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Statistica Sinica

STATISTICAL INFERENCE FOR FUNCTIONAL
DATA OVER MULTI-DIMENSIONAL DOMAIN

Qirui Hu and Lijian Yang

Shanghai University of Finance and Economics and Tsinghua University

Abstract: This work develops inference tools for the mean function of functional data over
a multi-dimensional domain. A two-step mean estimator based on tensor product spline
estimates of individual trajectories is shown oracally efficient, i.e., it is asymptotically indis-
tinguishable from the infeasible estimator using unobservable trajectories. Consistent esti-
mates of covariance function as well as exact quantile of the limiting maximal deviation are
obtained by innovative use of results on sharp comparison of Gaussian extreme distributions
and quantiles, leading to asymptotic coverage and order n~1/? uniformly adaptive width of
data-driven simultaneous confidence regions (SCRs). Also formulated are one-sided SCRs
that can be used for testing against uniform upper and lower bound of the mean function.
Extensive Monte Carlo experiments corroborate the theory, and a satellite ocean dataset
collected by Copernicus Marine Environment Monitoring Service (CMEMS) illustrates how

the proposed SCR is used.

Key words and phrases: Exact quantile; Functional data; Gaussian approximation; Simulta-

neous confidence region; Tensor product spline



1. Introduction

Functional data analysis (FDA) has been an important area of statistics research for
over three decades. Functional data consist of observations of stochastic processes

such as Electrocardiogram (ECG), Electroencephalogram (EEG) and human growth,

see Ramsay and Dalzell (1991), Ferraty and Vieu (2006), Horvath and Kokoszkal

(20012) and Hsing and Eubank (2015). The goal of FDA is to secure crucial informa-

tion about the stochastic process.
There is already a rich collection of works on statistical inference of mean and

covariance functions of functional data, such as Degrad (2011), Cao et all (201%),

Guef all (2014), (2014), Cao et all (2016), Wang (P020), Huang
ef-all (2022), | d Yang (2023) and Zhong and Yang (2023). This body of work

systematically develops various types of simultaneous confidence region (SCR), which
is for an unknown function what a confidence interval is for an unknown parameter.
Nonparametric SCRs are powerful tools for making global and uniform inference
on unknown functions, a task often inadequately performed by pointwise confidence

intervals. The lack of SCR is mainly due to the difficulty of obtaining limiting

distribution of the uniform deviation in function estimation. See Wang and Yang

(2009), [ d Yang (2015) and Zheng et all (2016) for SCR in nonparametric
regression/generalized regression models, (2020), Nu_ef-all (2021) and

Hu and T.i (2024) for SCR over 2-dimensional irregular compact domains.



The goal of this paper is to extend the theory and methodology of SCR to
functional data over multidimensional regular domain. Such extension include 2D
satellite images, 3D human medical objects, or functional data of any dimension such
as spatial temporal functional data. Take for example the global ocean temperature
on 2024/7/1 at 20:00, available from Copernicus Marine Service. It can be viewed
either as 2D surface data recorded on latitude and longitude grids of the earth, or

3D data if the sea depth is included as the third dimension (Figure ).

Figure 1: Heat map of global ocean temperature on 2024/7/1 at 20:00.

A functional random variable {n (x),z € [0, 1]D} is a square-integrable contin-
uous stochastic process defined over the D-dimensional rectangle [0, l]D, ie,n(:) e
C ([O, 1]D) a.s. and E|[p||> = E (Supwe[()’l]D In (:c)|>2 < 400, with mean and covari-
ance functions m (x) = E{n(x)} € C ([O, 1]D) ,G(xz,x') = Cov{n(x),n(x)} €

C ([0, 117 % [0, 1]D) respectively. Mercer lemma implies that G (@, &) = Y po | Mt () ¢ (2)



for eigenvalues Ay > Ay > --- >0, 77 | A\ < oo and eigenfunctions {1/Jk (x) eC ([O, 1]D> }:;1
such that [ G (z, &)Yy (@) dx’ = My (x), and {¢y (z)},o, form an orthonor-
mal basis of £ ([0, 1]D>. The standard Karhunen-Loeve representation (Adler_and
Taylor (2007)) is n(x) = m(x) + > pey &e¢r () in which the random coefficients
{& }re, are uncorrelated with mean 0 and variance 1, {¢},—, are rescaled eigen-

functions called functional principal components (FPCs) that satisfy ¢r = v/ Aptx

and [{n(z) —m ()} ¢ (x) de = N\, Vk € N,

A functional data set consists of n i.i.d. realizations {m (x),x € [0, 1]D}

i=1
of (-). The i-th trajectory n; (x) = m (@) + > oo, &irdr (), where {&ix}iey, @ =
1,...,n, are ii.d. copies of random coefficients {},-, called functional principal
components scores (FPC scores). Actual functional data are observed sample points

from trajectories {n; (-)};—, with noises. Denote the equidistanced sample points

xj, ip = (J1/N1,...,jp/Np), 1 < ja < Ng,1 <d < D, R; (-) = >0, &rdr (+) and
Yiivip = mA(Tjy.jp) + Ri (2, 5p) + 03 (Tjy..jp) Eigiins (1.1)

where measurement errors €; 5, j,,1 <t <n, 1< j3 < Ng, 1 <d <D areiid. with

Eeijy..jp = 0,Eef; ;= 1, augmented by standard deviation functions o; (-). The

data generating equation () extends the one-dimensional functional data setup of

Cao et all (2002) and Cao et all (2016).



