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Abstract: Identifying the number and precise locations of multiple change points

in long sequences is a critical issue in statistics and machine learning. How-

ever, accurate change point detection can be compromised by the presence of

local trends in the sequence when using the conventional parametric piecewise-

constant model. In this paper, we introduce an adaptive Neyman test to assess

the presence of local trends. Subsequently, we develop a novel change point de-

tection procedure based on a partially linear model that incorporates these local

trends. Furthermore, we extend the proposed testing and estimation methods to

multidimensional cases, facilitating the identification of common change points in

array-based data. Our methods are straightforward to implement, and we eval-

uate their numerical performance through simulations and the analysis of SNP

genotyping data.
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1. Introduction

Change-point model has played a vital role in statistics and machine learn-

ing, finding successful applications in various fields, including genetics, en-

gineering, signal processing, climatology and econometrics. A compelling

example is the detection of DNA copy number variation in bioinformat-

ics. DNA copy number refers to the number of copies of a genomic DNA

region. Chromosome copy number variation (CNV) is the deviation of

genomic regions from their normal copy number states, representing a sig-

nificant genetic structural variation that may be associated with various

human diseases, including cancers (Fearnhead and Liu (2007); Zhang et al.

(2024)). Therefore, identifying the number and precise locations of change

points is fundamentally crucial for analyzing DNA copy number data.

However, due to the advancements and increasing applications of high-

resolution CNV detection technologies, a genome-wide local trend interfer-

ing with accurate CNV detection in signal intensity data has been observed.

As originally mentioned by Olshen et al. (2004), copy number data tend to

display local trends in the form of wave patterns that even comprehen-

sive preprocessing fails to completely eliminate. Marioni (2007) employed

Loess regression to mitigate these wave patterns and enhance CNV calling

in whole-genome tiling path arrays. The wavy patterns they observed seem
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to be a common characteristic of array comparative genomic hybridization

(aCGH) data. Additionally, Diskin et al. (2008) discovered that signal in-

tensities measured by high-density single nucleotide polymorphism (SNP)

arrays are also susceptible to genomic waves. Hence, the classical change-

point (piecewise-constant) model may not be suitable, and it is advanta-

geous for the CNV calling algorithm to be robust to genomic waves.

Before more advanced techniques for observing local trends (or wave

patterns) in the copy number data became available, statisticians had al-

ready developed some nonparametric methods to identify abrupt jumps in

a smooth curve. These methods are primarily based on local linear smooth-

ing (Grégoire and Hamrouni (2002)), or wavelets (Wang (1995)). Müller

and Song (1997) introduced a two-step estimation procedure to enhance

the efficiency of change points estimators. Müller and Stadtmüller (1999)

and Gijbels and Goderniaux (2004) proposed different methods for testing

whether the regression function is smooth or not. However, very little work

has been published examining the adequacy of parametric fits (i.e., change-

point models) in comparison to nonparametric alternatives (i.e., smooth

curves with discontinuities). Furthermore, to investigate the impact of local

trends, especially wave patterns in DNA copy number data, specific esti-

mation and inference procedures are required instead of relying on existing
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nonparametric or semiparametric methods that are generally applicable to

any type of smooth function.

Recently, the issue of detecting change points occurring at the same lo-

cation in multiple sequences has garnered significant attention. The objec-

tive is to identify these shared change points and leverage multiple samples

to enhance the accuracy of change point detection. For example, Bleakley

and Vert (2011) introduced group fused Lasso techniques, while Song et al.

(2016) proposed the multiple sample SaRa algorithm for detecting simul-

taneous change points in array-based DNA copy number data. Therefore,

it is desirable to develop new methods that consolidate statistical evidence

across samples to detect common change points, while considering the si-

multaneous impacts of local trends from multiple sequences.

The main contributions of this paper can be summarized as follows:

(i) We formulate a partially linear model that accommodates local trends

and introduce an adaptive Neyman test to confirm the local trends.

(ii) We develop a partial penalized least squares (PPLS) algorithm for

estimating the change points, if local trends exist.

(iii) We extend the testing procedure and estimation algorithm to multiple

sequences, specifically the multiple-sample adaptive Neyman test and
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group partial penalized least squares algorithm (GPPLS), for detect-

ing common change points.

(iv) We apply the PPLS and GPPLS algorithms to detect change points

in DNA copy number data. For single sequence, PPLS demonstrates

noteworthy performance compared to classical models. For multiple

sequences, GPPLS enables the detection of common change points

even with weak signals.

The rest of the paper is organized as follows: In Section 2, we pro-

vide an overview of existing related works. Section 3 introduces the test

for examining the presence of local trends and estimation algorithm for de-

tecting change points. Sections 4 and 5 offer illustrative examples of the

proposed methods using simulation studies and real data. Finally, Section

6 is dedicated to discussions and suggestions for further research. Technical

conditions and proofs of main results, together with additional simulation

and real data analysis are collected in the Supplementary Material. The al-

gorithms are implemented in the R program, and both the source code and

data can be accessed at https://github.com/ShengjiJia/wave_test.
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2. Review of existing works

The change-point detection problem is typically formulated as a piecewise-

constant model, focusing on the high-dimensional Normal means model:

yj = µj + εj, j = 1, . . . , n, (2.1)

where y = (y1, . . . , yn)
T is a sequence of responses (e.g., log2 fluorescence

ratios), with a mean µ = (µ1, . . . , µn)
T represented as a piecewise-constant

vector, and errors εj
i.i.d.∼ N(0, σ2). A change point is a position τ such that

µτ ̸= µτ+1. Assuming there are K change points 0 < τ1 < · · · < τK < n,

we are particularly interested in situations where n is large, and K is small.

