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Regularized Estimation of High-Dimensional Matrix-Variate Autoregressive Models
Hangjin Jiang', Baining Shen!, Yuzhou Li', and Zhaoxing Gao%]

LCenter for Data Science, Zhejiang University
2School of Mathematical Sciences, University of Electronic Science and Technology of China
Abstract: Matrix-variate time series data are increasingly popular in economics, statistics, and environmental
studies, among other fields. The bilinear autoregressive structure is a popular modeling approach for such data,
as it reduces model complexity while capturing dynamic interactions between rows and columns. However, in
high-dimensional settings, the conventional iterated least-squares method requires estimating a large number of
parameters, which hampers interpretability and scalability. To address this challenge, we propose regularized
estimation procedures designed for settings in which the autoregressive coefficient matrices exhibit banded
or sparse structures. Specifically, we introduce a Bayesian Information Criterion (BIC)-based approach to
estimate the bandwidth in the banded case, and employ the LASSO technique for enforcing sparsity in the
coefficient matrices. We derive asymptotic properties for both methods as the dimensions diverge and the
sample size " — oo. Simulations and real data examples demonstrate the effectiveness of our methods,

comparing their forecasting performance against common autoregressive models in the literature.

Key words and phrases: Matrix Time Series, High-dimension, Iterated Least-Squares, Band, Lasso

1 Introduction

In recent years, with the development of advanced information technologies, modern data col-
lection and storage capabilities have led to massive amounts of time series data. Multiple and

high-dimensional time series are routinely observed in a wide range of applications, includ-

*Corresponding author: zhaoxing.gao@uestc.edu.cn (Z. Gao), School of Mathematical Sciences, University of Electronic
Science and Technology of China, Chengdu, 611731 P.R. China.
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ing economics, finance, engineering, environmental sciences, medical research, and others. In
the past decades, various multivariate time series modeling methods have been studied in the
literature. See T'say| (2014)) and the references therein for details. Recently, large tensor (or
multi-dimensional array) time series data have become increasingly popular in the literature
across various fields, including those mentioned. For example, a group of countries will report
a set of economic indicators each quarter, forming a matrix-variate (2-dimensional array) time
series, with each column representing a country and each row representing an economic indi-
cator. To analyze large and high-dimensional datasets, dimension-reduction techniques have
gained popularity for achieving efficient and effective analysis of high-dimensional time series
data. Examples include the canonical correlation analysis (CCA) of Box and Tiao| (1977) and
Gao and Tsay| (2019), principal component analysis (PCA) of [Stock and Watson| (2002)), the
scalar component model of [T1ao and Tsay (1989), and the factor model approach in |Bai and
Ng (2002), Stock and Watson! (2005)), Forni et al. (2000, 2005)), |Pan and Yao (2008)), Lam et al.
(2011)), Lam and Yao|(2012), and|Gao and Tsay| (2021, 2022} 2023b)), among others. However,
all the techniques developed for vector time series cannot be directly applied to matrix-variate
time series, and simple vectorization of the matrix data often results in a significant number of
estimated parameters, losing the original data structure. Therefore, further analysis methods
should be developed to model such complex and dynamic datasets.

Recently, several methods have been developed for analyzing matrix- and tensor-variate
time series data, including factor models in [Wang et al.| (2019), |Chen et al.| (2020), |Yu et al.

(2022), |Gao and Tsay| (2023a)), Han et al.| (2024), and Han et al. (2024), as well as the bilin-
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ear matrix-variate autoregressive model in |Chen et al.| (2021]) and its extension to tensors in
L1 and Xiao | (2021). To the best of our knowledge, only the method in (Chen et al.| (2021)
can be directly applied for out-of-sample forecasting, while others primarily focus on dimen-
sion reduction of the matrix data structures. Although|Chen et al.|(2021) introduced effective
techniques for estimating autoregressive coefficient matrices and explored their asymptotic
properties, these methods are applicable only to matrix-variate time series data with fixed and
small dimensions. Given that large-dimensional matrix-variate data are increasingly common
in applications, the traditional iterated least-squares methods presented in (Chen et al.| (2021)
may not perform well, and the theoretical results may no longer hold. Therefore, new estima-
tion methods must be considered in such contexts.

This paper represents an extension of the bilinear matrix-variate autoregressive model de-
veloped in (Chen et al.| (2021) and the spatio-temporal data framework in |[Hsu et al.| (2021)).
We focus on the scenario where the dimensions of matrix-variate data are growing, thereby
extending the approach in Chen et al. (2021) to high-dimensional contexts. To facilitate mean-
ingful dimension reduction, we recognize that each observed data point interacts only with a
limited number of others. For instance, spatio-temporal data points, such as PM, 5 observa-
tions, may rely primarily on a few neighboring locations. More generally, each observation
may dynamically depend on only a subset of other components. Our goal is to identify sparse
autoregressive matrices that allow for further dimensional reduction while maintaining inter-
pretability.

In this paper, we propose two regularized estimation methods to reduce the model’s dimen-
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sions further. The first method assumes that the autoregressive coefficient matrices are banded,
indicating that each observed data point interacts only with a limited number of neighboring
points. We introduce a two-step estimation approach: the first step utilizes traditional iterated
least-squares to obtain initial estimates, while the second step employs a banded iterated least-
squares method. Additionally, we propose using the Bayesian Information Criterion (BIC) to
estimate the bandwidths of the coefficient matrices. The second method is similar but assumes
that the autoregressive matrices are sparse, applying the LASSO technique for estimation.
We derive the asymptotic properties of the proposed methods for diverging dimensions of the
matrix-variate data as the sample size 7" — oco. Both simulated and real examples are used to
evaluate the performance of our methods in finite samples, comparing them with commonly
used techniques in the literature regarding the forecasting ability of autoregressive models.
This paper presents multiple contributions. First, the methods introduced in |Chen et al.
(2021)) are applicable only to matrix-variate time series data with fixed and relatively small
dimensions. We extend this model to a high-dimensional environment, offering a broader per-
spective on matrix-autoregressive models that is increasingly relevant for practitioners as such
data become more common in applications. Second, coefficients obtained from traditional
least-squares methods can be challenging to interpret due to the large number of parame-
ters associated with higher dimensions. Our approaches, utilizing banded and general sparse
structures, address this issue by facilitating meaningful dimensional reductions. The banded
approach is particularly well-suited for analyzing spatio-temporal data, as the matrix structure

corresponds to the locations of observations, making it reasonable to assume that each data
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point depends dynamically on only a few neighboring points. The effectiveness of the banded
structure has been demonstrated in |Gao et al.| (2019) and the references therein across various
applications. Finally, we provide rigorous theoretical analysis, deriving the asymptotic proper-
ties of our proposed methods under these circumstances, thereby contributing to the theoretical
foundation of this field.

The rest of the paper is organized as follows. We introduce the model and proposed
estimation methodology in Section[2]and study the theoretical properties of the proposed model
and its associated estimates in Section 3l Numerical studies with both simulated and real data
sets are given in Section [ and Section [5| provides some concluding remarks. All technical
proofs are given in an online Supplementary Material. Throughout the article, we use the
following notation. For a p x 1 vector u = (uy, ..., 1), [[ul|z = |[0[]2 = (3P, u2)/? is the
Euclidean norm, ||ul|o, = max;<;<, |u;| is the £,,-norm, and I, denotes a p x p identity matrix.

For a matrix H = (hy;), [[H|s = max; 3, |hij|, [Hllee = max; 32, |hyyl, [Hllp = /32, ; 1

i,j '71j

is the Frobenius norm, |H|ls = \/Anax(H'H) is the operator norm, where . (-) denotes
for the largest eigenvalue of a matrix, and || H|| i, is the square root of the minimum non-zero
eigenvalue of H'H. The superscript ' denotes the transpose of a vector or matrix. We also use
the notation a =< b to denote a = O(b) and b = O(a). EX denotes the expectation of random

variable X, and i;, be the unit vector with the k-th element equal to 1. Finally, C'is a constant

having different values in different contexts.



