersion of ζij. Ai is a corre-

lation matrix that can be specified with some unknown parameters or as a linear
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combination of some known basis matrices (Qu et al., 2000). It is noted that po-

tential issues may arise from (6.14) demanding more in-depth exploration. First,

the dependence may vary with quantile levels or the time points t0, making it

difficult to specify a proper working correlation structure. Second, as t0 increases,

the number of individuals with Tij ≥ t0 will decrease, and the unstable estimation

may become more severe for larger t0 if an inappropriate correlation structure is

imposed. Besides, the potential efficiency gains from incorporating a weight func-

tion require further investigation through theoretical justification and numerical

studies.

Additionally, we assume the censoring variable Cij’s are i.i.d from a distri-

bution independent from Xij. In practice, it may be necessary to verify this as-

sumption about the censoring distribution before applying the proposed method.

Our method can be simply improved by incorporating covariates in modeling the

censoring times through Cox proportional hazards model for example, and replace

Ĝ(·) in (2.6) with Ĝ(·|X). Further study of its theoretical justification is also

warranted.

Supplementary Material

The online Supplementary Material contains an appendix for technical proofs

of the lemma and theorems referenced in Section 3 and additional numerical results

referenced in Sections 4-5.
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Csörgő, S. and L. Horváth (1983). The rate of strong uniform consistency for the product-limit estimator.

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 62 (3), 411–426.

Diabetic Retinopathy Study Research Group (1976). reliminary report on effects of photocoagulation

therapy. American Journal of Ophthalmology 81 (4), 383–396.

Duchateau, L. and P. Janssen (2008). The frailty model. Springer.

Fahrmeir, L. and G. Tutz (2013). Multivariate Statistical Modelling Based on Generalized Linear Models.

Springer Science & Business Media.

Fu, L. and Y.-G. Wang (2012). Quantile regression for longitudinal data with a working correlation

model. Computational Statistics & Data Analysis 56 (8), 2526–2538.

Galvao, A. F., T. Parker, and Z. Xiao (2023). Bootstrap inference for panel data quantile regression.

Journal of Business & Economic Statistics 42 (2), 628–639.

Goh, S. C. and K. Knight (2009). Nonstandard quantile-regression inference. Econometric Theory 25 (5),

1415–1432.

Hagemann, A. (2017). Cluster-robust bootstrap inference in quantile regression models. Journal of the

American Statistical Association 112 (517), 446–456.

Hall, P. and S. J. Sheather (1988). On the distribution of a studentized quantile. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 50 (3), 381–391.

He, W., G. Y. Yi, and A. Yuan (2024). Analysis of multivariate survival data under semiparametric

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0369



REFERENCES

copula models. Canadian Journal of Statistics 52 (2), 380–413.

He, X. and Q.-M. Shao (1996). A general bahadur representation of m-estimators and its application to

linear regression with nonstochastic designs. The Annals of Statistics 24 (6), 2608–2630.

Hendricks, W. and R. Koenker (1992). Hierarchical spline models for conditional quantiles and the

demand for electricity. Journal of the American statistical Association 87 (417), 58–68.

Huang, R., L. Xiang, and I. D. Ha (2019). Frailty proportional mean residual life regression for clustered

survival data: A hierarchical quasi-likelihood method. Statistics in Medicine 38 (24), 4854–4870.

Jeong, J.-H. (2014). Statistical inference on residual life. Springer.

Jin, Z., D. Lin, L. Wei, and Z. Ying (2003). Rank-based inference for the accelerated failure time model.

Biometrika 90 (2), 341–353.

Jin, Z., D. Lin, and Z. Ying (2006). Rank regression analysis of multivariate failure time data based on

marginal linear models. Scandinavian Journal of Statistics 33 (1), 1–23.

Jung, S.-H. (1996). Quasi-likelihood for median regression models. Journal Of the American Statistical

Association 91 (433), 251–257.

Jung, S.-H., J. H. Jeong, and H. Bandos (2009). Regression on quantile residual life. Biometrics 65 (4),

1203–1212.

Kim, M.-O., M. Zhou, and J.-H. Jeong (2012). Censored quantile regression for residual lifetimes.

Lifetime data analysis 18, 177–194.

Koenker, R. (2005). Quantile regression. Cambridge University Press.

Kwon, S., I. D. Ha, J.-H. Shih, and T. Emura (2022). Flexible parametric copula modeling approaches

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0369



REFERENCES

for clustered survival data. Pharmaceutical Statistics 21 (1), 69–88.

Leng, C. and W. Zhang (2014). Smoothing combined estimating equations in quantile regression for

longitudinal data. Statistics and Computing 24 (1), 123–136.

