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Abstract: This work develops inference tools for the mean function of functional data over

a multi-dimensional domain. A two-step mean estimator based on tensor product spline

estimates of individual trajectories is shown oracally efficient, i.e., it is asymptotically indis-

tinguishable from the infeasible estimator using unobservable trajectories. Consistent esti-

mates of covariance function as well as exact quantile of the limiting maximal deviation are

obtained by innovative use of results on sharp comparison of Gaussian extreme distributions

and quantiles, leading to asymptotic coverage and order n−1/2 uniformly adaptive width of

data-driven simultaneous confidence regions (SCRs). Also formulated are one-sided SCRs

that can be used for testing against uniform upper and lower bound of the mean function.

Extensive Monte Carlo experiments corroborate the theory, and a satellite ocean dataset

collected by Copernicus Marine Environment Monitoring Service (CMEMS) illustrates how

the proposed SCR is used.

Key words and phrases: Exact quantile; Functional data; Gaussian approximation; Simulta-

neous confidence region; Tensor product spline
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1. Introduction

Functional data analysis (FDA) has been an important area of statistics research for

over three decades. Functional data consist of observations of stochastic processes

such as Electrocardiogram (ECG), Electroencephalogram (EEG) and human growth,

see Ramsay and Dalzell (1991), Ferraty and Vieu (2006), Horváth and Kokoszka

(2012) and Hsing and Eubank (2015). The goal of FDA is to secure crucial informa-

tion about the stochastic process.

There is already a rich collection of works on statistical inference of mean and

covariance functions of functional data, such as Degras (2011), Cao et al. (2012),

Gu et al. (2014), Zheng et al. (2014), Cao et al. (2016), Wang et al. (2020), Huang

et al. (2022), Li and Yang (2023) and Zhong and Yang (2023). This body of work

systematically develops various types of simultaneous confidence region (SCR), which

is for an unknown function what a confidence interval is for an unknown parameter.

Nonparametric SCRs are powerful tools for making global and uniform inference

on unknown functions, a task often inadequately performed by pointwise confidence

intervals. The lack of SCR is mainly due to the difficulty of obtaining limiting

distribution of the uniform deviation in function estimation. See Wang and Yang

(2009), Gu and Yang (2015) and Zheng et al. (2016) for SCR in nonparametric

regression/generalized regression models, Wang et al. (2020), Yu et al. (2021) and

Hu and Li (2024) for SCR over 2-dimensional irregular compact domains.
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The goal of this paper is to extend the theory and methodology of SCR to

functional data over multidimensional regular domain. Such extension include 2D

satellite images, 3D human medical objects, or functional data of any dimension such

as spatial temporal functional data. Take for example the global ocean temperature

on 2024/7/1 at 20:00, available from Copernicus Marine Service. It can be viewed

either as 2D surface data recorded on latitude and longitude grids of the earth, or

3D data if the sea depth is included as the third dimension (Figure 1).

Figure 1: Heat map of global ocean temperature on 2024/7/1 at 20:00.

A functional random variable
{
η (x) ,x ∈ [0, 1]D

}
is a square-integrable contin-

uous stochastic process defined over the D-dimensional rectangle [0, 1]D, i.e., η (·) ∈

C
(
[0, 1]D

)
a.s. and E ∥η∥2 = E

(
supx∈[0,1]D |η (x)|

)2
< +∞, with mean and covari-

ance functions m (x) = E {η (x)} ∈ C
(
[0, 1]D

)
, G (x,x′) = Cov {η (x) , η (x′)} ∈

C
(
[0, 1]D × [0, 1]D

)
respectively. Mercer lemma implies thatG (x,x′) =

∑∞
k=1 λkψk (x)ψk (x

′)
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for eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0,
∑∞

k=1 λk <∞ and eigenfunctions
{
ψk (x) ∈ C

(
[0, 1]D

)}∞

k=1

such that
∫
G (x,x′)ψk (x

′) dx′ = λkψk (x), and {ψk (x)}∞k=1 form an orthonor-

mal basis of L2
(
[0, 1]D

)
. The standard Karhunen-Loève representation (Adler and

Taylor (2007)) is η (x) = m (x) +
∑∞

k=1 ξkϕk (x) in which the random coefficients

{ξk}∞k=1 are uncorrelated with mean 0 and variance 1, {ϕk}∞k=1 are rescaled eigen-

functions called functional principal components (FPCs) that satisfy ϕk =
√
λkψk

and
∫
{η (x)−m (x)}ϕk (x) dx = λkξk, ∀k ∈ N+.

A functional data set consists of n i.i.d. realizations
{
ηi (x) ,x ∈ [0, 1]D

}n

i=1

of η (·). The i-th trajectory ηi (x) = m (x) +
∑∞

k=1 ξikϕk (x), where {ξik}∞k=1 , i =

1, . . . , n, are i.i.d. copies of random coefficients {ξk}∞k=1 called functional principal

components scores (FPC scores). Actual functional data are observed sample points

from trajectories {ηi (·)}ni=1 with noises. Denote the equidistanced sample points

xj1...jD = (j1/N1, . . . , jD/ND) , 1 ≤ jd ≤ Nd, 1 ≤ d ≤ D, Ri (·) =
∑∞

k=1 ξikϕk (·) and

Yi,j1...jD = m (xj1...jD) +Ri (xj1...jD) + σi (xj1...jD) εi,j1...jD , (1.1)

where measurement errors εi,j1...jD , 1 ≤ i ≤ n, 1 ≤ jd ≤ Nd, 1 ≤ d ≤ D are i.i.d. with

Eεi,j1...jD ≡ 0,Eε2i,j1...jD ≡ 1, augmented by standard deviation functions σi (·). The

data generating equation (1.1) extends the one-dimensional functional data setup of

Cao et al. (2012) and Cao et al. (2016).
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A tensor product spline estimator of mean function m (·) is shown oracally ef-

ficient, i.e., it is asymptotically equivalent to the sample mean of trajectories fully

observed without errors. SCRs are then constructed for m (·) by maxima deviation

distribution of the proposed spline estimator. Proposition 1 and Theorem 5 amend

one oversight in SCR theory for m (·), i.e., existence and consistent estimation of ex-

act quantile for the maxima deviation process, by applying latest results from Yang

(2025a) and Yang (2025b). Sharp comparison of Gaussian extreme distributions

from Chernozhukov et al. (2015) establishes consistency in Theorem 5 of a data-

driven quantile for the exact quantile of maximal error of multidimensional m (·).