The objective is to estimate both the number K of change points and the

location vector τ = (τ1, . . . , τK)
T .

In the literature, many tools for detecting multiple change points have

been developed and extensively implemented. For instance, Olshen et al.

(2004) introduced the circular binary segmentation (CBS) algorithm, which

recursively identifies segments with changes. Niu and Zhang (2012) in-

troduced the screening and ranking algorithm (SaRa), a powerful change

point detection tool with a computational complexity of O(n). Muggeo and

Adelfio (2011) and Jia and Shi (2022) proposed a fast and robust algorithm

based on a simple data transformation. Other approaches utilize penalized
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least squares regression with methods like L1 penalty (Huang et al. (2005);

Harchaoui and Lévy-Leduc (2010)), or combined penalties as seen in the

fused-Lasso (Tibshirani and Wang (2008)). Bayesian approaches have been

adopted when the focus is on mean levels rather than change points, see Erd-

man and Emerson (2008). Additionally, hidden Markov models (HMM) can

also be applied for change-points detection, as demonstrated by Fridlyand

et al. (2004). Comprehensive reviews and comparisons of some of these

methods are provided by Liu et al. (2022) and Zhao et al. (2023).

We will focus on the fused-Lasso approach, which serves as the moti-

vation for our proposed methods. It’s worth noting that the change-point

model (2.1) can be reformulated as a linear regression model. Let β0 = µ1

and βi = µi+1 − µi, for i = 1, . . . , n− 1. Then, (2.1) is equivalent to:

yj =

j−1∑
i=0

βi + εj, j = 1, . . . , n, (2.2)

and the constraints for the signals, such as:

µ1 = µ2 = . . . = µτ1 ̸= µτ1+1 = . . . = µτK ̸= µτK+1 = . . . = µn

are transformed into constraints for the parameters {βi : i = 1, . . . , n− 1}:

βi ̸= 0 if i ∈ S,

βi = 0 if i /∈ S.

(2.3)
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Here, S = {τ1, . . . , τK} ⊆ {1, . . . , n − 1} represents the set of true change

points. The assumption that K = |S| is much smaller than the sample

size n implies that the transformed parameters {β1, . . . , βn−1} are sparse.

As a result, the primary task shifts to identifying significant covariates or

the support set S = {1 ≤ i ≤ n − 1 : βi ̸= 0} in the linear model

(2.2). This leads us to reformulate the multiple change-point detection

problem as a Lasso-type problem (Tibshirani (1996)), enabling efficient

variable selection. Huang et al. (2005) and Harchaoui and Lévy-Leduc

(2010) proposed to minimize the following penalized sum of squares:

min
β0,...,βn−1

1

2n

n∑
j=1

(
yj −

j−1∑
i=0

βi

)2

+ λ
n−1∑
i=1

|βi|. (2.4)

This is expected to yield a sparse vector β = (β0, . . . , βn−1)
T with non-

zero components corresponding to the change point locations. Notably, β0

corresponds to the intercept in model (2.2) and is not penalized. Let’s

denote the n × n lower triangular matrix with non-zero elements equal to

1 as X. With this, the problem (2.4) can be represented as:

min
β

1

2n
∥y −Xβ∥22 + λ∥β1∥1, (2.5)

where β1 = (β1, . . . , βn−1)
T , and ∥u∥1 =

∑n
j=1 |uj| and ∥u∥2 =

√∑n
j=1 u

2
j

are the l1 and l2 norms, respectively, of a vector u = (u1, . . . , un)
T ∈ Rn.

Equivalently, the convex programming problem (2.5) can be reformulated
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as the following l1-constrained quadratic programming problem:

min
β

∥y −Xβ∥22, subject to ∥β1∥1 < s. (2.6)

The minimization problems (2.5) and (2.6) can be efficiently solved us-

ing the least angle regression (LAR) algorithm, as proposed by Efron et

al. (2004). The computational complexity of the LAR algorithm in this

particular case is O(Kmaxn log(n)), where Kmax represents a known upper

bound on the true number of change points. For more details, see Harchaoui

and Lévy-Leduc (2010). This substantial reduction in computational com-

plexity stands in contrast to the O(Kmaxn
2) complexity of the dynamic

programming (DP) algorithm, as discussed by Huber et al. (2006).

In practice, it is essential to determine the values of the tuning parame-

ters λ in (2.5) and s in (2.6). Various methods for selecting tuning parame-

ters have been employed in the literature. For example, Huang et al. (2005)

suggested empirically choosing s. They examined the solutions of (2.6) for

an increasing sequence of s. As they added more change points to the model

with larger values of s, they stopped increasing s when the resulting mean

difference at the new change point was not sufficiently large. Harchaoui

and Lévy-Leduc (2010) provided an asymptotic order of O(
√

log(n)/n) for

the tuning parameter λ in the optimization problem (2.5), and Muggeo

and Adelfio (2011) proposed selecting the tuning parameter by minimizing
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the generalized Bayesian information criterion (gBIC). As discussed in Ri-

naldo (2009) and Niu et al. (2016), finding the optimal value of the tuning

parameter remains an open problem.

