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Abstract: Matrix-variate time series data are increasingly popular in economics, statistics, and environmental

studies, among other fields. The bilinear autoregressive structure is a popular modeling approach for such data,

as it reduces model complexity while capturing dynamic interactions between rows and columns. However, in

high-dimensional settings, the conventional iterated least-squares method requires estimating a large number of

parameters, which hampers interpretability and scalability. To address this challenge, we propose regularized

estimation procedures designed for settings in which the autoregressive coefficient matrices exhibit banded

or sparse structures. Specifically, we introduce a Bayesian Information Criterion (BIC)-based approach to

estimate the bandwidth in the banded case, and employ the LASSO technique for enforcing sparsity in the

coefficient matrices. We derive asymptotic properties for both methods as the dimensions diverge and the

sample size T → ∞. Simulations and real data examples demonstrate the effectiveness of our methods,

comparing their forecasting performance against common autoregressive models in the literature.

Key words and phrases: Matrix Time Series, High-dimension, Iterated Least-Squares, Band, Lasso

1 Introduction

In recent years, with the development of advanced information technologies, modern data col-

lection and storage capabilities have led to massive amounts of time series data. Multiple and

high-dimensional time series are routinely observed in a wide range of applications, includ-
*Corresponding author: zhaoxing.gao@uestc.edu.cn (Z. Gao), School of Mathematical Sciences, University of Electronic

Science and Technology of China, Chengdu, 611731 P.R. China.
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ing economics, finance, engineering, environmental sciences, medical research, and others. In

the past decades, various multivariate time series modeling methods have been studied in the

literature. See Tsay (2014) and the references therein for details. Recently, large tensor (or

multi-dimensional array) time series data have become increasingly popular in the literature

across various fields, including those mentioned. For example, a group of countries will report

a set of economic indicators each quarter, forming a matrix-variate (2-dimensional array) time

series, with each column representing a country and each row representing an economic indi-

cator. To analyze large and high-dimensional datasets, dimension-reduction techniques have

gained popularity for achieving efficient and effective analysis of high-dimensional time series

data. Examples include the canonical correlation analysis (CCA) of Box and Tiao (1977) and

Gao and Tsay (2019), principal component analysis (PCA) of Stock and Watson (2002), the

scalar component model of Tiao and Tsay (1989), and the factor model approach in Bai and

Ng (2002), Stock and Watson (2005), Forni et al. (2000, 2005), Pan and Yao (2008), Lam et al.

(2011), Lam and Yao (2012), and Gao and Tsay (2021, 2022, 2023b), among others. However,

all the techniques developed for vector time series cannot be directly applied to matrix-variate

time series, and simple vectorization of the matrix data often results in a significant number of

estimated parameters, losing the original data structure. Therefore, further analysis methods

should be developed to model such complex and dynamic datasets.

Recently, several methods have been developed for analyzing matrix- and tensor-variate

time series data, including factor models in Wang et al. (2019), Chen et al. (2020), Yu et al.

(2022), Gao and Tsay (2023a), Han et al. (2024), and Han et al. (2024), as well as the bilin-
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ear matrix-variate autoregressive model in Chen et al. (2021) and its extension to tensors in

Li and Xiao (2021). To the best of our knowledge, only the method in Chen et al. (2021)

can be directly applied for out-of-sample forecasting, while others primarily focus on dimen-

sion reduction of the matrix data structures. Although Chen et al. (2021) introduced effective

techniques for estimating autoregressive coefficient matrices and explored their asymptotic

properties, these methods are applicable only to matrix-variate time series data with fixed and

small dimensions. Given that large-dimensional matrix-variate data are increasingly common

in applications, the traditional iterated least-squares methods presented in Chen et al. (2021)

may not perform well, and the theoretical results may no longer hold. Therefore, new estima-

tion methods must be considered in such contexts.

This paper represents an extension of the bilinear matrix-variate autoregressive model de-

veloped in Chen et al. (2021) and the spatio-temporal data framework in Hsu et al. (2021).

We focus on the scenario where the dimensions of matrix-variate data are growing, thereby

extending the approach in Chen et al. (2021) to high-dimensional contexts. To facilitate mean-

ingful dimension reduction, we recognize that each observed data point interacts only with a

limited number of others. For instance, spatio-temporal data points, such as PM2.5 observa-

tions, may rely primarily on a few neighboring locations. More generally, each observation

may dynamically depend on only a subset of other components. Our goal is to identify sparse

autoregressive matrices that allow for further dimensional reduction while maintaining inter-

pretability.

In this paper, we propose two regularized estimation methods to reduce the model’s dimen-
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sions further. The first method assumes that the autoregressive coefficient matrices are banded,

indicating that each observed data point interacts only with a limited number of neighboring

points. We introduce a two-step estimation approach: the first step utilizes traditional iterated

least-squares to obtain initial estimates, while the second step employs a banded iterated least-

squares method. Additionally, we propose using the Bayesian Information Criterion (BIC) to

estimate the bandwidths of the coefficient matrices. The second method is similar but assumes

that the autoregressive matrices are sparse, applying the LASSO technique for estimation.

We derive the asymptotic properties of the proposed methods for diverging dimensions of the

matrix-variate data as the sample size T → ∞. Both simulated and real examples are used to

evaluate the performance of our methods in finite samples, comparing them with commonly

used techniques in the literature regarding the forecasting ability of autoregressive models.

This paper presents multiple contributions. First, the methods introduced in Chen et al.

(2021) are applicable only to matrix-variate time series data with fixed and relatively small

dimensions. We extend this model to a high-dimensional environment, offering a broader per-

spective on matrix-autoregressive models that is increasingly relevant for practitioners as such

data become more common in applications. Second, coefficients obtained from traditional

least-squares methods can be challenging to interpret due to the large number of parame-

ters associated with higher dimensions. Our approaches, utilizing banded and general sparse

structures, address this issue by facilitating meaningful dimensional reductions. The banded

approach is particularly well-suited for analyzing spatio-temporal data, as the matrix structure

corresponds to the locations of observations, making it reasonable to assume that each data
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point depends dynamically on only a few neighboring points. The effectiveness of the banded

structure has been demonstrated in Gao et al. (2019) and the references therein across various

applications. Finally, we provide rigorous theoretical analysis, deriving the asymptotic proper-

ties of our proposed methods under these circumstances, thereby contributing to the theoretical

foundation of this field.

The rest of the paper is organized as follows. We introduce the model and proposed

estimation methodology in Section 2 and study the theoretical properties of the proposed model

and its associated estimates in Section 3. Numerical studies with both simulated and real data

sets are given in Section 4, and Section 5 provides some concluding remarks. All technical

proofs are given in an online Supplementary Material. Throughout the article, we use the

following notation. For a p× 1 vector u = (u1, ..., up)
′, ||u||2 = ∥u′∥2 = (

∑p
i=1 u

2
i )

1/2 is the

Euclidean norm, ∥u∥∞ = max1≤i≤p |ui| is the ℓ∞-norm, and Ip denotes a p×p identity matrix.