Another theoretical advance is asymptotic coverage and n−1/2 uniformly adaptive

width of the data-driven SCRs by consistent estimation of multidimensional covari-

ance function in Theorem 4, both nonexisting in previous works Huang et al. (2022),

Li and Yang (2023) and Zhong and Yang (2023).

Lower/upper SCRs in Subsection 3.3 generate tests against uniform upper/lower

bound of m (·) with desired level and power according to Theorem 6. As an example,

testing against uniform upper bound is carried out in Section 5 for the ocean tem-

perature data by lower SCRs, yielding distinct outcomes over low- and high- altitude

domains. This example illustrates that scientific questions from many disciplines

such as environmental science and neuroscience, can be appropriately answered by

testing uniform lower/upper bound of a functional mean with one-sided SCRs.
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This work also successfully handles other technical challenges. First, smart vec-

torization makes partial sum Gaussian approximation for the multidimensional array

{εi,j1...jD}1≤i≤n,1≤jd≤Nd,1≤d≤D the same way for one-dimensional sequence of measure-

ment errors in existing works. Second, unnatural assumption about finitely many

distinct distributions of FPC scores in existing works Huang et al. (2022), Li and

Yang (2023) and Zhong and Yang (2023) is dropped, by applying the new and ex-

plicit form of strong Gaussian approximation from Götze and Zaitsev (2010) instead

of the classic implicit form in Csőrgő and Révész (1981).

The rest of the paper is organized as follows. Section 2 introduces the tensor

spline estimator of the mean function. Section 3 presents main asymptotic results of

the proposed estimator. Implementation details and simulation results are reported

in Section 4. Our proposed SCR method is illustrated by the ocean temperature

data in Section 5. All technical proofs, tables and figures of simulation results are

collected in the Supplemental Material.

2. Estimator of the mean function

This section describes a two-step estimator for mean function m (·).

If all the trajectories {ηi (·)}ni=1 were observed, one natural estimator of m (·)
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would be the sample average of n trajectories

m (·) = η (·) = n−1

n∑
i=1

ηi (·) . (2.1)

This would-be estimator m (·) is, however, infeasible as it makes use of latent trajec-

tories ηi (·). The following two-step estimator m (·) mimics m (·) by using estimated

η̂i (·) in place of ηi (·)

m̂ (·) = n−1

n∑
i=1

η̂i (·) , (2.2)

where the estimated multi-dimensional trajectories η̂i (·) are described in details be-

low. For univariate case, see Cao et al. (2012), Wang et al. (2020), Li and Yang

(2023), Huang et al. (2022).

For each d = 1, . . . , D, denote by {tJd}
Nsd
Jd=1 a sequence of equally-spaced points,

called interior knots for variable direction d, that divide [0, 1] into (Nsd + 1) equal

subintervals, so tJd = Jdhsd , 0 ≤ Jd ≤ Nsd + 1 where hsd = 1/ (Nsd + 1) denotes

the distance between neighbouring knots. These knots in D dimensions divide unit

cube [0, 1]D into
∏D

d=1 (Nsd + 1) sub-rectangles of sizes hs1 × · · · × hsD . Denoted by

H p−2
d = H p−2

d [0, 1] the space of p-th order spline space in direction d, i.e. (p− 2)

times continuously differentiable functions on [0, 1] that are polynomials of degree
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(p− 1) on all subintervals [tJd , tJd+1] , 0 ≤ Jd ≤ Nsd . Explicitly

H p−2
d =


Nsd∑

Jd=1−p

λJd,pBJd,p (·) , λJd,p ∈ R

 ,

where BJd,p is Jd-th spline basis of order p as defined in De Boor (2001)

The tensor product spline space H p−2,D
(
[0, 1]D

)
is the tensor product of H p−2

d ([0, 1]) ,

1 ≤ d ≤ D, i.e.

H p−2,D
(
[0, 1]D

)
= H p−2

1 ⊗ · · · ⊗ H p−2
D

=


Ns1∑

J1=1−p

· · ·
NsD∑

JD=1−p

λJ1...JD,pB
[D]
J1...JD,p (x) , λJ1...JD,p ∈ R,x ∈ [0, 1]D

 ,

where for x = (x1, . . . , xD)
T ∈ [0, 1]D, the (J1, . . . , JD)-th tensor product B spline

basis B
[D]
J1...JD,p (x) =

∏D
d=1BJd,p (xd).

The tensor product spline estimator of trajectory ηi (·) is

η̂i (·) = argmin
g(·)∈H p−2,D

∑
1≤jd≤Nd,1≤d≤D

{Yi,j1...jD − g (xj1...jD)}
2 , (2.3)

which is used in (2.2) to compute the two-step estimator m̂ (x).
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3. Asymptotic results

3.1 Assumptions

Throughout the paper, for vector x = (x1, . . . , xD)
T ∈ RD, denote the Euclidean

norm ∥x∥ =
√∑D

d=1 x
2
d. To represent multivariate mixed derivatives, let the set ND

of D-indices be

ND = {α : α = (α1, . . . , αD)
T , αd ∈ N, 1 ≤ d ≤ D}.

For any α ∈ ND, denote |α| =
∑D

d=1 αd and the α-th partial derivative of a D-variate

function ϕ (·) as

∂αϕ (x) = ∂α1
x1
. . . ∂αD

xD
ϕ (x) .

The space C
(
[0, 1]D

)
of continuous functions on [0, 1]D is Banach with respect to

the sup norm ∥ϕ∥∞ = supx∈[0,1]D |ϕ (x)|. Denote for any ν ∈ (0, 1], and any q ∈ N,

denote the space of

Cq,ν
(
[0, 1]D

)
=
{
ϕ, ∂αϕ ∈ C0,ν

(
[0, 1]D

)
, ∀α ∈ ND, |α| = q

}
,
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3.1 Assumptions

with seminorm

∥ϕ∥q,v = max
|α|=q

sup
x̸=x′,x,x′∈[0,1]D

|∂αϕ (x)− ∂αϕ (x′)|
∥x− x′∥ν

.