Li, R., X. Huang, and J. Cortes (2016). Quantile residual life regression with longitudinal biomarker

measurements for dynamic prediction. Journal of the Royal Statistical Society Series C: Applied

Statistics 65 (5), 755–773.

Li, R. and L. Peng (2015). Quantile regression adjusting for dependent censoring from semicompet-

ing risks. The Journal of the Royal Statistical Society, Series B (Statistical Methodology) 77 (1),

107–130.

Liang, K.-Y. and S. L. Zeger (1986, 04). Longitudinal data analysis using generalized linear models.

Biometrika 73 (1), 13–22.

Lin, X., R. Li, F. Yan, T. Lu, and X. Huang (2019). Quantile residual lifetime regression with func-

tional principal component analysis of longitudinal data for dynamic prediction. Statistical Methods

Medical Research 28 (4), 1216–1229.

Ma, Y. and Y. Wei (2012). Analysis on censored quantile residual life model via spline smoothing.

Statistic Sinina 22 (1), 47–68.

Othus, M. and Y. Li (2010). A gaussian copula model for multivariate survival data. Statistics in

biosciences 2, 154–179.

Peng, L. and Y. Huang (2008). Survival analysis with quantile regression models. Journal of the American

Statistical Association 103 (482), 637–649.

Portnoy, S. and R. Koenker (1997). The gaussian hare and the laplacian tortoise: computability of

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0369



REFERENCES

squared-error versus absolute-error estimators. Statistical Science 12 (4), 279–300.

Qu, A., B. G. Lindsay, and B. Li (2000). Improving generalised estimating equations using quadratic

inference functions. Biometrika 87 (4), 823–836.

Resnick, S. I. (2019). A probability path. Springer Science & Business Media.

Spiekerman, C. F. and D. Lin (1998). Marginal regression models for multivariate failure time data.

Journal of the American Statistical Association 93 (443), 1164–1175.

Tsao, C. W. and R. S. Vasan (2015). The Framingham Heart Study: past, present and future. Interna-

tional Journal of Epidemiology 44 (6), 1763–1766.

Van der Vaart, A. W. (2000). Asymptotic statistics. Cambridge University Press.

Wang, H. J., X. Feng, and C. Dong (2019). Copula-based quantile regression for longitudinal data.

Statistica Sinica 29, 245–264.

Wang, H. J. and M. Fygenson (2009). Inference for censored quantile regression models in longitudinal

studies. The Annals of Statistics 37 (2), 756–781.

Wang, H. J. and D. Li (2013). Estimation of extreme conditional quantiles through power transformation.

Journal of the American Statistical Association 108 (503), 1062–1074.

Wang, H. J., D. Li, and X. He (2012). Estimation of high conditional quantiles for heavy-tailed distri-

butions. Journal of the American Statistical Association 107 (500), 1453–1464.

Wang, H. J. and L. Wang (2009). Locally weighted censored quantile regression. Journal of the American

Statistical Association 104 (487), 1117–1128.

White, H. (1980). Nonlinear regression on cross-section data. Econometrica 48 (3), 721–746.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0369



REFERENCES

Xu, Y., D. Zeng, and D. Lin (2023). Marginal proportional hazards models for multivariate interval-

censored data. Biometrika 110 (3), 815–830.

Yin, G. and J. Cai (2005). Quantile regression models with multivariate failure time data. Biomet-

rics 61 (1), 151–161.

Ying, Z., S. H. Jung, and L. J. Wei (1995). Survival analysis with median regression models. Journal of

the American Statistical Association 90 (429), 178–184.

Yu, T., L. Xiang, and H. J. Wang (2021). Quantile regression for survival data with covariates subject

to detection limits. Biometrics 77 (2), 610–621.

Zeng, D. and D. Y. Lin (2008). Efficient resampling methods for nonsmooth estimating functions.

Biostatistics 9 (2), 355–363.

Zhou, M. and J.-H. Jeong (2011). Empirical likelihood ratio test for median and mean residual lifetime.

Statistics in Medicine 30 (2), 152–159.

Tonghui Yu, Liming Xiang,

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

E-mail: LMXiang@ntu.edu.sg

Jong-Hyeon Jeong,

Department of Biostatistics, Public Health, University of Pittsburgh, U.S.A.

Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Institutes of Health/National

Cancer Institute, U.S.A.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0369


	Introduction
	Methodology
	Data and marginal QRL regression model
	Estimation procedure

	Asymptotic Properties and Inference
	Consistency and asymptotic normality
	Inference
	Resampling method
	A closed-form sandwich estimator 
	Resampling-based Sandwich estimator


	Simulation studies
	An illustrative example
	Discussion