A tensor product spline estimator of mean function m (-) is shown oracally ef-
ficient, i.e., it is asymptotically equivalent to the sample mean of trajectories fully
observed without errors. SCRs are then constructed for m (+) by maxima deviation
distribution of the proposed spline estimator. Proposition I and Theorem B amend
one oversight in SCR theory for m (+), i.e., existence and consistent estimation of ex-
act quantile for the maxima deviation process, by applying latest results from [Yang
(20253) and [Yang (2025H). Sharp comparison of Gaussian extreme distributions
from Chernozhukov ef"all (2015) establishes consistency in Theorem B of a data-
driven quantile for the exact quantile of maximal error of multidimensional m (-).

~1/2 uniformly adaptive

Another theoretical advance is asymptotic coverage and n
width of the data-driven SCRs by consistent estimation of multidimensional covari-
ance function in Theorem B, both nonexisting in previous works Huang et al] (2022),
Li and Yang (2023) and Zhong and Yang (2023).

Lower /upper SCRs in Subsection BZ3 generate tests against uniform upper/lower
bound of m (+) with desired level and power according to Theorem B. As an example,
testing against uniform upper bound is carried out in Section B for the ocean tem-
perature data by lower SCRs, yielding distinct outcomes over low- and high- altitude
domains. This example illustrates that scientific questions from many disciplines

such as environmental science and neuroscience, can be appropriately answered by

testing uniform lower /upper bound of a functional mean with one-sided SCRs.



This work also successfully handles other technical challenges. First, smart vec-
torization makes partial sum Gaussian approximation for the multidimensional array
{&ti,jl,_,jD}l <i<nm1<jy<Ny1<d<D the same way for one-dimensional sequence of measure-
ment errors in existing works. Second, unnatural assumption about finitely many
distinct distributions of FPC scores in existing works Huang et al] (2022), Li_and
Yang (2023) and Zhong and Yang (2023) is dropped, by applying the new and ex-
plicit form of strong Gaussian approximation from (Gétze and Zaitsev (2010) instead
of the classic implicit form in Csorgd and Révész (T9ST).

The rest of the paper is organized as follows. Section B introduces the tensor
spline estimator of the mean function. Section B presents main asymptotic results of
the proposed estimator. Implementation details and simulation results are reported
in Section B. Our proposed SCR method is illustrated by the ocean temperature

data in Section H. All technical proofs, tables and figures of simulation results are

collected in the Supplemental Material.

2. Estimator of the mean function

This section describes a two-step estimator for mean function m (-).

If all the trajectories {n; (-)};—_, were observed, one natural estimator of m ()



would be the sample average of n trajectories
m)=n()=n"> n(). (2.1)
i=1

This would-be estimator 77 (-) is, however, infeasible as it makes use of latent trajec-
tories 7; (+). The following two-step estimator 7 (-) mimics 72 () by using estimated
7m; () in place of n; (+)

() =nt Y (), (2.2)

where the estimated multi-dimensional trajectories 7; (+) are described in details be-
low. For univariate case, see Cao_efall (2012), Wang et al] (2020), Li and Yang
(2023), Huang et al] (2022).

For each d = 1,..., D, denote by {t, d}JLSi 1 a sequence of equally-spaced points,
called interior knots for variable direction d, that divide [0,1] into (N,, + 1) equal
subintervals, so t;, = Jghs,,0 < J; < N, + 1 where h,, = 1/ (N,, + 1) denotes
the distance between neighbouring knots. These knots in D dimensions divide unit
cube [0,1]” into [T5_, (N, + 1) sub-rectangles of sizes hy, x --- x hy,. Denoted by
AP = #P7?10,1] the space of p-th order spline space in direction d, i.e. (p— 2)

times continuously differentiable functions on [0, 1] that are polynomials of degree



(p—1) on all subintervals [t,,,t;,4+1],0 < Jg < N,. Explicitly

Ns,

%p_Z = Z NapBiap () s Aap ER 2,

Ja=1-p

where By, , is Jg-th spline basis of order p as defined in De Boor (2001)
The tensor product spline space J#P~%P ([0, 1]D> is the tensor product of 227> ([0,1])

1<d<D,ie.

%p—Q,D ([0’ 1]D) _ %p—Q Q- ® %Dp—Q
Ns,; Nsp,

= Z Z AJl‘..JD,th[]?.}.,JD,p (), Asy.app ERx €[0,1)7 5

Ji=1-p Jp=1-p

where for ¢ = (x4, ... ,mD)T € [0,1]7, the (Ji,...,Jp)-th tensor product B spline

. D
basis BBI.}__JD,p (x) = H(?:l Byyp (%4).

