
Statistica Sinica Preprint No: SS-2024-0339 

Title Nonparametric Spatial Modeling towards the Mode 

Manuscript ID SS-2024-0339 

URL http://www.stat.sinica.edu.tw/statistica/ 

DOI 10.5705/ss.202024.0339 

Complete List of Authors Tao Wang and 

Weixin Yao 

Corresponding Authors Tao Wang 

E-mails taow@uvic.ca 



Statistica Sinica

Nonparametric Spatial Modeling towards the Mode

Tao Wanga Weixin Yaob

a.University of Victoria b.University of California Riverside

Abstract: Existing models for spatial data analysis typically rely on mean or quan-

tile regression to model the association between a dependent variable and covari-

ates. We in this paper propose a novel spatial modal regression by assuming that

the conditional mode of the response Y given covariates X follows a nonparamet-

ric regression structure, defined as m : X 7→ m(X) := Mode(Yi | Xi), Xi ∈ Rd

and i ∈ ZN . The suggested spatial modal regression can be utilized to capture the

“most likely” effect and may reveal new interesting data structures that are possi-

bly missed by the conditional mean or quantiles, especially in cases of asymmetric

data distributions. We derive the asymptotic distributions for the resulting modal

estimators with appropriate choices of bandwidths. To numerically estimate the

developed model, we recommend a modified modal expectation-maximization

(MEM) algorithm with the assistance of a Gaussian kernel. Numerical examples

are presented to demonstrate the favorable finite sample performance of the esti-

mators. We also generalize the propounded spatial modal regression to an addit-

ive sum form to offer a versatile solution to handle high-dimensional datasets.

Key words and phrases: Additive model, Local linear, MEM algorithm, Modal

regression, Spatial process.
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1. Introduction

Because of its ability to capture the “most likely” value of a distribution,

the mode offers a compelling alternative to traditional measures of central

tendency such as the mean or median. This motivates the development of

modal regression, defined as Mode(Y | X) = argmaxY f(Y | X), where

f(Y | X) represents the conditional distribution of Y given X; see Yao

and Li (2014), Chen et al. (2016), Chen (2018), Kemp et al. (2020), Xiang

and Yao (2022), Ullah et al. (2021, 2022, 2023), and Wang (2025). Modal

regression is particularly advantageous in the presence of skewness, heavy

tails, or multimodality, where mean or median regression may provide mis-

leading summaries. In such cases, the conditional mean may fall in regions

of low probability density, masking dominant patterns and rendering inter-

pretation difficult. For instance, in agricultural applications, outcomes such

as chemical concentrations often exhibit non-Gaussian structures with mul-

tiple local peaks, driven by site-specific heterogeneity or diverse land-use

practices. By targeting the most probable outcome, modal regression can

provide a more robust and interpretable insights of the underlying process.

However, existing modal regression literature has largely focused on

time series, cross-sectional, or panel data, with limited development in spa-

tial contexts. This is due, in part, to the lack of natural ordering in space

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0339



and the complex dependence structures that make spatial modal estimation

especially challenging. In addition, spatial data analysis has traditionally

relied on conditional mean or quantile regression; see Lu and Chen (2004),

Robinson (2008, 2011), Hallin et al. (2004), Hallin et al. (2009), among oth-

ers. While these methods are effective in capturing average or percentile be-

havior, they may obscure key features of the underlying distribution in the

presence of heterogeneity or multiple modes. For instance, as demonstrated

in our soil chemistry analysis in Section 3, the conditional distribution of

cation exchange capacity exhibits multiple peaks, reflecting variation in soil

treatment regimes and land use history. In such cases, the conditional mean

may misrepresent the central structure of the data and lie in regions of low

density. Motivated by these considerations, we propose a novel spatial modal

regression model , which estimates the conditional mode function to provide

more informative and distribution-aware summaries in spatial settings.

We in this paper consider data observed over a space of general dimen-

sionN , represented by ZN , whereN ≥ 1 and Z = {0,±1,±2, · · · }, denoting

the set of integer lattice points in an N -dimensional Euclidean space. A

point i = (i1, · · · , iN) in ZN is referred to as a site that typically reflects

economic characteristics or geographical positions, and may contain a time

component. Spatial data are conceptualized as finite realizations of vector
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stochastic processes indexed by i ∈ ZN , commonly known as random fields.

We focus on strictly stationary (d+1)-dimensional real random fields of the

form {(Yi,Xi); i ∈ ZN}, where Yi ∈ R, a scalar dependent variable, and Xi

∈ Rd, covariates with compact support Γ ⊆ Rd, are defined over some prob-

ability space (Ω,F , P ). Our objective is to characterize the spatial depen-

dence between Yi andXi by estimating the spatial modal regression function

m : X 7→ m(X) := Mode(Yi | Xi) almost surely (a.s.), (1.1)

assuming that given a fixed Xi, the dependent variable Yi has a unique

global mode, wherem(·) is regarded as a well-defined real-valuedX-measur-

able function, defined almost everywhere except on a P -null set ofX-values.

To estimate the proposed model, we extend the local linear approxi-

mation method to the spatial setting due to its several desirable properties

(Fan and Gijbels, 1996), contrasting with spatial smoothing methods that

smooth over site i based on proximity or dependence structures. We es-

tablish the asymptotic properties of the resulting estimators and show that

their convergence rate is (ñhd
2h

3
1)

1/2 (ñ, h1, and h2 are defined in Section 2),

which is slower than the rate (ñhd
2)

1/2 associated with spatial mean regres-

sion. Our framework imposes no restrictions on the configuration of the

sample region and enables the sample to expand in various directions at

different rates. We derive theoretically optimal bandwidths under our pro-
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posed modal criterion and suggest a data-driven bandwidth selection proce-

dure for empirical implementation. We further develop a modified MEM al-

gorithm with the assistance of a Gaussian kernel to numerically estimate the

targeted model. To illustrate the flexibility of our approach, we provide sev-

eral extended modal regression models in the Supplementary Material-S6.