For a matrix H = (hij), ∥H∥1 = maxj
∑

i |hij|, ∥H∥∞ = maxi
∑

j |hij|, ∥H∥F =
√∑

i,j h
2
ij

is the Frobenius norm, ∥H∥2 =
√

λmax(H′H) is the operator norm, where λmax(·) denotes

for the largest eigenvalue of a matrix, and ∥H∥min is the square root of the minimum non-zero

eigenvalue of H′H. The superscript ′ denotes the transpose of a vector or matrix. We also use

the notation a ≍ b to denote a = O(b) and b = O(a). EX denotes the expectation of random

variable X , and ik be the unit vector with the k-th element equal to 1. Finally, C is a constant

having different values in different contexts.
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2 Model and Methodology

2.1 Setting

Let Yt ∈ Rp1×p2 be an observable p1 × p2 matrix-variate time series, we consider the matrix-

variate autoregressive model of order d ≥ 1 (MAR(d)) introduced by Chen et al. (2021) as

follows:

Yt = A1Yt−1B
′
1 + ...+AdYt−dB

′
d + Et, (2.1)

where Ai and Bi are the coefficient matrices, and Et is a white noise term. By a similar

argument as that in traditional AR models, we may let A = [A1, ...,Ad], B = [B1, ...,Bd], and

Gt = diag(Yt−1, ...,Yt−d), the regression part in Model (2.1) can be written as AGtB
′. Thus,

without loss of generality, we only consider the case when d = 1, i.e., study the following

MAR(1) model:

Yt = AYt−1B
′ + Et, (2.2)

where Yt ∈ Rp1×p2 , A ∈ Rp1×p1 , and B ∈ Rp2×p2 are the coefficient matrices, and Et ∈

Rp1×p2 is the white noise term.

As discussed in Chen et al. (2021), the coefficient matrices A and B are not uniquely

defined due to the identification issue. For example, (A,B) can be replaced by (cA,B/c)

for some constant c ̸= 0 without altering the equation in (2.2). Therefore, some identification

conditions are required to impose on the coefficients. There are several ways to achieve this,

for instance, we may assume ∥A∥F = 1 and sign(tr(A)) = 1 as that in Hsu et al. (2021).

Chen et al. (2021) proposed three methods to estimate the coefficient matrices when the
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dimensions p1 and p2 are fixed, which are (1) the Projection method, (2) Iterated least squares

approach, and (3) Maximum likelihood estimation (MLE). Asymptotic properties of the esti-

mators are also established therein. However, both their methods and asymptotic theory are

derived under finite and fixed dimensions.

In this paper, we consider the estimation of the coefficient matrices in high-dimensional

scenarios, i.e., p1, p2 → ∞ as T → ∞. It is widely known that traditional methods usually fail

when the dimensions are growing as the sample size increases, and one of the main reasons

is that there will be much more parameters to be estimated. Therefore, some interpretable

structures are often imposed in a high-dimensional framework. Here, we present the estimation

methods under two different cases: 1) the coefficient matrices A and B are banded ones, and 2)

A and B are sparse, where the banded coefficients matrices are often used in spatio-temporal

data when the observed value of one location only depends on those of a few neighborhoods.

On the other hand, in the second scenario, we assume only a small proportion of elements in

A and B are non-zero, which serves as a general sparsity condition. Our goal is to estimate the

coefficients A and B under such conditions in a high-dimensional framework. We will discuss

these two scenarios in the following sections.

2.2 Estimation with the Banded Case

In this section, we consider the scenario that the coefficient matrices A and B are banded ones

with bandwidths k1 > 0 and k2 > 0, respectively. That is, we assume that

ai,j = 0, bk,l = 0 for all |i− j| > k1, |k − l| > k2, (2.3)

Statistica Sinica: Preprint 
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where A = (ai,j)
p1
i,j=1, B = (bk,l)

p2
k,l=1, and k1 and k2 are unknown bandwidths. Our goal is to

estimate the coefficient matrices A and B, and their corresponding bandwidth parameters k1

and k2.

We first assume that k1 and k2 are known, and we will propose a BIC approach to consis-

tently estimate them in subsection 2.2.2 below. For the estimation of the coefficient matrices

with banded structures, the procedure can be carried out in a similar way as the iterated least-

squares method in Chen et al. (2021). Specifically, we first obtain initial estimators of A and

B by the iterated least squares method proposed in Chen et al. (2021). Then we start with the

initial estimators, and perform another iterated least squares method to estimate the banded

coefficient matrices. For example, we may estimate A and its bandwidths k1 when the latest

estimator for B is given, and then estimate B and its bandwidths k2 by fixing the latest esti-

mator for A. We repeat this procedure and the algorithm stops when the estimators converge.

A description of the algorithm is outlined in Algorithm 1. Details on Steps 2(a) and 2(b) in

Algorithm 1 are given in the following subsections.

Algorithm 1 Estimating algorithm for banded case

1. We use the iterated least-squares method in Chen et al. (2021) to obtain the estimators Â0 and
B̂0 for A and B, respectively. Denote the initial estimators as B̂(0) = B̂0 and Â(0) = Â0.

2. For the i-th iteration (i = 1, 2, · · · ),

(a) Fix the estimator B̂(i−1) of B, the estimator Â(i) of A is obtained by applying the least-
squares method to Model (2.2). The estimator of the unknown bandwidth k1, denoted by
k̂
(i)
1 , is obtained based on a BIC given in section 2.2.2 below.

(b) Fix the estimator Â(i) of A, we estimate B̂(i) and k̂
(i)
2 using the same procedure as that in

(a).

(c) The iteration stops if the convergence criterion is satisfied, otherwise we go to the next
iteration and repeat Steps 2(a)–2(b).
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Note that either B̂(i−1) in Step 2(a) or Â(i) in Step 2(b) needs to be normalized according to

the identification conditions mentioned in Section 2.1. The initial estimator can be either B̂(0)

or Â(0) which does not influence the properties of the final estimators. For the convergence

conditions, there are several useful ones that we can adopt in Step 2(c) of Algorithm 1. For

example, we may take the following two convergence criteria:

∥Â(i) − Â(i−1)∥F ≤ η and ∥B̂(i) − B̂(i−1)∥F ≤ η,

or

∥B̂(i) ⊗ Â(i) − B̂(i−1) ⊗ Â(i−1)∥F ≤ η,

where η > 0 is a prescribed small constant. In practice, we may choose η = 10−6, and

simulation results in Section 4 suggest that our algorithm works well in finite samples.

2.2.1 Iterated Least-Squares Estimation

Given B = B̂(i−1), in order to obtain the estimator of A and its bandwidth k1, we write

Q̂t = YtB̂
(i−1)′ and Qt = YtB

′, and model (2.2) can be written as

Yt = AQ̂t−1 + F1t,F1t = A(Qt−1 − Q̂t−1) + Et. (2.4)

Let A′ = [a1, · · · , ap1 ], we have, Y′
tij = Q̂′

t−1aj + F′
1tij, j = 1, 2, · · · , p1, where ij denotes

the j-th canonical basis (unit) vector in Rp1 , with 1 in the j-th entry and 0 elsewhere.