The tensor product spline estimator of trajectory n; (-) is

ﬁi () = argmin Z {Y;,Ji---jD -9 (wjl---jD)}z ) (2'3)

; —2,D
9O)EAPTEE 1 < <Ny, 1<d<D

which is used in (222) to compute the two-step estimator m ().



3. Asymptotic results

3.1 Assumptions

Throughout the paper, for vector = (xy,... ,a:D)T € RP, denote the Euclidean
norm ||| = /325, 22. To represent multivariate mixed derivatives, let the set N”

of D-indices be
NP ={a:a=(a,...,ap) ,ag€N,1<d< D}

For any a € NP, denote || = Y27, avg and the a-th partial derivative of a D-variate

function ¢ (+) as

9% (x) = O ... 00 ().

The space C ([0, 1]”) of continuous functions on [0, 1]” is Banach with respect to
the sup norm |[|¢||, = sup,co,» ¢ (z)]. Denote for any v € (0,1], and any ¢ € N,

denote the space of

co (10,1]7) = {¢,8% € ¢ ([0,1]°) ,Va € NP, |a| = ¢},



3.1 Assumptions

with seminorm

[l = max  sup  20@ 2070 (@)]

v
|la|=q z#£x 2’ €[0,1]P ||w - ||

Denote also
Ci([0,1)”) = {9,0% € € ([0,1]") ,Va € N” | |a| = ¢},

equipped with seminorm m
|o

ax [|[0%¢ ||
=q

Constraints on constants related to the model are the following.

v,pe (0,1, geN, p"=q+u,

0 e (O,min{ 2 ,ZV}),
1+ p*
B2 € (O,min{D/Q,l/—g,l—g— 25)*}/D>,

> a. 4, 9

and for smoothing parameter ~,

o 20 o
max + JdA—ve<y<1—Dfy— —.
2p*  p*wo 2

The following assumptions are needed for theoretical results.



3.1 Assumptions

(A1)

(A2)

(A4)

The mean function m (-) € C%# ([0,1]”) for ¢ € N, € (0,1], p* = ¢+ p in

(&)

The standard deviation functions o; (-) € C® ([0, 1]7) satisfy

maxi<i<n Ho—l“oo S Mo‘a maxi<i<n HO—Z'HO,V S Mo‘ for v in (B:[I) and Mo- > 0.

Denote Npax = maxi<g<p N, Nyin = minj<g<p Ny, as n — 00 wa/]\fmin =
O (1), and N = Ny, satisfies N > n? for @ in (B2). Let Ty = Ny X -+ X

Ng,d=1,...,D, then foralld=1,...,D, Ty oc N°

There are constants 0 < cg < Cg < oo such that ¢ < G (x,x) < Cg,Vx €
[0,1]” and for k € N, ¢y, (+) € C# ([0,1]7) with

> et Ul klloe + I @lloy: + I dnllgnt < oo.

On the probability space (2, A, P), the FPC scores {fik}i,kem are independent

over k € N, and i.i.d. over ¢ € N, the measurement errors {Eml,,,jD}ijl___jDem

are i.i.d., and {&i}, oy, are independent of {&;;,_;,} . For C},Cy €

4,J1...JpEN4

(O7+OO) V1,72 € (17+OO)7ﬁ1 € (071/2)7 52 n (B:a) Rn = O(nw>7 for some
w > 0, there are i.i.d. N (0,1) variables {Zik,f}?;nfk:p {Zij. . jp,s}?é]&’{',:’.{\,;%:1

on a richer probability space (Q, A, lf") in which all &, €, 5,...j,’s are embedded,

such that

IP’{ max max

1<k<krn 1<t<n

t t
ik — 2 Zikg
1 =1

1=

> nﬁl} < Cin™m



3.1 Assumptions

t t

€316 0) 21 Zi i1 ()i ()
]:

P{ max > ND52} < CoN—2,
1<i<n,1<t<Tp |;=

where j; (+)...jp (-) are functions N, — N, defined by jp (t) = [T}, (t — 1)]+

1 iteratively, and

. ND—d — [t —1- (jD—d+1(t) — 1) TD—d] Tgid_l, if jD—d+1 (t) is even
Jp-d(t) =

[t—1— (jp-ag+1 (t) —1)Tp_4] TD_idq +1, otherwise.

where [a| denotes the integer part of a, and Tp_,'s are given in Assumption

(A3). Further, sup,cy, E|€i]*° < oo for wp in (B3).

(A6) The number N;, of interior knots in direction d, 1 < d < D satisfy
maxi<q<p N,/ minyj<4<p N5, = O (1), and one denotes N, = minj<4<p Nj,,
he = (N, +1)"". For v in (83) and some 7 > 0, NJN™7/+N;'N7 = O (log” N)
as N — oo. While for some ¢ > 0,577 ;- ||¢pllc = O (n77) as N — o0, in

which K,, = H§)=1 (Ns, + p) is the dimension of the tensor product spline space

7720 ([0,1°).