Despite these advantages, the proposed spatial modal regression re-

mains susceptible to the curse of dimensionality when the covariate dimen-

sion d becomes large. This issue is especially pronounced in lattice-based ap-

plications, such as when analyzing spatial grid data {Yi,j, (i, j) ∈ Z2}, where

estimating the conditional mode of Yi,j based on neighboring values Xi,j =

{Yi−1,j, Yi,j−1, Yi+1,j, Yi,j+1} requires a four-dimensional nonparametric re-

gression. Although several dimension-reduction techniques have been devel-

oped in the literature of nonparametric regression, such as additive model-

ing and sparse regularization (Hastie and Tibshirani, 1990; Gao et al., 2006;

Lu et al., 2007, 2014; Nandy et al., 2017), these approaches have not been ex-

tended to modal regression in spatial settings. To address this challenge, we

in the end extend the proposed model to develop an additive spatial modal

regression framework, which decomposes the multivariate regression surface

into additive components while accounting for spatially dependent errors.

Due to space limitations, the full specification of this model, along with its
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asymptotic theory, is provided in the Supplementary Material-S5.

The rest of this paper is organized as follows. Section 2 presents the lo-

cal linear modal estimation procedure and establishes its asymptotic proper-

ties under stationary spatial dependence. Section 3 evaluates the finite sam-

ple performance of the proposed estimators through simulations and real

data analysis. Section 4 concludes the paper. Additional simulation stud-

ies, technical comments and proofs, and generalizations to extended spatial

modal regression models are provided in the Supplementary Material.

2. Local Linear Spatial Modal Regression

We begin this section by formulating the modeling framework and introduc-

ing the local linear modal estimation procedure, accompanied by a practical

numerical algorithm. We then delve into examining the consistency and asy-

mptotic properties of the resulting estimators across various scenarios.

2.1 Model Framework

We suppose that the random field is observed over a rectangular region of

the form In =
{
i = (i1, · · · , iN) ∈ ZN : 1 ≤ il ≤ nl, l = 1, · · · , N

}
with n =

(n1, · · · , nN) → ∞ if min1≤l≤N{nl} → ∞ and |nk/nl| < C, k = 1, · · · , N,

for a constant C such that 0 < C < ∞. The defined In form implies that nl,
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2.1 Model Framework

1 ≤ l ≤ N , tend to infinity at the same rate, known as isotropic divergence.

As discussed later in this section, our asymptotic results remain valid with

suitable conditions if the rates of expansion are not the same along all direc-

tions (i.e., only min1≤l≤N {nl} → ∞ holds), which is termed as nonisotropic

divergence. The total sample size is thus ñ =
∏N

l=1 nl. To formulate the spa-

tial modal regression, we assume that {Yi,Xi} observed on In satisfies

Yi = Mode(Yi | Xi) + εi = m(Xi) + εi, (2.1)

where {εi, i ∈ In} are the random disturbances with zero conditional mode

and have identical marginal distributions but may exhibit dependence among

each other such that the strong spatial mixing property remains valid. Be-

fore illustrating the developed estimation procedure, we first formalize the

concept of the modal estimator with the following definition.

Definition 2.1. If the data {(Yi,Xi)}i∈In are independent and identically

distributed (i.i.d.), given a kernel function K(·) satisfying condition C2

stated in Subsection 2.3 and a shrinking bandwidth h, the modal estimator

of θ with respect to a function m(Xi,θ) is defined as

θ̂ = argmax
θ

lim
h→0

E[Lθ(Y,X)], where Lθ(Y,X) =
1

h
K

[
Y −m(X,θ)

h

]
.

Definition 2.1 is consistent with the principles of kernel density estima-

tion as discussed in Chen et al. (2016). Let g(ε) denote the continuous den-
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2.1 Model Framework

sity function of ε, and letK(·) be a bounded and integrable probability den-

sity function with compact support, satisfying condition C2 in Subsection

2.3. Using standard properties of kernel smoothing, we obtain

sup
ε∈R

|g(ε)−
∫

K(w)g(ε+ wh)dw| ≤ sup
ε∈R

∫
|g(ε)− g(ε+ wh)|K(w)dw

≤ sup
ε∈R

∫
|g(1)(ε)wh|K(w)dw → 0

as h → 0, where g(1)(ε) represents the first derivative of g(ε). Therefore,

there exists a modal parameter θ that can maximize the density of ε, form-

ing the basis of the modal estimation procedure.

Building on this foundation, we propose a spatial modal estimator as a

natural extension of its i.i.d. counterpart. Specifically, the objective func-

tion Lθ(Y,X) defined in Definition 2.1 remains valid in the presence of spa-

tial dependence, with its asymptotic properties rigorously justified via a spa-

tial mixing framework. To this end, we assume that {(Yi,Xi)}i∈In satisfies

the following spatial mixing condition, extending the strong mixing assump-

tions used for continuous-time stochastic processes and time series models;

see Hallin et al. (2004), Gao et al. (2006), and Hallin et al. (2009).

Definition 2.2. Suppose that S and S ′ are two sets of sites. The Borel

fields B(S) = B[(Yi,Xi) : i ∈ S] and B (S ′) = B[(Yi′ ,Xi′) : i
′ ∈ S ′] are the

σ-fields generated by (Y,X). Let d (S, S ′) = min{∥i−i′∥ | i ∈ S, i′ ∈ S ′} de-
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2.2 Local Linear Modal Estimation

note the distance between S and S ′, where ∥i∥ = (i21+ · · ·+i2N)
1/2 stands for

the Euclidean norm. Then, spatial mixing is defined such that there exists a

function φ(t) ↓ 0 as t → ∞ and whenever S, S ′ ⊂ ZN ,

α[B(S),B (S ′)] = sup {|P (AB)− P (A)P (B)|, A ∈ B(S), B ∈ B (S ′)}

≤ χ[Card(S),Card (S ′)]φ[d (S, S ′)],

where Card (S) (respectively Card (S ′)) indicates the cardinality of S (re-

spectively S ′) and χ(·) is a symmetric positive function nondecreasing in

each of its two arguments. If χ(∞,∞) = C for some positive constant C,

the sequence {(Yi,Xi)}i∈In is called α-mixing (or strong mixing).

The α-mixing dependence is a mild restriction towards achieving asymp-

totic properties among a variety of mixing conditions. It was discussed in

Hallin et al. (2004) that a spatial process of the form Xn =
∑

i∈ZN aiZn−i

can satisfy α[B(S),B (S ′)] if Zi’s are independent random variables, ai → 0

grows exponentially fast, and the probability density function of Zi exists.