Assuming the bandwidth of A is k, then there are τj(k) non-zero elements in its j-th row

Statistica Sinica: Preprint 
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aj of A, where

τj(k) =


k + j if j ≤ k + 1,

2k + 1 if k + 1 < j ≤ p1 − k,

p1 + k − j + 1 if p1 − k < j ≤ p1.

Let βj,k be the τj(k)× 1 vector obtained by stacking non-zero elements in aj , and Xk
j,t−1

be the corresponding τj(k) columns of Q̂′
t−1. Denote vj = [i′jY2, · · · , i′jYT+1]

′ ∈ RTp2×1,

Xj,k = [Xk
j,1, · · · ,Xk

j,T ] ∈ RTp2×τj(k), and f j = [i′jF12, · · · , i′jF1,T+1]
′, we have

vj = Xj,kβj,k + f j. (2.5)

Now, it follows from (2.5) that the least-squares estimator of βj,k is denoted by β̂j,k =

(X′
j,kXj,k)

−1X′
j,kvj , and the corresponding residual sum of squares can be written as

RSSj(k, aj) = v′
j(I−HXj,k

)vj, (2.6)

where HXj,k
= Xj,k(X

′
j,kXj,k)

−1X′
j,k is a hat matrix, which is a function of the unknown

bandwidth k.

Next, we consider the estimation of B given Â(i). Similar to the technique used in (2.4),

let R̂t = Â(i)Yt and Rt = AYt, model (2.2) can be written as

Yt = R̂t−1B
′ + F2t,F2t = (Rt−1 − R̂t−1)B

′ + Et. (2.7)

Statistica Sinica: Preprint 
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Let B′ = [b1, · · · ,bp2 ], we have Ytij = R̂t−1bj + F2tij, j = 1, 2, · · · , p2.

Assuming the bandwidth of B is k, then there are τj(k) non-zero elements in bj , where

τj(k) =


k + j if j ≤ k + 1,

2k + 1 if k + 1 < j ≤ p2 − k,

p2 + k − j + 1 if p2 − k < j ≤ p2.

Let γj,k be the τj(k) × 1 vector obtained by stacking non-zero elements in bj , and Gk
j,t−1

be the corresponding τj(k) columns of R̂t−1. Denote wj = [i′jY
′
2, · · · , i′jY′

T+1]
′, Gj,k =

[Gk
j,1; · · · ;Gk

j,T ], and rj = [i′jF
′
22, · · · , i′jF′

2,T+1]
′, we have

wj = Gj,kγj,k + rj, (2.8)

and obtain the least-squares estimator of γj,k as γ̂j,k = (G′
j,kGj,k)

−1G′
j,kwj . The correspond-

ing residual sum of squares is given by

RSSj(k,bj) = w′
j(I−HGj,k

)wj, (2.9)

where HGj,k
= Gj,k(G

′
j,kGj,k)

−1G′
j,k is a hat matrix, which is also a function of the unknown

bandwidth k as that in (2.6).

Statistica Sinica: Preprint 
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2.2.2 Determining the bandwidth

As discussed in Section 2.2.1, the estimation of the unknown coefficients depends on the band-

width parameters k1 and k2, which are unknown in practice. In this section, we propose a

Bayesian information criterion (BIC) to determine the unknown bandwidth of A. We first

consider the estimation of the bandwidth k1 of A. For each prescribed k1 ≥ 1, we may obtain

the least-squares estimator of β̂j,k from Model (2.5) as well as the residual-sum of squares in

(2.6). For j = 1, ..., p1, we define

BICj(k) = logRSSj(k, aj) +
CM2

M2

τj(k) log(p1 ∨M2),

where M2 = p2T and CM2 = log log(M2). The bandwidth of the j-th row of A estimated

from (Xj,k,vj) is given by

k̂1,j = arg min
1≤k≤K

BICj(k),

where K is a prescribed upper bound of k which may be taken as ⌈T 1/2⌉. Finally, the estimated

bandwidth of A in the i-th iteration of Algorithm 1 is given by k̂
(i)
1 = max1≤j≤p1 k̂1,j , and the

estimator for A in the i-th iteration is denoted by Â(i) = [â1, â2, · · · , âp1 ]
′, where the estimator

âj of aj is obtained by replacing the corresponding non-zero elements in aj by β̂j,k̂j
.

Similarly, for the estimation of the bandwidth parameter k2, we can define the following

BIC criterion

BICj(k) = logRSSj(k,bj) +
CM1

M1

τj(k) log(p2 ∨M1),

where M1 = p1T , and CM1 = log log(M1). The bandwidth of the j-th row of B can be

Statistica Sinica: Preprint 
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estimated by

k̂2,j = arg min
1≤k≤K

BICj(k),

where K is a prescribed upper bound of k which may be taken as ⌈T 1/2⌉. Finally, the band-

width of B, is estimated as k̂(i)
2 = max1≤j≤p2 k̂2,j and B is estimated as B̂(i) = [b̂1, b̂2, · · · , b̂p2 ]

′,

where estimator b̂j of bj is obtained by replacing corresponding non-zero elements in bj by

β̂j,k̂j
, which is similar as that in estimating k1.

In practice, the upper bound K > 0 in the BICs defined above is a prescribed integer. Our

numerical results show that the procedure is insensitive to the choice of K so long as K > k1

and K > k2. In practice, we may take K to be min([T 1/2], [p
1/2
1 ], [p

1/2
2 ]) or choose K by

checking the curvature of BICi(k) directly.

2.3 Estimation with Sparse Coefficient Matrices

In this section, we consider the estimation of the coefficient matrices in model (2.2) under the

scenario that the coefficients are sparse, i.e., we assume that A and B are sparse in the sense

that only a few elements within are nonzero. Note that we may apply the properties of the

Kronecker product to model (2.2), and rewrite the model in the following two ways:

vec(Yt) = ((BY′
t−1)⊗ Ip1)vec(A) + vec(Et), (2.10)

and

vec(Y′
t) = ((AYt−1)⊗ Ip2)vec(B) + vec(E′

t), (2.11)

Statistica Sinica: Preprint 
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where vec(·) is the vectorization operator that stacks all the columns of a matrix into a vector

in order.

Let yt = vec(Yt) and y∗
t = vec(Y′

t), it is possible to estimate A when B is known in

(2.10) and to estiamte B when A is known in (2.11). For any consistent estimators B̂ and Â

for B and A, respectively, we may define Zt−1 = (BY′
t−1)⊗ Ip1 and Ẑt−1 = (B̂Y′

t−1)⊗ Ip1 .

Similarly, we may also define Z∗
t−1 = (AYt−1) ⊗ Ip2 and Ẑ∗

t−1 = (ÂYt−1) ⊗ Ip2 . In view of

the spare structures of the coefficient matrices, we may adopt some penalized method such as

the Lasso to obtain the estimators.

Specifically, similar to the approach in the banded case in Section 2.2, we first obtain the

initial estimators of A and B by applying the alternative least squares method proposed by

Chen et al. (2021). Starting with these initial estimators, we may apply the Lasso technique to

estimate A by replacing B with its latest estimator, and then obtain the Lasso estimate of B

by replacing A with its latest estimator. For example, denote the estimate for B as B̂(i−1) in

the i-th iteration, we solve the following optimization problem:

α̂ = arg min
α∈Rp21

{
1

T

T∑
t=2

∥yt − Ẑt−1α∥22 + λ1,T∥α∥1

}
, (2.12)

where B̂ is equal to B̂(i−1) in Ẑt−1 and λ1,T > 0 is a tuning parameter. Then the estimator Â(i)

is obtained by reverting the α̂ to a p1 × p1 matrix according to the way vec(·) is performed.