Denote also

Cq
(
[0, 1]D

)
=
{
ϕ, ∂αϕ ∈ C

(
[0, 1]D

)
,∀α ∈ ND, |α| = q

}
,

equipped with seminorm max
|α|=q

∥∂αϕ∥∞.

Constraints on constants related to the model are the following.

ν, µ ∈ (0, 1], q ∈ N, p∗ = q + µ, (3.1)

θ ∈
(
0,min

{
2p∗

1 + p∗
, 2ν

})
, (3.2)

β2 ∈
(
0,min

{
D/2, ν − θ

2
, 1− θ

2
− θ

2p∗

}
/D

)
, (3.3)

ω0 > max

{
4,

4θ

ν(2−Dβ2 − θ)

}
, (3.4)

and for smoothing parameter γ,

max

{
θ

2p∗
+

2θ

p∗ω0

, 1− ν

}
< γ < 1−Dβ2 −

θ

2
. (3.5)

The following assumptions are needed for theoretical results.
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3.1 Assumptions

(A1) The mean function m (·) ∈ Cq,µ
(
[0, 1]D

)
for q ∈ N, µ ∈ (0, 1], p∗ = q + µ in

(3.1)

(A2) The standard deviation functions σi (·) ∈ C0,ν
(
[0, 1]D

)
satisfy

max1≤i≤n ∥σi∥∞ ≤Mσ, max1≤i≤n ∥σi∥0,ν ≤Mσ for ν in (3.1) and Mσ > 0.

(A3) Denote Nmax = max1≤d≤DNd, Nmin = min1≤d≤DNd, as n → ∞ Nmax/Nmin =

O (1), and N = Nmin satisfies N ≫ n1/θ for θ in (3.2). Let Td = N1 × · · · ×

Nd, d = 1, . . . , D, then for all d = 1, . . . , D, Td ∝ Nd.

(A4) There are constants 0 < cG < CG < ∞ such that cG ≤ G (x,x) ≤ CG, ∀x ∈

[0, 1]D and for k ∈ N+, ϕk (·) ∈ Cq,µ
(
[0, 1]D

)
with∑∞

k=1 {∥ϕk∥∞ + ∥ϕk∥0,µ + ∥ϕk∥q,µ} <∞.

(A5) On the probability space (Ω,A,P), the FPC scores {ξik}i,k∈N+
are independent

over k ∈ N+ and i.i.d. over i ∈ N+, the measurement errors {εi,j1...jD}i,j1...jD∈N+

are i.i.d., and {ξik}i,k∈N+
are independent of {εi,j1...jD}i,j1...jD∈N+

. For C1, C2 ∈

(0,+∞) , γ1, γ2 ∈ (1,+∞) , β1 ∈ (0, 1/2), β2 in (3.3) κn = O (nω), for some

ω > 0, there are i.i.d. N (0, 1) variables {Zik,ξ}n,κn

i=1,k=1, {Zi,j1,...,jD,ε}n,N1,...,ND
i=1,j1,...,jD=1

on a richer probability space
(
Ω̃, Ã, P̃

)
in which all ξik, εi,j1...jD ’s are embedded,

such that

P
{

max
1≤k≤κn

max
1≤t≤n

∣∣∣∣ t∑
i=1

ξik −
t∑

i=1

Zik,ξ

∣∣∣∣ > nβ1

}
< C1n

−γ1
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3.1 Assumptions

P

{
max

1≤i≤n,1≤t≤TD

∣∣∣∣∣ t∑
j=1

εi,j1(j)...jD(j) −
t∑

j=1

Zi,j1(j)...jD(j),ε

∣∣∣∣∣ > NDβ2

}
< C2N

−γ2 ,

where j1 (·) . . . jD (·) are functions N+ → N+ defined by jD (t) = [T−1
D−1 (t− 1)]+

1 iteratively, and

jD−d (t) =


ND−d − [t− 1− (jD−d+1(t)− 1)TD−d]T

−1
D−d−1, if jD−d+1 (t) is even

[t− 1− (jD−d+1 (t)− 1)TD−d]T
−1
D−d−1 + 1, otherwise.

where [a] denotes the integer part of a, and TD−d’s are given in Assumption

(A3). Further, supk∈N+
E |ξik|ω0 <∞ for ω0 in (3.4).

(A6) The number Nsd of interior knots in direction d, 1 ≤ d ≤ D satisfy

max1≤d≤DNsd/min1≤d≤DNsd = O (1), and one denotes Ns = min1≤d≤DNsd ,

hs = (Ns + 1)−1. For γ in (3.5) and some τ > 0, NsN
−γ+N−1

s Nγ = O (logτ N)

as N → ∞. While for some ϑ > 0,
∑∞

k=Kn
∥ϕk∥∞ = O

(
n−ϑ

)
as N → ∞, in

which Kn =
∏D

d=1 (Nsd + p) is the dimension of the tensor product spline space

H p−2,D
(
[0, 1]D

)
.

Assumptions (A1) and (A2) ensure smoothness of mean function and standard

deviation function of measurement errors. Assumption (A3) dominates the sam-

ple size n by numbers Nd of observations per subject, by the same philosophy as

in Wang et al. (2020), Huang et al. (2022), Li and Yang (2023), Zhong and Yang
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3.1 Assumptions

(2023). The bounded smoothness of eigenfunctions and their decay rate are guar-

anteed by Assumption (A4). Assumption (A6) regulates the number of knots for

spline smoothing, in terms of smoothness of mean and standard deviation functions,

and order of sample size and dimensionality. The high level Assumption (A5) on

strong approximation is guaranteed by the following elementary Assumption (A5’)

according to Lemma S.10.