Assumptions (A1) and (A2) ensure smoothness of mean function and standard
deviation function of measurement errors. Assumption (A3) dominates the sam-
ple size n by numbers N, of observations per subject, by the same philosophy as

in Wang et all (2020), Huang et al] (2022), [Li and Yang (2023), Zhong and Yang



3.1 Assumptions

(2023). The bounded smoothness of eigenfunctions and their decay rate are guar-
anteed by Assumption (A4). Assumption (A6) regulates the number of knots for
spline smoothing, in terms of smoothness of mean and standard deviation functions,
and order of sample size and dimensionality. The high level Assumption (A5) on
strong approximation is guaranteed by the following elementary Assumption (A5’)

according to Lemma ST0.

(A5”) On the probability space (€2, A, P), the FPC scores {{i}; .y, are independent

ike
over k € N, and i.i.d. over ¢ € N, the measurement errors {€i7j1...jD}ij1 ipeNy

are i.1.d., and {&;}

n, are independent of {&;, _;p,} . For constants

ike ij1...jpEN}

@y > 442w and @y > (D + 14 0) /w3, supgey, B [61k]™ + Eleria]|™ < oo

in which w > 0 and ws = min{D/2,v —0/2,1 —60/2 —6/(2p*)}.

Remark 1 Assumptions (A1)-(A6) are easily met in many practical situations. For
the case D = 2 one may use as default ¢ =3, v =1,p* =4,0 =1/2,7 = 15/64,wy =
1/4,dy = loglog N.

Remark 2 The function set j; (),...,7p (+) in Assumption (A5) can be replaced
by any function set satisfying max,,cq1.. 1p}1s—t<1 |51 (), in(s) — Ti@)jn@ || =
O(N7Y).

Remark 3 In contrast to Cao et all (2012), Cao_ef all (2016), Wang et all (2020),
Huang et all (2022), [Li and Yang (2023) and Zhong and Yang (2023) that used

strong approximation in Csbérgd and Révész (T981), the explicit and more flexible



3.2 Error decomposition

strong approximation tools of (Gofze and Zaitsev (2010) used in this paper allows for

infinitely many distinct distributions of FPC scores .

3.2 Error decomposition

For simplicity, denote by

D D D
BP (m) = (Bgf]p...lfp,p (CC) ot BE\/'S}I...pr,p <w) ) 7B£f]pN32...1fp,p (.’B)

4
D D
B g @) BY @) Ve Ef01)”

X = (Bp (5131...1) yoe 7Bp (fUNl...1) 7Bp (3312...1) yoo 7Bp (331\52...1) Yo

T T
B, (@nNs.1) s By (@nyvy)) = (By (wjl-~~jD))1§jd§Nd71§d§D . (3.6)
T T
Denote also by Y; = (Y;,j1~-jp>1§jd§1vd,1§d§D ,m=(m (wj1-~~jD)>1§jd§Nd,1§d§D7

T

T
€ = (U (mjl-njD)67:,j1-~~jD)1§jd§Nd71§d§D7 o = (Qbk (mj1-~'jD))1§jd§Nd71§d§D and R; =

Zzozl §Z¢k7
Elementary algebra expresses estimators 7; (-) in (E3) and m, () in (E2) in

matrix form

m() = B, (XTX)'XTY,, (3.7)



3.2 Error decomposition

My () = n7 > mi(). (3.8)

Karhunen-Loéve representation (Il) decomposes estimator 7); (-) as

mi () =mp () + Rip(-) +ep(), 1 <i<n (3.9)

where m, (), Rip (+), € (+) respectively

Two main results are stated below.

Theorem 1. Under Assumptions (A1)- (A6), as n — o,
max [[7; — 1if| ., = Oas. (Ns_p (nlogn)* + NDﬁ?‘le> ‘

Theorem 2. Under Assumptions (A1) - (A6), as n — oo,

| — Myl = 0p (n—1/2) .



3.2 Error decomposition

The above Theorem establish uniform closeness of each spline smoother of 7;(+)
in (BZ2) to the corresponding true trajectory, and oracle efficiency of the proposed
estimator m, (-) in (E24) in the sense that the difference between tensor product
spline estimator 77, and 7 is of order 0, (n"/2), much smaller than O, (n"'/?), the
order of difference between m and m.

Let = (z) = G (z, )/ > re 1 Zrdr (x) be the continuous sample path Gaussian

process over « € [0,1]” with EZ(-) = 0,E=? (-) = 1 and covariance function

&=
(11
&
(1]

(') =G (z,2) {G(w,az) G (:c’,:c')l/Q} , x,x €[0,1)".