2.2 Local Linear Modal Estimation

We generalize the local linear framework of Fan and Gijbels (1996) to ac-

commodate the structure of the proposed spatial modal regression. Under

the smoothness assumptions specified in condition C4 (Subsection 2.3), the

regression function m(X) admits a first-order Taylor expansion in a neigh-
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2.2 Local Linear Modal Estimation

borhood of the target point x, given by m(X) = m(x)+[m(1)(x)]T (X−x)+

R(X), wherem(1)(x) denotes the gradient vector at x, andR(X) is a second-

order remainder term. For observationsX sufficiently close to x, the remain-

der term becomes asymptotically negligible, yielding the approximation

m(X) ≈ m(x) + [m(1)(x)]T (X− x) := a+ bT (X− x), (2.2)

where the notation “≈” signifies equality up to a higher-order error, with

R(X) = o(∥X−x∥) as X → x. Therefore, estimating m(x) and its gradient

m(1)(x) is locally equivalent to estimating (a,bT )T = [a(x),bT (x)]T .

Based on Definition 2.1 and associated arguments, we can obtain the fol-

lowing kernel-based objective function for achieving spatial modal estimates

Qñ(θ) =
1

ñh1hd
2

∑
i∈In

ϕ

[
Yi − a− bT (Xi − x)

h1

]
K

(
Xi − x

h2

)
, (2.3)

where θ = (a,bT )T , the kernel ϕ(·) : R → R is defined on R with bandwidth

h1 = h1(n) > 0 tending to 0 as n → 0, and the kernel K(·) : Rd → R is a

nonnegative weight function defined on Rd with bandwidth h2 = h2(n) > 0

such that limn→0 h2(n) = 0. Note that ϕ(·) is utilized to capture the mode

value according to Definition 2.1, while K(·), in line with nonparamet-

ric mean estimation, represents the weight assigned locally to observations

{(Yi,Xi)}i∈In . According to Yao and Li (2014) and Ullah et al. (2021, 2022,

2023), the choice of kernels is not particularly essential for modal regression
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2.2 Local Linear Modal Estimation

models. For computational simplicity, we select the Gaussian kernel for ϕ(·)

in this paper to employ a so-called MEM Algorithm 1. We denote the corr-

esponding estimators from (2.3) as θ̂ = (â, b̂T )T = [m̂(x), m̂(1)(x)T ]T .

Algorithm 1: MEM Algorithm for Spatial Modal Regression

Data: Sample observations {(Yi, Xi)}i∈In and bandwidths h1, h2.
Result: Final modal estimates [m̂(x), m̂(1)(x)T ]T .
while two consecutive solutions are not close enough, i.e.,
∥m̂(x)(g) − m̂(x)(g−1)∥ > 10−4, or a pre-specified maximum
number of iterations (i.e., g =100) is not reached do

if current estimate m̂(x)(g) with iterative indicator g ≥ 1 then

E-Step: Calculate the weight π
(
i | θ(g)

)
, i ∈ In, with the

preliminary estimates of the modal parameters as

π
(
i | θ(g)

)
=

ϕ
[
Yi−a(g)−b

(g)T (Xi−x)
h1

]
K
(
Xi−x
h2

)
∑

i∈In ϕ
[
Yi−a(g)−b

(g)T (Xi−x)
h1

]
K
(
Xi−x
h2

)
∝ ϕ

[Yi − a(g) − b
(g)T (Xi − x)

h1

]
K
(Xi − x

h2

)
,

which is nonnegative and sums to one.

M-Step: Update the estimates with the weight computed
in the E-Step by log-maximization

θ(g+1) = argmax
θ

∑
i∈In

{
π
(
i | θ(g)

)
log

1

h1
ϕ
[Yi − a− bT (Xi − x)

h1

]}
= (X∗TWXX∗)−1X∗TWXY,

where X∗ = (X∗
i1
, · · · ,X∗

iN
)T with X∗

ij
= (1,Xij − x),

j = 1, · · · , N , Y = (Yi1 , · · · ,YiN )
T , and WX is an ñ× ñ

diagonal matrix with diagonal elements {π(i | θ(g)), i ∈ In}.
end

end

In contrast to spatial mean regression, the maximizer θ of the kernel-

based objective function (2.3) does not admit a closed-form solution. To
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2.2 Local Linear Modal Estimation

address this, we adopt a modified efficient MEM algorithm inspired by Yao

et al. (2012) and Yao (2013), leveraging the Gaussian kernel for ϕ(·). The

MEM algorithm iteratively maximizes a surrogate lower bound of the ob-

jective function Qñ(θ), consistent with standard EM theory. Specifically,

by Jensen’s inequality, we obtain log(Qñ(θ)) ≥ 1
ñh1hd

2

∑
i∈In π(i | θ

(g)) log

[ϕ{Yi−a−bT (Xi−x)
h1

}K(Xi−x
h2

)], ensuring monotonic ascent towards a local op-

timum of the log-kernel likelihood. We emphasize, however, that the MEM

algorithm does not guarantee convergence to the global mode. Since the

objective surface is generally non-convex and may exhibit multiple local op-

tima, the convergence behavior is inherently sensitive to initialization. We

provide an extensive discussion in the Supplementary Material-S1 detail-

ing practical heuristics to mitigate local convergence issues. These include

(i) initializing from multiple starting points such as local linear mean or

quantile estimates; (ii) employing tempered EM variants or incorporating

controlled stochastic perturbations to escape shallow modes; and (iii) select-

ing the final estimate by comparing kernel likelihoods across candidate solu-

tions. In addition, we theoretically establish in Theorem S1 (Supplementary

Material-S1) that the MEM algorithm achieves local quadratic convergence

when initialized sufficiently close to a mode under standard regularity con-

ditions. This theoretical guarantee parallels the Newton–Kantorovich theo-
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2.3 Asymptotic Properties

rem (Ortega and Rheinboldt, 1970), which ensures exponential convergence

within a local neighborhood of the true maximizer. Empirical results in Sec-

tion 3 reinforce this behavior as the modal estimator consistently achieves

higher kernel likelihood than local mean regression, demonstrating robust

performance across a range of noise levels and initialization strategies. We

also note a potential numerical instability in the M-step of Algorithm 1,

which involves inversion of the weighted local design matrix (X∗TWXX
∗).

