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Abstract: Existing models for spatial data analysis typically rely on mean or quan-
tile regression to model the association between a dependent variable and covari-
ates. We in this paper propose a novel spatial modal regression by assuming that
the conditional mode of the response Y given covariates X follows a nonparamet-
ric regression structure, defined as m : X — m(X) := Mode(Y; | Xi), X; € R?
and i € ZV. The suggested spatial modal regression can be utilized to capture the
“most likely” effect and may reveal new interesting data structures that are possi-
bly missed by the conditional mean or quantiles, especially in cases of asymmetric
data distributions. We derive the asymptotic distributions for the resulting modal
estimators with appropriate choices of bandwidths. To numerically estimate the
developed model, we recommend a modified modal expectation-maximization
(MEM) algorithm with the assistance of a Gaussian kernel. Numerical examples
are presented to demonstrate the favorable finite sample performance of the esti-
mators. We also generalize the propounded spatial modal regression to an addit-

ive sum form to offer a versatile solution to handle high-dimensional datasets.

Key words and phrases: Additive model, Local linear, MEM algorithm, Modal

regression, Spatial process.



1. Introduction

Because of its ability to capture the “most likely” value of a distribution,
the mode offers a compelling alternative to traditional measures of central
tendency such as the mean or median. This motivates the development of
modal regression, defined as Mode(Y | X) = argmaxy f(Y | X), where
f(Y | X) represents the conditional distribution of ¥ given X; see |Yao
and Li| (2014), Chen et al.| (2016), |Chen| (2018)), Kemp et al.| (2020), Xiang
and Yao| (2022), Ullah et al.| (2021} 2022, [2023)), and |Wang| (2025)). Modal
regression is particularly advantageous in the presence of skewness, heavy
tails, or multimodality, where mean or median regression may provide mis-
leading summaries. In such cases, the conditional mean may fall in regions
of low probability density, masking dominant patterns and rendering inter-
pretation difficult. For instance, in agricultural applications, outcomes such
as chemical concentrations often exhibit non-Gaussian structures with mul-
tiple local peaks, driven by site-specific heterogeneity or diverse land-use
practices. By targeting the most probable outcome, modal regression can
provide a more robust and interpretable insights of the underlying process.

However, existing modal regression literature has largely focused on
time series, cross-sectional, or panel data, with limited development in spa-

tial contexts. This is due, in part, to the lack of natural ordering in space



and the complex dependence structures that make spatial modal estimation
especially challenging. In addition, spatial data analysis has traditionally
relied on conditional mean or quantile regression; see Lu and Chen| (2004]),
Robinson| (2008, 2011)), Hallin et al.| (2004), Hallin et al.| (2009)), among oth-
ers. While these methods are effective in capturing average or percentile be-
havior, they may obscure key features of the underlying distribution in the
presence of heterogeneity or multiple modes. For instance, as demonstrated
in our soil chemistry analysis in Section [3| the conditional distribution of
cation exchange capacity exhibits multiple peaks, reflecting variation in soil
treatment regimes and land use history. In such cases, the conditional mean
may misrepresent the central structure of the data and lie in regions of low
density. Motivated by these considerations, we propose a novel spatial modal
regression model, which estimates the conditional mode function to provide
more informative and distribution-aware summaries in spatial settings.
We in this paper consider data observed over a space of general dimen-
sion N, represented by Z™, where N > 1 and Z = {0, 41,42, - }, denoting
the set of integer lattice points in an N-dimensional Euclidean space. A
point i = (i, -+ ,iy) in ZY is referred to as a site that typically reflects
economic characteristics or geographical positions, and may contain a time

component. Spatial data are conceptualized as finite realizations of vector



stochastic processes indexed by i € Z", commonly known as random fields.
We focus on strictly stationary (d+ 1)-dimensional real random fields of the
form {(Y;, X;);i € ZV}, where Y; € R, a scalar dependent variable, and X;
€ R?, covariates with compact support I' C R?, are defined over some prob-
ability space (€2, F, P). Our objective is to characterize the spatial depen-

dence between Y; and X; by estimating the spatial modal regression function
m : X — m(X) := Mode(Y; | X;) almost surely (a.s.), (1.1)

assuming that given a fixed Xj, the dependent variable Y; has a unique
global mode, where m(-) is regarded as a well-defined real-valued X-measur-
able function, defined almost everywhere except on a P-null set of X-values.

To estimate the proposed model, we extend the local linear approxi-
mation method to the spatial setting due to its several desirable properties
(Fan and Gijbels, [1996), contrasting with spatial smoothing methods that
smooth over site i based on proximity or dependence structures. We es-
tablish the asymptotic properties of the resulting estimators and show that
their convergence rate is (dh$h3)'/2 (i, hy, and hy are defined in Section ,
which is slower than the rate (fh¢)/? associated with spatial mean regres-
sion. Our framework imposes no restrictions on the configuration of the
sample region and enables the sample to expand in various directions at

different rates. We derive theoretically optimal bandwidths under our pro-



posed modal criterion and suggest a data-driven bandwidth selection proce-
dure for empirical implementation. We further develop a modified MEM al-
gorithm with the assistance of a Gaussian kernel to numerically estimate the
targeted model. To illustrate the flexibility of our approach, we provide sev-
eral extended modal regression models in the Supplementary Material-S6.

Despite these advantages, the proposed spatial modal regression re-
mains susceptible to the curse of dimensionality when the covariate dimen-
sion d becomes large. This issue is especially pronounced in lattice-based ap-
plications, such as when analyzing spatial grid data {Y; ;, (i, j) € Z*}, where
estimating the conditional mode of Y; ; based on neighboring values X, ; =
{Yi_1;, Yij—1, Yit1, Yij1} requires a four-dimensional nonparametric re-
gression. Although several dimension-reduction techniques have been devel-
oped in the literature of nonparametric regression, such as additive model-
ing and sparse regularization (Hastie and Tibshiranil (1990; |Gao et al., 2006}
Lu et al., 2007}, 2014; Nandy et al.,|2017), these approaches have not been ex-
tended to modal regression in spatial settings. To address this challenge, we
in the end extend the proposed model to develop an additive spatial modal
regression framework, which decomposes the multivariate regression surface
into additive components while accounting for spatially dependent errors.