This = is the weak limit of [ (-) — m (+)| G (+,-)"/? according to Theorem B, used
in the same way as a pivotal quantity. Simultaneous inference on m (-) is there-
fore based on distribution function of ||Z[|, = sup,ep 10 [2(@)], Supgep 1y =(x) or
inf,cp01jp Z(x). For any real random variable M with continuous and strictly mono-
tone distribution function, an ezact quantile q;_, exists at any level 1 —a € (0, 1),
()

satisfies the assumptions of Theorem 1 in [Yang (2025a) and Theorem 1 in [Yang

(1]

ie, P[M <@ _o] =1 — «a. Unlike the counter-example in [Tsirel’Son (19786),

(2025h), thus random variables ||Z|, supgep1yp () and infyepqyp Z(z) all have
continuous and strictly monotone distribution functions, so exact quantiles exist for

them at all levels.



3.2 Error decomposition

Proposition 1. For any a € (0,1), there exist unique (1 — «)-th exact quantiles

Q10 Qy1-a and Q_ 1 such that

P{lEll, £ Qi-a} = P{ sup E(x) < Q+,1_a} =

xz€(0,1]P

P! inf E(x)<Q_,.5=1-a.
{mel{g,lJD (@) < Q- } “

Let 21—, denote the 100(1 — «)%-tile of N (0, 1).

(3.10)

Theorem 3. Under Assumptions (A1)-(A6), Vo € (0,1), as n — oo, the “infeasible

estimator” m (x) in (E1) converges at rate n'/?,

ViAm () =m ()} G () =a 2.

Hence



3.2 Error decomposition

and for all x € [0,1]7,

P {Vnlm @) —m (@) G (@,2) " < 5ap) o 1-a,

P{\/ﬁ{m (@) —m(2)} G (z,x) " < zl_a} S1-a

Theorems P and B provide an infeasible simultaneous confidence region (SCR) of

mean function m (-).

Corollary 1. Under Assumptions (A1)-(A6), as N — oo, an asymptotic 100(1 —

a)% correct SCR for m (+) is
iy () £ 072G () Q1

while an asymptotic 100(1—a)% confidence interval for m (z) , = € [0,1]" is i, (x)+
n_l/zG (iB, :13)1/2 Zl_a/g.

The above SCR is infeasible as it makes use of unknown G (-, ~)1/ * and quantile

Q1-o- A method-of-moment estimator for covariance function G (x, ') is:

Gy(@.a) =n" Y (7 () - iy, () (0 (&) — iy (&), 2.2’ € (0,17, (3.11)

i=1

which is uniformly consistent.



3.2 Error decomposition

Theorem 4. Under Assumptions (A1) -(A6), the covariance estimator in (311) is

uniformly consistent: for some 0 >0, as N — 00,

|G -¢| =am).

~

As G, (x,x') is an n~%-consistent for G (x, '), and it is of rank K,, = [[; (Ns, + p),

~ ~ ~ ~ Ky
an approximation of Z(-) is Zk, (-) = G, (-, )2 Kn Zior (+) where {¢k ()}
k=1

are the rescaled FPCs of ép (x,x’), Zy are i.i.d. N (0,1) variables 1 < k < K,
independent of Y;,1 < ¢ < n. Denote TD = ny X --- X np equally spaced grid
points in [0, 1]D as t,, 1, = (Ii/ny,...,Ip/np), 1 < lg < ng,1 < d < D over

which

Ex, ()‘ is computed and maximized, and denote the (1 — «)-th quantile of

éKn (t,..1,)| by @\1,,1, the unique existence of which is ensured by

MaX1 <iy<ng,1<d<D
Theorem 1 in [Yang (2025a) and Theorem 1 in [Yang (20255). The next theorem

ensures that @1_a is a consistent estimator of quantile Q)1_,.

Theorem 5. Under Assumptions (A1) -(A6), if (maxi<q<p ng) (Miny<g<png)” ' < e

for some ¢ € (0,+00) and log Tp x logn., then as N — 0o

(11>

i, (ap)| < 2 {Yi}e,

<z|—-P| max
1<lg<ng,
I<d<D

= 0p(1),



3.3 One-sided methods

therefore, as N — oo, an asymptotic 100(1 — «)% correct SCR for m () is
iy () 0~ 2Gy () Qo

while an asymptotic 100(1—a)% confidence interval form (z) ,« € [0,1]" is m, (x)+
nil/Q@p (x, $)1/2 Z1—a/2- Furthermore, @1_a consistently estimates the quantile Q1_,,
i.e., as N — oo,

Ql—a - Qlfa %p 07

‘ ~

sup ép (x, :1:)1/2 @l_a - G (x, :1:)1/2 Q1—a| = 0.

z€0,1]”

Hence, Ve > 0, with probability approaching 1, the width of SCR m,, (az)inil/Q@p (x, m)l/Q @l_a
falls in the range

nil/QG (fB, w)1/2 (Qlfa — &, Qlfa + €)

uniformly for xe [0,1]".