Regularized Estimation of MAR Models 6

2 Model and Methodology

2.1 Setting

Let Y; € RP1*P2 be an observable p; X p, matrix-variate time series, we consider the matrix-
variate autoregressive model of order d > 1 (MAR(d)) introduced by |(Chen et al. (2021) as
follows:

Yt - AlYt_lBll + + AdYt—dB/d + Et7 (21)

where A; and B; are the coefficient matrices, and E; is a white noise term. By a similar
argument as that in traditional AR models, we may let A = [A4, ..., Ay4], B = [By, ..., B,], and
G, = diag(Y;_1, ..., Y;_4), the regression part in Model can be written as AG,;B’. Thus,
without loss of generality, we only consider the case when d = 1, i.e., study the following
MAR(1) model:

Yt = AthlB/ + Et7 (22)

where Y; € RP*P2) A € RP*Pr and B € RP2*P2 gre the coefficient matrices, and E; €
RP1*P2 ig the white noise term.

As discussed in |(Chen et al.| (2021)), the coefficient matrices A and B are not uniquely
defined due to the identification issue. For example, (A, B) can be replaced by (cA,B/c)
for some constant ¢ # 0 without altering the equation in (2.2). Therefore, some identification
conditions are required to impose on the coefficients. There are several ways to achieve this,
for instance, we may assume ||A||r = 1 and sign(tr(A)) = 1 as that in Hsu et al.| (2021).

Chen et al.| (2021) proposed three methods to estimate the coefficient matrices when the
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dimensions p; and p, are fixed, which are (1) the Projection method, (2) Iterated least squares
approach, and (3) Maximum likelihood estimation (MLE). Asymptotic properties of the esti-
mators are also established therein. However, both their methods and asymptotic theory are
derived under finite and fixed dimensions.

In this paper, we consider the estimation of the coefficient matrices in high-dimensional
scenarios, 1.e., p1, p2 — oo as I’ — oo. It is widely known that traditional methods usually fail
when the dimensions are growing as the sample size increases, and one of the main reasons
is that there will be much more parameters to be estimated. Therefore, some interpretable
structures are often imposed in a high-dimensional framework. Here, we present the estimation
methods under two different cases: 1) the coefficient matrices A and B are banded ones, and 2)
A and B are sparse, where the banded coefficients matrices are often used in spatio-temporal
data when the observed value of one location only depends on those of a few neighborhoods.
On the other hand, in the second scenario, we assume only a small proportion of elements in
A and B are non-zero, which serves as a general sparsity condition. Our goal is to estimate the
coefficients A and B under such conditions in a high-dimensional framework. We will discuss

these two scenarios in the following sections.

2.2 Estimation with the Banded Case

In this section, we consider the scenario that the coefficient matrices A and B are banded ones

with bandwidths k; > 0 and k5 > 0, respectively. That is, we assume that

CLZ‘J‘:O,ka:OfOI'aH |Z—j| >]€1,|k3—l| >k32, (23)
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where A = (a;;)7-1, B = (bx1)33—1> and k; and k, are unknown bandwidths. Our goal is to
estimate the coefficient matrices A and B, and their corresponding bandwidth parameters k;
and ks.

We first assume that £, and k5, are known, and we will propose a BIC approach to consis-
tently estimate them in subsection [2.2.2] below. For the estimation of the coefficient matrices
with banded structures, the procedure can be carried out in a similar way as the iterated least-
squares method in Chen et al.|(2021). Specifically, we first obtain initial estimators of A and
B by the iterated least squares method proposed in (Chen et al.|(2021). Then we start with the
initial estimators, and perform another iterated least squares method to estimate the banded
coefficient matrices. For example, we may estimate A and its bandwidths k; when the latest
estimator for B is given, and then estimate B and its bandwidths k, by fixing the latest esti-
mator for A. We repeat this procedure and the algorithm stops when the estimators converge.

A description of the algorithm is outlined in Algorithm 1. Details on Steps 2(a) and 2(b) in

Algorithm 1 are given in the following subsections.

Algorithm 1 Estimating algorithm for banded case

1. We use the iterated least-squares method in (Chen et al.| (2021) to obtain the estimators Ao and
By for A and B, respectively. Denote the initial estimators as B(®) = By and A(®) = A,,.

2. For the i-th iteration (z = 1,2, - - -),

(a) Fix the estimator B~ of B, the estimator A(®) of A is obtained by applying the least-
squares method to Model (2.2). The estimator of the unknown bandwidth k;, denoted by

%@, is obtained based on a BIC given in section below.
(b) Fix the estimator A of A, we estimate B® and 74:\5) using the same procedure as that in
(a).

(c) The iteration stops if the convergence criterion is satisfied, otherwise we go to the next
iteration and repeat Steps 2(a)-2(b).
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Note that either B¢~ in Step 2(a) or A® in Step 2(b) needs to be normalized according to

the identification conditions mentioned in Section 2.1. The initial estimator can be either B(©
or A© which does not influence the properties of the final estimators. For the convergence
conditions, there are several useful ones that we can adopt in Step 2(c) of Algorithm 1. For

example, we may take the following two convergence criteria:

JAD — AV <pand | B — BEY || <,

or

~

IBO @ A — BO-D @ AG-D||. < p,

where 7 > 0 is a prescribed small constant. In practice, we may choose n = 107%, and
simulation results in Section [] suggest that our algorithm works well in finite samples.
2.2.1 Iterated Least-Squares Estimation

Given B = ﬁ(ifl), in order to obtain the estimator of A and its bandwidth k;, we write

Q; = Y, B~V and Q, = Y,B', and model (2.2)) can be written as

Y, = AQ,_; +F1, Fiy = A(Q_; — Qi) + E. (2.4)

Let A’ = [a;, -+ ,a, |, we have, Y}i; = Q;_laj +F,i;,j =1,2,---,p1, where i; denotes
the j-th canonical basis (unit) vector in RP', with 1 in the j-th entry and 0 elsewhere.

Assuming the bandwidth of A is k, then there are 7;(k) non-zero elements in its j-th row
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a; of A, where

(

k+j if j<k+1,

Ti(k) =q 2k +1 if k+1<j<p -k,

L pt+k—j54+1 if pp—k<j<p.

Let 3, be the 7;(k) x 1 vector obtained by stacking non-zero elements in a;, and X?Fl

be the corresponding 7;(k) columns of Q, ,. Denote v; = [(;Y5, -, i, Y7] € RTPX1,
Xjp=[XE, o XE ] € RTP2X%8) and f; = [{{F1p, -+ ,i/F1741], we have
Vi = XjeBip + £ (2.5)

~

Now, it follows from (2.5) that the least-squares estimator of 3;, is denoted by 3;, =

/ —1~77/ . o .
(X’ X, k) ' X V), and the corresponding residual sum of squares can be written as

RSS](k7 aj) = V;- (I — HXj,k)"j’ (26)

where Hx,, = Xj7k(X;7ka,k)_1X9’k is a hat matrix, which is a function of the unknown
bandwidth k.
Next, we consider the estimation of B given A® . Similar to the technique used in (2.4),

let f{t = ;‘;(i)Yt and R; = AY,, model || can be written as

Y, =Ri_B' + Fy, Fy = (Ri_y — Ri_1)B' + B, (2.7)
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Let B, = [bl, e ,bp2], we have Ytij = Rt—lbj -+ FQtij,j = ]., 2, s, Pa.

Assuming the bandwidth of B is k, then there are 7;(k) non-zero elements in b;, where

.

k+j if j<k+1,

Ti(k) =4 2k+1 if k+1<j<ps—k,

L p2+k’—]+1 if pg—k<j§p2.