(A5’) On the probability space (Ω,A,P), the FPC scores {ξik}i,k∈N+
are independent

over k ∈ N+ and i.i.d. over i ∈ N+, the measurement errors {εi,j1...jD}i,j1...jD∈N+

are i.i.d., and {ξik}i,k∈N+
are independent of {εi,j1...jD}i,j1...jD∈N+

. For constants

ϖ1 > 4 + 2ω and ϖ2 > (D + 1 + θ) /ϖ3, supk∈N+
E |ξ1k|ϖ1 + E |ε1,1...1|ϖ2 < ∞

in which ω > 0 and ϖ3 = min{D/2, ν − θ/2, 1− θ/2− θ/(2p∗)}.

Remark 1 Assumptions (A1)-(A6) are easily met in many practical situations. For

the case D = 2 one may use as default q = 3, ν = 1, p∗ = 4, θ = 1/2, γ = 15/64, ω0 =

1/4, dN = log logN.

Remark 2 The function set j1 (·) , . . . , jD (·) in Assumption (A5) can be replaced

by any function set satisfying maxs,t,∈{1,...,TD},|s−t|≤1 ∥xj1(s),...,jD(s) − xj1(t),...,jD(t)∥ =

O (N−1) .

Remark 3 In contrast to Cao et al. (2012), Cao et al. (2016), Wang et al. (2020),

Huang et al. (2022), Li and Yang (2023) and Zhong and Yang (2023) that used

strong approximation in Csőrgő and Révész (1981), the explicit and more flexible
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3.2 Error decomposition

strong approximation tools of Götze and Zaitsev (2010) used in this paper allows for

infinitely many distinct distributions of FPC scores ξik.

3.2 Error decomposition

For simplicity, denote by

Bp (x) =
(
B

[D]
1−p...1−p,p (x) , . . . , B

[D]
Ns1 ...1−p,p (x) , . . . , B

[D]
1−pNs2 ...1−p,p (x)

. . . B
[D]
Ns1Ns2 ...1−p,p (x) , . . . , B

[D]
Ns1 ...NsD

,p (x )
)⊤

, ∀x ∈ [0, 1]D.

X = (Bp (x1...1) , . . . ,Bp (xN1...1) ,Bp (x12...1) , . . . ,Bp (xN12...1) , . . . ,

Bp (xN1N2...1) , . . . ,Bp (xN1...ND
))⊤ = (Bp (xj1...jD))

⊤
1≤jd≤Nd,1≤d≤D . (3.6)

Denote also by Yi = (Yi,j1...jD)
⊤
1≤jd≤Nd,1≤d≤D , m = (m (xj1...jD))

⊤
1≤jd≤Nd,1≤d≤D,

ei = (σ (xj1...jD) εi,j1...jD)
⊤
1≤jd≤Nd,1≤d≤D, ϕk = (ϕk (xj1...jD))

⊤
1≤jd≤Nd,1≤d≤D and Ri =∑∞

k=1 ξiϕk,

Elementary algebra expresses estimators η̂i (·) in (2.3) and m̂p (·) in (2.2) in

matrix form

η̂i (·) = Bp (·)⊤
(
X⊤X

)−1
X⊤Yi, (3.7)
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3.2 Error decomposition

m̂p (·) = n−1

n∑
i=1

η̂i (·) . (3.8)

Karhunen-Loève representation (1.1) decomposes estimator η̂i (·) as

η̂i (·) = m̃p (·) + R̃ip (·) + ẽip (·) , 1 ≤ i ≤ n (3.9)

where m̃p (·) , R̃ip (·) , ẽip (·) respectively

m̃p (·) = Bp (·)⊤
(
X⊤X

)−1
X⊤m,

R̃ip (·) = Bp (·)⊤
(
X⊤X

)−1
X⊤Ri,

ẽip (·) = Bp (·)⊤
(
X⊤X

)−1
X⊤ei.

Two main results are stated below.

Theorem 1. Under Assumptions (A1)- (A6), as n→ ∞,

max
1≤i≤n

∥η̂i − ηi∥∞ = Oa.s.

(
N−p

s (n log n)2/ω0 +NDβ2−1Ns

)
.

Theorem 2. Under Assumptions (A1) - (A6), as n→ ∞,

∥m− m̂p∥∞ = Op

(
n−1/2

)
.
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3.2 Error decomposition

The above Theorem establish uniform closeness of each spline smoother of ηi(·)

in (3.7) to the corresponding true trajectory, and oracle efficiency of the proposed

estimator m̂p (·) in (2.2) in the sense that the difference between tensor product

spline estimator m̂p and m is of order Op

(
n−1/2

)
, much smaller than Op

(
n−1/2

)
, the

order of difference between m and m.

Let Ξ (x) = G (x,x)−1/2∑∞
k=1 Zkϕk (x) be the continuous sample path Gaussian

process over x ∈ [0, 1]D with EΞ (·) ≡ 0,EΞ2 (·) ≡ 1 and covariance function

EΞ (x) Ξ (x′) ≡ G (x,x′)
{
G (x,x)G (x′,x′)

1/2
}
, x,x′ ∈ [0, 1]D.

This Ξ is the weak limit of |m (·)−m (·)|G (·, ·)−1/2 according to Theorem 3, used

in the same way as a pivotal quantity. Simultaneous inference on m (·) is there-

fore based on distribution function of ∥Ξ∥∞ = supx∈[0,1]D |Ξ(x)|, supx∈[0,1]D Ξ(x) or

infx∈[0,1]D Ξ(x). For any real random variable M with continuous and strictly mono-

tone distribution function, an exact quantile q1−α exists at any level 1 − α ∈ (0, 1),

i.e., P [M ≤ q1−α] = 1 − α. Unlike the counter-example in Tsirel’Son (1976), Ξ (·)

satisfies the assumptions of Theorem 1 in Yang (2025a) and Theorem 1 in Yang

(2025b), thus random variables ∥Ξ∥∞, supx∈[0,1]D Ξ(x) and infx∈[0,1]D Ξ(x) all have

continuous and strictly monotone distribution functions, so exact quantiles exist for

them at all levels.
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3.2 Error decomposition

Proposition 1. For any α ∈ (0, 1), there exist unique (1− α)-th exact quantiles

Q1−α, Q+,1−α and Q−,1−α such that

P {∥Ξ∥∞ ≤ Q1−α} = P

{
sup

x∈[0,1]D
Ξ(x) ≤ Q+,1−α

}
=

P
{

inf
x∈[0,1]D

Ξ(x) ≤ Q−,1−α

}
= 1− α. (3.10)

Let z1−α denote the 100(1− α)%-tile of N (0, 1).