3.3 Omne-sided methods

The proposed SCRs in Theorem B are two-sided, but there are situations where one-
sided SCRs and hypothesis testing are more appropriate. For instance, one might test
whether the surface temperatures of seawater in a specified region globally exceed

a predefined threshold. Consider the following hypotheses concerning an uniform



3.3 One-sided methods

upper bound function my(-) € C ([0,1]7):
Hy : m(z) < mo(x), Ve € [0,1]° vs. Hy : m(x) > mo(x), Iz € [0,1]°.  (3.12)

Quantile Q4 o exists uniquely for the one-sided extreme sup,c(y 0 Z(x) which
is a continuous random variable with strictly monotone distribution function by
Proposition M. The corresponding @Jﬁl,a represents the (1 — a)-th quantile of
max<j,<n, 1<d<D EKn (ti,.1,), with uniqueness guaranteed by Theorem 1 in [Yang
(2025a) and Theorem 1 in [Yang (2025K). The decision rule is to reject the null hy-

pothesis at significance level « if mg(x) is less than m(x) — n*1/2@+71_a@1/2(m, x)

for some x € [0, 1]P. The test statistic is then
T, =1 {mo(w) < (@) — n 20, 1_GY(z, z), Iz € [0, 1]D} .

The level and power of the proposed decision rule are justified as follows.

Theorem 6. For a € (0,1), @Jr,l,a consistently estimates the quantile Q4 1-o. As

N — o0, both

‘Q—&-,l—a - Q-i—,l—a _)p 07

and

@p (CU, .’B)l/2 @4»,1*047 G (SU, m)l/Q Q+71,a —>p O

sup
x€0,1]P



3.4 Two sample extension

Under the null hypothesis specified in (F13),

P (mo(a:) < im(x) —nV2Qu oGV (x, 2), 3z € [0, 1]D> S,
and under the alternative hypothesis specified in ((313),

P <m0(a:) < i(@) —n Q41 oGY? (@, x), Iz € [0, 1]D) — 1.

Analogous test statistic can be formulated for the following with similar proper-

ties,
Hy : m(x) > mo(x),Vz € [0,1]° vs Hy : m(x) < mo(x), Iz € [0, 1]".

3.4 Two sample extension

A two-sample extension of Theorem B is described in the Subsection. Denote two
samples indicated by s = 1,2, forany 1 <i <n,, 1 <3 < Ny, 1 <d < D,
Yif;?...jD 3 m(S) (mjl---jD) + RES) (mjl---jD) + O-Z(S) (:le---jD) 51(,83')1...jD'
with covariance functions G (¢, ') = Y ¢s () dsi (x'), respectively. One denotes
k=1

the ratio of two-sample sizes as 7 = nj/ny and assumes that lim 7 =17 > 0.
n]1—0o0



3.4 Two sample extension

For both groups, let my, () and Mg, (-) be the tensor product spline estimates
of mean function by (2Z22) or (BH). Also denote by Zis (+) a standardised Gaussian

random field such that E=, (-) = 0, EZ%, () = 1 with covariance function

B Gy (x, ')+ rGy (x, ')
G (z,x) + Gy (z, ) }1/2{Gy (x', ) +rGy (z/,2) }1/2

EElg (CC) Elg (iEl)

Again, as =5 satisfies the assumptions of Theorem 1 in [Yang (2025a) and Theo-
rem 1 in [Yang (20255), ||=2|, is continuous random variable with strictly monotone
distribution function. Similar with Proposition O, for any a € (0, 1), there exists

unique ()121—q, such that

P{|212]l £ Qi21-a} =1—a.

One mimics the two-sample t-test and state the following theorem whose proof is

analogous to that of Theorem B

Theorem 7. If Assumptions (A1)-(A6) are modified for each group accordingly, then

asny — oo, 7 —1r >0,

Y0y = ey =y ) ()

zeprr (G (x,x) +7Gy (z,2))}1/? —d Z12 (T) -



3.4 Two sample extension

Hence for any o € (0, 1),

sup

P Vi | (Map — Moy —my + ma) ()|
zepp L(GL(z,x) + Gy (x, ) }1/?

< Q12,1—a} —1—qa

Analogously, denote the estimators of Gi(x,x'), Go(x, ') as alp(a:,w’),@gp(az,m’)
and estimated quantile as @1271_04. As N — oo, an asymptotic 100(1 — )% correct

SCR for my () —ma (+) is
mlp () - me () + n_1/2 <G\1p + ?62p> ('7 ')1/2 @12,1—0&?

while an asymptotic 100(1 —a)% confidence interval for my (x) —ms (z),x € [0,1]"
is M1, (T) — Moy (x) £n 12 (@m + ?@2p> (, a:)l/2 Z1—aj2. Furthermore, @12,1_a con-

sistently estimates the (1 — «)-th quantiles, i.e., as N — oo,

‘QlQ,lfa - QlZ,lfa

—p 0,

N o~ \1/2 R
sup (Glp + rGgp) (x, ) Qi21-0 — (G1 +1Gs) (x, w)1/2 Q121-a| —p 0.

xe0,1]P

Hence Ve > 0, with probability approaching 1, the width of SCR my, (x) — Mgy, (x) £



n-1/2 (alp + ?§2p> (z, 33)1/2 @12,1_a falls in the range

n'/? (G1+7Gy) (=, w)1/2 (Qi21-a — €, Q121-0a + €)

uniformly for xe [0,1]".