Let 7, be the 7;(k) x 1 vector obtained by stacking non-zero elements in b;, and Gf,tq

be the corresponding 7;(k) columns of R, ;. Denote w; = [{,Y4, -, #/Y}, ], G =
[GE ;e GRyl and vy = [ FY,, -+, 1 F) 1,4, we have
Wi = GjikYe + T (2.8)

and obtain the least-squares estimator of v, ; as ;. = (G’ ,G;x) "' G/, w;. The correspond-

ing residual sum of squares is given by

RSS;(k,b;) = wj(I - Hg,, )w;, (2.9)

where Hg,, = G (G’ ,G;) "' G/ is a hat matrix, which is also a function of the unknown

bandwidth k as that in (2.6)).
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2.2.2 Determining the bandwidth

As discussed in Section[2.2.1] the estimation of the unknown coefficients depends on the band-
width parameters k; and k,, which are unknown in practice. In this section, we propose a
Bayesian information criterion (BIC) to determine the unknown bandwidth of A. We first
consider the estimation of the bandwidth %k, of A. For each prescribed k; > 1, we may obtain

the least-squares estimator of 3ij from Model ll as well as the residual-sum of squares in

(2.6). For j = 1, ..., p1, we define
_ Ch,
BIC;(k) = logRSS;(k,a;) + U 7; (k) log(p1 V Ma),
2

where My = p,T and Cyy, = loglog(M,). The bandwidth of the j-th row of A estimated
from (X 4, v;,) is given by

ki ; = arg 1£r]1€i<nK BIC; (k),

where K is a prescribed upper bound of k& which may be taken as [7'/2]. Finally, the estimated
bandwidth of A in the ¢-th iteration of Algorithm 1 is given by %i’) = maxi<;<p, %1, ;> and the
estimator for A in the i-th iteration is denoted by A®) = [a;, @y, - - - |, a,, |, where the estimator
a; of a; is obtained by replacing the corresponding non-zero elements in a; by B].,Ej.

Similarly, for the estimation of the bandwidth parameter k5, we can define the following
BIC criterion

C
BIC; (k) = logRSS;(k,b;) + —]\]4” 7 (k) log(pa V M),
1

where My = pT, and Cy;, = loglog(M;). The bandwidth of the j-th row of B can be
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estimated by

/k\;Q’j = arg 1£I11ci<nf< BIC;(k),

where K is a prescribed upper bound of k& which may be taken as [7"*/?]. Finally, the band-
width of B, is estimated as /l%l) = MaX|<j<p, EQJ and B is estimated as B(®) = [Bl, by, -, sz], ,
where estimator Bj of b, is obtained by replacing corresponding non-zero elements in b; by
B];Ej , which is similar as that in estimating k;.

In practice, the upper bound K > 0 in the BICs defined above is a prescribed integer. Our
numerical results show that the procedure is insensitive to the choice of K so long as K > k;

L

and K > k,. In practice, we may take K to be min([T"2], [pi’*], [p3/*]) or choose K by

checking the curvature of BIC;(k) directly.

2.3 Estimation with Sparse Coefficient Matrices

In this section, we consider the estimation of the coefficient matrices in model (2.2) under the
scenario that the coefficients are sparse, i.e., we assume that A and B are sparse in the sense
that only a few elements within are nonzero. Note that we may apply the properties of the

Kronecker product to model (2.2)), and rewrite the model in the following two ways:
vec(Y:) = (BY;_ ;) ® I, )vec(A) + vec(E,), (2.10)

and

vec(Y}) = ((AY;_1) ® I,,)vec(B) + vec(E}), (2.11)
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where vec(+) is the vectorization operator that stacks all the columns of a matrix into a vector
in order.

Let y; = vec(Y,) and y; = vec(Y}), it is possible to estimate A when B is known in
and to estiamte B when A is known in . For any consistent estimators B and A
for B and A, respectively, we may define Z,_; = (BY!_,)® 1, and Z,_; = (BY,_,) ®1,,.
Similarly, we may also define Z; ; = (AY,_;) ®I,, and Z:_l = (XYt_l) ® I,,. In view of
the spare structures of the coefficient matrices, we may adopt some penalized method such as
the Lasso to obtain the estimators.

Specifically, similar to the approach in the banded case in Section [2.2] we first obtain the
initial estimators of A and B by applying the alternative least squares method proposed by
Chen et al.|(2021). Starting with these initial estimators, we may apply the Lasso technique to
estimate A by replacing B with its latest estimator, and then obtain the Lasso estimate of B
by replacing A with its latest estimator. For example, denote the estimate for B as B in

the i-th iteration, we solve the following optimization problem:

T

g _J1 5

& = arg min {f > llye = Ziae3 + ALTHaHl} : (2.12)
t=2

acRP1

where B is equal to B~ in Z,_; and A7 > 01is a tuning parameter. Then the estimator A
is obtained by reverting the & to a p; X p; matrix according to the way vec(+) is performed.

Similarly, B is obtained by solving the following optimization problem:

o~

T
B = arg min {T S llyi = Zi1Bl3 + A
t=2

BeRP2

|/3H1} , (2.13)
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where A is equal to A® in Z’;_l. Then, the estimator B is obtained by reverting the B to
a po X po matrix as before. We can repeat this procedure until convergence. The estimation
procedure is summarized in Algorithm 2. The convergence criteria are similar to those in

Algorithm 1, and we do not repeat them to save space.

Algorithm 2 Estimating algorithm for sparse case

1. Obtain AO and ]§0 by the method in |Chen et al.[(2021)), denoted as BO) — ]§0 and A0 = 1&0,
respectively.

2. For the i-th iteration (1 = 1,2, ...),
(a) Fix B = B(-1), apply Lasso to (2.12) and obtain A®),
(b) Fix A = A, apply Lasso to (2.13) and obtain B®),

(c) The iteration stops if the convergence criterion is satisfied, otherwise we go to the next
iteration and repeat Steps 2(a)-2(b).

3 Theoretical Properties

In this section, we establish the asymptotic properties of the estimators proposed in Section
We begin by outlining the regular conditions necessary for the theoretical proofs, followed by
the statement of the asymptotic theorems. All proofs for the theorems are provided in an online

Supplementary Material.

3.1 Regular Conditions

We introduce some notations first. A process vec(Y,) is a-mixing if

a,(k) = sup sup IP(AN B) —P(A)P(B)| — 0,

i AeFt BEFZ,
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where FF is the o-field generated by {vec(Y;) : I <t < k}. Fori = 1,2, define C; ,(S;) =
{A € R : |Asell < allAg,|l1}, where S; is a subset of {1,2,...,p;} and Ag, is the vector
of A restricted on the positions of .S; and the other elements on indexes of S{ are zero. Now,

we introduce some assumptions for Model (2.2).

Al. For Y, = {y;;1 }, we assume

a. The process vec(Y;) is a-mixing with the mixing coefficient satisfying the condi-
tion oy, (k) < exp(—ck™) for some y; > 0.

b. sup; ;, P([yij¢| > s) < exp(l — s7) for s > 0 and some 7, > 0.

A2. The innovations {E; = (e;;;)} are independent and identically distributed (i.i.d.) with

mean 0, and

1L\ 2 20 1 NP2 a2 2 -
a. -t Bejyy »otforj=1,2,--- ppand --> 752 Eej, — o3, fori =1,2,--- ,pi.

b. sup; ;, P(|eij| > s) < exp(1 — s%) for s > 0 and some 3 > 0.
A3. p(A)p(B) < 1, where p(A) and p(B) are the spectral radii of A and B, respectively.

A4. For any two sub-columns of Q; (or R;), denoted by W; and U;, and W, # U, let
p = ps (or py), Xy = p'EU Uy, Ywuy = p 'EW,U,, and Yw = p 'EW,W,, there
exists some positive constants A\; < Ag, such that A\ < A\pin (Zu) < Anax(Zu) < g,

and A} < \pin(Ew — EWUE{J}E/\NU) < Amax(Ew — EWUEﬁlEIWU) < Ao

AS5. For the banded matrix A, |a;; 1, | or |a;i i, |,7 = 1,2, -+, p1,is greater than {Cyz, k1 My " log(p;V
My)}1/%; Similarly, for the banded matrix B, |b;; 1| OF |biiir,)s © = 1,2, , po, is

greater than {Cyy, ko M, ' log(py vV M) /2.
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A6. For matrices A and B, a; ; and b; ; are bounded uniformly, and || A¥ ||, < §* and || B*||, <

6% for k > 2, where 6 € (0, 1) is independent of p;, ps, and k.