3. Proposed methods

3.1 Change-point detection for single sequence

Rather than fitting the piecewise-constant model, we integrate local trends

of signals into model (2.2) and formulate it as a partially linear model:

yj = f(xj) +

j−1∑
i=0

βi + εj, j = 1, . . . , n, (3.1)

where xj = j for j = 1, . . . , n, and f(·) represents the nonlinear component

describing the local trends (or wave patterns). A natural choice is to assume

that f(·) can be represented by the following Fourier series expansion:

f(x) =
m∑
i=1

{
ai cos

(2iπx
n

)
+ bi sin

(2iπx
n

)}
. (3.2)

In comparison with the standard Fourier series expansion, there is no inter-

cept term in (3.2) since it has been absorbed by the baseline β0 in (3.1) to

ensure model identifiability. Typically, the number (dozens) of basis func-

tions in (3.2) is assumed to be much smaller than the number (thousands)

of data points. Depending on the specific research objectives, alternative
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3.1 Change-point detection for single sequence

expansions of f(·) may include orthogonal polynomial expansion, spline

basis expansion, and wavelet basis expansion (Vidakovic (1999)).

Testing for the presence of local trends (or wave patterns) involves con-

ducting the hypothesis testing problem:

H0 : f(·) = 0 versus H1 : f(·) ̸= 0. (3.3)

If the null hypothesis H0 is rejected, we must then detect the change points

by estimating the support set S = {1 ≤ i ≤ n − 1 : βi ̸= 0} based on the

partially linear model (3.1) instead of the parametric linear model (2.2).

Next, we outline the testing procedure. We adapt the adaptive Neyman

test (Fan and Huang (2001)) to the current high-dimensional regression

setting. Assuming a parametric linear model under the null hypothesis in

(3.3), i.e.,

y = Xβ + ε,

where ε = (ε1, . . . , εn)
T . After deriving the initial minimizer β̂

ini
= (β̂ini

0 , β̂ini
1 , . . . , β̂ini

n−1)
T

in (2.5) or (2.6), we refit the following submodel to obtain the residuals ε̂:

y = β0x0 +
∑
i∈Ŝini

βixi + ε, (3.4)

where X = (x0,x1, . . . ,xn−1) and Ŝ
ini = {1 ≤ i ≤ n − 1 : β̂ini

i ̸= 0}. Let

ε̂∗ = (ε̂∗1, . . . , ε̂
∗
n)

T be the discrete Fourier transform (Vidakovic (1999)) of
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3.1 Change-point detection for single sequence

the residual vector ε̂ = (ε̂1, . . . , ε̂n)
T from (3.4). More precisely, we define

ε̂∗2i−1 =

(
2

n

)1/2 n∑
j=1

cos

(
2πij

n

)
ε̂j,

ε̂∗2i =

(
2

n

)1/2 n∑
j=1

sin

(
2πij

n

)
ε̂j,

i = 1, . . . , [n/2].

The purpose of Fourier transform is to condense useful signals into low fre-

quencies, thereby enhancing the power of our proposed test. Testing all

components of the vector ε̂∗ is not advisable. If there is a vague prior sug-

gesting that large absolute values of ε̂∗ are primarily concentrated in the first

k components, then one would focus on testing only the first k-dimensional

subproblem. This leads to
∑k

j=1 ε̂
∗2
j or, equivalently, its standardized form:

1√
2kσ̂4

k∑
j=1

(ε̂∗2j − σ̂2).

Here σ̂2 is the sample variance of {ε̂∗j : j = In+1, . . . , n} for some given In.

Fan and Huang (2001) suggested choosing In = [n/4], and they showed that,

under certain mild conditions, this estimator is
√
n-consistent with σ2 even

under the alternative hypothesis. The parameter k must be determined,

and based on power considerations, we will employ the following adaptive

Neyman test statistic:

T ∗
n = max

1≤k≤n

1√
2kσ̂4

k∑
j=1

(ε̂∗2j − σ̂2). (3.5)
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3.1 Change-point detection for single sequence

The null hypothesis is rejected when T ∗
n is large. Fan and Huang (2001)

derived the asymptotic null distribution of (3.5) in the low-dimensional

case. We demonstrate in the following theorem that the asymptotic result

remains valid for the high-dimensional model (3.1).

Theorem 1. Suppose that conditions (C1)–(C6) in the Supplementary hold.

Then, under the null hypothesis in (3.3), the normalized test statistic

Tn =
√
2 log(log(n))T ∗

n −{2 log(log(n))+0.5 log(log(log(n)))− 0.5 log(4π)}

(3.6)

with T ∗
n defined in (3.5), asymptotically follows

P(Tn ≤ x) → exp{− exp(−x)} as n→ ∞. (3.7)

The proof is provided in Supplementary Material. Conditions (C1) and

(C2) serve as fundamental assumptions for adaptive Neyman test, parallel-

ing those in Fan and Huang (2001). The literature on change-point analy-

sis necessitates some standard assumptions regarding the signal jumps and

minimum spacing between consecutive change-points. For instance, Niu et

al. (2016) summarises the sufficient conditions for min2≤j≤K(τj − τj−1) and

min1≤j≤K |µτj+1 − µτj |. Given our reformulation of the change-point model

into a Lasso-type framework, these conditions translate into assumptions

for βi = µi+1 − µi and the support set S = {1 ≤ i ≤ n − 1 : βi ̸= 0}.
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3.1 Change-point detection for single sequence

Specifically, mini∈S |βi| in condition (C5) is essentially the lower bound for

signal jumps, and conditions (C3) and (C4) imply that the neighboring

change-points cannot be close to each other.