Theorem 3. Under Assumptions (A1)-(A6), ∀α ∈ (0, 1), as n→ ∞, the “infeasible

estimator” m (x) in (2.1) converges at rate n1/2,

√
n {m (·)−m (·)}G (·, ·)−1/2 →d Ξ (·) .

Hence

P

{
sup

x∈[0,1]D

√
n |m (x)−m (x)|G (x,x)−1/2 ≤ Q1−α

}
→ 1− α,

P

{
sup

x∈[0,1]D

√
n {m (x)−m (x)}G (x,x)−1/2 ≤ Q+,1−α

}
→ 1− α,

P
{

inf
x∈[0,1]D

√
n {m (x)−m (x)}G (x,x)−1/2 ≤ Q−,1−α

}
→ 1− α,
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3.2 Error decomposition

and for all x ∈ [0, 1]D,

P
{√

n |m (x)−m (x)|G (x,x)−1/2 ≤ z1−α/2

}
→ 1− α,

P
{√

n {m (x)−m (x)}G (x,x)−1/2 ≤ z1−α

}
→ 1− α.

Theorems 2 and 3 provide an infeasible simultaneous confidence region (SCR) of

mean function m (·).

Corollary 1. Under Assumptions (A1)-(A6), as N → ∞, an asymptotic 100(1 −

α)% correct SCR for m (·) is

m̂p (·)± n−1/2G (·, ·)1/2Q1−α,

while an asymptotic 100(1−α)% confidence interval for m (x) ,x ∈ [0, 1]D is m̂p (x)±

n−1/2G (x,x)1/2 z1−α/2.

The above SCR is infeasible as it makes use of unknown G (·, ·)1/2 and quantile

Q1−α. A method-of-moment estimator for covariance function G (x,x′) is:

Ĝp (x,x
′) = n−1

n∑
i=1

(η̂i (x)− m̂p (x)) (η̂i (x
′)− m̂p (x

′)) ,x,x′ ∈ [0, 1]D, (3.11)

which is uniformly consistent.
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3.2 Error decomposition

Theorem 4. Under Assumptions (A1) -(A6), the covariance estimator in (3.11) is

uniformly consistent: for some ϱ > 0, as N → ∞,

∥∥∥Ĝp −G
∥∥∥
∞

= Op

(
n−ϱ
)
.

As Ĝp (x,x
′) is an n−ϱ-consistent forG (x,x′), and it is of rankKn =

∏D
d=1 (Nsd + p),

an approximation of Ξ (·) is Ξ̂Kn (·) = Ĝp (·, ·)−1/2∑Kn

k=1 Zkϕ̂k (·) where
{
ϕ̂k (·)

}Kn

k=1

are the rescaled FPCs of Ĝp (x,x
′), Zk are i.i.d. N (0, 1) variables 1 ≤ k ≤ Kn,

independent of Yi, 1 ≤ i ≤ n. Denote T̃D = n1 × · · · × nD equally spaced grid

points in [0, 1]D as tl1...lD = (l1/n1, . . . , lD/nD) , 1 ≤ ld ≤ nd, 1 ≤ d ≤ D over

which
∣∣∣Ξ̂Kn (·)

∣∣∣ is computed and maximized, and denote the (1− α)-th quantile of

max1≤ld≤nd,1≤d≤D

∣∣∣Ξ̂Kn (tl1...lD)
∣∣∣ by Q̂1−α, the unique existence of which is ensured by

Theorem 1 in Yang (2025a) and Theorem 1 in Yang (2025b). The next theorem

ensures that Q̂1−α is a consistent estimator of quantile Q1−α.

Theorem 5. Under Assumptions (A1) -(A6), if (max1≤d≤D nd) (min1≤d≤D nd)
−1 ≤ c

for some c ∈ (0,+∞) and log T̃D ∝ log n., then as N → ∞

sup
z∈R

∣∣∣∣∣∣P
(

sup
x∈[0,1]D

√
n

∣∣∣∣∣m̂p (x)−m (x)

Ĝ
1/2
p (x,x)

∣∣∣∣∣ ≤ z

)
− P

 max
1≤ld≤nd,
1≤d≤D

∣∣∣Ξ̂Kn (tl1...lD)
∣∣∣ ≤ z |{Yi}ni=1

∣∣∣∣∣∣ = Op(1),
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3.3 One-sided methods

therefore, as N → ∞, an asymptotic 100(1− α)% correct SCR for m (·) is

m̂p (·)± n−1/2Ĝp (·, ·)1/2 Q̂1−α,

while an asymptotic 100(1−α)% confidence interval for m (x) ,x ∈ [0, 1]D is m̂p (x)±

n−1/2Ĝp (x,x)
1/2 z1−α/2. Furthermore, Q̂1−α consistently estimates the quantile Q1−α,

i.e., as N → ∞, ∣∣∣Q̂1−α −Q1−α

∣∣∣→p 0,

sup
x∈[0,1]D

∣∣∣Ĝp (x,x)
1/2 Q̂1−α −G (x,x)1/2Q1−α

∣∣∣→p 0.

Hence, ∀ε > 0, with probability approaching 1, the width of SCR m̂p (x)±n−1/2Ĝp (x,x)
1/2 Q̂1−α

falls in the range

n−1/2G (x,x)1/2 (Q1−α − ε,Q1−α + ε)

uniformly for x∈ [0, 1]D.