As h2 → 0, the Gaussian kernel induces exponential decay in the weights

π[i | θ(g)], which may result in near-singularity or high condition numbers

due to insufficient local effective sample sizes. This ill-conditioning arises

from over-localization of the kernel. Nevertheless, the bandwidth selection

procedure in Subsection 2.4 inherently guards against such issues by dis-

couraging excessive localization. The optimal bandwidth rate ñ− 1
d+7 ensures

a stable effective sample size in each neighborhood, preventing degeneracy of

the design matrix. In practice, to further guard against numerical instabil-

ity, we recommend implementing a ridge-regularized version of the M-step

to stabilize matrix inversion; see Supplementary Material-S1 for details.

2.3 Asymptotic Properties

To simplify the exposition, we introduce some notations that will be utilized
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2.3 Asymptotic Properties

subsequently. The letter C denotes a constant, the value of which may vary

for convenience. The symbol “
d→” signifies the convergence in distribution.

For clarity, we define H2 = diag(h2, · · · , h2)d×d, ϕh1(εi) = h−1
1 ϕ(εi/h1), and

Ki = Kh2(Xi−x) = h−d
2 K[(Xi−x)/h2]. For a sequence of random variables

Xn and numbers an, we define Xn = op (an) if Xn/an converges to zero in

probability and Xn = Op (an) if for every c > 0, there exists a finite C such

that P (|Xn/an| ≥ C) ≤ c. We let a function f(n) = O(1) if there exist

some nonzero constant C and N such that f(n)/C → 1 for n ≥ N , and

f(n) = o(1) if f(n)/C → 0 for any constant C. Recursively, g(n) = O[f(n)]

implies g(n)/f(n) = O(1) and g(n) = o[f(n)] indicates g(n)/f(n) = o(1).

We then impose the following regularity conditions C1-C7, which are com-

monly employed in the literature.

C1 The random errors {εi, i ∈ In} have zero mode and are permitted to

be dependent on {Xi, i ∈ In}. The density function g(·) of {εi, i ∈ In}

is continuous in a neighborhood of the point 0, and the conditional

density g(ε | X) < g(0 | X) for all ε ̸= 0. It is also assumed that

g(εi, εj | Xi,Xj) exists and is uniformly bounded for all i, j ∈ ZN .

C2 For the kernel function K(·) : Rd → R, it is bounded with a com-

pact support [−M,M ]d for some constant M > 0 and satisfies
∫
uuT

K(u)du < ∞ and
∫
uuTK2(u)du < ∞. It is also integrable and con-
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2.3 Asymptotic Properties

tinuous almost everywhere, with
∫
K(u)du = 1 and

∫
|K(u)|du < ∞.

C3 The random field is strictly stationary. For all district i and j in

ZN , the vectors Xi and Xj admit a joint density fi,j(·). Moreover,

|fi,j(x′,x′′) − f(x′)f(x′′)| ≤ C for all i, j ∈ ZN and all x′,x′′ ∈ Rd,

where 0 < C < ∞ and f(·) denotes the marginal density of X. Also,

the function x 7→ f(x) is strictly positive and continuous for all x.

C4 The spatial modal regression function m(·) is at least twice differen-

tiable in an open neighborhood of x. Denoting m(1)(x) and m(2)(x)

as the gradient vector and the Hessian matrix of m(·) evaluated at x,

respectively, the function x → m(2)(x) is continuous at all x.

C5 The function χ(·) satisfies χ(n′, n′′) ≤ Cmin(n′, n′′), ∀ n′, n′′ ∈ N for

some C > 0. The mixing process fulfills a polynomial mixing condi-

tion φ(t) ≤ Ct−µ for some µ > (2+ δ) (N +a)/δ. In addition, the fol-

lowing equation is satisfied: limm→∞ ma
∑∞

i=m iN−1 {φ(i)}δ/(2+δ) = 0

for some constant a > δN/(2 + δ).

C6 There exist two sequences pn := (p1, · · · , pN) ∈ ZN and qn := (q,

· · · , q) ∈ ZN , with q → ∞ such that p =
∏N

k=1 pk = o[(ñh1h
d
2)

1/2],

q/pk → 0, nk/pk → ∞ for all k = 1, · · · , N , and ñφ(q)→ 0 as n → ∞.

C7 The bandwidths h1 and h2 tend to zero in a manner that q(h1h
d
2)

δ/a(2+δ)

> 1 with integer q defined in condition C6, and (h1h
d
2)

−δ/(2+δ)
∑∞

i=q i
N−1
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2.3 Asymptotic Properties

{φ(i)}δ/(2+δ) → 0 as n → ∞ with function φ(·) listed in condition C5.

The conditions itemized above are standard in the setting of local

smoothers and modal regression models required for asymptotics, and their

justification can be detailed. Due to space limitations, we have included the

comprehensive explanations of the aforementioned conditions in the Supple-

mentary Material-S2. We now state the consistency result for the developed

estimators in the complex spatial dependence setting.

Theorem 1. Under the regularity conditions C1-C7, with probability ap-

proaching one, as n → ∞, h1 → 0, h2 → 0, and ñhd
2h

5
1 → ∞, there exist

consistent maximizers [m̂(x), m̂(1)(x)] of (2.3) such that

i. |m̂(x)−m(x)| = Op

[ (
ñhd

2h
3
1

)−1/2
+ h2

1 + h2
2

]
;

ii. ∥H2[m̂
(1)(x)−m(1)(x)]∥ = Op

[ (
ñhd

2h
3
1

)−1/2
+ h2

1 + h2
2

]
.

Theorem 1 establishes that the convergence rates of the proposed spatial

modal estimators remain unaffected by the presence of spatial dependence,

provided that the degree of dependence satisfies the strong mixing condition

specified in condition C5. In the special case where d = 1, our estimators

reduce to classical ones for independent data, recovering the conver-

gence behavior known from the i.i.d. setting; see Ullah et al. (2022).

Remark 1. The convergence rates of the resulting modal estimators ma-
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2.3 Asymptotic Properties

tch those in the independent case under the spatial strong mixing condition

(condition C5), which ensures summable dependence across lattice sites.