As a consequence of Theorem 1, the critical region Tn > − log(− log(1−

α)) has an asymptotic significance level α. If the null hypothesis H0 in (3.3)

is rejected, and the wave patterns can be described by the Fourier series

expansion (3.2), then the estimation and inference procedures based on the

linear model (2.2) may be inaccurate because some waves (or local trends)

are incorrectly recognized as change points. Therefore, we should consider

how to improve change point detection by fitting the partially linear model

(3.1). Note that model (3.1) can be expressed in the matrix form using the

following notations. Let γ = (β0, a1, b1, . . . , am, bm)
T and

Z =



1 cos(2πx1

n
) sin(2πx1

n
) . . . cos(2mπx1

n
) sin(2mπx1

n
)

1 cos(2πx2

n
) sin(2πx2

n
) . . . cos(2mπx2

n
) sin(2mπx2

n
)

...
...

...
. . .

...
...

1 cos(2πxn

n
) sin(2πxn

n
) . . . cos(2mπxn

n
) sin(2mπxn

n
)


n×(2m+1)

.

Then, (3.1) can be written as

y = X1β1 + Zγ + ε,

with X1 = (x1, . . . ,xn−1) excluding the intercept. The elements of γ de-

scribe the magnitude of the waves, which can be small compared with β1.
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3.1 Change-point detection for single sequence

We consider the following minimization problem, which only penalizes β1,

and is called the partial penalized least squares (PPLS):

min
(β1,γ)

1

2n
∥ y −X1β1 − Zγ ∥22 +λ∥β1∥1. (3.8)

The tuning parameter λ in (3.8) may differ from that in (2.5). For any

given β1, the γ that minimizes (3.8) necessarily satisfies

ZTZγ = ZT (y −X1β1).

Let P = Z(ZTZ)−1ZT be the projection matrix of the column space of Z.

Then the profile objective function of β1 becomes

min
β1

1

2n
∥ (In −P)(y −X1β1) ∥22 +λ∥β1∥1, (3.9)

where In is an identity matrix of order n. Because the profile objective

function (3.9) does not involve γ and has an explicit form, it is useful for

both theoretical investigation and computation. In practice, we can regress

y and each column of X1 on Z separately, and we denote the residuals by

ỹ and X̃1 respectively. The profile objective function (3.9) is equivalent to

min
β1

1

2n
∥ ỹ − X̃1β1 ∥22 +λ∥β1∥1, (3.10)

which becomes a standard Lasso-type problem. Let β̂1 = (β̂1, . . . , β̂n−1)
T

be the minimizer of (3.10), then Ŝ = {1 ≤ i ≤ n−1 : β̂i ̸= 0} is the refined
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3.2 Common change-point detection for array-based data

estimator of the support set S. Note that when m = 0, the PPLS estimator

(3.8) becomes the standard Lasso estimator (2.5).

Clearly, the estimation procedure (3.10) also depends on the choice ofm

in Z, which is related to the number of basis functions in the Fourier series

expansion (3.2). Simulation results in Section 4 demonstrate that even for a

complicated wave pattern, approximating the Fourier series with a small m

(e.g., m = 5 or 10) yields quite good results. This enhances the performance

of the standard Lasso approach, especially in the presence of local trends.

In real data applications, we select m and tuning parameter λ in (3.10)

concurrently using the generalized Bayesian information criterion (Muggeo

and Adelfio (2011)), which, based on our experience, works effectively.

3.2 Common change-point detection for array-based data

In this subsection, we extend the proposed testing and estimation proce-

dures from Section 3.1 to accommodate multiple samples for the detection

of common change points. Suppose the observed two-dimensional array

{yi,j : i = 1, . . . , d, j = 1, . . . , n} satisfies:

yi,j = fi(xj) +

j−1∑
k=0

βi,k + εi,j, i = 1, . . . , d; j = 1, . . . , n,

where d is the number of independent sequences (or samples), and n is the

total number of observations for each sequence. Once again, the support
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3.2 Common change-point detection for array-based data

set S = {1 ≤ k ≤ n− 1 :
∑d

i=1 β
2
i,k > 0} is the set of shared change points.

The wave patterns are defined as:

fi(xj) =
m∑
k=1

{
ai,k cos

(2kπxj
n

)
+ bi,k sin

(2kπxj
n

)}
, i = 1, . . . , d, (3.11)

and the variances σ2
i = var(εi,j) may vary depending on i to be sample-

specific. We first propose a multiple-sample adaptive Neyman test for:

H0 : fi(·) = 0, i = 1, . . . , d, H1 : fi(·) ̸= 0, ∃ i ∈ {1, . . . , d}. (3.12)

Under the null hypothesis H0, the initial estimated support set is defined

as Ŝini = {1 ≤ k ≤ n − 1 :
∑d

i=1(β̂
ini
i,k)

2 > 0}, where β̂ini
i,k’s are derived by

minimizing the following group Lasso-type problem (Yuan and Lin (2006)):

min
βi,k

1

2n

d∑
i=1

n∑
j=1

(
yi,j −

j−1∑
k=0

βi,k

)2

+ λ
n−1∑
k=1

( d∑
i=1

β2
i,k

)1/2

. (3.13)

Once we have obtained the residuals ε̂i = (ε̂i,1, . . . , ε̂i,n)
T and the corre-

sponding discrete Fourier transform ε̂∗i = (ε̂∗i,1, . . . , ε̂
∗
i,n)