Due to space limitations, the full specification of this model, along with its



asymptotic theory, is provided in the Supplementary Material-S5.

The rest of this paper is organized as follows. Section [2| presents the lo-
cal linear modal estimation procedure and establishes its asymptotic proper-
ties under stationary spatial dependence. Section [3|evaluates the finite sam-
ple performance of the proposed estimators through simulations and real
data analysis. Section [ concludes the paper. Additional simulation stud-
ies, technical comments and proofs, and generalizations to extended spatial

modal regression models are provided in the Supplementary Material.

2. Local Linear Spatial Modal Regression

We begin this section by formulating the modeling framework and introduc-
ing the local linear modal estimation procedure, accompanied by a practical
numerical algorithm. We then delve into examining the consistency and asy-

mptotic properties of the resulting estimators across various scenarios.

2.1 Model Framework

We suppose that the random field is observed over a rectangular region of
the form I, = {i: (i, - ,in) €EZN 1<y <m,l=1,--- ,N} with n =
(ny, -+ ,ny) — oo if minj<n{n;} — oo and |ng/ny| < C, k=1,--- N,

for a constant C' such that 0 < C' < co. The defined I,, form implies that n,,
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1 <1 < N, tend to infinity at the same rate, known as isotropic divergence.
As discussed later in this section, our asymptotic results remain valid with
suitable conditions if the rates of expansion are not the same along all direc-
tions (i.e., only minj<;<y {n;} — oo holds), which is termed as nonisotropic
divergence. The total sample size is thus n = Hf\il n;. To formulate the spa-
tial modal regression, we assume that {Y;, X;} observed on I, satisfies

Yi = Mode(Y; | Xi) + &1 = m(X) + &, (2.1)
where {e;,1 € I} are the random disturbances with zero conditional mode
and have identical marginal distributions but may exhibit dependence among
each other such that the strong spatial mixing property remains valid. Be-
fore illustrating the developed estimation procedure, we first formalize the

concept of the modal estimator with the following definition.

Definition 2.1. If the data {(Y;, X;)}ics, are independent and identically
distributed (i.i.d.), given a kernel function K(-) satisfying condition C2
stated in Subsection 2.3 and a shrinking bandwidth h, the modal estimator

of @ with respect to a function m(Xj, 8) is defined as

6 = arg max lim E[Le(Y,X)], where Lg(Y,X) = lK [Y - m(X, 9)} '
6 h—0 h h

Definition is consistent with the principles of kernel density estima-

tion as discussed in (Chen et al.| (2016]). Let g(¢) denote the continuous den-



2.1 Model Framework

sity function of e, and let K(-) be a bounded and integrable probability den-
sity function with compact support, satisfying condition C2 in Subsection

2.3. Using standard properties of kernel smoothing, we obtain

suplg(e) /K g(e + wh)duw| <Sup/|g o(e + wh)| K (w)duw

eeR eeR

< sup/|g(1)(£)wh|K(w)dw — 0

e€R

as h — 0, where g!!)(¢) represents the first derivative of g(g). Therefore,
there exists a modal parameter @ that can maximize the density of €, form-
ing the basis of the modal estimation procedure.

Building on this foundation, we propose a spatial modal estimator as a
natural extension of its i.i.d. counterpart. Specifically, the objective func-
tion Lg (Y, X) defined in Definition [2.1{ remains valid in the presence of spa-
tial dependence, with its asymptotic properties rigorously justified via a spa-
tial mixing framework. To this end, we assume that {(Y;, X;) }ics, satisfies
the following spatial mixing condition, extending the strong mixing assump-
tions used for continuous-time stochastic processes and time series models;
see [Hallin et al.| (2004), |Gao et al.| (2006]), and [Hallin et al.| (2009).
Definition 2.2. Suppose that S and S’ are two sets of sites. The Borel
fields B(S) = B[(Y:, X;) : i € S] and B(S") = B[(Yy,Xy) : i € 5] are the

o-fields generated by (Y, X). Let d (S,S’) = min{[[i—i'|| | i € 5,1’ € S} de-



2.2  Local Linear Modal Estimation

note the distance between S and S, where [|i|| = (i34 - - +i%/)!/? stands for
the Euclidean norm. Then, spatial mixing is defined such that there exists a

function ¢(t) | 0 as t — oo and whenever S, S’ C ZV,
a[B(S),B(S")] =sup{|P(AB) — P(A)P(B)|,A € B(S),B e B(5)}
< x[Card(5), Card (5")]¢ld (5, 5")],

where Card (S) (respectively Card (S”)) indicates the cardinality of S (re-
spectively S’) and x(-) is a symmetric positive function nondecreasing in
each of its two arguments. If y(oo,00) = C for some positive constant C,

the sequence {(Y;i, X;)}ier, is called a-mixing (or strong mixing).

The a-mixing dependence is a mild restriction towards achieving asymp-
totic properties among a variety of mixing conditions. It was discussed in
Hallin et al.| (2004) that a spatial process of the form X, = >/~ a;Zn_;
can satisfy o[B(S), B (S")] if Z;’s are independent random variables, a; — 0

grows exponentially fast, and the probability density function of Z; exists.