A7. Let Sy be a subset of {1,2,...,p?} with cardinality s, consisting of the indexes of the
non-zero components in o = vec(A), and S§ be its complement. Let Z, = (BY;) ®L,,,
(a) when p; is finite, there exists a constant Cy > 0 such that \,,,;,{E(Z,Z})} > Cs; (b)
when p; is diverging, the matrix Z := (Z, ..., Zy) satisfies the restricted eigenvalues

condition, +||ZA[3 > &[|A

2, for all A € C;3(Sp). Similar assumptions also hold for

Z; defined in Section 2.3.

A8. For matrices A and B, \; < Auin{p; 'E[(AY}) ® (Y:B)]} < Amax{p; 'E[(AY;) ®

(Y.B))]} < Ao

Conditions Al(a-b) are standard for econometric time series models. Condition A2(a)
ensures the row and column variances of E; exits, and condition A2(b) is used to bound a new
time series built on E; and Y. Condition A3 ensures that model is stationary and causal,
as shown in proposition 1 in [Chen et al. (2021). Conditions A4-A7 are imposed to prove
the consistency of the estimated bandwidth by BIC in Section 2.2.2] Condition A5 ensures
that the bandwidth is asymptotically identifiable, since both {Cys, ki My log(p; V M)}/
and {Cyy, ko M log(ps V M;)}1/? is the minimum magnitude of a non-zero coefficient to be
identifiable, see, e.g. (Gao et al.| (2019). Condition A7(a) indicates that the regressors have
a non-singular covariance and the least-squares estimators are well defined when p; is finite.
Condition A7(b) is the well-known restricted-eigenvalue condition in Lasso regressions; see

Chapter 6 in Biihlmann and Van De Geer | (2011). The condition in Condition A7(b) can also
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be replaced by a more general Restricted Strong Convexity condition that is commonly used in
high-dimensional regularized estimation problems. See Chapter 9 of Wainwright | (2019) for

details.

3.2 Asymptotic properties

In this section, we study the theoretical properties of the proposed method, i.e., the convergence
of Algorithm 1 and Algorithm 2 in Section 2. Since we take estimators, :&0 and ]§0, from the
iterated least squares in (Chen et al.|(2021) as our initials in Algorithm 1 and Algorithm 2, we
first study the convergence rate of KO and ]§0. Let X be the covariance matrix of vec(E,), and
define H = E (W ,W)) + v/, where W/ = [(BY}) ® I : I ® (AY,)] € RPP>x#i+3) and

v = (vec(A),0) € RPIPE, Let p = max{pi, p2 }, we have following result for A, and B.
Proposition 1. Let conditions A1-A3 hold. If A, B, ¥ are nonsingular, \yin(H) > Ay > 0,
and T, py, ps — 00, then,

2 2
N i p1p bap
| Ao = Allf+ [1Bo — B[} = Op(5= + =5,

Remark 3.1. (i) When the dimensions of Y;, p; and p-, are fixed, the convergence rate of
|Ag — A||2 and ||[By — B2 are both of order O,(1/T). This recovers the low-dimensional
case. (i) According to this Proposition, we have | Ag— A |2+ |Bo—B||2. — 0if p2ps/T — 0
and pgpl /T — 0, which is ensured if pp;p,/T — 0. (iii) The convergence rate stated in
Theorem 3 of L1 and Xiao | (2021) is slightly faster than that in Proposition I} However, the

detailed proof is not fully transparent and appears technically involved. We leave the task
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of refining the convergence rates of the initial estimators under high-dimensional settings to

future research.

Next, we show the convergence rate of estimators for A and B in Algorithm 1 by assum-
ing the bandwidth £; and k, are known and fixed. Theorem below shows that estimators

from Algorithm 1 are consistent when p* /T — 0.

Theorem 3.1. Assume conditions A1-A6 and A8 hold. Let BG—Y) be the latest estimator of B

in Algorithm 1 with B©®) = By and i > 1. We have, fori > 1,

IA® — A3 = Op(p1pop/T) and |BY — B|3. = O, (p1p2p/T).

Remark 3.2. (i) In this theorem, Algorithm 1 is assumed to begin estimating A by fixing B at
its most recent estimate. However, the same conclusion will hold if we reverse the estimation
order. (ii) In the first iteration, we take B(®) = By, by Proposition 1, we have |Bo — B||2 — 0
when ppipy/T — 0. The condition ppip,/T — 0 also ensures that the error of A is

primarily influenced by the error arising from approximating B with its latest estimate.

Theorem [3.1] is based on the assumption that the bandwidths are known, which is often
not the case in real-world problems. However, if consistent estimators for these two unknown
bandwidths exist, Theorem remains valid. We will now demonstrate the consistency of the

estimated bandwidths in Algorithm 1.

Theorem 3.2. Assume conditions Al-A6 hold. Let BU=Y be the latest estimator of B in
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Algorithm 1 with B© = By. Fori > 1, ifp°/T — 0, then

A~

P(/{y) =ky) — 1, and P = ky) = 1, as T, p1, p» — 0.
Remark 3.3. (i) In Theorem ki and ko are assumed to be fixed, since model is
useful only when k; and &, are small and finite. However, Theorem still holds when &
and ko diverges to oo along with 7', py, ps so long as k; = O{C@Mg/log(pl vV M,)}, and
ks = o{Cy My/log(ps V My)}. See the proof of Theoremin Supplementary Material.
(ii) In this theorem, Algorithm 1 is assumed to begin by estimating A while holding B fixed

at its most recent estimate. However, the same conclusion holds if we reverse the estimation

order.

Next, we examine the convergence rate of Algorithm2 for estimating A and B in the
sparse case. Similar to Algorithml, Algorithm 2 also begins with Ko and ]§0, which are

derived from the iterated least squares method in|Chen et al. (2021)).

Theorem 3.3. Assume conditions Al-A3 and A6-A7 hold. Let BU=Y be the latest estimator of

B in Algorithm 2 with BY — ]§0 and i > 1, we have,

~ 2 . 2008
A0~ Alls = 0,1/ 2220 and [BO — B, = 0,1/ P22,

where sy = |Sp|.

Remark 3.4. (i) Similar to the Frobenius norm results in the banded case, Theorem [3.3]estab-

lishes that the estimated sparse coefficient matrices are consistent in the ¢, norm, provided that
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pp1p2/T — 0 and the sparsity level satisfies 0 < sp < oco. In fact, the convergence rates are
roughly the same as those in Theorem [3.1] since we treat the bandwidth parameter as finite and
absorb it into the upper bound. (ii) The convergence rates in Theorem [3.T]and Theorem [3.3]de-
pend on the rates of the initial estimators. As suggested by one of the reviewers, these rates can
potentially be improved by using better initial estimates. One suggested approach is to begin
with banded or sparse initial estimators in Algorithm 1 and Algorithm 2, respectively—similar
to the strategy in |Yang et al. (2016)—since the effective number of parameters in such struc-
tured matrices is smaller, which may lead to faster convergence. However, the ALS setting
presents a different challenge. In this case, it is not straightforward to separate a proportion of
the parameters in the matrices for individual convergence rate analysis. As a result, we must
still rely on the convergence rates of the full initial estimators, as described in Proposition
Simulation results (see Table S9 of the Supplement) suggest that, in the banded case, there is
no notable difference in estimation error between starting with the full initial estimator and

starting with a banded initial estimator—both lead to nearly identical performance.

4 Numerical Results

In this section, we examine the finite sample properties of the proposed method and provide
real data examples to evaluate its forecasting performance compared to the alternative least-
squares (ALSE) method proposed by Chen et al.| (2021)). In Section 4.1}, we conduct Monte
Carlo experiments to demonstrate the convergence of the proposed methods in estimating the

coefficient matrices under two scenarios, alongside comparisons with the estimators obtained
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using the ALSE method. In Section we apply our method to two real data examples.