T for the ith se-

quence by refitting the submodel:

yi = βi,0x0 +
∑
k∈Ŝini

βi,kxk + εi,

where yi = (yi,1, . . . , yi,n)
T and εi = (εi,1, . . . , εi,n)

T , we generalize the adap-

tive Neyman test statistic in Section 3.1 to the multivariate case:

T ∗
n = max

1≤k≤n

{ d∑
i=1

( k∑
j=1

ε̂∗2i,j − σ̂2
i√

2kσ̂4
i

)2}1/2

, (3.14)
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3.2 Common change-point detection for array-based data

where σ̂2
i is the sample variance of {ε̂∗i,j : j = [n/4] + 1, . . . , n} for the ith

sequence. The adaptive Neyman test statistic (3.5) for a single sequence

is a special case of (3.14) with d = 1. The following theorem shows the

asymptotic null distribution of the multiple-sample adaptive Neyman test

statistic T ∗
n (3.14), but a different standardization form (3.15) is required.

Theorem 2. Suppose that conditions (C1) and (C2′)–(C6′) in the Supple-

mentary hold. Then, under the null hypothesis H0 in (3.12), the normalized

test statistic is given by:

Tn =
√

2 log(log(n))T ∗
n −

{
2 log(log(n))+

d

2
log(log(log(n)))− log

(
Γ
(d
2

))}
,

(3.15)

with T ∗
n defined in (3.14), and Γ(·) being the Gamma function. It asymp-

totically follows:

P(Tn ≤ x) → exp{− exp(−x)}, as n→ ∞.

If H0 is rejected with a large value of Tn, then we should estimate

the common change points after considering the impacts of the wave pat-

terns. Let γi = (βi,0, ai,1, bi,1, . . . , ai,m, bi,m)
T , βi,• = (βi,1, . . . , βi,n−1)

T and

β•,j = (β1,j, . . . , βd,j)
T . Consider the following group partial penalized least

squares (GPPLS):

1

2n

d∑
i=1

∥ yi −X1βi,• − Zγi ∥22 +λ
n−1∑
j=1

∥β•,j∥2, (3.16)
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where X1 and Z are defined in Section 3.1. Again, (3.16) can be reduced

to the following standard group Lasso-type problem using the profile least

squares technique:

1

2n

d∑
i=1

∥ ỹi − X̃1βi,• ∥22 +λ
n−1∑
j=1

∥β•,j∥2,

where ỹi and X̃1 are the residuals after regressing yi and each column of

X1 on Z separately. The refined estimated set of common change points is

given by Ŝ = {1 ≤ j ≤ n− 1 : ∥β̂•,j∥2 > 0}.

4. Simulation studies

4.1 Simulation 1

We first investigate the finite sample properties of the adaptive Neyman

test proposed in Section 3 through Monte Carlo simulations. Suppose the

true data generating process is as follows:

yj = f(xj) +
K∑
k=1

βkI(xj ≥ τk) + εj, j = 1, . . . , n, (4.1)

where I(·) is the indicator function (equal to 1 when true, 0 when false), the

sample size n = 500, and xj = j, j = 1, . . . , n. We set the number of change

pointsK = 4, with corresponding locations of change points (τ1, τ2, τ3, τ4) =

(150, 200, 400, 450), and the differences in mean levels (β1, β2, β3, β4) =
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doi:10.5705/ss.202024.0355



4.1 Simulation 1

(1,−2, 2,−1). Assume εj
i.i.d.∼ N(0, 0.52), and

f(xj) = θ
{
sin(2πxj/96 + ψ) + 2 sin(2πxj/240 + ϕ)

}
, j = 1, . . . , n, (4.2)

where ψ ∼ Unif(0, 2π) and ϕ ∼ Unif(0, 2π). We set θ = 0.025 × k, k =

0, 1, . . . , 5, and θ = 0 corresponds to the null hypothesis H0 in (3.3). We

conduct the simulation 500 times. The performance of adaptive Neyman

test depends on the accuracy of the initially estimated support set Ŝini via

the variable selection procedure (2.5), and we consider the following cases:

Case I (oracle) Ŝini = S.

Case II (overestimate) λ in (2.5) is selected such that |Ŝini| = 10.

Case III (underestimate) λ in (2.5) is selected such that |Ŝini| = 5.

It is worth mentioning that in Case III, although we have |Ŝini| > K = 4,

Ŝini is still an underestimate of S since the probability of detecting the true

change point τ4 = 450 successfully (τ̂4 ∈ [448, 452]) over 500 simulations

is just 0.22. Occasionally, two adjacent xis may appear in Ŝini as the esti-

mators of the same change point, and we will just discard one of them to

avoid the problem of collinearity. For each simulated piece of data, we first

get the initial estimated support set Ŝini = {1 ≤ i ≤ n− 1 : β̂ini
i ̸= 0}, and

we then fit the submodel (3.4) to get the residuals ε̂ and the corresponding

adaptive Neyman test statistic Tn in (3.6).
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4.1 Simulation 1

Figure 1 shows the QQ plots and powers of the adaptive Neyman test

over 500 simulations. From Figure 1, it can be seen that the testing pro-

cedure remains valid as long as all the true change points are contained in

Ŝini (Case II), although it may lose some power when Ŝini is large. This loss

of power is a result of the excessive biases in the estimation of S. Thus,

there is a wide range for selecting the tuning parameter λ in the variable

selection procedure (2.5). However, if we miss some true change points in

Ŝini (Case III), the asymptotic distribution (3.7) no longer holds, and the

null hypothesis H0 is more likely to be rejected.