2.2 Local Linear Modal Estimation

We generalize the local linear framework of [Fan and Gijbels| (1996)) to ac-
commodate the structure of the proposed spatial modal regression. Under
the smoothness assumptions specified in condition C4 (Subsection 2.3), the

regression function m(X) admits a first-order Taylor expansion in a neigh-



2.2  Local Linear Modal Estimation

borhood of the target point x, given by m(X) = m(x)+ [m™® (x)]" (X —x)+
R(X), where m()(x) denotes the gradient vector at x, and R(X) is a second-
order remainder term. For observations X sufficiently close to x, the remain-

der term becomes asymptotically negligible, yielding the approximation
m(X) = m(x) + [mV(x)]"(X - x) :== a+ b"'(X — x), (2.2)
where the notation “x” signifies equality up to a higher-order error, with
R(X) = o(||X—x]|) as X — x. Therefore, estimating m(x) and its gradient
m®)(x) is locally equivalent to estimating (a, b”)T = [a(x), bT(x)]7.
Based on Definition[2.1]and associated arguments, we can obtain the fol-
lowing kernel-based objective function for achieving spatial modal estimates

m e (52), e

1€In

1
a(0) = =
Q() l’lhlhg

where 8 = (a,bT)T, the kernel ¢(-) : R — R is defined on R with bandwidth
hi = hi(n) > 0 tending to 0 as n — 0, and the kernel K(-) : R — R is a
nonnegative weight function defined on R? with bandwidth hy = hy(n) > 0
such that limy,_,0 he(n) = 0. Note that ¢(-) is utilized to capture the mode
value according to Definition , while K(-), in line with nonparamet-
ric mean estimation, represents the weight assigned locally to observations
{(Y3, X;) Vier,- According to[Yao and Li (2014) and [Ullah et al.| (2021} 2022,

2023)), the choice of kernels is not particularly essential for modal regression
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models. For computational simplicity, we select the Gaussian kernel for ¢(-)
in this paper to employ a so-called MEM Algorithm [I We denote the corr-

esponding estimators from (2.3) as 8 = (&, b")” = [(x), m® (x)]".

Algorithm 1: MEM Algorithm for Spatial Modal Regression
Data: Sample observations {(Y;, X;) }icr, and bandwidths hy, hs.
Result: Final modal estimates [ (x), m®) (x)T]7.
while two consecutive solutions are not close enough, 1i.e.,

|[7(x) @) — i (x) V|| > 107*, or a pre-specified mazimum

number of iterations (i.e., g =100) is not reached do
if current estimate m(x)@ with iterative indicator g > 1 then

E-Step: Calculate the weight 7T(i | B(g)), i€ I,, with the

preliminary estimates of the modal parameters as

h1 h2
T, o[ ()
1 n 1 2
N ¢[Yi — a9 — l}imT(Xi A X)}K(Xih; X)’

which is nonnegative and sums to one.

m(i] 09) =

M-Step: Update the estimates with the weight computed
in the E-Step by log-maximization

) 1
09t = arg max Z {77(1 | 0(g)) log h—1¢>[

Yi—a—bT(Xi—x)]}

. ha
icly
= (X Wx X)X WY,
where X* = (X7, -+, X7 )" with X; =(1X; —x),

j=1,-- N, Y= (Y, - ,Yi)T, and Wx is an i x n
diagonal matrix with diagonal elements {r(i| 0%9),i € I,,}.
end

end

In contrast to spatial mean regression, the maximizer @ of the kernel-

based objective function (2.3) does not admit a closed-form solution. To
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address this, we adopt a modified efficient MEM algorithm inspired by [Yao
et al. (2012) and |Yao (2013), leveraging the Gaussian kernel for ¢(-). The
MEM algorithm iteratively maximizes a surrogate lower bound of the ob-
jective function @Q5(0), consistent with standard EM theory. Specifically,
by Jensen’s inequality, we obtain log(Qa(0)) > #ﬂl‘% > ier, T | 0'9) log

[QS{}G_a_b}:(Xi_x) K (X;Z;x)], ensuring monotonic ascent towards a local op-

timum of the log-kernel likelihood. We emphasize, however, that the MEM
algorithm does not guarantee convergence to the global mode. Since the
objective surface is generally non-convex and may exhibit multiple local op-
tima, the convergence behavior is inherently sensitive to initialization. We
provide an extensive discussion in the Supplementary Material-S1 detail-
ing practical heuristics to mitigate local convergence issues. These include
(i) initializing from multiple starting points such as local linear mean or
quantile estimates; (ii) employing tempered EM variants or incorporating
controlled stochastic perturbations to escape shallow modes; and (iii) select-
ing the final estimate by comparing kernel likelihoods across candidate solu-
tions. In addition, we theoretically establish in Theorem S1 (Supplementary
Material-S1) that the MEM algorithm achieves local quadratic convergence
when initialized sufficiently close to a mode under standard regularity con-

ditions. This theoretical guarantee parallels the Newton-Kantorovich theo-
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rem (Ortega and Rheinboldt], |1970), which ensures exponential convergence
within a local neighborhood of the true maximizer. Empirical results in Sec-
tion [3| reinforce this behavior as the modal estimator consistently achieves
higher kernel likelihood than local mean regression, demonstrating robust
performance across a range of noise levels and initialization strategies. We
also note a potential numerical instability in the M-step of Algorithm [I]
which involves inversion of the weighted local design matrix (X*7WxX*).
As hy — 0, the Gaussian kernel induces exponential decay in the weights
7[i | 8'9], which may result in near-singularity or high condition numbers
due to insufficient local effective sample sizes. This ill-conditioning arises
from over-localization of the kernel. Nevertheless, the bandwidth selection
procedure in Subsection 2.4 inherently guards against such issues by dis-
couraging excessive localization. The optimal bandwidth rate A~ @7 ensures
a stable effective sample size in each neighborhood, preventing degeneracy of
the design matrix. In practice, to further guard against numerical instabil-
ity, we recommend implementing a ridge-regularized version of the M-step

to stabilize matrix inversion; see Supplementary Material-S1 for details.

2.3 Asymptotic Properties

To simplify the exposition, we introduce some notations that will be utilized
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subsequently. The letter C' denotes a constant, the value of which may vary
for convenience. The symbol « signifies the convergence in distribution.
For clarity, we define Hy = diag(hg, - , ha)axa, ¢n, (€i) = by ¢(gi/h1), and
K; = K;,(X;—x) = hy “K[(X;—x)/hs]. For a sequence of random variables
X, and numbers a,, we define X,, = o, (a,) if X,,/a, converges to zero in
probability and X,, = O, (a,) if for every ¢ > 0, there exists a finite C' such
that P (| X,/a,| > C) < c. We let a function f(n) = O(1) if there exist
some nonzero constant C' and N such that f(n)/C — 1 for n > N, and
f(n) =o(1)if f(n)/C — 0 for any constant C'. Recursively, g(n) = O[f(n)]
implies g(n)/f(n) = O(1) and g(n) = o[f(n)] indicates g(n)/f(n) = o(1).
We then impose the following regularity conditions |C1HC7, which are com-

monly employed in the literature.