Similarly, β̂ is obtained by solving the following optimization problem:

β̂ = arg min
β∈Rp22

{
1

T

T∑
t=2

∥y∗
t − Ẑ∗

t−1β∥22 + λ2,T∥β∥1

}
, (2.13)
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where Â is equal to Â(i) in Ẑ∗
t−1. Then, the estimator B̂(i) is obtained by reverting the β̂ to

a p2 × p2 matrix as before. We can repeat this procedure until convergence. The estimation

procedure is summarized in Algorithm 2. The convergence criteria are similar to those in

Algorithm 1, and we do not repeat them to save space.

Algorithm 2 Estimating algorithm for sparse case

1. Obtain Â0 and B̂0 by the method in Chen et al. (2021), denoted as B̂(0) = B̂0 and Â(0) = Â0,
respectively.

2. For the i-th iteration (i = 1, 2, ...),

(a) Fix B = B̂(i−1), apply Lasso to (2.12) and obtain Â(i),

(b) Fix A = Â(i), apply Lasso to (2.13) and obtain B̂(i),

(c) The iteration stops if the convergence criterion is satisfied, otherwise we go to the next
iteration and repeat Steps 2(a)–2(b).

3 Theoretical Properties

In this section, we establish the asymptotic properties of the estimators proposed in Section 2.

We begin by outlining the regular conditions necessary for the theoretical proofs, followed by

the statement of the asymptotic theorems. All proofs for the theorems are provided in an online

Supplementary Material.

3.1 Regular Conditions

We introduce some notations first. A process vec(Yt) is α-mixing if

αp(k) = sup
i

sup
A∈F i

−∞,B∈F∞
i+k

|P(A ∩B)− P(A)P(B)| → 0,

Statistica Sinica: Preprint 
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where Fk
l is the σ-field generated by {vec(Yt) : l ≤ t ≤ k}. For i = 1, 2, define Ci,α(Si) =

{∆ ∈ Rp2i : ∥∆Sc
i
∥1 ≤ α∥∆Si

∥1}, where Si is a subset of {1, 2, ..., p2i } and ∆Si
is the vector

of ∆ restricted on the positions of Si and the other elements on indexes of Sc
i are zero. Now,

we introduce some assumptions for Model (2.2).

A1. For Yt = {yijt}, we assume

a. The process vec(Yt) is α-mixing with the mixing coefficient satisfying the condi-

tion αp(k) ≤ exp(−ckγ1) for some γ1 > 0.

b. supi,j,t P(|yij,t| > s) ≤ exp(1− sγ2) for s > 0 and some γ2 > 0.

A2. The innovations {Et = (eijt)} are independent and identically distributed (i.i.d.) with

mean 0, and

a. 1
p1

∑p1
i=1 Ee2ijt → σ2

1 for j = 1, 2, · · · , p2 and 1
p2

∑p2
j=1 Ee2ijt → σ2

2 , for i = 1, 2, · · · , p1.

b. supi,j,t P(|eij,t| > s) ≤ exp(1− sγ3) for s > 0 and some γ3 > 0.

A3. ρ(A)ρ(B) < 1, where ρ(A) and ρ(B) are the spectral radii of A and B, respectively.

A4. For any two sub-columns of Q′
t (or Rt), denoted by Wt and Ut, and Wt ̸= Ut, let

p = p2 (or p1), ΣU = p−1EU′
tUt, ΣWU = p−1EW′

tUt, and ΣW = p−1EW′
tWt, there

exists some positive constants λ1 ≤ λ2, such that λ1 ≤ λmin(ΣU) ≤ λmax(ΣU) ≤ λ2,

and λ1 ≤ λmin(ΣW − ΣWUΣ
−1
U Σ′

WU) ≤ λmax(ΣW − ΣWUΣ
−1
U Σ′

WU) ≤ λ2.

A5. For the banded matrix A, |ai,i−k1| or |ai,i+k1|, i = 1, 2, · · · , p1, is greater than {CM2k1M
−1
2 log(p1∨

M2)}1/2; Similarly, for the banded matrix B, |bi,i−k2| or |bi,i+k2|, i = 1, 2, · · · , p2, is

greater than {CM1k2M
−1
1 log(p2 ∨M1)}1/2.
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A6. For matrices A and B, ai,j and bi,j are bounded uniformly, and ∥Ak∥2 ≤ δk and ∥Bk∥2 ≤

δk for k ≥ 2, where δ ∈ (0, 1) is independent of p1, p2, and k.

A7. Let S0 be a subset of {1, 2, ..., p21} with cardinality s0 consisting of the indexes of the

non-zero components in α = vec(A), and Sc
0 be its complement. Let Zt = (BY′

t)⊗ Ip1 ,

(a) when p1 is finite, there exists a constant C2 > 0 such that λmin{E(ZtZ
′
t)} > C2; (b)

when p1 is diverging, the matrix Z := (Z1, ...,ZT )
′ satisfies the restricted eigenvalues

condition, 1
T
∥Z∆∥22 ≥ κ∥∆∥22, for all ∆ ∈ C1,3(S0). Similar assumptions also hold for

Z∗
t defined in Section 2.3.

A8. For matrices A and B, λ1 < λmin{p−1
2 E[(AYt) ⊗ (YtB

′)]} < λmax{p−1
2 E[(AYt) ⊗

(YtB
′)]} < λ2.

Conditions A1(a-b) are standard for econometric time series models. Condition A2(a)

ensures the row and column variances of Et exits, and condition A2(b) is used to bound a new

time series built on Et and Yt. Condition A3 ensures that model (2.2) is stationary and causal,

as shown in proposition 1 in Chen et al. (2021). Conditions A4-A7 are imposed to prove

the consistency of the estimated bandwidth by BIC in Section 2.2.2. Condition A5 ensures

that the bandwidth is asymptotically identifiable, since both {CM2k1M
−1
2 log(p1 ∨ M2)}1/2

and {CM1k2M
−1
1 log(p2 ∨M1)}1/2 is the minimum magnitude of a non-zero coefficient to be

identifiable, see, e.g. Gao et al. (2019). Condition A7(a) indicates that the regressors have

a non-singular covariance and the least-squares estimators are well defined when p1 is finite.

Condition A7(b) is the well-known restricted-eigenvalue condition in Lasso regressions; see

Chapter 6 in Bühlmann and Van De Geer (2011). The condition in Condition A7(b) can also
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be replaced by a more general Restricted Strong Convexity condition that is commonly used in

high-dimensional regularized estimation problems. See Chapter 9 of Wainwright (2019) for

details.