Table 1: Average size and power of the adaptive Neyman test statistic for

Cases I-III over 500 simulations (with α = 0.05).

size power

θ 0 0.025 0.050 0.075 0.100 0.125

Case I 0.042 0.066 0.264 0.672 0.900 0.990

Case II 0.040 0.052 0.158 0.336 0.532 0.714

Case III 0.788 0.806 0.840 0.930 0.980 0.996

It is well known that the convergence rate of (3.7) is relatively slow,

therefore the distribution under the null hypothesis does not approximate
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4.2 Simulation 2

well even under the oracle setting. However, as Horváth (1993) pointed

out, this approximation proves satisfactory for the upper tail of the dis-

tribution, a property that suffices for the purpose of size control. Table

1 presents the average size and power of the adaptive Neyman test over

500 simulations. Notably, in Case I-II, the average size closely aligns with

the predetermined significance level α = 0.05, thereby affirming the suit-

ability of our test for applications. Moreover, as Fan and Huang (2001)

suggested, to further improve the performance of adaptive Neyman test,

we advocate the utilization of simulations to empirically derive the finite

sample null distribution of Tn instead of the asymptotic null distribution

(3.7) to determine the more precise critical values. For illustration, leverag-

ing 100 000 simulations with n = 500 and α = 0.05, we establish a revised

rejection criterion Tn > 3.88, as opposed to the asymptotic threshold of

Tn > − log(− log(1− 0.05)) = 2.97; see Fan and Huang (2001).

4.2 Simulation 2

Now we evaluate the performance of the proposed PPLS estimator (3.8).

The data are generated under the same conditions as in Simulation 1, with

variations in the mechanisms for generating the wave pattern f(·) in (4.1):

Scenario I Settingm = 2 and configuring all Fourier coefficients {a1, a2, b1, b2}
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4.2 Simulation 2

Figure 1: QQ plots and powers of the adaptive Neyman test (3.6) with

different estimated support set Ŝini. Left: oracle (Ŝini = S); middle: over-

estimate (|Ŝini| = 10); right: underestimate (|Ŝini| = 5).

in (3.2) to be equal to 0.1.

Scenario II Settingm = 7, with the Fourier coefficients {a3, a4, a5, b3, b4, b5}

in (3.2) equal to 0, while the other Fourier coefficients are set to 0.1.

Scenario III Defining f(·) as in (4.2) with θ = 0.1.
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4.2 Simulation 2

We conduct the simulation 500 times. For each simulated dataset, we

employ three methods to estimate the support set S:

Method I Standard Lasso estimator (2.5) [i.e., m = 0 in (3.8)].

Method II PPLS estimator (3.8) with m = 5.

Method III PPLS estimator (3.8) with m = 10.

The top panels of Figure 2 present the average number of true change-

points correctly detected by the estimated support set Ŝ using different

methods as λ decreases (or equivalently, as the estimated number of change-

points K̂ = |Ŝ| increases from 1 to 10) across 500 simulations. We say that a

true change-point τk is correctly detected by Ŝ if there exists τ̂ ∈ Ŝ such that

τ̂ ∈ [τk−2, τk+2]. Figure 2 illustrates that the PPLS estimator (withm = 5

or 10) outperforms the standard Lasso estimator (2.5) in all scenarios, be-

cause our proposed methods tend to detect all the true change-points much

earlier than the standard Lasso estimator as K̂ increases. Particularly in

Scenario III, the standard Lasso estimator fails to detect all the true change

points, even when Ŝ is very large. Furthermore, to demonstrate the effi-

cacy in detecting change-point locations, we compute the mean Hausdorff

distance (Harchaoui and Lévy-Leduc (2010)) between the sets of estimated

change-points and true change-points over 500 simulations. For the sake
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4.2 Simulation 2

Figure 2: Average true positives and Hausdorff distances by different meth-

ods over 500 simulations: Lasso (△); PPLS with m = 5 (◦) and m = 10

(×); CBS (+). Left: Scenario I; middle: Scenario II; right: Scenario III.

of comparative analysis, we incorporate the CBS algorithm (Olshen et al.

(2004)), which is a horizontal line in the plot because it is irrelevant with

tuning parameter λ. The performance of Lasso and CBS algorithms are

similar, and they are outperformed by the proposed PPLS estimators (with

m = 5 or 10) when local trends are present. Method II (with m = 5) and
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4.3 Simulation 3

Method III (with m = 10) are comparable, therefore in general, using m = 5

in (3.8) is sufficient to capture the local trends in the sequence, except in

Scenario II, where the true number m = 7. Even for the most complex wave

pattern (Scenario III) which does not adhere to the standard Fourier series

expansion, our proposed method performs remarkably well.