This condition enables the application of empirical process theory and cen-

tral limit theorems for strongly mixing random fields; see Rio (2017). Con-

ceptually, the mixing coefficients control the effective dependence range so

that the cumulative dependence contributes bounded higher-order terms to

the asymptotic variance. As a result, the leading stochastic order remains

driven by the local kernel smoothing behavior rather than long-range depen-

dence. However, if the decay of mixing coefficients is too slow, these bounds

may no longer hold, and the convergence rates may degrade accordingly.

To establish asymptotic normality, we begin by obtaining a representa-

tion for θ̂−θ0, where θ0 represents the true value. Let R(Xi) = S(Xi)−(θ̂−

θ0)
TXi and S(Xi) = m(Xi)−m(x)−m(1)(x)(Xi − x). By taking the first

derivative of (2.3), the solution θ̂ satisfies
∑

i∈In Kiϕ
(1)
h1

[εi +R(Xi)]X
∗
i =∑

i∈In Ki

[
ϕ
(1)
h1

(εi) + ϕ
(2)
h1

(εi)R(Xi) +
1
2
ϕ
(3)
h1

(ε∗i )R
2(Xi)

]
X∗

i = 0, where X∗
i =

[1 (Xi − x)h−1
2 ]T , ε∗i lies between εi and εi + R(Xi), and ϕ

(c)
h1
(εi) repre-

sents the cth derivative of ϕh1(εi). The following two lemmas establish a

Bahadur-type expansion in the context of modal regression.

Lemma 1. Define (Sñ)ij :=
(
ñhd

2

)−1∑
i∈In

(
Xi−x
h2

)
i

(
Xi−x
h2

)
j
K
(

Xi−x
h2

)
,

i, j = 0, 1, · · · , d. Assume that conditions C2, C3, and C5 hold, and the
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bandwidth h2 tends to zero in such a way that ñhd
2 → ∞ and nkh

δd/[a(2+δ)]
2 >

1 as n → ∞. Then, for all x and u = (u1, · · · , ud)
T ∈ Rd,

Sñ
p→ S :=

[
f(x)

∫
Rd K(u)du f(x)

∫
Rd u

TK(u)du

f(x)
∫
Rd uK(u)du f(x)

∫
Rd uu

TK(u)du

]
,

where “
p→” denotes the convergence in probability.

Lemma 2. Define Wñ =
∑

i∈In X
∗
iKiϕ

(1)
h1
(εi) andmij(x) = ∂2m(x)/∂xi∂xj.

Assume that the same conditions in Theorem 1 hold. We can then obtain

θ̂ − θ0 =
h2
2

2
S−1Λ[1 + op(1)] +

S−1Wñ

ñg(2)(0 | X = x)
(1 + op(1)),

where Λ =

[
f(x)

∑d
i=1

∑d
j=1mij(x)

∫
Rd uiujK(u)du

f(x)
∑d

i=1

∑d
j=1mij(x)

∫
Rd uiujuK(u)du

]
.

The proof of Lemma 1 involves straightforward calculations and is omit-

ted in this paper. Built on the preceding lemmas, the asymptotic normal-

ity of the local linear spatial modal estimators under weak conditions can

be demonstrated by establishing the result W ∗
ñ = 1√

ñh1hd
2

∑
i∈In ϕ

(1)
(

εi
h1

)
K
(

Xi−x
h2

)
X∗

i
d→ N

[
0,
∫
ϕ2(t)t2dtg(0 | X = x)f(x)Σ

]
; see technical proofs

in the Supplementary Material-S7. The expression of Σ is in Theorem 2.

Theorem 2. With ñhd+4
2 h3

1 = O(1) and ñhd
2h

7
1 = O(1), under the same

conditions as Theorem 1, if nk

(
h1h

d
2

)δ/(2+δ)a
> 1 for all k = 1, · · · , N as

n → ∞, the estimators satisfying the consistency results in Theorem 1 have
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the following asymptotic result

√
ñhd

2h
3
1

[(
m̂(x)−m(x)

h2[m̂
(1)(x)−m(1)(x)]

)
− S−1

(
h2
2

2
Λ− h2

1

2

g(3)(0 | X = x)

g(2)(0 | X = x)
Γ

)]

d→ N
[
0,

∫
ϕ2(t)t2dt

g(0 | X = x)

[g(2)(0 | X = x)]2
f(x)S−1ΣS−1

]
,

where Γ =

[
f(x)

∫
Rd K(u)du

f(x)
∫
Rd uK(u)du

]
and Σ =

[ ∫
Rd K

2(u)du
∫
Rd u

TK2(u)du∫
Rd uK

2(u)du
∫
Rd uu

TK2(u)du

]
.

Corollary 1. With ñhd+4
2 h3

1 = O(1), ñhd
2h

7
1 = O(1), and nk

(
h1h

d
2

)δ/(2+δ)a

> 1 for all k = 1, · · · , N as n → ∞, if furthermore, the kernel K(·) is a

symmetric function, the result in Theorem 2 can be reinforced into

√
ñhd

2h
3
1

(
m̂(x)−m(x)−B0(x)

h2[m̂
(1)(x)−m(1)(x)−B1(x)]

)
d→ N

[
0,

(
σ2
0(x) 0

0 σ2
1(x)

)]
,

where B1(x) = 0, B0(x) =

[∫
Rd

K(u)du

]−1
h2
2

2

d∑
i=1

mii(x)

∫
Rd

u2
iK(u)du−

h2
1

2

g(3)(0 | X = x)

g(2)(0 | X = x)
, σ2

0(x) =

∫
ϕ2(t)t2dt

f(x)

g(0 | X = x)

[g(2)(0 | X = x)]2

[∫
Rd

K(u)du

]−1

∫
Rd

K2(u)du

[∫
Rd

K(u)du

]−1

, and σ2
1(x) =

∫
ϕ2(t)t2dt

f(x)

g(0 | X = x)

[g(2)(0 | X = x)]2[∫
Rd

uuTK(u)du

]−1 ∫
Rd

uuTK2(u)du

[∫
Rd

uuTK(u)du

]−1

.