3.2 Asymptotic properties

In this section, we study the theoretical properties of the proposed method, i.e., the convergence

of Algorithm 1 and Algorithm 2 in Section 2. Since we take estimators, Â0 and B̂0, from the

iterated least squares in Chen et al. (2021) as our initials in Algorithm 1 and Algorithm 2, we

first study the convergence rate of Â0 and B̂0. Let Σ be the covariance matrix of vec(Et), and

define H = E (W tW
′
t) + γγ ′, where W ′

t = [(BY′
t) ⊗ I : I ⊗ (AYt)] ∈ Rp1p2×(p21+p22) and

γ = (vec(A)′,0)′ ∈ Rp21+p22 . Let p = max{p1, p2}, we have following result for Â0 and B̂0.

Proposition 1. Let conditions A1-A3 hold. If A, B, Σ are nonsingular, λmin(H) ≥ λh > 0,

and T, p1, p2 → ∞, then,

∥Â0 −A∥2F + ∥B̂0 −B∥2F = Op(
p21p2
T

+
p22p1
T

).

Remark 3.1. (i) When the dimensions of Yt, p1 and p2, are fixed, the convergence rate of

∥Â0 − A∥2F and ∥B̂0 − B∥2F are both of order Op(1/T ). This recovers the low-dimensional

case. (ii) According to this Proposition, we have ∥Â0−A∥2F +∥B̂0−B∥2F → 0 if p21p2/T → 0

and p22p1/T → 0, which is ensured if pp1p2/T → 0. (iii) The convergence rate stated in

Theorem 3 of Li and Xiao (2021) is slightly faster than that in Proposition 1. However, the

detailed proof is not fully transparent and appears technically involved. We leave the task
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of refining the convergence rates of the initial estimators under high-dimensional settings to

future research.

Next, we show the convergence rate of estimators for A and B in Algorithm 1 by assum-

ing the bandwidth k1 and k2 are known and fixed. Theorem 3.1 below shows that estimators

from Algorithm 1 are consistent when p3/T → 0.

Theorem 3.1. Assume conditions A1-A6 and A8 hold. Let B̂(i−1) be the latest estimator of B

in Algorithm 1 with B̂(0) = B̂0 and i ≥ 1. We have, for i > 1,

∥Â(i) −A∥2F = Op(p1p2p/T ) and ∥B̂(i) −B∥2F = Op(p1p2p/T ).

Remark 3.2. (i) In this theorem, Algorithm 1 is assumed to begin estimating A by fixing B at

its most recent estimate. However, the same conclusion will hold if we reverse the estimation

order. (ii) In the first iteration, we take B̂(0) = B̂0, by Proposition 1, we have ∥B̂0−B∥2F → 0

when pp1p2/T → 0. The condition pp1p2/T → 0 also ensures that the error of A(i) is

primarily influenced by the error arising from approximating B with its latest estimate.

Theorem 3.1 is based on the assumption that the bandwidths are known, which is often

not the case in real-world problems. However, if consistent estimators for these two unknown

bandwidths exist, Theorem 3.1 remains valid. We will now demonstrate the consistency of the

estimated bandwidths in Algorithm 1.

Theorem 3.2. Assume conditions A1-A6 hold. Let B̂(i−1) be the latest estimator of B in
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Algorithm 1 with B̂(0) = B̂0. For i > 1, if p5/T → 0, then

P (k̂
(i)
1 = k1) → 1, and P (k̂

(i)
2 = k2) → 1, as T, p1, p2 → ∞.

Remark 3.3. (i) In Theorem 3.1, k1 and k2 are assumed to be fixed, since model (2.2) is

useful only when k1 and k2 are small and finite. However, Theorem 3.1 still holds when k1

and k2 diverges to ∞ along with T, p1, p2 so long as k1 = o{C−1
M2

M2/ log(p1 ∨ M2)}, and

k2 = o{C−1
M1

M1/ log(p2 ∨M1)}. See the proof of Theorem 3.1 in Supplementary Material.

(ii) In this theorem, Algorithm 1 is assumed to begin by estimating A while holding B fixed

at its most recent estimate. However, the same conclusion holds if we reverse the estimation

order.

Next, we examine the convergence rate of Algorithm2 for estimating A and B in the

sparse case. Similar to Algorithm1, Algorithm 2 also begins with Â0 and B̂0, which are

derived from the iterated least squares method in Chen et al. (2021).

Theorem 3.3. Assume conditions A1-A3 and A6-A7 hold. Let B̂(i−1) be the latest estimator of

B in Algorithm 2 with B̂0 = B̂0 and i ≥ 1, we have,

∥Â(i) −A∥2 = Op(

√
p1p22s0
T

) and ∥B̂(i) −B∥2 = Op(

√
p21p2s0
T

),

where s0 = |S0|.

Remark 3.4. (i) Similar to the Frobenius norm results in the banded case, Theorem 3.3 estab-

lishes that the estimated sparse coefficient matrices are consistent in the ℓ2 norm, provided that
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pp1p2/T → 0 and the sparsity level satisfies 0 < s0 < ∞. In fact, the convergence rates are

roughly the same as those in Theorem 3.1, since we treat the bandwidth parameter as finite and

absorb it into the upper bound. (ii) The convergence rates in Theorem 3.1 and Theorem 3.3 de-

pend on the rates of the initial estimators. As suggested by one of the reviewers, these rates can

potentially be improved by using better initial estimates. One suggested approach is to begin

with banded or sparse initial estimators in Algorithm 1 and Algorithm 2, respectively—similar

to the strategy in Yang et al. (2016)—since the effective number of parameters in such struc-

tured matrices is smaller, which may lead to faster convergence. However, the ALS setting

presents a different challenge. In this case, it is not straightforward to separate a proportion of

the parameters in the matrices for individual convergence rate analysis. As a result, we must

still rely on the convergence rates of the full initial estimators, as described in Proposition 1.

Simulation results (see Table S9 of the Supplement) suggest that, in the banded case, there is

no notable difference in estimation error between starting with the full initial estimator and

starting with a banded initial estimator—both lead to nearly identical performance.

4 Numerical Results

In this section, we examine the finite sample properties of the proposed method and provide

real data examples to evaluate its forecasting performance compared to the alternative least-

squares (ALSE) method proposed by Chen et al. (2021). In Section 4.1, we conduct Monte

Carlo experiments to demonstrate the convergence of the proposed methods in estimating the

coefficient matrices under two scenarios, alongside comparisons with the estimators obtained
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using the ALSE method. In Section 4.2, we apply our method to two real data examples.

4.1 Simulation

This section outlines our methodology for evaluating the finite sample properties of the pro-

posed methods through Monte-Carlo experiments. The observed data matrix Yt are simu-

lated from model (2.2) under different conditions for matrices A and B, and each entry in the

white noise Et is generated from the standard normal distribution, with Cov(vec(Et)) = Ip1p2 .

Through these simulations, we aim to demonstrate the convergence of our proposed methods

in comparison with the ALSE method, as the sample size increases. Furthermore, we examine

the accuracy of our proposed methods in estimating unknown bandwidths under the banded

cases. The impact of penalty parameters on the estimation results is also investigated under

the sparse cases. All of the results are obtained by conducting 100 independent replications.