4.1 Simulation

This section outlines our methodology for evaluating the finite sample properties of the pro-
posed methods through Monte-Carlo experiments. The observed data matrix Y, are simu-
lated from model under different conditions for matrices A and B, and each entry in the
white noise E; is generated from the standard normal distribution, with Cov(vec(E;)) = L, ,,.
Through these simulations, we aim to demonstrate the convergence of our proposed methods
in comparison with the ALSE method, as the sample size increases. Furthermore, we examine
the accuracy of our proposed methods in estimating unknown bandwidths under the banded
cases. The impact of penalty parameters on the estimation results is also investigated under
the sparse cases. All of the results are obtained by conducting 100 independent replications.
To study the convergence of the estimators for matrices A and B, some identification
conditions are required to impose on the coefficients. In this experiment, we assume ||A||r = 1
and sign(tr(A)) = 1. The convergence criteria of the iterations in our algorithms are specified

as || AT — A@|z < 1076 and || BEH) — B[ < 1076,

4.1.1 Banded case

This section presents a comprehensive analysis to investigate the performance of Algorithm
1. We will study the convergence of the estimators under the scenarios that we start with either
A© or BO as initial estimates. Additionally, we examine the accuracy of the bandwidth

estimation and the algorithm’s convergence as the sample size 7' increases.
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For each configuration of (p1, pa, k1, k2, T'), we generate Y, according to model .
Specifically, for given dimensions p;, po, and bandwidths k; and k,, the observed data Y, are
simulated according to model , where the entries of A and B are generated as follows:
(1) for entries of A, {a; ; : |i — j| < ki} are generated independently from U[—1, 1], and other
elements are zero. We re-scale A such that ||A||r = 1 and sign(tr(A)) = 1; (2) for entries of
B, {bi; : |t — j| < ko} are generated independently from U[—1, 1], and other elements are
zero. We re-scale B so that p = p(A)p(B) = 0.5. The white noise E; are generated from
standard normal distribution with Cov(vec(E;)) = 1,,,,.

Firstly, we examine the convergence of Algorithm 1 is insensitive to the choice of the
initial estimators. Note that there are two iteration orders that may occur in Algorithm 1.
We may first estimate A for given initial estimator ]§(0)’ or estimate B for given A0, We
denote the estimated coefficient matrices via these two procedures by (_/11, ]§1) and (1&2, ]§2),
respectively. The dimensions are set as (p;,p2) = (6,4),(8,5) and (9,6) with bandwidths
(k1,k2) = (2,1) for each (py, p2). The mean, median, and maximum of log,, (|[A; — Aslp)
and log;, (||]§1 - B, || ) are reported in Table S1. From Table S1 we see that the convergence
of the estimators is insensitive to the choice of the initial estimators that we use in Algorithm 1.
On the other hand, the reported errors in Table S1 are all less than —6, which is in accordance
with the convergence criteria where the upper bound 7 is chosen as 107 in Section

Second, we show the accuracy of Algorithm 1 in estimating the unknown bandwidths k;
and k». The empirical frequencies of the events {/kr\l = Kk} and {/k\g = ky} are reported in

Table[1] where we set (kq, k2) = (1,1) and (2,1) and the sample size 7' = 100, 200, 400 and
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800. For a fixed sample size 7" and the bandwidths (&, k2), the dimensions (p;, p2) are set to
(6,4), (8,5), and (9,6). Results in Table || show that the accuracy of estimated Ky and ks is

pretty satisfactory, and it increases with sample size 7" for each (p1, po, k1, k2) in most cases.

Table 1: Accuracy of Algorithm 1 in estimating unknown bandwidths under different settings, where
E, and E» represent the empirical frequencies of the events {k; = ki1 } and {ky = ko}, respectively.

T =100 T = 200 T = 400 T = 800
(p1,p2) E1 Es Ey Ey Ei Ey E Ej

(klv k?) = (17 1)
(6,4) 100 100 100 100 100 100 100 100
) 100 99 100 99 100 100 100 100
(9,6) 98 99 100 99 100 100 100 100

(k1,k2) = (2,1)
) 98 100 100 100 100 100 100 100
(8,5) 99 100 100 100 100 100 100 100
(9,6) 99 100 100 100 100 100 100 100

Next, we show the convergence pattern of Algorithm 1 under different configurations
of (p1,pa, k1, ko) as the sample size 7' increases. We also compare the estimation accuracy
with the ALSE method in (Chen et al. (2021). The estimation errors for A and B, denoted by
log(|]|A — A||r) and log(||B — B||), respectively, are reported in Table S2, where (p1, po) =
(6,4) and (9,6), the sample size 7" = 200, 500, 1000, 2000, and the bandwidths (ki, k2) =
(2,1). For each setting, we consider two scenarios that p(A)p(B) = 0.5 and 0.8 to show
the results are consistent for different strengths of the coefficient matrices. From Table S2,
we see that estimation errors obtained by the proposed method and the ALSE all decrease as
the sample size increase for each configuration, which is in line with our theoretical results.
On the other hand, we also see that the estimation error obtained by our proposed method is

smaller than that by the ALSE, implying that our estimation procedure is more accurate than
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the ALSE.

Furthermore, we define S := B ® A and S := B ® A, using the distance 10g(||§ —
S||F) to evaluate the overall performance of our proposed method. For simplicity, we set the
dimensions (p1, p2) = (6,4) and (9, 6), and the bandwidths (k1, k2) to (1, 1) and (2, 1) for each
(p1,p2). We fix p(A)p(B) = 0.5 in this experiment, and the box plots of the estimated errors
10g(||§ — S||r) are shown in Figure S1. It is clear that both methods converge under these
settings, and our proposed Algorithm 1 performs better than the ALSE method in terms of
estimation errors, which aligns with our theoretical results. Similar results are obtained from

simulations conducted in higher-dimensional settings (Figure S2, Table [2).

Table 2: The average estimation errors of the coefficient matrices by Algorithm 1 and ALSE.
Algorithm 1 ALSE

(p1,p2) p T=200 500 1000 2000 T =200 500 1000 2000

log(|A — Allr)
(12 15) 0.5 -1.712 -2.378  -2.779 -3.09 -1.631 -2.111  -2.455  -2.809
(12 15) 0.8 -2.658 -3.122 -3.48 -3.808 -2.262 2733 -3.091 -3.421
(20,20) 0.5 -2.295 -2.828 -3.178 -3.534 -1.788 -2.25 -2.602  -2.951
(20 20) 0.8 -2.761 -3.211  -3.563 -3.901 -2.158 2624 2974 -3.314

log(/|[B — B||r)
(12,15) 0.5 -0427 -0.857 -1.266 -1.594 0.04 -0.456  -0.813 -1.155
(12,15) 0.8 -0.681  -1.112 -1.4 -1.677  -0.052  -0.515 -0.865 -1.209
(20,20) 0.5 -0274 -0.866 -1.267 -1.609 0314 -0.169 -0.523 -0.874
(20,20) 0.8 -0.392 -0.957 -1.287 -1.597 0.229 -0239 -0.59 -0.938

log([IS —S|[r)
2,15) 0.5  0.001 -0.547 -0956 -1.277  0.285 -0.207  -0.559 -0.906
2,15) 0.8 -0.35 -0.799  -1.118 -1416  0.178 -0.289  -0.642 -0.981
20,20) 0.5 0.1 -046  -0.833 -1.184  0.647 0.173  -0.181 -0.531
0,20) 0.8 -0.05 -0.558 -0.901 -1.225 0.56 0.091 -0.259 -0.604
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4.1.2 Sparse case

This section evaluates the performance of Algorithm 2 in estimating sparse coefficient matri-
ces. First, we assess its ability to recover the non-zero elements of matrices A and B. The

tuning parameters \; r and A\, 7 in equations (2.12)) and (2.13)) significantly influence the spar-

sity of A and B, respectively. It is important to note that if these parameters are adjusted
in each iteration of Algorithm 2, the algorithm will not converge, as the objective function
changes with the tuning parameters. Therefore, we select the tuning parameters in the first
iteration and keep them fixed for subsequent iterations. In practice, tuning parameters are
usually chosen through cross-validation (CV). The R package glmnet offers two options: (1)
sdCV, which selects \; 7 (A2 ) as the largest value of A such that the corresponding CV error
is within 1 standard error of the minimum, and (2) mCV, which selects A\; 7 (A2 7) as the value
of A that minimizes the CV error.