3.3 One-sided methods

The proposed SCRs in Theorem 5 are two-sided, but there are situations where one-

sided SCRs and hypothesis testing are more appropriate. For instance, one might test

whether the surface temperatures of seawater in a specified region globally exceed

a predefined threshold. Consider the following hypotheses concerning an uniform
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3.3 One-sided methods

upper bound function m0(·) ∈ C
(
[0, 1]D

)
:

H0 : m(x) ≤ m0(x), ∀x ∈ [0, 1]D vs. H1 : m(x) > m0(x), ∃x ∈ [0, 1]D. (3.12)

Quantile Q+,1−α exists uniquely for the one-sided extreme supx∈[0,1]D Ξ(x) which

is a continuous random variable with strictly monotone distribution function by

Proposition 1. The corresponding Q̂+,1−α represents the (1 − α)-th quantile of

max1≤ld≤nd,1≤d≤D Ξ̂Kn (tl1...lD), with uniqueness guaranteed by Theorem 1 in Yang

(2025a) and Theorem 1 in Yang (2025b). The decision rule is to reject the null hy-

pothesis at significance level α if m0(x) is less than m̂(x) − n−1/2Q̂+,1−αĜ
1/2(x,x)

for some x ∈ [0, 1]D. The test statistic is then

Tn = I
{
m0(x) < m̂(x)− n−1/2Q̂+,1−αĜ

1/2(x,x), ∃x ∈ [0, 1]D
}
.

The level and power of the proposed decision rule are justified as follows.

Theorem 6. For α ∈ (0, 1), Q̂+,1−α consistently estimates the quantile Q+,1−α. As

N → ∞, both ∣∣∣Q̂+,1−α −Q+,1−α

∣∣∣→p 0,

and

sup
x∈[0,1]D

∣∣∣Ĝp (x,x)
1/2 Q̂+,1−α, G (x,x)1/2Q+,1−α

∣∣∣→p 0.
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3.4 Two sample extension

Under the null hypothesis specified in (3.12),

P
(
m0(x) < m̂(x)− n−1/2Q̂+,1−αĜ

1/2(x,x),∃x ∈ [0, 1]D
)
→ α,

and under the alternative hypothesis specified in (3.12),

P
(
m0(x) < m̂(x)− n−1/2Q̂+,1−αĜ

1/2(x,x), ∃x ∈ [0, 1]D
)
→ 1.

Analogous test statistic can be formulated for the following with similar proper-

ties,

H0 : m(x) ≥ m0(x),∀x ∈ [0, 1]D vs H1 : m(x) < m0(x),∃x ∈ [0, 1]D.

3.4 Two sample extension

A two-sample extension of Theorem 3 is described in the Subsection. Denote two

samples indicated by s = 1, 2, for any 1 ≤ i ≤ ns, 1 ≤ jd ≤ Nd, 1 ≤ d ≤ D,

Y
(s)
i,j1...jD

= m(s) (xj1...jD) +R
(s)
i (xj1...jD) + σ

(s)
i (xj1...jD) ε

(s)
i,j1...jD

.

with covariance functions Gs (x,x
′) =

∞∑
k=1

ϕsk (x)ϕsk (x
′), respectively. One denotes

the ratio of two-sample sizes as r̂ = n1/n2 and assumes that lim
n1→∞

r̂ = r > 0.
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3.4 Two sample extension

For both groups, let m̂1p (·) and m̂2p (·) be the tensor product spline estimates

of mean function by (2.2) or (3.8). Also denote by Ξ12 (·) a standardised Gaussian

random field such that EΞ12 (·) ≡ 0,EΞ2
12 (·) ≡ 1 with covariance function

EΞ12 (x) Ξ12 (x
′) =

G1 (x,x
′) + rG2 (x,x

′)

{G1 (x,x) + rG2 (x,x)}1/2{G1 (x′,x′) + rG2 (x′,x′)}1/2
.

Again, as Ξ12 satisfies the assumptions of Theorem 1 in Yang (2025a) and Theo-

rem 1 in Yang (2025b), ∥Ξ12∥∞ is continuous random variable with strictly monotone

distribution function. Similar with Proposition 1, for any α ∈ (0, 1), there exists

unique Q12,1−α, such that

P{∥Ξ12∥∞ ≤ Q12,1−α} = 1− α.

One mimics the two-sample t-test and state the following theorem whose proof is

analogous to that of Theorem 3

Theorem 7. If Assumptions (A1)-(A6) are modified for each group accordingly, then

as n1 → ∞, r̂ → r > 0,

sup
x∈[0,1]D

√
n1 {(m̂1p − m̂2p −m1 +m2) (x)}
{(G1 (x,x) + rG2 (x,x))}1/2

→d Ξ12 (x) .
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3.4 Two sample extension

Hence for any α ∈ (0, 1),

P

{
sup

x∈[0,1]D

√
n1 |(m̂1p − m̂2p −m1 +m2) (x)|
{(G1 (x,x) + rG2 (x,x))}1/2

≤ Q12,1−α

}
→ 1− α.

Analogously, denote the estimators of G1(x,x
′), G2(x,x

′) as Ĝ1p(x,x
′), Ĝ2p(x,x

′)

and estimated quantile as Q̂12,1−α. As N → ∞, an asymptotic 100(1 − α)% correct

SCR for m1 (·)−m2 (·) is

m̂1p (·)− m̂2p (·)± n−1/2
(
Ĝ1p + r̂Ĝ2p

)
(·, ·)1/2 Q̂12,1−α,

while an asymptotic 100(1−α)% confidence interval for m1 (x)−m2 (x) ,x ∈ [0, 1]D

is m̂1p (x)−m̂2p (x)±n−1/2
(
Ĝ1p + r̂Ĝ2p

)
(x,x)1/2 z1−α/2. Furthermore, Q̂12,1−α con-

sistently estimates the (1− α)-th quantiles, i.e., as N → ∞,

∣∣∣Q̂12,1−α −Q12,1−α

∣∣∣→p 0,

sup
x∈[0,1]D

∣∣∣∣(Ĝ1p + r̂Ĝ2p

)1/2
(x,x) Q̂12,1−α − (G1 + rG2) (x,x)

1/2Q12,1−α

∣∣∣∣→p 0.

Hence ∀ε > 0, with probability approaching 1, the width of SCR m̂1p (x)− m̂2p (x)±
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n−1/2
(
Ĝ1p + r̂Ĝ2p

)
(x,x)1/2 Q̂12,1−α falls in the range

n−1/2 (G1 + rG2) (x,x)
1/2 (Q12,1−α − ε,Q12,1−α + ε)

uniformly for x∈ [0, 1]D.