4.3 Simulation 3

In this simulation, we assess the performance of the multiple-sample adap-

tive Neyman test statistic Tn (3.15) and the GPPLS estimator (3.16) as

outlined in Section 3.2. The data generating process is described as follows:

yi,j = fi(xj) +
K∑
k=1

βi,kI(xj ≥ τk) + εi,j, i = 1, . . . , d; j = 1, . . . , n,

where the number of sequences d = 1 or 4. The case with d = 1 corresponds

to detecting change-points in a single sequence. The settings for the other

parameters, including the sample size n, the number K and locations τk of

change-points, the jump sizes βi,k and the errors terms εi,j, are identical to

those defined in Simulation 1. The wave patterns fi(·)’s are sample-specific,

and are expressed as follows:

fi(xj) = θ
{
sin(2πxj/96 + ψi) + 2 sin(2πxj/240 + ϕi)

}
, (4.3)
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4.3 Simulation 3

where ψi
i.i.d.∼ Unif(0, 2π), and ϕi

i.i.d.∼ Unif(0, 2π). The value θ is defined as

0.02 × k, with k = 0, 1, . . . , 5, and θ = 0 corresponds to the null hypoth-

esis H0 in (3.12). The significance level α = 0.05, and the simulation is

repeated 200 times for each case. In each simulated dataset, the initial es-

timated support set Ŝini is obtained through group Lasso estimation (3.13).

Subsequently, a submodel is fitted to acquire the residuals ε̂i’s and the

corresponding multiple-sample adaptive Neyman test statistic Tn in (3.15).

We examine three cases:

Case I (oracle) Ŝini = S.

Case II The tuning parameter λ in (3.13) is chosen such that |Ŝini| = 10.

Case III The tuning parameter λ in (3.13) is selected to achieve |Ŝini| = 5.

Figure 3 depicts the powers of the adaptive Neyman tests for single

sequence (d = 1) and multiple sequences (d = 4), each with different initial

estimated support set Ŝini. The results for Case I-II align with those observed

in Simulation 1: the testing procedure remains valid when all the true

change points are contained in Ŝini (Case II), although there is a slight loss

of power when Ŝini is large. Moreover, compared to the adaptive Neyman

test (3.6) for a single sequence, the multiple-sample adaptive Neyman test

(3.15) benefits from the presence of multiple sequences, resulting in an
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4.3 Simulation 3

Figure 3: Powers of the adaptive Neyman tests (3.6) for a single sequence

(×) and (3.15) for multiple sequences (◦) with different initial sets Ŝini. Left

panel: Case I; middle panel: Case II; right panel: Case III.

increase in statistical power. The performance of these two tests differs

significantly in Case III. Given that the group Lasso method yields a more

precise estimator Ŝini (e.g., the probabilities of successfully detecting the

true change point τ4 = 450 (τ̂4 ∈ [448, 452]) are 0.8 and 1 for single and

multiple sequences), the multiple-sample adaptive Neyman test (d = 4)

remains effective, whereas the original test (d = 1) falls short.

Next, we evaluate the performance of the GPPLS estimator (3.16) under

different settings. We consider the following two wave patterns:
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4.3 Simulation 3

Table 2: Coverage Probabilities (CP) for all change points (τ1, τ2, τ3, τ4)

with different methods over 200 simulations.

scenario I scenario II

(m, d) τ1 τ2 τ3 τ4 τ1 τ2 τ3 τ4

(0, 1) 0.630 1.000 1.000 0.425 0.530 1.000 1.000 0.300

(0, 4) 0.845 1.000 1.000 0.940 0.510 1.000 1.000 0.605

(5, 1) 0.955 1.000 1.000 0.980 0.880 1.000 1.000 0.935

(5,4) 0.990 1.000 1.000 1.000 0.830 1.000 1.000 1.000

Scenario I Settingm = 2 and configuring all Fourier coefficients {ai,1, ai,2, bi,1, bi,2}

in (3.11) to be equal to θi, where θi is randomly selected from {−0.3, 0.3}.

Scenario II Defining fi(·)’s as in (4.3) with θ = 0.2.

Table 2 presents the coverage probabilities (CP) for all the change points

τk obtained with different estimated support sets Ŝ in (3.16). Here, m = 0

corresponds to the standard (group) Lasso estimator. The table records the

relative frequency with which τk is correctly detected by a given estimated

support set Ŝ (i.e., there exists τ̂ ∈ Ŝ such that τ̂ ∈ [τk − 2, τk + 2])

over 200 simulations. To ensure a fair comparison, the tuning parameters

are chosen such that |Ŝ| = 5 for all methods. The table shows that the

coverage probabilities of the change points are higher for multiple sequences
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(d = 4) compared to a single sequence (d = 1), highlighting the advantage of

the proposed estimator in leveraging statistical evidence across samples to

detect common change points. Additionally, the standard Lasso estimators

(withm = 0) successfully detect only the significant change-points τ2 and τ3

(|βi,2| = |βi,3| = 2), while the insignificant change-points τ1 and τ4 (|βi,1| =

|βi,4| = 1) are more likely to be influenced by wave patterns. In contrast,

the proposed estimators (with m = 5), which account for the impact of

local trends, exhibit much better performance. Finally, even for the most

complex wave pattern (Scenario II), which lacks the standard Fourier series

expansion, our proposed method continues to perform effectively.

5. Real data analysis

We now demonstrate the proposed methods using SNP genotyping data

derived from an Illumina 550K platform, featuring a familial trio compris-

ing a father, mother and offspring. This dataset, which is accessible in

the PennCNV package (https://penncnv.openbioinformatics.org/en/

latest/), comprises measurements of the Log R ratio, a normalized total

signal intensity ratio computed as log2(Robs/Rexp). Here Robs represents the

observed total intensity of the two alleles for a given SNP, while Rexp is the

expected intensity, estimated through linear interpolation of the observed
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allelic ratio relative to canonical genotype clusters, as detailed in Niu and

Zhang (2012). For our analysis, we focus on the Log R ratios along chro-

mosomes 21 and 22, which contain 8251 and 8462 SNPs respectively, for

each member of the trio. Thus, for each chromosome, our dataset consists

of d = 3 sequences of length n = 8251 or n = 8462. The segments with

concentrated high or low Log R ratios are regarded as gains or losses of

copy numbers.