Alternatively, tuning parameters can also be selected based on variable selection stability,
as discussed in Meinshausen and Buhlmann| (2010) and Sun et al.| (2013)). The key idea is to
choose tuning parameters that ensure stability in the variable selection process of the penalized
regression model. We employ the Kappa Selection Criterion (KSC) proposed by Sun et al.
(2013) to select A\; 7 and Ay . Here, variable selection stability is defined as the expected
value of Cohen’s kappa coefficient (Cohen, |1960) between active sets obtained from two in-
dependent and identical datasets. For instance, consider problem . Given A\ 7 = A,
KSC first estimates the variable selection stability S(\) by randomly partitioning the samples

(¥¢, Z_l) 1t =2,---,T into two subsets, repeating this process B times. Then, A\, 7 is cho-
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S(\)

sen as )\17T =min A : m

> 1 — ag, where we set B = 50 and ooy = 0.4. In summary,
there are three methods for selecting tuning parameters in Algorithm 2, and their impact on
the algorithm’s performance is discussed in the following sections.

In our simulations, the coefficient matrices A € RP1*P1 and B € RP2*P2 are generated
as follows: for a given dimension p;, let r; be the proportion of nonzero entries in A. For
each row of A, L%J entries are generated from U[1, 2], and the remaining p; — L%J entries
are generated from U[—2, —1]. Next, p; — |rip; ] entries are set to zero, and the elements
are randomly rearranged to form one row of A. Finally, we rescale A so that |A|r = 1. The
procedure for generating B follows the same steps as for A, except that B is rescaled to satisfy
p(A)p(B) = 0.9.

To measure the accuracy of Algorithm 2 in recovering non-zero elements, we define the

following sets for A = (a; ;) and A= AN

Sy ={(i,4)]ai; = 0,a;; = 0}, Sy = {(4,4)]ai; = 0,a;; # 0},
Sz ={(i,4)]ai; # 0,a;; # 0}, Sy ={(i,7)]ai; #0,a;; = 0}.

The recovery accuracy for non-zero elements in A is then defined as

er(A) = IS @.1)
P1 X1

which represents the proportion of correctly estimated zero and non-zero entries in A relative

to A. The recovery accuracy for non-zero elements in B = (b; ;) is defined similarly.
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Table S3 reports cr(.&) and cr(ﬁ) under different settings and tuning methods from 100
independent replications. Algorithm 2 shows varying performance depending on the tuning
method. Specifically, tuning with sdCV results in the highest accuracy for recovering non-zero
elements but also the largest error in log(||S — S||#). In contrast, tuning with mCV yields the
best accuracy for log(||S — S|| ) but the worst recovery accuracy. Finally, tuning with KSC
provides a balanced performance, achieving comparable results in both recovery accuracy and
the error in log( ||§ — S||r), making it a well-rounded choice.

Next, we compare our estimators with those obtained by the ALSE method from Chen et al.
(2021) in terms of estimation errors. Figure S3 presents the box plot of log(||S — S||») from
100 independent replications. Detailed results on the estimation errors of .&, ]§, and S us-
ing the KSC tuning method are reported in Table S4, while results for the sdCV and mCV
tuning methods are shown in Table S5 and Table S6, respectively. Figure S3 and Table S4
indicate that the estimators produced by Algorithm 2 generally outperform those from the
ALSE method, as the Lasso solutions yield smaller estimation errors in most cases. This sug-
gests that the proposed procedure generates more accurate estimators. Additionally, consistent
with previous findings, Algorithm 2 tuned with KSC shows comparable performance to that
tuned with mCV, and significantly outperforms the sdCV-tuned version, as seen in Figure S3,
Table S4, Table S5, and Table S6. It also performs better than ALSE (Figure S3). Similar
conclusions are drawn from simulations conducted in higher-dimensional settings (Figure S4,
Table 3] Tables S7- S8).

In summary, Algorithm 2 tuned by KSC demonstrates satisfactory performance in both
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recovery accuracy and estimation error, outperforming ALSE with significantly sparser co-
efficient matrices that are easier to interpret. Therefore, we recommend it for real data ap-
plications. From this point forward, we will refer to Algorithm 2 as Algorithm 2 tuned by

KSC.

Table 3: The estimation errors of the estimators obtained by ALSE and Algorithm 2 with tuning pa-
rameters method KSC.

Algorithm 2 tunned by KSC ALSE
(p1,p2) p T=100 500 1000 2000 T=100 500 1000 2000

log([[A — Allr)
(12,15) 0.5 -2.315 -2.843 -3218 -3.579 -1976 -2.449 -2.799 -3.147
(12,15) 09 -3.165 -3.648 -4.003 -4352 -2763 -3232 -3578 -3.924
(20,20) 0.5 -2.349 -2.869 -3.249 -3.617 -1.963 243 2775 -3.123
(20,20) 09 -3.197 -3.69  -4.059 -4412 2749 -3218 -3564 -391
log(||B - B|r)
(12,15) 05 0.09 -0.36 -0.706 -1.051  -0.003 -048  -0.825 -1.169
(12,15) 0.9 -0.096 -0.556 -0.902 -1.256 -0.217 -0.689 -1.033 -1.373
(20,20) 0.5 0.391 -0.066 -0.409 -0.752  0.281 -0.195 -0.548 -0.895
(20,20) 09  0.267 -0.186  -0.526  -0.869 0.078 -0.386  -0.738  -1.084
log(||S —S||r)
(12,15) 0.5 0.192  -0.265 -0.613 -0.959 0.246 -0.231  -0.578 -0.924
(12,15) 0.9 0.002 -0.459 -0.806 -1.157 0.037 -0.434  -0.779 -1.122
(20,20) 05 0.527 0.061 -0.287 -0.633 0.621 0.148  -0.201  -0.549
(20,20) 0.9 0.381 -0.077  -0422  -0.766  0.419 -0.048 -0.397 -0.743

4.2 Real Data Examples

In this section, we apply the proposed regularized estimation methods to two real-world ex-
amples. In the first example, we utilize three iterative algorithms: the ALSE method from
Chen et al. (2021), Algorithm 1, and Algorithm 2 to estimate the coefficient matrices A and
B in Model (2.1). The Algorithm 2 is tuned by KSC since its interpretability and lower esti-
mation error, see section We then examine the out-of-sample forecasting errors produced

by the MAR(1) model using parameters estimated by the three approaches. The empirical
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findings demonstrate that our proposed algorithms achieve smaller out-of-sample forecast er-
ror with a high degree of sparsity in modeling the matrix-variate data, resulting in a significant
reduction in model parameters. In the second example, we compared the performance of vec-
tor auto-regressive model, ALSE from Chen et al.| (2021), reduced rank MAR (Xiao et al.
(2022)), Dynamic matrix factor models (Yu et al., | (2024))) and our proposed Algorithm 1 and
Algorithm 2 on financial data. The out-of-sample rolling forecast results demonstrate that our

methods consistently outperform the competing approaches.

4.2.1 Wind Speed Data

In this example, we apply our methodology to a wind speed dataset consisting of the east—west
component of the wind speed vector over a region between latitudes 14°S and 16°N and longi-
tudes 145°E and 175°E in the western Pacific Ocean. The data records the average wind speed
every 6 hours on a 17 x 17 grid (covering 289 locations) from November 1992 to February
1993, resulting in T = 480 and p; = p» = 17. Previous studies by |[Hsu et al. | (2012) and
Hsu et al. (2021)) have shown evidence of non-stationary spatial dependence, while indicating
temporal stationarity with positive temporal correlations.