C1 The random errors {e;,1 € I,,} have zero mode and are permitted to
be dependent on {Xj, i € I,}. The density function g(-) of {g,i € I,}
is continuous in a neighborhood of the point 0, and the conditional
density g(e | X) < ¢g(0 | X) for all ¢ # 0. It is also assumed that

g(ei, 5 | X, X;) exists and is uniformly bounded for all i,j € ZV.

C2 For the kernel function K(-) : R — R, it is bounded with a com-
pact support [—M, M]? for some constant M > 0 and satisfies f uu’

K(u)du < oo and [ uu”K?(u)du < co. It is also integrable and con-
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C3

C4

Ch

C6

c7

tinuous almost everywhere, with [ K(u)du = 1 and [|K(u)|du < cc.

The random field is strictly stationary. For all district i and j in
ZY, the vectors X; and X; admit a joint density fi;(-). Moreover,
|fi;(xX,x") — f(X)f(x")] < C for all i,j € Z" and all xX',x” € R,
where 0 < C' < oo and f(-) denotes the marginal density of X. Also,

the function x — f(x) is strictly positive and continuous for all x.

The spatial modal regression function m(-) is at least twice differen-
tiable in an open neighborhood of x. Denoting m" (x) and m? (x)
as the gradient vector and the Hessian matrix of m(-) evaluated at x,
respectively, the function x — m® (x) is continuous at all x.

The function x(-) satisfies x(n’,n”) < C'min(n’,n"”), V¥ n’,n” € N for
some C' > 0. The mixing process fulfills a polynomial mixing condi-
tion p(t) < Ct=* for some pu > (2+0) (N +a)/d. In addition, the fol-
lowing equation is satisfied: lim,, ..o m®> o0 iV~ {p(i)}/ ) =0
for some constant a > dN/(2 + 9).

There exist two sequences pn = (p1,-+- ,pn) € Z¥ and q, = (q,
-+, q) € ZN, with ¢ — oo such that p = [[r_, px = o[(Rh hd)"/?],
q/pr — 0, ng/pr — oo forallk =1,--- , N, and np(q) — 0 asn — oo.
The bandwidths h; and hy tend to zero in a manner that q(hihg)%/*2+9)

> 1 with integer q defined in condition , and (hyhg)=0/(F0) 372 N
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{p(7)}°/*9) — 0 as n — oo with function ¢(-) listed in condition .

The conditions itemized above are standard in the setting of local
smoothers and modal regression models required for asymptotics, and their
justification can be detailed. Due to space limitations, we have included the
comprehensive explanations of the aforementioned conditions in the Supple-
mentary Material-S2. We now state the consistency result for the developed

estimators in the complex spatial dependence setting.

Theorem 1. Under the regularity conditions [CI{C7, with probability ap-
proaching one, as n — 0o, hy — 0, hy — 0, and nhdh} — oo, there exist
consistent mazimizers [m(x), mM(x)] of such that

i. (%) — m(x)| = O, [ (hgh3)"* + h? + h2];

—-1/2

i | (x) = m O ()] = Op[ (0h) ™ + 13+ 13].

Theorem[I]establishes that the convergence rates of the proposed spatial
modal estimators remain unaffected by the presence of spatial dependence,
provided that the degree of dependence satisfies the strong mixing condition
specified in condition C5. In the special case where d = 1, our estimators
reduce to classical ones for independent data, recovering the conver-

gence behavior known from the i.i.d. setting; see Ullah et al.| (2022).

Remark 1. The convergence rates of the resulting modal estimators ma-
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tch those in the independent case under the spatial strong mixing condition
(condition C5), which ensures summable dependence across lattice sites.
This condition enables the application of empirical process theory and cen-
tral limit theorems for strongly mixing random fields; see Rio| (2017). Con-
ceptually, the mixing coefficients control the effective dependence range so
that the cumulative dependence contributes bounded higher-order terms to
the asymptotic variance. As a result, the leading stochastic order remains
driven by the local kernel smoothing behavior rather than long-range depen-
dence. However, if the decay of mixing coefficients is too slow, these bounds

may no longer hold, and the convergence rates may degrade accordingly.

To establish asymptotic normality, we begin by obtaining a representa-
tion for §—80y, where 0, represents the true value. Let R(X;) = S(X;)—(0—
00)7X; and S(X;) = m(X;) — m(x) — mM(x)(X; — x). By taking the first

derivative of (2.3), the solution @ satisfies S Kigb,gll) [ei + R(X;)] X =

i€ln
Yien Ki[oy) (e1) + 652 (e1) R(Xs) + 1o () RA(X:)] X§ = 0, where X} =
[1 (X; — x)hy "7, &f lies between ¢; and & + R(Xj), and gbgfl)(si) repre-

sents the cth derivative of ¢, (gi). The following two lemmas establish a

Bahadur-type expansion in the context of modal regression.

Lemma 1. Define (Sgz)i; := (ﬁhg)fl D ier, <X,‘Z;x>l <X;‘12x>jK<X,i12x>,

i,j = 0,1,---,d. Assume that conditions [C3, and [C] hold, and the
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bandwidth hy tends to zero in such a way that ih — oo and nkhgd/[a(2+5)] >

1 asn — oco. Then, for all x and u = (uy,--- ,uy)’ € RY,

Sh ﬁ> S = f(X) fRd K(u)du f(X) fRd u K(u)du |

f(x) [gauK(u)du  f(x) [, uu” K (u)du

where “Ls” denotes the convergence in probability.