To study the convergence of the estimators for matrices A and B, some identification

conditions are required to impose on the coefficients. In this experiment, we assume ∥A∥F = 1

and sign(tr(A)) = 1. The convergence criteria of the iterations in our algorithms are specified

as ∥Â(i+1) − Â(i)∥F < 10−6 and ∥B̂(i+1) − B̂(i)∥F < 10−6.

4.1.1 Banded case

This section presents a comprehensive analysis to investigate the performance of Algorithm

1. We will study the convergence of the estimators under the scenarios that we start with either

Â(0) or B̂(0) as initial estimates. Additionally, we examine the accuracy of the bandwidth

estimation and the algorithm’s convergence as the sample size T increases.
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For each configuration of (p1, p2, k1, k2, T ), we generate Yt according to model (2.2).

Specifically, for given dimensions p1, p2, and bandwidths k1 and k2, the observed data Yt are

simulated according to model (2.2), where the entries of A and B are generated as follows:

(1) for entries of A, {ai,j : |i− j| ≤ k1} are generated independently from U [−1, 1], and other

elements are zero. We re-scale A such that ∥A∥F = 1 and sign(tr(A)) = 1; (2) for entries of

B, {bi,j : |i − j| ≤ k2} are generated independently from U [−1, 1], and other elements are

zero. We re-scale B so that ρ = ρ(A)ρ(B) = 0.5. The white noise Et are generated from

standard normal distribution with Cov(vec(Et)) = Ip1p2 .

Firstly, we examine the convergence of Algorithm 1 is insensitive to the choice of the

initial estimators. Note that there are two iteration orders that may occur in Algorithm 1.

We may first estimate A for given initial estimator B̂(0), or estimate B for given Â(0). We

denote the estimated coefficient matrices via these two procedures by (Â1, B̂1) and (Â2, B̂2),

respectively. The dimensions are set as (p1, p2) = (6, 4), (8, 5) and (9, 6) with bandwidths

(k1, k2) = (2, 1) for each (p1, p2). The mean, median, and maximum of log10 (∥Â1 − Â2∥F )

and log10 (∥B̂1 − B̂2∥F ) are reported in Table S1. From Table S1 we see that the convergence

of the estimators is insensitive to the choice of the initial estimators that we use in Algorithm 1.

On the other hand, the reported errors in Table S1 are all less than −6, which is in accordance

with the convergence criteria where the upper bound η is chosen as 10−6 in Section 2.

Second, we show the accuracy of Algorithm 1 in estimating the unknown bandwidths k1

and k2. The empirical frequencies of the events {k̂1 = k1} and {k̂2 = k2} are reported in

Table 1, where we set (k1, k2) = (1, 1) and (2, 1) and the sample size T = 100, 200, 400 and
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800. For a fixed sample size T and the bandwidths (k1, k2), the dimensions (p1, p2) are set to

(6, 4), (8, 5), and (9, 6). Results in Table 1 show that the accuracy of estimated k̂1 and k̂2 is

pretty satisfactory, and it increases with sample size T for each (p1, p2, k1, k2) in most cases.

Table 1: Accuracy of Algorithm 1 in estimating unknown bandwidths under different settings, where
E1 and E2 represent the empirical frequencies of the events {k̂1 = k1} and {k̂2 = k2}, respectively.

T = 100 T = 200 T = 400 T = 800

(p1, p2) E1 E2 E1 E2 E1 E2 E1 E2

(k1, k2) = (1, 1)
(6, 4) 100 100 100 100 100 100 100 100
(8, 5) 100 99 100 99 100 100 100 100
(9, 6) 98 99 100 99 100 100 100 100

(k1, k2) = (2, 1)
(6, 4) 98 100 100 100 100 100 100 100
(8, 5) 99 100 100 100 100 100 100 100
(9, 6) 99 100 100 100 100 100 100 100

Next, we show the convergence pattern of Algorithm 1 under different configurations

of (p1, p2, k1, k2) as the sample size T increases. We also compare the estimation accuracy

with the ALSE method in Chen et al. (2021). The estimation errors for A and B, denoted by

log(∥Â−A∥F ) and log(∥B̂−B∥F ), respectively, are reported in Table S2, where (p1, p2) =

(6, 4) and (9, 6), the sample size T = 200, 500, 1000, 2000, and the bandwidths (k1, k2) =

(2, 1). For each setting, we consider two scenarios that ρ(A)ρ(B) = 0.5 and 0.8 to show

the results are consistent for different strengths of the coefficient matrices. From Table S2,

we see that estimation errors obtained by the proposed method and the ALSE all decrease as

the sample size increase for each configuration, which is in line with our theoretical results.

On the other hand, we also see that the estimation error obtained by our proposed method is

smaller than that by the ALSE, implying that our estimation procedure is more accurate than
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the ALSE.

Furthermore, we define S := B ⊗ A and Ŝ := B̂ ⊗ Â, using the distance log(∥Ŝ −

S∥F ) to evaluate the overall performance of our proposed method. For simplicity, we set the

dimensions (p1, p2) = (6, 4) and (9, 6), and the bandwidths (k1, k2) to (1, 1) and (2, 1) for each

(p1, p2). We fix ρ(A)ρ(B) = 0.5 in this experiment, and the box plots of the estimated errors

log(∥Ŝ − S∥F ) are shown in Figure S1. It is clear that both methods converge under these

settings, and our proposed Algorithm 1 performs better than the ALSE method in terms of

estimation errors, which aligns with our theoretical results. Similar results are obtained from

simulations conducted in higher-dimensional settings (Figure S2, Table 2).

Table 2: The average estimation errors of the coefficient matrices by Algorithm 1 and ALSE.
Algorithm 1 ALSE

(p1, p2) ρ T = 200 500 1000 2000 T = 200 500 1000 2000

log(∥Â−A∥F )
(12, 15) 0.5 -1.712 -2.378 -2.779 -3.09 -1.631 -2.111 -2.455 -2.809
(12, 15) 0.8 -2.658 -3.122 -3.48 -3.808 -2.262 -2.733 -3.091 -3.421
(20, 20) 0.5 -2.295 -2.828 -3.178 -3.534 -1.788 -2.25 -2.602 -2.951
(20, 20) 0.8 -2.761 -3.211 -3.563 -3.901 -2.158 -2.624 -2.974 -3.314

log(∥B̂−B∥F )
(12, 15) 0.5 -0.427 -0.857 -1.266 -1.594 0.04 -0.456 -0.813 -1.155
(12, 15) 0.8 -0.681 -1.112 -1.4 -1.677 -0.052 -0.515 -0.865 -1.209
(20, 20) 0.5 -0.274 -0.866 -1.267 -1.609 0.314 -0.169 -0.523 -0.874
(20, 20) 0.8 -0.392 -0.957 -1.287 -1.597 0.229 -0.239 -0.59 -0.938

log(∥Ŝ− S∥F )
(12, 15) 0.5 0.001 -0.547 -0.956 -1.277 0.285 -0.207 -0.559 -0.906
(12, 15) 0.8 -0.35 -0.799 -1.118 -1.416 0.178 -0.289 -0.642 -0.981
(20, 20) 0.5 0.1 -0.46 -0.833 -1.184 0.647 0.173 -0.181 -0.531
(20, 20) 0.8 -0.05 -0.558 -0.901 -1.225 0.56 0.091 -0.259 -0.604
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4.1.2 Sparse case

This section evaluates the performance of Algorithm 2 in estimating sparse coefficient matri-

ces. First, we assess its ability to recover the non-zero elements of matrices A and B. The

tuning parameters λ1,T and λ2,T in equations (2.12) and (2.13) significantly influence the spar-

sity of A and B, respectively. It is important to note that if these parameters are adjusted

in each iteration of Algorithm 2, the algorithm will not converge, as the objective function

changes with the tuning parameters. Therefore, we select the tuning parameters in the first

iteration and keep them fixed for subsequent iterations. In practice, tuning parameters are

usually chosen through cross-validation (CV). The R package glmnet offers two options: (1)

sdCV, which selects λ1,T (λ2,T ) as the largest value of λ such that the corresponding CV error

is within 1 standard error of the minimum, and (2) mCV, which selects λ1,T (λ2,T ) as the value

of λ that minimizes the CV error.