The observed data was divided into training data {Y,..., Y40} and validation data
{Y401,- -, Yaso}. We apply the three iterative estimation methods (ALSE, Algorithm 1, and
Algorithm 2) to obtain the estimated coefficients A and B in the model . To evaluate

the performances of these methods, we calculate the average prediction mean-squared error
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(PMSE).
479

1 N
PMSE = — Y. —-Y
S 289><80t_24;0” et = Yeullr,

and the average prediction mean-absolute error (PMAE)

479

1 ~
PMAE = m Z HYt+1 - Yt+1H17

t=400

on the validation data, where \?Hl = KYtﬁ’ . Furthermore, the sparsity of the coefficient
matrices estimated by these methods, in terms of the proportions of zero entries in each matrix
and the number of iteration steps, is reported in Table[d] From Table[d] we see that our proposed
Algorithm 1 under the banded case and Algorithm 2 under the sparse case perform better
than the ALSE method in terms of both PMSE and PMAE. Moreover, the degree of sparsity
of the coefficient matrices estimated by our methods is much higher than that by the ALSE
method, which implies that our methods greatly simplify the model. In general, Algorithm 2
with A\; = Ay = 0.1 in the Lasso estimation performed best among the three methods. The
bandwidths of A and B chosen by the proposed BIC are 4 and 5, respectively. The heat maps
of the A and B estimated by the three methods are shown in Figure |l which clearly illustrate

the sparsity of the parameters estimated by our methods.

Table 4: The performance of the three different methods on wind speed data.
Method PMSE PMAE Sparsity of A Sparsity of B Iteration step
ALSE 0.16612  0.20007 0 0 45

Algorithm1 0.16563 0.19983 0.6851 0.7578 8
Algorithm 2 0.16341 0.19665 0.7647 0.8651 6
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Figure 1: The coefficient matrices estimated by ALSE, Algorithm 1, and Algorithm 2 from U-wind
dataset. The first row shows results of A, and the second row shows those of B obtained by different
methods.

4.2.2 Economic Indicator Data

The data in this example consists of quarterly observations of 10 economic indicators for 10
countries. The 10 indicators are the total consumer price index (CPI, growth from the previous
period), long-term interest rate (LTIR, first-order difference), short-term interest rate (STIR,
first-order difference), total industrial production index (IPI, first-order log difference), man-
ufacturing industrial production index (MIPI, first-order log difference), GDP growth same
period previous year (GDPpy, percentage change), GDP growth previous period (GDPpp, per-
centage change), total exports (EXP, first-order log difference), total imports (IMP, first-order
log difference) and unemployment rate forecast (UR, first-order difference). These indica-
tors are sourced from 10 countries: Italy (ITA), Spain (ESP), France (FRA), Germany (DEU),
the United Kingdom (GBR), the United States (USA), Canada (CAN), Korea (KOR), Australia
(AUS) and Japan (JPN). The dataset spans from the first quarter of 1990 to the fourth quarter of

2019, resulting in a 10 x 10 matrix-valued time series with a time length of 7" = 120. The data
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can be obtained from the Organisation for Economic Co-operation and Development (OECD)
at https://data.oecd.org/. Figure S5 displays the original data, where rows and columns repre-
sent different economic indicators and countries, respectively. To remove seasonal effects, we
adjusted each indicator by subtracting its sample quarterly mean.

We compare the out-of-sample rolling forecast performances of the VAR model, MAR
model estimated by ALSE, our regularized MAR model, reduced rank MAR model (rrtMAR,
Xiao et al.[ (2022)), and the dynamic matrix factor models (DMFM, Yu et al., | (2024)). The
rolling forecasts are conducted from ¢ = 100 to ¢ = 119. For each time point, we fit the
model using the data Y, Y5,..., Y, to obtain the estimated coefficient matrices A and B.
We then compute the predictive value ?t+1 = _XYt]T%’ , as well as the 1-norm predictive error
||§A(t+1 — Y,.1||; and the F-norm predictive error ||?t+1 — Y, 1||r- The averages of the 1-
norm and F-norm errors from ¢ = 100 to ¢ = 119 for the six methods are reported in Table [5]
Notably, both our Lasso iterative method and the banded iterative method outperform the other

methods.

Table 5: Out-of-sample rolling forecast performance of the six methods—VAR, MAR estimated by
ALSE, Algorithm 1, Algorithm 2, rMAR, and DMFM—on economic indicator data.

VAR ALSE rmMAR DMFM Algorithm 1 Algorithm 2

I-norm 7.674 2534  3.583 2.398 2.221 2311
F-norm 6.709 2409 4.140 2.361 2.283 2.338



https://data.oecd.org/

Regularized Estimation of MAR Models 34

5 Conclusion

In this paper, we studied statistical estimators for high-dimensional matrix-valued autoregres-
sive models under two different settings: when the parameter matrix is banded or sparse. We
established the asymptotic properties of these estimators. Both simulations and real data anal-
yses demonstrate the advantages of our new methods over existing ones. The proposed method
can be treated as another option in the toolbox for modeling high-dimensional matrix-variate
time series and the dynamic models can be useful to practitioners who are interested in out-of-

sample forecasting.

Supplementary Material

The online Supplementary Material provides additional simulation results and proofs of the

theoretical results.

Acknowledgments

We thank the Editor, Associate Editor, and anonymous referees for their constructive com-
ments and valuable suggestions, which have greatly improved the presentation and quality of
this article. Z.G. acknowledges partial support from the National Natural Science Foundation
of China (NSFC) under Grant Nos. 12201558, 72573029, and U23A2064, and from the Tianfu
Emei Youth Talent Project of Sichuan Province. H.J. acknowledges partial support from the

High-level Talent Special Support Program of Zhejiang Province and the National Natural



Regularized Estimation of MAR Models 35

Science Foundation of China (No.12531013).

References

Ahn, S. C., and, Horenstein, A. R. (2013). Eigenvalue ratio test for the number of factors.
Econometrica, 81(3), 1203-1227.

Andrews, D. W. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix
estimation. Econometrica, 59, 817-858.

Bai J. (2003) Inferential theory for factor models of large dimensions. Econometrica, 71(1),
135-171.

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models.
Econometrica, 70, 191-221.

Black, F. (1986). Noise. The Journal of Finance, 41(3), 528-543.

Box, G. E. P. and Tiao, G. C. (1977). A canonical analysis of multiple time series. Biometrika,
64, 355-365.

Biihlmann, P. and Van De Geer, S. (2011). Statistics for high-dimensional data: methods,
theory and applications. Springer Science and Business Media.

Chang, J., Yao, Q. and Zhou, W. (2017). Testing for high-dimensional white noise using
maximum cross-correlations. Biometrika, 104(1), 111-127.

Chen, E.Y., Tsay, R.S., and Chen, R. (2020). Constrained factor models for high-dimensional
matrix-variate time series. Journal of the American Statistical Association, 115(530), 775—

793.



Regularized Estimation of MAR Models 36

Chen, R., Xiao, H., and Yang, D. (2021). Autoregressive models for matrix-valued time series.
Journal of Econometrics, 222(1), 539-560.

Cohen, J. (1960) A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20, 37-46.

Ding, S. and Cook, R. D. (2018). Matrix variate regressions and envelope models. Journal of
the Royal Statistical Society: Series B, 80(2), 387-408.

Fama, E. F. and French, K. R. (2015). A five-factor asset pricing model. Journal of Financial
Economics, 116(1), 1-22.

Fan, J., Liao, Y., and Mincheva, M. (2013). Large covariance estimation by thresholding prin-
cipal orthogonal complements (with discussion). Journal of the Royal Statistical Society,
Series B, 75(4), 603—-680.

Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2000). Reference cycles: the
NBER methodology revisited (No. 2400). Centre for Economic Policy Research. url:
https://ideas.repec.org/p/cpr/ceprdp/2400.html.

Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2005). The generalized dynamic factor
model: one-sided estimation and forecasting. Journal of the American Statistical Associa-
tion, 100(471), 830-840.

Gao, Z. (2020). Segmenting high-dimensional matrix-valued time series via sequential trans-
formations. arXiv:2002.03382.

Gao, Z., Ma, Y., Wang, H. and Yao, Q. (2019). Banded spatio-temporal autoregressions.

Journal of Econometrics, 208(1), 211-230.



Regularized Estimation of MAR Models 37

Gao, Z. and Tsay, R. S. (2019). A structural-factor approach for modeling high-dimensional
time series and space-time data. Journal of Time Series Analysis, 40, 343-362.

Gao, Z. and Tsay, R. S. (2021). Modeling high-dimensional unit-root time series. International
Journal of Forecasting, 37(4), 1535-1555.

Gao, Z. and Tsay, R. S. (2022). Modeling high-dimensional time series: a factor model with
dynamically dependent factors and diverging eigenvalues. Journal of the American Statisti-
cal Association, 117(539), 1398-1414.

Gao, Z. and Tsay, R. S. (2023a). A two-way transformed factor model for matrix-variate time
series. Econometrics and Statistics, 27, 83—101.

Gao, Z. and Tsay, R. S. (2023b). Divide-and-conquer: a distributed hierarchical factor ap-
proach to modeling large-scale time series data. Journal of the American Statistical Associ-
ation, 118(544), 2698-2711.

Guo, S., Wang, Y. and Yao, Q. (2016). High dimensional and banded vector autoregression.
Biometrika, 103(4), 889-903.

Han, Y., Chen, R., Yang, D., and Zhang, C. H. (2024). Tensor factor model estimation by
iterative projection. The Annals of Statistics, 52(6), 2641-2667.

Han, Y., Yang, D., Zhang, C. H., and Chen, R. (2024). CP factor model for dynamic tensors.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 86(5), 1383—1413.

Hauglustaine, D. A., and Ehhalt, D. H. (2002). A three-dimensional model of molecular hydro-
gen in the troposphere. Journal of Geophysical Research: Atmospheres, 107(D17), ACH-4.

Hsu, N. J., Huang, H. C., and Tsay, R. S. (2021). Matrix autoregressive spatio-temporal mod-



Regularized Estimation of MAR Models 38

els. Journal of Computational and Graphical Statistics, 30(4), 1143-1155.

Hsu, N. J., Chang, Y. M., and Huang, H. C. (2012). A group lasso approach for non-stationary
spatial-temporal covariance estimation. Environmetrics, 23, 12-23.

Hosking, J. R. (1980). The multivariate portmanteau statistic. Journal of the American Statis-
tical Association, 75(371), 602—-608.

Hung, H., Wu, P., Tu, ., and Huang, S. (2012). On multilinear principal component analysis
of order-two tensors. Biometrika, 99(3), 569-583.

Lam, C. and Yao, Q. (2012). Factor modeling for high-dimensional time series: inference for
the number of factors. The Annals of Statistics, 40(2), 694-726.

Lam, C., Yao, Q. and Bathia, N. (2011). Estimation of latent factors for high-dimensional time
series. Biometrika, 98, 901-918.

Li Z. and Xiao H. (2021). Multi-linear tensor autoregressive models. arXiv:2110.00928.

Lozano, A. C., Li, H., Niculescu-Mizil, A., Liu, Y., Perlich, C., Hosking, J., and Abe, N.
(2009). Spatial-temporal causal modeling for climate change attribution. In Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery and data mining,
587-596.

Meinshausen N. and Buhlmann P. (2010). Stability selection. Journal of the Royal Statistical
Society, Series B, 72, 414-473.

Pan, J. and Yao, Q. (2008). Modelling multiple time series via common factors. Biometrika,
95(2), 365-379.

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of



Regularized Estimation of MAR Models 39

risk. The Journal of Finance, 19(3), 425-442.

Shen, D., Shen, H. and Marron, J. S. (2016). A general framework for consistency of principal
component analysis. Journal of Machine Learning Research, 17(150), 1-34.

Stewart, G. W., and Sun, J. (1990). Matrix Perturbation Theory. Academic Press.

Stock, J. H. and Watson, M. W. (2002). Forecasting using principal components from a large
number of predictors. Journal of the American Statistical Association, 97, 1167-1179.

Stock, J. H. and Watson, M. W. (2005). Implications of dynamic factor models for VAR anal-
ysis. NBER Working Paper 11467. doi: 10.3386/w11467

Sun, W., Wang, J. H., and Fang, Y. X. (2013). Consistent Selection of Tuning Parameters via
Variable Selection Stability. Journal of Machine Learning Research, T1(14), 3419-3440.

Tiao, G. C. and Tsay, R. S. (1989). Model specification in multivariate time series (with dis-
cussion). Journal of the Royal Statistical Society, BS1, 157-213.

Tsay, R. S. (2014). Multivariate Time Series Analysis. Wiley, Hoboken, NIJ.

Tsay, R. S. (2020). Testing for serial correlations in high-dimensional time series via extreme
value theory. Journal of Econometrics, 216, 106—117.

Wainwright, M. J. (2019). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cam-
bridge University Press.

Walden, A. and Serroukh, A. (2002). Wavelet analysis of matrix-valued time series. Proceed-
ings: Mathematical, Physical and Engineering Sciences, 458(2017), 157-179.

Wang, D., Liu, X. and Chen, R. (2019). Factor models for matrix-valued high-dimensional

time series. Journal of Econometrics, 208(1), 231-248.



Regularized Estimation of MAR Models 40

Wang, D., Zheng, Y., and L1, G. (2024). High-dimensional low-rank tensor autoregressive time
series modeling. Journal of Econometrics, 238(1), 105544.

Wang, D., Zheng, Y., Lian, H., and Li, G. (2022). High-dimensional vector autoregressive time
series modeling via tensor decomposition. Journal of the American Statistical Association,
117(539), 1338-1356.

Werner, K., Jansson, M., and Stoica, P. (2008). On estimation of covariance matrices with
Kronecker product structure. IEEE Transactions on Signal Processing, 56(2), 478—491.

Xiao, H., Han, Y., Chen, R., and Liu, C. (2022). Reduced rank autoregressive models for
matrix time series. Working paper, available at https://yuefenghan.github.io/
papers/Reduced_Rank_MAR.pdf.

Yang, D, Ma, Z., and Buja, A. (2016). Rate optimal denoising of simultaneously sparse and
low rank matrices. Journal of Machine Learning Research, 17(92), 1-27.

Ye, J. (2005). Generalized low rank approximations of matrices. Machine Learning, 61(1-3),
167-191.

Yu, L., He, Y., Kong, X., and Zhang, X. (2022). Projected estimation for large-dimensional
matrix factor models. Journal of Econometrics, 229(1), 201-217.

Yu, R., Chen, R., Xiao, H., and Han, Y. (2024). Dynamic matrix factor models for high

dimensional time series. arXiv: 2407.05624.

Center for Data Science, Zhejiang University. E-mail: {jianghj,12335035,12235025} @zju.edu.cn.

2School of Mathematical Sciences, University of Electronic Science and Technology of China.

E-mail: zhaoxing.gao@uestc.edu.cn.


https://yuefenghan.github.io/papers/Reduced_Rank_MAR.pdf
https://yuefenghan.github.io/papers/Reduced_Rank_MAR.pdf

	Introduction
	Model and Methodology
	Setting
	Estimation with the Banded Case
	Iterated Least-Squares Estimation
	Determining the bandwidth

	Estimation with Sparse Coefficient Matrices

	Theoretical Properties
	Regular Conditions
	Asymptotic properties

	Numerical Results
	Simulation
	Banded case
	Sparse case

	Real Data Examples
	Wind Speed Data
	Economic Indicator Data


	Conclusion