Lemma 2. Define Wz =Y X;‘K@ﬁ}j (g1) and m;j(x) = 0*m(x)/0x;0z;.

icln
Assume that the same conditions in Theorem [l hold. We can then obtain

) o S™W;
0-0,=25 Au+%ﬂﬂ+ﬁ¢m@|x:x)

(14 0,(1)),

f(x) Zj:l Z?:l Mi;(X) [ga uiu; K (u)du

f(X) Z?:l 2?21 Mg (X> fRd UinUK<11)du |

where A =

The proof of Lemmall|involves straightforward calculations and is omit-
ted in this paper. Built on the preceding lemmas, the asymptotic normal-
ity of the local linear spatial modal estimators under weak conditions can
be demonstrated by establishing the result W7 = m > el oM (2—;)
K <Xh—;x> X: 5N [0, [ ¢*(t)t*dtg(0 | X = x) f(x)X]; see technical proofs

in the Supplementary Material-S7. The expression of X is in Theorem [2]
Theorem 2. With ahs™h3 = O(1) and 2hih] = O(1), under the same
conditions as Theorem |1|, if ny (hlhg)é/(ﬂa)a >1foralk=1,---,N as

n — 00, the estimators satisfying the consistency results in Theorem/[1] have
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the following asymptotic result

AP m(x) —m(x) (2 2 4(8) _x
\/nh2h1[<h[A ]>s (hA_f;g2(0|X: )F)]

M (x) — mO(x)

5
bl
)

9(0] X =x)
(0 [X =x)P

4N [0, / O (1) 2dt f(x)S’lES*l},

where I’ = [ %) Jpa K () du Jpa K2(@)du [, u K?(u)du ] |

] and ¥ = [
X) [pe UK (u1)du Jpa uK?(0)du |,

e uu’ K?(u)du

Corollary 1. With ﬁthh:{’ = 0(1), ﬁhghz = O(1), and ny, (hlhg)ts/(?%)a

> 1 forallk =1,--- N as n — oo, if furthermore, the kernel K(-) is a

symmetric function, the result in Theorem[d can be reinforced into

M( m(x) — m(x) — By(x) ) a4 [0’ (0’0 (x) 0 )] |
(x)]

o[ (x) — mV(x) — By (x 0 oi(x)

-1

where By(x) = 0, By(x) = [ RdK(u)du}

;i / K (w)du—

JSA)rdt g0 | X =x) Lo
2 g0 | X=x) 0 F(x) g0 X = x)? [ RdK( )d }

? [ @*()2dt  g(0| X = x)
R K (u)du { Rd f(X) [9(2)(0 ‘ X — X)]2

[ /R d uuTK(u)du] y /R K (u)du [ /Rd U-U—TK(u)du] -

The asymptotic normality results in Theorem [2| are stated for m(x) and

2 4(3) —
ﬁg (0|X X) O'2<X>:

K(u)du] h ,and 02(x) =

mM(x) at a specific site x that is not too near the boundary of the support
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of the covariates. In fact, by applying the traditional Cramér-Wold device,
these results can be conveniently generalized to a joint asymptotic normality
result for multiple sites. With optimal bandwidths obtained by minimiz-
ing asymptotic MSE, m(x) converges to m(x) at a rate of O,(n~%(+d),
which is smaller than the convergence rare [O,(n~1/(4+49)] achieved by lo-
cal linear mean estimation; see [Hallin et al. (2004). This slower conver-
gence rate is the trade-off for estimating the mode. With undersmoothing
(lima 0o DATTAS — 0 and lima o, 1hZA] — 0), the asymptotic bias can be
disregarded, and the estimators are centered at true values.

The spatial dependence complicates the proof of Theorem [2, We utilize
Bernstein’s technique by decomposing the finite summation into smaller
pieces involving “large” and “small” blocks. Particularly, we need to verify
whether condition [C6|holds for the preceding theorem. Suppose there exists

a sequence of positive integers ¢ = ¢, — oo such that ¢, = 0[(f1h1hg)1/(2m].

)1/2N Sn. Tak-

We can choose sequence s, — 0 in a manner that ¢ = (ﬁhlhg
ing pi 1= (ﬁhlhg)l/m st? k=1,--,N, it follows that q/p, = si*> — 0,
p= (ﬁhlhg) 12 sh/? = 0[ (ﬁhlhg) 1/2}, and ny(q) =ng " — 0. As n — oo,
we obtain p < (ﬁhlhg)l/Q for large 1. Because of n/p > (fh] hy®)'/? — oo,

it is apparent that ny/pr — oo for all k. As a result, condition is satis-

fied. The details of the proof are listed in the Supplementary Material-S7.
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Remark 2. The asymptotic results also hold for the nonisotropic diver-
gence case under appropriate conditions. Assume that conditions
hold with ¢(t) = O (t*) for some p > (2 +0) (N 4 a)/d. In addition, let
the sequence of positive integers ¢ = ¢, — o0, the bandwidth h; factor
into hy := [\, hy,, and the bandwidth hy factor into hy := [\, he,, such
that ng™* — 0, ¢ = o[ minj<x<y (nkhlkhgk)l/Q], and q(hhd)2/22+0) > 1
for some constant a > JN/(2 + 0). Under these conditions, Theorem
remains valid as n — oo with min;<;<y{m} — oo (nonisotropic diver-
gence). To demonstrate this result, we can follow the steps for the proof of
Theorem [2 in the Supplementary Material-S7, ensuring that condition [C0]

is satisfied. Suppose that there exists a sequence s,, — 0 such that ¢ =

1/ 1/2

o[minlngN (nkhlkhgk) 23%} as n — o0o. By taking pp = (nkhlkhgk)

5%@27 we have q/py, < 3,142 —0,p= (ﬁhlhg) ' ivzl S}L{f = 0[ (flhlhg)l/2 ],
and np(q) = ng * — 0. Asn — oo, we obtain py < (nkhlkhgk)l/Q. It is evi-

dent that ny/pr > (nkhlkh;kd) 1/2 — 00. As aresult, conditionis fulfilled.

Remark 3. If we impose x (n/,n”) < C (n' +n” +1)" for some C' > 0 and k >
1 in condition and replace the last requirement in condition [C6| with
(0" /p) o(q) — 0, Theorem [2f still holds as n — oo. To establish this
result, it suffices to verify that the bound on the term (); in the Supple-

mentary Material-S7 remains valid, which is true since @1 < C Zf\il



2.4  Optimal Bandwidths

[p+ (M —i)p+1]"p(q) < Cp"M"Tp(q) < C (2" /p) o(q) — 0.