Alternatively, tuning parameters can also be selected based on variable selection stability,

as discussed in Meinshausen and Buhlmann (2010) and Sun et al. (2013). The key idea is to

choose tuning parameters that ensure stability in the variable selection process of the penalized

regression model. We employ the Kappa Selection Criterion (KSC) proposed by Sun et al.

(2013) to select λ1,T and λ2,T . Here, variable selection stability is defined as the expected

value of Cohen’s kappa coefficient (Cohen, 1960) between active sets obtained from two in-

dependent and identical datasets. For instance, consider problem (2.12). Given λ1,T = λ,

KSC first estimates the variable selection stability S(λ) by randomly partitioning the samples

(yt, Ẑt−1) : t = 2, · · · , T into two subsets, repeating this process B times. Then, λ1,T is cho-
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sen as λ̂1,T = minλ : S(λ)
maxλ′ S(λ

′)
≥ 1− αT , where we set B = 50 and αT = 0.4. In summary,

there are three methods for selecting tuning parameters in Algorithm 2, and their impact on

the algorithm’s performance is discussed in the following sections.

In our simulations, the coefficient matrices A ∈ Rp1×p1 and B ∈ Rp2×p2 are generated

as follows: for a given dimension p1, let r1 be the proportion of nonzero entries in A. For

each row of A,
⌊
p1
2

⌋
entries are generated from U [1, 2], and the remaining p1 −

⌊
p1
2

⌋
entries

are generated from U [−2,−1]. Next, p1 − ⌊r1p1⌋ entries are set to zero, and the elements

are randomly rearranged to form one row of A. Finally, we rescale A so that |A|F = 1. The

procedure for generating B follows the same steps as for A, except that B is rescaled to satisfy

ρ(A)ρ(B) = 0.9.

To measure the accuracy of Algorithm 2 in recovering non-zero elements, we define the

following sets for A = (ai,j) and Â = (âi,j):

S1 = {(i, j)|ai,j = 0, âi,j = 0}, S2 = {(i, j)|ai,j = 0, âi,j ̸= 0},

S3 = {(i, j)|ai,j ̸= 0, âi,j ̸= 0}, S4 = {(i, j)|ai,j ̸= 0, âi,j = 0}.

The recovery accuracy for non-zero elements in A is then defined as

cr(Â) =
|S1|+ |S3|
p1 × p1

, (4.1)

which represents the proportion of correctly estimated zero and non-zero entries in Â relative

to A. The recovery accuracy for non-zero elements in B = (bi,j) is defined similarly.
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Table S3 reports cr(Â) and cr(B̂) under different settings and tuning methods from 100

independent replications. Algorithm 2 shows varying performance depending on the tuning

method. Specifically, tuning with sdCV results in the highest accuracy for recovering non-zero

elements but also the largest error in log(∥Ŝ− S∥F ). In contrast, tuning with mCV yields the

best accuracy for log(∥Ŝ − S∥F ) but the worst recovery accuracy. Finally, tuning with KSC

provides a balanced performance, achieving comparable results in both recovery accuracy and

the error in log(∥Ŝ− S∥F ), making it a well-rounded choice.

Next, we compare our estimators with those obtained by the ALSE method from Chen et al.

(2021) in terms of estimation errors. Figure S3 presents the box plot of log(∥Ŝ − S∥F ) from

100 independent replications. Detailed results on the estimation errors of Â, B̂, and Ŝ us-

ing the KSC tuning method are reported in Table S4, while results for the sdCV and mCV

tuning methods are shown in Table S5 and Table S6, respectively. Figure S3 and Table S4

indicate that the estimators produced by Algorithm 2 generally outperform those from the

ALSE method, as the Lasso solutions yield smaller estimation errors in most cases. This sug-

gests that the proposed procedure generates more accurate estimators. Additionally, consistent

with previous findings, Algorithm 2 tuned with KSC shows comparable performance to that

tuned with mCV, and significantly outperforms the sdCV-tuned version, as seen in Figure S3,

Table S4, Table S5, and Table S6. It also performs better than ALSE (Figure S3). Similar

conclusions are drawn from simulations conducted in higher-dimensional settings (Figure S4,

Table 3, Tables S7- S8).

In summary, Algorithm 2 tuned by KSC demonstrates satisfactory performance in both
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recovery accuracy and estimation error, outperforming ALSE with significantly sparser co-

efficient matrices that are easier to interpret. Therefore, we recommend it for real data ap-

plications. From this point forward, we will refer to Algorithm 2 as Algorithm 2 tuned by

KSC.

Table 3: The estimation errors of the estimators obtained by ALSE and Algorithm 2 with tuning pa-
rameters method KSC.

Algorithm 2 tunned by KSC ALSE

(p1, p2) ρ T = 100 500 1000 2000 T = 100 500 1000 2000

log(∥Â−A∥F )
(12, 15) 0.5 -2.315 -2.843 -3.218 -3.579 -1.976 -2.449 -2.799 -3.147
(12, 15) 0.9 -3.165 -3.648 -4.003 -4.352 -2.763 -3.232 -3.578 -3.924
(20, 20) 0.5 -2.349 -2.869 -3.249 -3.617 -1.963 -2.43 -2.775 -3.123
(20, 20) 0.9 -3.197 -3.69 -4.059 -4.412 -2.749 -3.218 -3.564 -3.91

log(∥B̂−B∥F )
(12, 15) 0.5 0.09 -0.36 -0.706 -1.051 -0.003 -0.48 -0.825 -1.169
(12, 15) 0.9 -0.096 -0.556 -0.902 -1.256 -0.217 -0.689 -1.033 -1.373
(20, 20) 0.5 0.391 -0.066 -0.409 -0.752 0.281 -0.195 -0.548 -0.895
(20, 20) 0.9 0.267 -0.186 -0.526 -0.869 0.078 -0.386 -0.738 -1.084

log(∥Ŝ− S∥F )
(12, 15) 0.5 0.192 -0.265 -0.613 -0.959 0.246 -0.231 -0.578 -0.924
(12, 15) 0.9 0.002 -0.459 -0.806 -1.157 0.037 -0.434 -0.779 -1.122
(20, 20) 0.5 0.527 0.061 -0.287 -0.633 0.621 0.148 -0.201 -0.549
(20, 20) 0.9 0.381 -0.077 -0.422 -0.766 0.419 -0.048 -0.397 -0.743

4.2 Real Data Examples

In this section, we apply the proposed regularized estimation methods to two real-world ex-

amples. In the first example, we utilize three iterative algorithms: the ALSE method from

Chen et al. (2021), Algorithm 1, and Algorithm 2 to estimate the coefficient matrices A and

B in Model (2.1). The Algorithm 2 is tuned by KSC since its interpretability and lower esti-

mation error, see section 4.1. We then examine the out-of-sample forecasting errors produced

by the MAR(1) model using parameters estimated by the three approaches. The empirical
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findings demonstrate that our proposed algorithms achieve smaller out-of-sample forecast er-

ror with a high degree of sparsity in modeling the matrix-variate data, resulting in a significant

reduction in model parameters. In the second example, we compared the performance of vec-

tor auto-regressive model, ALSE from Chen et al. (2021), reduced rank MAR (Xiao et al.