The asymptotic normality results in Theorem 2 are stated for m(x) and

m(1)(x) at a specific site x that is not too near the boundary of the support
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of the covariates. In fact, by applying the traditional Cramér-Wold device,

these results can be conveniently generalized to a joint asymptotic normality

result for multiple sites. With optimal bandwidths obtained by minimiz-

ing asymptotic MSE, m̂(x) converges to m(x) at a rate of Op(ñ
−2/(7+d)),

which is smaller than the convergence rare [Op(ñ
−1/(4+d))] achieved by lo-

cal linear mean estimation; see Hallin et al. (2004). This slower conver-

gence rate is the trade-off for estimating the mode. With undersmoothing

(limñ→∞ ñhd+4
2 h3

1 → 0 and limñ→∞ ñhd
2h

7
1 → 0), the asymptotic bias can be

disregarded, and the estimators are centered at true values.

The spatial dependence complicates the proof of Theorem 2. We utilize

Bernstein’s technique by decomposing the finite summation into smaller

pieces involving “large” and “small” blocks. Particularly, we need to verify

whether condition C6 holds for the preceding theorem. Suppose there exists

a sequence of positive integers q = qn → ∞ such that qn = o[
(
ñh1h

d
2

)1/(2N)
].

We can choose sequence sn → 0 in a manner that q =
(
ñh1h

d
2

)1/2N
sn. Tak-

ing pk :=
(
ñh1h

d
2

)1/2N
s
1/2
n , k = 1, · · · , N , it follows that q/pk = s

1/2
n → 0,

p =
(
ñh1h

d
2

)1/2
s
N/2
n = o

[ (
ñh1h

d
2

)1/2 ]
, and ñφ(q) = ñq−µ → 0. As n → ∞,

we obtain p <
(
ñh1h

d
2

)1/2
for large ñ. Because of ñ/p > (ñh−1

1 h−d
2 )1/2 → ∞,

it is apparent that nk/pk → ∞ for all k. As a result, condition C6 is satis-

fied. The details of the proof are listed in the Supplementary Material-S7.
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2.3 Asymptotic Properties

Remark 2. The asymptotic results also hold for the nonisotropic diver-

gence case under appropriate conditions. Assume that conditions C1-C4

hold with φ(t) = O (t−µ) for some µ > (2 + δ) (N + a)/δ. In addition, let

the sequence of positive integers q = qn → ∞, the bandwidth h1 factor

into h1 :=
∏N

i=1 h1i , and the bandwidth h2 factor into h2 :=
∏N

i=1 h2i , such

that ñq−µ → 0, q = o
[
min1≤k≤N

(
nkh1kh

d
2k

)1/2 ]
, and q(h1h

d
2)

δ/a(2+δ) > 1

for some constant a > δN/(2 + δ). Under these conditions, Theorem 2

remains valid as n → ∞ with min1≤l≤N{nl} → ∞ (nonisotropic diver-

gence). To demonstrate this result, we can follow the steps for the proof of

Theorem 2 in the Supplementary Material-S7, ensuring that condition C6

is satisfied. Suppose that there exists a sequence snk
→ 0 such that q =

o
[
min1≤k≤N

(
nkh1kh

d
2k

)1/2
snk

]
as n → ∞. By taking pk =

(
nkh1kh

d
2k

)1/2
s
1/2
nk , we have q/pk ≤ s

1/2
nk → 0, p =

(
ñh1h

d
2

)1/2∏N
k=1 s

1/2
nk = o

[ (
ñh1h

d
2

)1/2 ]
,

and ñφ(q) = ñq−µ → 0. As n → ∞, we obtain pk <
(
nkh1kh

d
2k

)1/2
. It is evi-

dent that nk/pk >
(
nkh1kh

−d
2k

)1/2 → ∞. As a result, condition C6 is fulfilled.

Remark 3. If we impose χ (n′, n′′) ≤ C (n′ + n′′ + 1)κ for some C > 0 and κ >

1 in condition C5 and replace the last requirement in condition C6 with

(ñκ+1/p)φ(q) → 0, Theorem 2 still holds as n → ∞. To establish this

result, it suffices to verify that the bound on the term Q1 in the Supple-

mentary Material-S7 remains valid, which is true since Q1 ≤ C
∑M

i=1
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2.4 Optimal Bandwidths

[p+ (M − i)p+ 1]κφ(q) ≤ CpκMκ+1φ(q) ≤ C
(
ñ(κ+1)/p

)
φ(q) → 0.

The local linear approximation offers significantly improved boundary

behavior compared to the local constant approach. For simplicity, we as-

sume that there is a univariate regressor X (d = 1) with a bounded support,

i.e., [−M,M ]. By employing an argument similar to the one developed in

the proof of Theorem 2, it can be shown that asymptotic normality still

holds near the boundary point x = −M + ch2 with c > 0. However, there

are adjustments in the asymptotic biases and variances; see Supplementary

Material-S3 for the details. Indeed, this boundary advantage would likely

become more pronounced asN grows. Consequently, local linear modal esti-

mation exhibits automatic good behavior at boundaries without the need for

boundary correction. This holds true for both the left boundary point x =

−M+ch2 and the right boundary point x = M−ch2. Even if point M were

an interior point, the same results would still apply with c = M .

2.4 Optimal Bandwidths

The shape and smoothness of the spatial modal function, like other non-

parametric regression models, depends to a large extent on the values of the

bandwidths, which typically involve a trade-off between bias and variance.

Nevertheless, there is no data-driven rule that permits automatic and opti-
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mal selection of bandwidth values in the context of spatial modal regression.

The asymptotic results in Theorem 2 enable finding asymptotically optimal

bandwidths by minimizing the asymptotic MSE (AsyMSE) of m̂(x)

AsyMSE(m̂(x)) = Bias(m̂(x))2 +Var(m̂(x))

≈
{
eTS−1

(
h2
2

2
Λ− h2

1

2

g(3)(0 | X = x)

g(2)(0 | X = x)
Γ

)}2

+

∫
ϕ2(t)t2dt

ñhd
2h

3
1

g(0 | X = x)

[g(2)(0 | X = x)]2

f(x)eTS−1ΣS−1e,

where e = (1, · · · , 1︸ ︷︷ ︸
d

, 0, · · · , 0︸ ︷︷ ︸
d

)T . Accordingly, the optimal bandwidths h1

and h2 satisfy ĥ1 = ĥ2∆
1/2
1 with ∆1 =

A
√

(3+d)2+12d−(3+d)A

2dB
, A = eTS−1Λ,

and B = eTS−1 g
(3)(0|X=x)

g(2)(0|X=x)
Γ, where

ĥ2 =

(
g(0 | X = x)

[g(2)(0 | X = x)]2
d
∫
ϕ2(t)t2dtf(x)eTS−1ΣS−1e

∆
3/2
1 (A2 − AB∆1)

) 1
d+7

ñ− 1
d+7 .