The local linear approximation offers significantly improved boundary
behavior compared to the local constant approach. For simplicity, we as-
sume that there is a univariate regressor X (d = 1) with a bounded support,
i.e., [-M, M]. By employing an argument similar to the one developed in
the proof of Theorem [2 it can be shown that asymptotic normality still
holds near the boundary point x = —M + chy with ¢ > 0. However, there
are adjustments in the asymptotic biases and variances; see Supplementary
Material-S3 for the details. Indeed, this boundary advantage would likely
become more pronounced as N grows. Consequently, local linear modal esti-
mation exhibits automatic good behavior at boundaries without the need for
boundary correction. This holds true for both the left boundary point x =
— M +chs and the right boundary point x = M —chy. Even if point M were

an interior point, the same results would still apply with ¢ = M.

2.4 Optimal Bandwidths

The shape and smoothness of the spatial modal function, like other non-
parametric regression models, depends to a large extent on the values of the
bandwidths, which typically involve a trade-off between bias and variance.

Nevertheless, there is no data-driven rule that permits automatic and opti-
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mal selection of bandwidth values in the context of spatial modal regression.
The asymptotic results in Theorem [2| enable finding asymptotically optimal
bandwidths by minimizing the asymptotic MSE (AsyMSE) of m(x)

AsyMSE (r(x)) = Bias(1(x))* + Var(m(x))

g (B P01 X=x) \ VP [ E0Rd 90| X =)
2 2 @0 X=x) nhdhd  [g@ (0] X = x)]?
f(x)efSs™1us!
where e = (1,---,1,0,---,0)T. Accordingly, the optimal bandwidths h;
—— ——

d d

and hy satisfy hy = fAng}ﬂ with A = AY(EFd) +12d-(3d)A , A= el ST1A,

2dB

3)(
T g—-19"(0]X=x)
and B=e'S™ T (0= X)F, where

o= (A X =) d] SO TS 1557 =
COABPOIX=xP AV - ABAY)

~__1
n d4+7,

As evident, the optimal rate for bandwidths is larger than that for spatial
mean regression. However, the exact values of bandwidths depend on un-
known quantities, i.e., the derivatives of the density of the error components,
making direct application of the provided bandwidth expression challenging.

Practically selecting bandwidths involves adopting the plug-in method
to approximate unknown terms in the expressions of the asymptotically op-
timal bandwidths, as suggested by [Ullah et al.|(2021)). Nonetheless, this can

be challenging for nonparametric estimators in reality, leading to potential
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inaccuracies and computational expenses due to additional tuning parame-
ters for estimating the density function. To facilitate the selection process,
we employ the approach outlined by |Ullah et al.| (2023) for bandwidth
choice in this paper. Particularly, we let hy = 1.050,0 /(@6 and hy =
1.6MADR~/(@+6) where 0,, represents the standard deviation of &5, = Y;—
M (Xi), MAD = med;i{|ej n —medi(€im)|}, Mm(-) denotes the correspond-
ing mean estimate, and med is the median value. These choices take into
account the AsyMSE-optimal rate and the requirement for undersmoothing.
While this method for choosing bandwidths may not produce globally opti-
mal estimates (i.e., obtained by minimizing the integrated MSE), it provides
a practical data-based “rule of thumb” for real-world applications that has
been demonstrated to work well in simulations listed in Section Bl

In addition to the previous bandwidth selection procedure, we can also
employ the density-based cross-validation method to choose bandwidths.
Specifically, we minimize the integrated squared error (ISE) of the gen-
eral conditional density estimate ISE = ff[fxy(Xl,Y;) — fxy(X;, Yi)J?

fx(X;)dX;dY;, which gives the cross-validation criterion listed below

ffXY —i 17 dY fXY i leK)
min C'V (hy, ho) = Z X __ZW’
16[ X —i \#M icly X, -1\

under which —i indicates the absence of observations X; and Y;. We uti-
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lize this method in the simulation examples to assess the effectiveness of the
previously suggested “rule of thumb” selection procedure; see Section [3|and
Supplementary Material-S4. However, the detailed theoretical investigation
of bandwidth selection using modal cross-validation is outside the reach of
this paper due to the absence of a natural order for time series with spatial
data. Such a technical analysis will be pursued in future research.

Remark 4. In practice, the assumption of stationarity may often be vio-
lated. An alternative approach is to assume that nonstationarity arises from
the presence of a spatial trend. Instead of the stationary process {Y;, X},
for example, we actually observe {}71, Xi} with ¥; = py (si)+Y;, X; = px (si)
+X;, i € I, in which s; = (84, ,8iy) == (i1/n1, - ,in/n,) and s €
[0, 1]V +— [py(s), ux(s)] is some deterministic but unknown trend func-
tions. Since {Y;, X;} is unobservable, we need to estimate {1y (s;), ux (i)}

first using local constant spatial mean regression such that

fiy(s) = Z Yiw (si,s) and fx(s) = Z Xiw (si,s),

i€Tn i€Zn

where w (s;,s) := W [(si —s) /gx] /{ Zjezn W ((sj —s) /gn] }, W () is a ker-
nel function, and gy, is the bandwidth that approaches zero. The estimation
procedure described in the preceding parts is subsequently performed to the

residuals {(V;, X;) := [V; — fiy (s1) , X; — ix (s1)]}, which is supposed to sat-

isfy the stationarity assumption. The local linear estimators of the spatial



modal regression are then specified as

}Afi—a—bT(Xi—X) K Xi—X
hl h2 .

As the preliminary spatial smoothing (fiy (s), fix(s)) of the original data

- 1
(a,b) = arg max E o
In

a,b flhlhg i
i

{Y/i, 5(1} is derived via mean regression, which converges faster than the spa-
tial modal estimators, we can achieve the same asymptotic normality results

as stated in Theorem ] under certain suitable conditions.