(2022)), Dynamic matrix factor models (Yu et al., (2024)) and our proposed Algorithm 1 and

Algorithm 2 on financial data. The out-of-sample rolling forecast results demonstrate that our

methods consistently outperform the competing approaches.

4.2.1 Wind Speed Data

In this example, we apply our methodology to a wind speed dataset consisting of the east–west

component of the wind speed vector over a region between latitudes 14◦S and 16◦N and longi-

tudes 145◦E and 175◦E in the western Pacific Ocean. The data records the average wind speed

every 6 hours on a 17 × 17 grid (covering 289 locations) from November 1992 to February

1993, resulting in T = 480 and p1 = p2 = 17. Previous studies by Hsu et al. (2012) and

Hsu et al. (2021) have shown evidence of non-stationary spatial dependence, while indicating

temporal stationarity with positive temporal correlations.

The observed data was divided into training data {Y1, . . . ,Y400} and validation data

{Y401, . . . ,Y480}. We apply the three iterative estimation methods (ALSE, Algorithm 1, and

Algorithm 2) to obtain the estimated coefficients Â and B̂ in the model (2.2). To evaluate

the performances of these methods, we calculate the average prediction mean-squared error
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(PMSE).

PMSE =
1

289× 80

479∑
t=400

∥Ŷt+1 −Yt+1∥F ,

and the average prediction mean-absolute error (PMAE)

PMAE =
1

289× 80

479∑
t=400

∥Ŷt+1 −Yt+1∥1,

on the validation data, where Ŷt+1 = ÂYtB̂
′. Furthermore, the sparsity of the coefficient

matrices estimated by these methods, in terms of the proportions of zero entries in each matrix

and the number of iteration steps, is reported in Table 4. From Table 4, we see that our proposed

Algorithm 1 under the banded case and Algorithm 2 under the sparse case perform better

than the ALSE method in terms of both PMSE and PMAE. Moreover, the degree of sparsity

of the coefficient matrices estimated by our methods is much higher than that by the ALSE

method, which implies that our methods greatly simplify the model. In general, Algorithm 2

with λ1 = λ2 = 0.1 in the Lasso estimation performed best among the three methods. The

bandwidths of Â and B̂ chosen by the proposed BIC are 4 and 5, respectively. The heat maps

of the Â and B̂ estimated by the three methods are shown in Figure 1, which clearly illustrate

the sparsity of the parameters estimated by our methods.

Table 4: The performance of the three different methods on wind speed data.

Method PMSE PMAE Sparsity of Â Sparsity of B̂ Iteration step

ALSE 0.16612 0.20007 0 0 45
Algorithm 1 0.16563 0.19983 0.6851 0.7578 8
Algorithm 2 0.16341 0.19665 0.7647 0.8651 6
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Figure 1: The coefficient matrices estimated by ALSE, Algorithm 1, and Algorithm 2 from U-wind
dataset. The first row shows results of Â, and the second row shows those of B̂ obtained by different
methods.

4.2.2 Economic Indicator Data

The data in this example consists of quarterly observations of 10 economic indicators for 10

countries. The 10 indicators are the total consumer price index (CPI, growth from the previous

period), long-term interest rate (LTIR, first-order difference), short-term interest rate (STIR,

first-order difference), total industrial production index (IPI, first-order log difference), man-

ufacturing industrial production index (MIPI, first-order log difference), GDP growth same

period previous year (GDPpy, percentage change), GDP growth previous period (GDPpp, per-

centage change), total exports (EXP, first-order log difference), total imports (IMP, first-order

log difference) and unemployment rate forecast (UR, first-order difference). These indica-

tors are sourced from 10 countries: Italy (ITA), Spain (ESP), France (FRA), Germany (DEU),

the United Kingdom (GBR), the United States (USA), Canada (CAN), Korea (KOR), Australia

(AUS) and Japan (JPN). The dataset spans from the first quarter of 1990 to the fourth quarter of

2019, resulting in a 10× 10 matrix-valued time series with a time length of T = 120. The data
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can be obtained from the Organisation for Economic Co-operation and Development (OECD)

at https://data.oecd.org/. Figure S5 displays the original data, where rows and columns repre-

sent different economic indicators and countries, respectively. To remove seasonal effects, we

adjusted each indicator by subtracting its sample quarterly mean.

We compare the out-of-sample rolling forecast performances of the VAR model, MAR

model estimated by ALSE, our regularized MAR model, reduced rank MAR model (rrMAR,

Xiao et al. (2022)), and the dynamic matrix factor models (DMFM, Yu et al., (2024)). The

rolling forecasts are conducted from t = 100 to t = 119. For each time point, we fit the

model using the data Y1,Y2, . . . ,Yt to obtain the estimated coefficient matrices Â and B̂.

We then compute the predictive value Ŷt+1 = ÂYtB̂
′, as well as the 1-norm predictive error

∥Ŷt+1 − Yt+1∥1 and the F-norm predictive error ∥Ŷt+1 − Yt+1∥F . The averages of the 1-

norm and F-norm errors from t = 100 to t = 119 for the six methods are reported in Table 5.

Notably, both our Lasso iterative method and the banded iterative method outperform the other

methods.

Table 5: Out-of-sample rolling forecast performance of the six methods—VAR, MAR estimated by
ALSE, Algorithm 1, Algorithm 2, rrMAR, and DMFM—on economic indicator data.

VAR ALSE rrMAR DMFM Algorithm 1 Algorithm 2

1-norm 7.674 2.534 3.583 2.398 2.221 2.311
F-norm 6.709 2.409 4.140 2.361 2.283 2.338
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5 Conclusion

In this paper, we studied statistical estimators for high-dimensional matrix-valued autoregres-

sive models under two different settings: when the parameter matrix is banded or sparse. We

established the asymptotic properties of these estimators. Both simulations and real data anal-

yses demonstrate the advantages of our new methods over existing ones. The proposed method

can be treated as another option in the toolbox for modeling high-dimensional matrix-variate

time series and the dynamic models can be useful to practitioners who are interested in out-of-

sample forecasting.

Supplementary Material

The online Supplementary Material provides additional simulation results and proofs of the

theoretical results.
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