Furthermore, for one-sided hypothesis tests on two-sample problems,
Hy : mW(xz) = m®(x), VY € [0,1]°,v.s. H : mY(x) >m®@(x), 3z € [0,1]",

one can establish the corresponding testing statistics and procedures based on The-

orems B and [@ and omit them to save the manuscript space.

4. Implementation

This Section describes the computing of CAJp (x,2') and @1_a used in the SCR of

Theorem BH. The SCR of Theorem [@ is computed similarly.

4.1 Estimating the covariance function

With the spline trajectories in (B71), the estimator @p (z, ') is a tensor product
spline:

G, (x,2') =B, (x)" §,B, (=),



4.2 FPC analysis

where

Bi=(X'X)"'XY.B=n") 6. (4.1)
=1

4.2 FPC analysis

Denote by K, = HdDzl (Ns, + p) dimension of the tensor product spline space. For
k =1,...,K,, a tensor product spline estimate 1 (x) = 7! B, (x) is defined for

Uy (x), where the 7}’s satisfy eigen-equations:

~

/ G (@, 3) D (@) da = N (@) k= 1., Ko, (4.2)
[0,1)P
under the following constraints, with 7 as given in Assumption (A3),

DX XY = Lk=1... K, (4.3)

There are only K, eigenvalues and eigenfunctions can be solved from (E3), since
the integral operator induced by @p(m, a’) is a rank-K,, operator. Then, plugging in

(£), equations (A2) simplify to a matrix form:



4.3 Quantile estimation

The Cholesky decomposition T X "X = L Lx is used to solve equations (E2) sub-
ject to constraints (E=3). It is obvious that for k =1, ..., K, the pair (Xk, LX%> are
the k-th eigenvalue and unit eigenvector of Lxg,L. Consequently, 7, equals Ly x
the k-th unit cigenvector of Lxg,L% and ¢y () = 3/ B, (), o, () = A/ 0k (+).
Matrix equations (E=) are computationally much more expedient to solve than the

integral equations (£22).

4.3 Quantile estimation

In practice, Q1_q is based on (B) and (2=2) by Monte Carlo simulation of = Kb () =
CA}’p (-, -)_1/2 kK:"l Zk,bggk (-), where Z, are i.i.d. standard normal variables with 1 <
k< K,,1<b< B where B — oo (in practice, B is set as a large number, default=

B
}b:{

~

—_—
—

—

b (tiyip)

1000). Let @1,%3 = sample (1 — a)-th quantile of {HlaXlSldSnd’lgng

The SCR for the mean function m (+) is computed as
my () £ nil/zap () ')1/2 @ka,B- (4.5)

As Theorem 1 in [Yang (2025a) and Theorem 1 in [Yang (2025H) ensure continuity and

~

—_
—

—

strict monotonicity of the distribution function of maxi<;,<n,1<a<p |=k, (ti,..1p)

Y

one has that for fixed N, @1_%3 a5 @1_a as B — oo.



4.3 Quantile estimation

Therefore

lim lim P |m(z) € @y, (x) £ 0 2G, (z, )" O1_ap, z€ [0, 1]D] ~1-a,

N—o0 B—oo

so an asymptotic 100(1—a)% correct SCR for m (-) is i, (-)£n"2G, (-, )% Q1 _a.5

as @1_% B also consistently estimates the quantile Q)q_:

lim lim ‘@l—a,B - Ql—oc =0,

N—o00 B—oo

é'\p (.’B, w)l/Q Q\l—a,B L\ G (513, w)l/Q Ql—a - 07

lim lim sup
N—o00 B—oo mG[O,l]D

in probability. Hence, Ve > 0, with probability approaching 1, the width of SCR

m, (x) £ n 124G T, T 1/2 @l_a p falls in the range
P P :
n~ 2@ (x, a:)l/2 (Q1-0 — &,Q1-a +€)

uniformly for e [0,1]".

Similarly, with @1271_&3 computed analogously, the SCR. for my (+) — my (+) is:

1/2 ~

g () = gy () 2072 { (G +7C) ()} Queacase (46)