As evident, the optimal rate for bandwidths is larger than that for spatial

mean regression. However, the exact values of bandwidths depend on un-

known quantities, i.e., the derivatives of the density of the error components,

making direct application of the provided bandwidth expression challenging.

Practically selecting bandwidths involves adopting the plug-in method

to approximate unknown terms in the expressions of the asymptotically op-

timal bandwidths, as suggested by Ullah et al. (2021). Nonetheless, this can

be challenging for nonparametric estimators in reality, leading to potential
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2.4 Optimal Bandwidths

inaccuracies and computational expenses due to additional tuning parame-

ters for estimating the density function. To facilitate the selection process,

we employ the approach outlined by Ullah et al. (2023) for bandwidth

choice in this paper. Particularly, we let ĥ2 = 1.05σmñ
−1/(d+6) and ĥ1 =

1.6MADñ−1/(d+6), where σm represents the standard deviation of εi,m = Yi−

m̂m(Xi), MAD = medj{|εj,m−medi(εi,m)|}, m̂m(·) denotes the correspond-

ing mean estimate, and med is the median value. These choices take into

account the AsyMSE-optimal rate and the requirement for undersmoothing.

While this method for choosing bandwidths may not produce globally opti-

mal estimates (i.e., obtained by minimizing the integrated MSE), it provides

a practical data-based “rule of thumb” for real-world applications that has

been demonstrated to work well in simulations listed in Section 3.

In addition to the previous bandwidth selection procedure, we can also

employ the density-based cross-validation method to choose bandwidths.

Specifically, we minimize the integrated squared error (ISE) of the gen-

eral conditional density estimate ISE =
∫∫

[f̂X,Y (Xi, Yi) − fX,Y (Xi, Yi)]
2

fX(Xi)dXidYi, which gives the cross-validation criterion listed below

minCV (h1, h2) =
1

ñ

∑
i∈In

∫
f̂ 2
X,Y,−i(Xi, Y )dY

f̂ 2
X,−i (Xi)

− 2

ñ

∑
i∈In

f̂X,Y,−i(Xi, Yi)

f̂X,−i (Xi)
,

under which −i indicates the absence of observations Xi and Yi. We uti-
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lize this method in the simulation examples to assess the effectiveness of the

previously suggested “rule of thumb” selection procedure; see Section 3 and

Supplementary Material-S4. However, the detailed theoretical investigation

of bandwidth selection using modal cross-validation is outside the reach of

this paper due to the absence of a natural order for time series with spatial

data. Such a technical analysis will be pursued in future research.

Remark 4. In practice, the assumption of stationarity may often be vio-

lated. An alternative approach is to assume that nonstationarity arises from

the presence of a spatial trend. Instead of the stationary process {Yi,Xi},

for example, we actually observe {Ỹi, X̃i} with Ỹi = µY (si)+Yi, X̃i = µX (si)

+Xi, i ∈ In, in which si = (si1 , · · · , siN ) := (i1/n1, · · · , iN/nn) and s ∈

[0, 1]N 7→ [µY (s), µX(s)] is some deterministic but unknown trend func-

tions. Since {Yi,Xi} is unobservable, we need to estimate {µY (si) , µX (si)}

first using local constant spatial mean regression such that

µ̂Y (s) =
∑
i∈In

Ỹiw (si, s) and µ̂X(s) =
∑
i∈In

X̃iw (si, s) ,

where w (si, s) := W [(si − s) /gh] /
{∑

j∈In W [(sj − s) /gh]
}
, W (·) is a ker-

nel function, and gh is the bandwidth that approaches zero. The estimation

procedure described in the preceding parts is subsequently performed to the

residuals {(Ŷi, X̂i) := [Ỹi− µ̂Y (si) , X̃i− µ̂X (si)]}, which is supposed to sat-

isfy the stationarity assumption. The local linear estimators of the spatial
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modal regression are then specified as

(â, b̂) = argmax
a,b

1

ñh1hd
2

∑
i∈In

ϕ

[
Ŷi − a− bT (X̂i − x)

h1

]
K

(
X̂i − x

h2

)
.

As the preliminary spatial smoothing (µ̂Y (s), µ̂X(s)) of the original data

{Ỹi, X̃i} is derived via mean regression, which converges faster than the spa-

tial modal estimators, we can achieve the same asymptotic normality results

as stated in Theorem 2 under certain suitable conditions.

3. Numerical Examples

We in this section present numerical studies to gain insights into the es-

tablished estimation procedure, where the bandwidth selection procedures

outlined in Subsection 2.3 are implemented. Due to space constraints, we

include additional simulation studies in the Supplementary Material-S4.

3.1 Monte Carlo Experiments

We consider a model in a two-dimensional space (N=2), where we denote

the sites i in Z2 as (i, j) instead of (i1, i2). For simplicity, we assume X to be

a scalar random variable. In what follows, we use DGP to represent the data

generating process. We generate two hundred simulated spatial datasets in-

dependently. To measure the performance of estimators, we utilize the
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3.1 Monte Carlo Experiments

average MSE (AMSE) indicator, i.e., AMSE = 1
200n1n2

∑200
l=1

∑n1

i=1

∑n2

j=1[
m̂(l) (Xi,j)−m0 (Xi,j)

]2
, where m0 (Xi,j) denotes the true spatial regres-

sion function, and m̂(l) (Xi,j) represents the estimate in the lth replication.

DGP 1 (Asymmetric Data) We generate data from the following model

Yi,j = m(Xi,j) + σ(Xi,j)εi,j with m(x) =
1

3
ex +

1

3
e−x, (3.1)

where σ(Xi,j) =
1
3
e−Xi,j , {εi,j, (i, j) ∈ Z2} are originated from 0.5N (−1, 2.52)

+0.5N (1, 0.52) with mean zero and mode one, and {Xi,j, (i, j) ∈ Z2}, ac-

cording to Definition 2.1, are produced by the spatial autoregression Xi,j =

sin(Xi−1,j +Xi,j−1+Xi+1,j +Xi,j+1)+ ei,j with {ei,j, (i, j) ∈ Z2} ∼ N (0, 1).