3. Numerical Examples

We in this section present numerical studies to gain insights into the es-
tablished estimation procedure, where the bandwidth selection procedures
outlined in Subsection 2.3 are implemented. Due to space constraints, we

include additional simulation studies in the Supplementary Material-S4.

3.1 Monte Carlo Experiments

We consider a model in a two-dimensional space (N=2), where we denote
the sites i in Z? as (4, j) instead of (iy,45). For simplicity, we assume X to be
a scalar random variable. In what follows, we use DGP to represent the data
generating process. We generate two hundred simulated spatial datasets in-

dependently. To measure the performance of estimators, we utilize the
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average MSE (AMSE) indicator, i.e., AMSE = 12— 705, >z

200n1no

[m® (X;;) — mg (Xi’j)]Q, where mg (X; ;) denotes the true spatial regres-

sion function, and m® (X ;) represents the estimate in the /th replication.

DGP 1 (Asymmetric Data) We generate data from the following model

1 1
Yv@j = m(Xi’j) + U(Xi,j)gi,j with m(:c) = g@x + geix, (31)

where (X ;) = 5%, {e; ;, (i,7) € Z*} are originated from 0.5N (—1,2.5%)
+0.5M (1, 0.5%) with mean zero and mode one, and {X,;, (i,7) € Z*}, ac-
cording to Definition , are produced by the spatial autoregression X; ; =
sin( X1+ Xijo1+ Xiy1;+ Xijy1) +eij with {e; , (i, ) € Z*} ~ N(0,1).
We then have the following spatial modal regression function

1\
Mode(Y;,j | Xi,j) = M0, mode (XZ'J') == geXW + 56 XZ‘], (32)

which is different from mean regression E(Y;; | X; ;) = se¥i9 4 g6 %07
The above model is utilized to simulate data across a rectangular region
of ny x ny sites, represented as a grid {(i,7) : 76 < i <75+ n,,76 < 5 <
75 + ny} for various values of ny and ny. Each replication is obtained iter-
atively through the following procedures: initially simulating i.i.d. random
variables e; ; over the grid {(4,7) : 1 < < 150+mn;,1 < j < 150+ns}; sub-

sequently, setting all initial values of X ; to zero and generating X ;’s over

{(4,7) : 1 <i <1504+n,1 < j < 150+ ny} recursively using spatial autore-
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gression models. Starting with these generated values, the process is iter-
ated 20 times. To achieve stationarity, the results at the final iteration step
for (4, 7) inside {(7,7) : 76 < i < 75+ny,76 < j < 75+4ny} are considered as
the simulated n; X ny, sample. For comprehensive illustration, we conduct
simulation studies using four different combinations of sample sizes, namely

(n1,n92)=(10, 10), (15, 15), (20, 20), and (20, 30), respectively.

(g) (n1,m2) = (20,20)-CV  (h) (n1,n2) = (20,30)-CV

Figure 1: Local Linear Modal Estimator of Function m(-)

The simulation results based on 200 independent replications are dis-
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played in Figure [T, where the true spatial modal regression function is
indicated by the green dotted line, and the estimated functions m(-) across
all replications are shown as solid curves. For each scenario, we report the
AMSE to quantify estimation accuracy. Although spatial mean regression
estimates are not shown in the figure due to their poor comparability under
asymmetric error structures, we note that the proposed modal estimator
consistently yields substantially higher conditional kernel likelihood values
when compared to the mean estimator, reinforcing its appropriateness for
modal estimation. These comparative results are available upon request. It
can be observed in Figure [1}(a)-(d) that the proposed estimation procedure
behaves effectively and can capture the spatial regression line even for sam-
ple sizes as small as (ny,ny) = (10, 10). As expected, the simulation results
align well with the asymptotic theory presented in Subsection 2.3, where
the AMSE decreases as the sample size increases. To demonstrate the ap-
plicability of the suggested bandwidth selection method, we also report re-
sults with bandwidth values obtained from the modal cross-validation (CV)
method. It is evident from Figure [1]| that there is no significant difference in
estimates between these two bandwidth choices, indicating the good perfor-
mance of the suggested bandwidth selection procedure. Note that while the

MEM algorithm used for estimation does not guarantee global convergence,
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our simulation experiments demonstrate that with carefully chosen initial
values, such as those based on local linear mean or quantile regression, the
algorithm consistently converges to a dominant mode of the conditional dis-
tribution. Across all 200 replications, we observe no evidence of convergence
to spurious or suboptimal local modes. Moreover, we implement a post-
estimation validation step by comparing conditional kernel likelihood values
across multiple candidate solutions, selecting the maximizer with the high-
est likelihood. These empirical observations, together with the robustness
heuristics described in the Supplementary Material-S1, offer strong support

for the reliability of the proposed modal estimation framework.

3.2 Empirical Analysis of Soil Data

The spatial modeling of soil nutrient levels play a critical role in agron-
omy, environmental monitoring, and precision agriculture. Accurate spa-
tial estimation of key chemical properties, such as calcium, phosphorus, and
potassium, is essential for informing site-specific soil management, optimiz-
ing fertilizer application, and minimizing environmental impacts; see (White
(2005). Among these properties, cation exchange capacity (CTC) is partic-
ularly important, as it reflects a soil’s ability to retain essential nutrients

and thus directly influences crop productivity. Understanding how CTC
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varies across space in response to underlying soil chemistry is therefore not
only of scientific interest but also of direct relevance to agricultural planning
and policy. However, the conditional distribution of soil properties often de-
viates substantially from normality due to heterogeneity in environmental
factors such as micro-climate, historical land use, and contamination; see
Figure[2] These complexities frequently give rise to skewed, heavy-tailed, or
multimodal patterns that render mean regression inadequate. Modal regres-
sion, by targeting the most frequent value, provides a robust alternative that
better characterizes the dominant spatial behavior of soil properties.