Furthermore, for one-sided hypothesis tests on two-sample problems,

H0 : m
(1)(x) ≡ m(2)(x), ∀x ∈ [0, 1]D, v.s. H1 : m

(1)(x) > m(2)(x), ∃x ∈ [0, 1]D,

one can establish the corresponding testing statistics and procedures based on The-

orems 6 and 7 and omit them to save the manuscript space.

4. Implementation

This Section describes the computing of Ĝp (x,x
′) and Q̂1−α used in the SCR of

Theorem 5. The SCR of Theorem 7 is computed similarly.

4.1 Estimating the covariance function

With the spline trajectories in (3.7), the estimator Ĝp (x,x
′) is a tensor product

spline:

Ĝp (x,x
′) = Bp (x)

⊤ ĝpBp (x
′) ,
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4.2 FPC analysis

where

ĝp = n−1

n∑
i=1

(βi − β) (βi − β)⊤ ,

βi =
(
X⊤X

)−1
X⊤Yi,β = n−1

n∑
i=1

βi. (4.1)

4.2 FPC analysis

Denote by Kn =
∏D

d=1 (Nsd + p) dimension of the tensor product spline space. For

k = 1, . . . , Kn, a tensor product spline estimate ψ̂k (x) = γ̂⊤k Bp (x) is defined for

ψk (x), where the γ̂k’s satisfy eigen-equations:

∫
[0,1]D

Ĝp (x,x
′) ψ̂k (x

′) dx′ = λ̂kψ̂k (x) , k = 1 . . . , Kn, (4.2)

under the following constraints, with TD as given in Assumption (A3),

T−1
D γ̂⊤k X

⊤Xγ̂k = 1, k = 1 . . . , Kn. (4.3)

There are only Kn eigenvalues and eigenfunctions can be solved from (4.2), since

the integral operator induced by Ĝp(x,x
′) is a rank-Kn operator. Then, plugging in

(4.1), equations (4.2) simplify to a matrix form:

T−1
D ĝpX

⊤Xγ̂k = λ̂kγ̂k, k = 1 . . . , Kn. (4.4)
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4.3 Quantile estimation

The Cholesky decomposition T−1
D X⊤X = L⊤

XLX is used to solve equations (4.4) sub-

ject to constraints (4.3). It is obvious that for k = 1, . . . , Kn, the pair
(
λ̂k, LXγ̂k

)
are

the k-th eigenvalue and unit eigenvector of LXĝpL
⊤
X. Consequently, γ̂k equals L−1

X ×

the k-th unit eigenvector of LXĝpL
⊤
X and ψ̂k (x) = γ̂⊤k Bp (x) , ϕ̂k (·) = λ̂

1/2
k ψ̂k (·).

Matrix equations (4.4) are computationally much more expedient to solve than the

integral equations (4.2).

4.3 Quantile estimation

In practice, Q̂1−α is based on (3.11) and (4.2) by Monte Carlo simulation of Ξ̂Kn,b (·) =

Ĝp (·, ·)−1/2∑Kn

k=1 Zk,bϕ̂k (·), where Zk,b are i.i.d. standard normal variables with 1 ≤

k ≤ Kn, 1 ≤ b ≤ B where B → ∞ (in practice, B is set as a large number, default=

1000). Let Q̂1−α,B = sample (1− α)-th quantile of
{
max1≤ld≤nd,1≤d≤D

∣∣∣Ξ̂Kn,b (tl1...lD)
∣∣∣}B

b=1
.

The SCR for the mean function m (·) is computed as

m̂p (·)± n−1/2Ĝp (·, ·)1/2 Q̂1−α,B. (4.5)

As Theorem 1 in Yang (2025a) and Theorem 1 in Yang (2025b) ensure continuity and

strict monotonicity of the distribution function of max1≤ld≤nd,1≤d≤D

∣∣∣Ξ̂Kn (tl1...lD)
∣∣∣,

one has that for fixed N , Q̂1−α,B →a,s. Q̂1−α as B → ∞.
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4.3 Quantile estimation

Therefore

lim
N→∞

lim
B→∞

P
[
m (x) ∈ m̂p (x)± n−1/2Ĝp (x,x)

1/2 Q̂1−α,B,x∈ [0, 1]D
]
= 1− α,

so an asymptotic 100(1−α)% correct SCR form (·) is m̂p (·)±n−1/2Ĝp (·, ·)1/2 Q̂1−α,B

as Q̂1−α,B also consistently estimates the quantile Q1−α:

lim
N→∞

lim
B→∞

∣∣∣Q̂1−α,B −Q1−α

∣∣∣ = 0,

lim
N→∞

lim
B→∞

sup
x∈[0,1]D

∣∣∣Ĝp (x,x)
1/2 Q̂1−α,B −G (x,x)1/2Q1−α

∣∣∣ = 0,

in probability. Hence, ∀ε > 0, with probability approaching 1, the width of SCR

m̂p (x)± n−1/2Ĝp (x,x)
1/2 Q̂1−α,B falls in the range

n−1/2G (x,x)1/2 (Q1−α − ε,Q1−α + ε)

uniformly for x∈ [0, 1]D.