4.4 Simulation studies

4.4 Simulation studies

For simplicity of presentation, one sets D = 2, Ny = Ny = N and:

m(x) = 2sin{r(z; + o) /2} e @F22) 4 ) sin g,
oy (x) = 2v2sin (ma1/2)sin (122/2),

ds () = 2v/2sin (3mzy/2)sin (122/2),

¢s(z) = 2sin (3m1/2)sin (722/2),

¢s(x) = 2sin(3mx,/2)sin (3mas/2),

ds () = V2sin (5w, /2)sin (31z2/2),

de (®) = V2sin (5ray/2) sin (51x2/2)

which implies Ay = Ao =2, 3= M =1, A5 =X =05and A\, =0,k > 7. Forall 1 <
i <n,1 <k<oo,1<j1,52 <N &, i, are mutually independent and identically
distributed. The &;;’s follow one of three distributions: normal, uniform and Laplace,
all with mean 0 and variance 1. The ¢, ; ;,’s are generated similarly. The standard
deviation functions range from homoscedastic to strongly heteroscedastic, includ-

ing o (x1,22) = 0.1, 0.2 or 0 (z1,29) = 0.15 (5 —exp (z1 + 22)) / (5 + exp (1 + z2)),



o (z1,22) = 0.3(5 —exp (21 + x2)) / (54 exp (z1 + x3)). The sample size and knots
are n = [0.4NY2 (log N)’] and N,, = N,, = [0.4N'%/%loglog N], respectively. Cu-
bic splines (p = 4) are used throughout this section. Empirical coverage rate is
computed among the 1000 replications, which is the relative frequency that the true

surface m (-, -) is entirely covered by the SCR.

n,N,N
1=1,j1=1,j2=1

Our setup allows for the sample {Y; ,j, } to be generated by 36 com-
binations. Tables S-S present the results by standard deviation functions. It is
clear that the empirical coverage rate approaches the nominal confidence level as the
sample sizes increase, a positive confirmation of Theorem B.

Figures 8- 84 depict the true mean function, the spline estimator of mean func-
tion and the 95% SCR of mean function respectively. They are all based on a typical
run under the setting N = 50,100, 200, 400 (correspondingly n = 44,85, 159, 288).

As expected, when n increases, the tensor product estimator approximates the true

surface and the simultaneous confidence region becomes narrower.

5. Real data example

We consider the data from the CMEMS global analysis and forecast product which
contains 3D potential temperature, salinity and currents information from top to
bottom and 2D sea surface level, potential bottom temperature, mixed layer thick-

ness, sea ice thickness, sea ice fraction and sea ice velocities information. These



globally observed data are defined on rectangular grid at approximately 8km and 50
standard vertical levels. The data are available on the Copernicus Marine Service
website https://marine.copernicus.eu/access-data.

We focus on an area with longitude from —175 to —141 and latitude from —30
to —64, which is divided into a high-latitude domain Qs = [—175, —141] x [—47, —30)]
closer to the Equator a low-latitude domain §; = [—175, —141] x [—64, —47] closer
to the South Pole. Each sample is a surface over the rectangular area €2, or {25 with
409 x 205(204) grids. A total of n = 90 daily observations are recorded between
2023-3-10 and 2023-8-10. The sea surface potential temperature and part of three-
dimensional observations are shown in Figure 83

Tensor product cubic splines (p = 4) are used to estimate the mean function
of sea surface potential temperature, which reflects the overall variation of the data
and its inner structure. Figure E8 depicts a one-sided 95% lower SCR, blown up by
a factor of 20 for better view, as the SCR is too narrow for visualization.

The lower SCRs allow one to test the null hypothesis that the mean potential
temperature m(+) is below some threshold across the entire rectangular domain. For

instance, null and alternative hypotheses may be formalized as follows:

Hy:m(x) <147,V € Q, versus H;:m(x) > 14.7,3x € ), (5.1)



Figure 87 shows distinct potential temperature differences in the high-latitude
domain {2 and less distinction in the low-latitude domain §2;. Subsequent hypothesis
testing within domains €2; and €, yields p-values of 0.061 and 0.001, respectively.
Thus, the null hypothesis is retained for domain €2; due to lack of evidence for the
alternative but strongly rejected for 2. These findings support the expectation of

warmer sea surface in higher altitude regions with quantified uncertainty.

6. Concluding remarks

Statistical inference is developed for the mean function of functional data over a
multi-dimensional domain. The ”infeasible” estimator, i.e., the sample average of
all true trajectories, satisfies a C ([0, 1]D>—Central Limit Theorem. Tensor product
spline is used to recover each trajectory, leading to a two-step mean estimator that
is oracally efficient, meaning that it is asymptotically indistinguishable from the
infeasible estimator using unobservable trajectories. For the first time, consistent
estimates are established for covariance function of multi-dimensional trajectory and
exact quantile of a multi-dimensional maximal deviation Gaussian process. These
consistent estimates are used to compute data-driven SCRs with preset asymptotic

1/2 = All theoretical results work

coverage and uniformly adaptive width of order n™
for one-sided SCRs as for the more commonly used two-sided SCRs. One-sided lower

SCRs for ocean surface temperature over two rectangular domains reveal geograph-
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ical differences in global warming, and extensive Monte Carlo experiments illustrate
the numerical performance of the proposed SCRs. Future works may zero in on sta-
tistical inference of covariance structure and eigen-systems of functional data over

multi-dimensional domains.

Supplementary Material

This supplement provides tables and figures of in Section B, additional simulations

and detailed proofs of the theoretical results with necessarily technical lemmas.
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