For this dataset, we employ the multiple-sample CBS algorithm (Zhang

et al. (2010)), SaRa algorithm (Song et al. (2016)), group Lasso algorithm

(Bleakley and Vert (2011)), and our proposed GPPLS to detect common

change-points within the SNP genotyping data. For our proposed method,

the tuning parameter is selected by minimizing the following generalized

Bayesian information criterion (gBIC):

gBIC = log(σ̂2) + edf
log(n)

n
Cn,

where σ̂2 is the residual variance estimator, edf is the actual model di-

mension quantified by the number of estimated parameters, and Cn =

log(log(n)), as described in Muggeo and Adelfio (2011).

Table 3 presents the outcomes of SNP genotyping data analysis for chro-

mosomes 21 and 22. Additionally, the multiple-sample adaptive Neyman

test statistics Tn in (3.15) are provided, since both of them are large, we
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Table 3: Estimated number of change-points by different methods and

multiple-sample adaptive Neyman test statistic Tn.

data CBS SaRa Lasso Proposed Tn

Chromosome 21 9 1 7 5 68.96

Chromosome 22 4 0 7 2 38.36

reject the null hypothesis H0 in (3.12), therefore our proposed partially lin-

ear model is more appropriate. From Table 3, we find the CBS and group

Lasso algorithms detected more change-points, largely attributed to ge-

nomic waves. Conversely, the SaRa algorithm detected less change-points,

primarily stemming from the fact the SaRa algorithm is essentially a local

method and only local information in the neighborhood of each probe is

exploited. Based on simulation studies, we assert that the change-points

estimators by our proposed GPPLS algorithm are more precise when local

trends or genomic waves are present.

Due to space constraints, an additional application to the bladder tumor

aCGH dataset is provided in the Supplementary Material.
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6. Discussion

In this paper, we propose a testing procedure based on the adaptive Ney-

man test statistic (Fan and Huang (2001)) to verify the existence of genomic

wave patterns that interfere with accurate CNV detection. Additionally, we

propose a partial penalized least squares method to detect change points in

the partially linear model that incorporates these wave patterns, substan-

tially enhancing the performance of the standard Lasso estimator. Finally,

we extend the proposed testing and estimation procedures to identify com-

mon change points shared in multiple sequences.

Several issues merit further investigation. First, in this study, our pri-

mary focus was on the detection of common change-points within a fixed

number of independent sequences. Notably, our proposed method is flexible

enough to accommodate scenarios when the sequences are correlated. This

is accomplished by the utilization of weighted penalized least squares. On

the other hand, as highlighted by Bleakley and Vert (2011), the length n of

sequence in genomic studies typically remains fixed for a given technique,

while the number d of sequences can increase as data are collected from a

greater number of patients. It is crucial to note that the asymptotic distri-

bution of the proposed adaptive Neyman test no longer holds as d tends to

infinity. From a statistical perspective, it is, therefore, of interest to develop
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testing and estimation methods for cases with fixed n and large d.

Secondly, while our focus in this paper was on detecting change-points

using Lasso-based techniques, other sparsity-inducing penalties, such as the

smoothly clipped absolute deviation (SCAD) penalty (Fan (1997)) or min-

imax concave (MCP) penalty (Zhang (2010)), are possible options. Due

to space limitations, we have included an additional simulation study ex-

ploring nonconvex penalties in the Supplementary Material. A more formal

investigation into the theoretical properties and finite-sample performance

of these penalties is warranted; however, this topic is beyond the scope of

the current work and we plan to address this issue in a separate paper.

Furthermore, whereas theoretical results for estimating change-point

positions in canonical Lasso problems like (2.5) and (3.13) have been well-

established, the performance of the estimated change-points arising from

formulation (3.9) or (3.16) remains unknown. Unfortunately, although nu-

merical results in Section 4 reveal that the finite sample performance of esti-

mated change-points in (3.9) and (3.16) are satisfactory, we have conducted

additional simulations and found that the design matrix X̃1 = (In −P)X1

in (3.9) fails to satisfy the assumptions of standard LASSO theory. Con-

sequently, the direct application of standard LASSO theory is hindered,

necessitating the development of novel techniques to justify the theoretical
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behaviors of estimated change-point locations in (3.9) or (3.16).

Finally, in this paper we primarily focus on detecting common change-

points across all sequences using group Lasso techniques. This approach

overlooks the discrepancies introduced by heterogeneity in multiple se-

quences, where common change-points may be shared within only some

of the sequences rather than all sequences. In this scenario, one might ei-

ther post-process the results of the group Lasso, or consider sparse group

selection techniques (Tian et al. (2012); Simon et al. (2013)) to identify

group-specific change-points in the presence of local trends. This topic falls

beyond the scope of this paper, and further research is required.

Supplementary Material

The online Supplementary Material includes the conditions and proofs of

the theoretical results, additional simulations, and an additional real data

analysis.
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Harchaoui, Z. and Lévy-Leduc, C. (2010). Multiple changepoint estimation with a total variation

penalty. J. Amer. Statist. Assoc, 105, 1480–1493.
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