Similarly, with Q̂12,1−α,B computed analogously, the SCR for m1 (·)−m2 (·) is:

m̂1p (·)− m̂2p (·)± n−1/2
{(
Ĝ1p + r̂Ĝ2p

)
(·, ·)

}1/2

Q̂12,1−α,B. (4.6)
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4.4 Simulation studies

4.4 Simulation studies

For simplicity of presentation, one sets D = 2, N1 = N2 = N and:

m (x) = 2 sin {π (x1 + x2) /2} e−(x1+x2) + x1 sin x2,

ϕ1 (x) = 2
√
2 sin (πx1/2) sin (πx2/2) ,

ϕ2 (x) = 2
√
2 sin (3πx1/2) sin (πx2/2) ,

ϕ3 (x) = 2 sin (3πx1/2) sin (πx2/2) ,

ϕ4 (x) = 2 sin (3πx1/2) sin (3πx2/2) ,

ϕ5 (x) =
√
2 sin (5πx1/2) sin (3πx2/2) ,

ϕ6 (x) =
√
2 sin (5πx1/2) sin (5πx2/2) ,

ϕk (x) = 0 k ≥ 7.

which implies λ1 = λ2 = 2, λ3 = λ4 = 1, λ5 = λ6 = 0.5 and λk = 0, k ≥ 7. For all 1 ≤

i ≤ n, 1 ≤ k <∞, 1 ≤ j1, j2 ≤ N ξik, εi,j1j2 are mutually independent and identically

distributed. The ξik’s follow one of three distributions: normal, uniform and Laplace,

all with mean 0 and variance 1. The εi,j1j2 ’s are generated similarly. The standard

deviation functions range from homoscedastic to strongly heteroscedastic, includ-

ing σ (x1, x2) ≡ 0.1, 0.2 or σ (x1, x2) = 0.15 (5− exp (x1 + x2)) / (5 + exp (x1 + x2)),
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σ (x1, x2) = 0.3 (5− exp (x1 + x2)) / (5 + exp (x1 + x2)). The sample size and knots

are n =
[
0.4N1/2 (logN)2

]
and Ns1 = Ns2 =

[
0.4N15/64 log logN

]
, respectively. Cu-

bic splines (p = 4) are used throughout this section. Empirical coverage rate is

computed among the 1000 replications, which is the relative frequency that the true

surface m (·, ·) is entirely covered by the SCR.

Our setup allows for the sample {Yi,j1j2}
n,N,N
i=1,j1=1,j2=1 to be generated by 36 com-

binations. Tables S.1-S.4 present the results by standard deviation functions. It is

clear that the empirical coverage rate approaches the nominal confidence level as the

sample sizes increase, a positive confirmation of Theorem 3.

Figures S.1 - S.4 depict the true mean function, the spline estimator of mean func-

tion and the 95% SCR of mean function respectively. They are all based on a typical

run under the setting N = 50, 100, 200, 400 (correspondingly n = 44, 85, 159, 288).

As expected, when n increases, the tensor product estimator approximates the true

surface and the simultaneous confidence region becomes narrower.

5. Real data example

We consider the data from the CMEMS global analysis and forecast product which

contains 3D potential temperature, salinity and currents information from top to

bottom and 2D sea surface level, potential bottom temperature, mixed layer thick-

ness, sea ice thickness, sea ice fraction and sea ice velocities information. These
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globally observed data are defined on rectangular grid at approximately 8km and 50

standard vertical levels. The data are available on the Copernicus Marine Service

website https://marine.copernicus.eu/access-data.

We focus on an area with longitude from −175 to −141 and latitude from −30

to −64, which is divided into a high-latitude domain Ω2 = [−175,−141]× [−47,−30]

closer to the Equator a low-latitude domain Ω1 = [−175,−141] × [−64,−47] closer

to the South Pole. Each sample is a surface over the rectangular area Ω1 or Ω2 with

409 × 205(204) grids. A total of n = 90 daily observations are recorded between

2023-3-10 and 2023-8-10. The sea surface potential temperature and part of three-

dimensional observations are shown in Figure S.5

Tensor product cubic splines (p = 4) are used to estimate the mean function

of sea surface potential temperature, which reflects the overall variation of the data

and its inner structure. Figure S.6 depicts a one-sided 95% lower SCR, blown up by

a factor of 20 for better view, as the SCR is too narrow for visualization.

The lower SCRs allow one to test the null hypothesis that the mean potential

temperature m(·) is below some threshold across the entire rectangular domain. For

instance, null and alternative hypotheses may be formalized as follows:

H0 : m(x) ≤ 14.7,∀x ∈ Ω, versus H1 : m(x) > 14.7,∃x ∈ Ω, (5.1)
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Figure S.7 shows distinct potential temperature differences in the high-latitude

domain Ω2 and less distinction in the low-latitude domain Ω1. Subsequent hypothesis

testing within domains Ω1 and Ω2 yields p-values of 0.061 and 0.001, respectively.

Thus, the null hypothesis is retained for domain Ω1 due to lack of evidence for the

alternative but strongly rejected for Ω2. These findings support the expectation of

warmer sea surface in higher altitude regions with quantified uncertainty.

6. Concluding remarks

Statistical inference is developed for the mean function of functional data over a

multi-dimensional domain. The ”infeasible” estimator, i.e., the sample average of

all true trajectories, satisfies a C
(
[0, 1]D

)
-Central Limit Theorem. Tensor product

spline is used to recover each trajectory, leading to a two-step mean estimator that

is oracally efficient, meaning that it is asymptotically indistinguishable from the

infeasible estimator using unobservable trajectories. For the first time, consistent

estimates are established for covariance function of multi-dimensional trajectory and

exact quantile of a multi-dimensional maximal deviation Gaussian process. These

consistent estimates are used to compute data-driven SCRs with preset asymptotic

coverage and uniformly adaptive width of order n−1/2. All theoretical results work

for one-sided SCRs as for the more commonly used two-sided SCRs. One-sided lower

SCRs for ocean surface temperature over two rectangular domains reveal geograph-
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ical differences in global warming, and extensive Monte Carlo experiments illustrate

the numerical performance of the proposed SCRs. Future works may zero in on sta-

tistical inference of covariance structure and eigen-systems of functional data over

multi-dimensional domains.

Supplementary Material

This supplement provides tables and figures of in Section 4, additional simulations

and detailed proofs of the theoretical results with necessarily technical lemmas.
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Gu, L., Wang, L., Härdle, W., and Yang, L. (2014). A simultaneous confidence

corridor for varying coefficient regression with sparse functional data. TEST 23

806–843.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0344



REFERENCES

Gu, L., and Yang, L. (2015). Oracally efficient estimation for single-index link func-

tion with simultaneous confidence band. Electron. J. Statist. 9 1540–1561.

Hall, P., Müller, H. G., and Wang, J. (2006). Properties of principal component

methods for functional and longitudinal data analysis. Ann. Statist. 34 1493–1517.
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