To illustrate the utility of our proposed spatial modal regression, we
analyze the s0il250 dataset available from the R package GeoR, which
originates from a uniformity trial involving 250 undisturbed soil samples
collected at a depth of 25cm and spaced regularly over a 25 x 10 grid. This
dataset comprises 22 variables representing key soil chemistry properties
relevant to agronomy and environmental monitoring. For our analysis, we
focus on modeling the relationship between calcium (Ca) and CTC (N = 2
and d = 1). Ca is a key determinant of soil fertility, playing a critical role in
improving soil structure, enhancing root development, and facilitating nu-
trient uptake. Moreover, Ca deficiency or imbalance can significantly alter

the soil’s ion-exchange properties, which directly impacts CTC. Therefore,
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understanding how Ca affects the modal (i.e., most typical) level of CTC is
crucial for site-specific soil management and sustainable agricultural prac-
tices. To estimate this relationship, we consider the model

CTC;; =m(Ca;j;)+ei, 1 <i<25 1<75<10, (3.3)
where the x-coordinate corresponds to Linha, the y-coordinate is Coluna,
and the conditional mode satisfies Mode(e; ; | Ca; ;) = 0. As noted in Re-
mark |4 we first apply the sm.regression function from the sm R package
to remove large-scale spatial trends in both Ca and CTC, ensuring approxi-

mate stationarity in the residual spatial processes prior to modal estimation.

Ca Surface Plot CTC Surface Plot Detrended Ca Surface Plot

Y
wfv'w/‘w

Detrended CTC Surface Plot Estimated Conditional Density of CTC Given Ca

Figure 2: Spatial Perspectives of Soil Dataset

Figure[2] provides a spatial and distributional overview of the soil dataset

and motivates the use of spatial modal regression. The top row displays the
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raw surfaces of Ca and CTC, both of which exhibit spatial trends and large-
scale variation, indicating the presence of nonstationarity in the original
data. Following the detrending procedure, the resulting surfaces (bottom-
left panels) reveal localized irregularities and fine-scale spatial heterogene-
ity, suggesting complex spatial dynamics that are unlikely to be captured
by global smoothing techniques or mean regression models. Notably, the
empirical density of the detrended CTC values (bottom-right panel) shows
marked asymmetry and possible multimodality, with heavy tails and de-
viations from Gaussian behavior. These distributional departures are fur-
ther substantiated by the estimated conditional density of CTC given Ca
(bottom-middle panel), which displays complex, ridged patterns and non-
elliptical contours. Such structures violate key assumptions of mean regres-
sion, potentially leading to estimates that fall in regions of low probability
density and obscure the dominant spatial response behavior. As modal re-
gression is robust to distributional asymmetry and tail behavior, it provides

a more interpretable model for conditional spatial structure of the soil data.

Figure |3| presents a comparative analysis of spatial estimation results
derived from mean regression and the proposed modal regression, highlight-
ing substantive differences in both magnitude and spatial structure. The

top-left panel displays the estimated mean regression surface, which shows a
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Local Linear Mean Regression Surface Local Linear Modal Regression Surface Difference Surface: Modal - Mean

vAD
WA
; 7 \

y

v

VA

3D Wireframe: Difference (Modal - Mean)

- Contour Plot: Mean Regression Contour Plot: Modal Regression

0 40 60 80 100 10

Figure 3: Mean and Modal Estimation Results

generally smooth gradient, with an initial upward trend in CTC followed by
a noticeable decline across certain regions of the spatial domain. The modal
regression surface (top-middle panel), by contrast, reveals more localized
variability and maintains a plateau-like structure in high-Ca regions. This
suggests that modal regression better preserves spatial features that may be
flattened or misrepresented by mean regression. The top-right panel depicts
the pointwise difference between the two regression surfaces (modal minus
mean). Notably, the modal estimates are consistently higher in regions with
elevated Ca content, suggesting that the mean regression surface may be

biased downward by sparse or extreme low-CTC values. The bottom-left
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wireframe plot offers a complementary 3D view of these differences, empha-
sizing the high-frequency spatial structure and spatially clustered deviations
that occur primarily in agronomically meaningful areas. The lower row of
contour plots reinforces this interpretation. The mean regression contours
(bottom-middle) appear overly smooth and may miss important local fea-
tures, whereas the modal regression contours (bottom-right) exhibit sharper
boundaries and more localized plateaus. These localized features are agri-
culturally interpretable, as they may reflect real spatial heterogeneity driven
by underlying soil composition, management zones, or drainage patterns.
Importantly, the plateauing behavior observed in the modal surface aligns
with established agronomic findings, which suggest that increasing Ca con-
centration enhances CTC only up to a certain point, beyond which addi-
tional Ca does not yield further gains; see White| (2005)) and |[Brady and Weil
(2016). The modal regression surface accurately captures this saturation
pattern by maintaining high but stable CTC values in regions with high Ca.
By contrast, the mean regression surface suggests a decline in CTC in these
regions, a result that is not only inconsistent with agronomic findings but
also likely driven by the influence of heavy-tailed residuals or skewed error
structures. These findings underscore the utility of modal regression as a

robust and informative tool for spatial modeling in agricultural contexts.



4. Concluding Remarks

We in this paper propose a nonparametric spatial modal regression model
designed to uncover relationships between the dependent variable and spa-
tial covariates that may be overlooked by conventional spatial mean or quan-
tile regression approaches. Under mild regularity conditions, the asymptotic
normality of the estimators of m(x) and its gradient is established by relying
on a Bahadur representation. By virtue of a Gaussian kernel, we construct a
modified MEM algorithm to numerically estimate the developed model and
provide rules for bandwidth selection in practice. The proposed estimation
procedure is supported by both asymptotic theory and favorable finite sam-
ple properties through simulation studies and empirical analysis. Addition-
ally, we discuss several extensions, including scenarios where the size of the
rectangular domain tends to infinity at different rates, and provide insights
into various other model perspectives to offer a comprehensive understand-
ing of the suggested regression. Finally, to avoid the curse of dimension-
ality and relax the linearity assumption, we extend the developed model
to propose an additive spatial modal regression model; see Supplementary
Material-S5. All presented findings can serve as a foundation for future re-
search on mode-based analysis in spatial settings, with broad potential for

applications in environmental science, agriculture, and beyond.
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