We then have the following spatial modal regression function

Mode(Yi,j | Xi,j) = m0,mode (Xi,j) =
1

3
eXi,j +

2

3
e−Xi,j , (3.2)

which is different from mean regression E(Yi,j | Xi,j) =
1
3
eXi,j + 1

3
e−Xi,j .

The above model is utilized to simulate data across a rectangular region

of n1 × n2 sites, represented as a grid {(i, j) : 76 ≤ i ≤ 75 + n1, 76 ≤ j ≤

75 + n2} for various values of n1 and n2. Each replication is obtained iter-

atively through the following procedures: initially simulating i.i.d. random

variables ei,j over the grid {(i, j) : 1 ≤ i ≤ 150+n1, 1 ≤ j ≤ 150+n2}; sub-

sequently, setting all initial values of Xi,j to zero and generating Xi,j’s over

{(i, j) : 1 ≤ i ≤ 150+n1, 1 ≤ j ≤ 150+n2} recursively using spatial autore-
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gression models. Starting with these generated values, the process is iter-

ated 20 times. To achieve stationarity, the results at the final iteration step

for (i, j) inside {(i, j) : 76 ≤ i ≤ 75+n1, 76 ≤ j ≤ 75+n2} are considered as

the simulated n1 × n2 sample. For comprehensive illustration, we conduct

simulation studies using four different combinations of sample sizes, namely

(n1, n2)=(10, 10), (15, 15), (20, 20), and (20, 30), respectively.

(a) (n1, n2) = (10, 10) (b) (n1, n2) = (15, 15) (c) (n1, n2) = (20, 20)

(d) (n1, n2) = (20, 30) (e) (n1, n2) = (10, 10)-CV (f) (n1, n2) = (15, 15)-CV

(g) (n1, n2) = (20, 20)-CV (h) (n1, n2) = (20, 30)-CV

Figure 1: Local Linear Modal Estimator of Function m(·)

The simulation results based on 200 independent replications are dis-
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played in Figure 1, where the true spatial modal regression function is

indicated by the green dotted line, and the estimated functions m(·) across

all replications are shown as solid curves. For each scenario, we report the

AMSE to quantify estimation accuracy. Although spatial mean regression

estimates are not shown in the figure due to their poor comparability under

asymmetric error structures, we note that the proposed modal estimator

consistently yields substantially higher conditional kernel likelihood values

when compared to the mean estimator, reinforcing its appropriateness for

modal estimation. These comparative results are available upon request. It

can be observed in Figure 1-(a)-(d) that the proposed estimation procedure

behaves effectively and can capture the spatial regression line even for sam-

ple sizes as small as (n1, n2) = (10, 10). As expected, the simulation results

align well with the asymptotic theory presented in Subsection 2.3, where

the AMSE decreases as the sample size increases. To demonstrate the ap-

plicability of the suggested bandwidth selection method, we also report re-

sults with bandwidth values obtained from the modal cross-validation (CV)

method. It is evident from Figure 1 that there is no significant difference in

estimates between these two bandwidth choices, indicating the good perfor-

mance of the suggested bandwidth selection procedure. Note that while the

MEM algorithm used for estimation does not guarantee global convergence,
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our simulation experiments demonstrate that with carefully chosen initial

values, such as those based on local linear mean or quantile regression, the

algorithm consistently converges to a dominant mode of the conditional dis-

tribution. Across all 200 replications, we observe no evidence of convergence

to spurious or suboptimal local modes. Moreover, we implement a post-

estimation validation step by comparing conditional kernel likelihood values

across multiple candidate solutions, selecting the maximizer with the high-

est likelihood. These empirical observations, together with the robustness

heuristics described in the Supplementary Material-S1, offer strong support

for the reliability of the proposed modal estimation framework.

3.2 Empirical Analysis of Soil Data

The spatial modeling of soil nutrient levels play a critical role in agron-

omy, environmental monitoring, and precision agriculture. Accurate spa-

tial estimation of key chemical properties, such as calcium, phosphorus, and

potassium, is essential for informing site-specific soil management, optimiz-

ing fertilizer application, and minimizing environmental impacts; see White

(2005). Among these properties, cation exchange capacity (CTC) is partic-

ularly important, as it reflects a soil’s ability to retain essential nutrients

and thus directly influences crop productivity. Understanding how CTC
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varies across space in response to underlying soil chemistry is therefore not

only of scientific interest but also of direct relevance to agricultural planning

and policy. However, the conditional distribution of soil properties often de-

viates substantially from normality due to heterogeneity in environmental

factors such as micro-climate, historical land use, and contamination; see

Figure 2. These complexities frequently give rise to skewed, heavy-tailed, or

multimodal patterns that render mean regression inadequate. Modal regres-

sion, by targeting the most frequent value, provides a robust alternative that

better characterizes the dominant spatial behavior of soil properties.

To illustrate the utility of our proposed spatial modal regression, we

analyze the soil250 dataset available from the R package GeoR, which

originates from a uniformity trial involving 250 undisturbed soil samples

collected at a depth of 25cm and spaced regularly over a 25× 10 grid. This

dataset comprises 22 variables representing key soil chemistry properties

relevant to agronomy and environmental monitoring. For our analysis, we

focus on modeling the relationship between calcium (Ca) and CTC (N = 2

and d = 1). Ca is a key determinant of soil fertility, playing a critical role in

improving soil structure, enhancing root development, and facilitating nu-

trient uptake. Moreover, Ca deficiency or imbalance can significantly alter

the soil’s ion-exchange properties, which directly impacts CTC. Therefore,
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understanding how Ca affects the modal (i.e., most typical) level of CTC is

crucial for site-specific soil management and sustainable agricultural prac-

tices. To estimate this relationship, we consider the model

CTCi,j = m(Cai,j) + εi,j, 1 ≤ i ≤ 25, 1 ≤ j ≤ 10, (3.3)

where the x-coordinate corresponds to Linha, the y-coordinate is Coluna,

and the conditional mode satisfies Mode(εi,j | Cai,j) = 0. As noted in Re-

mark 4, we first apply the sm.regression function from the sm R package

to remove large-scale spatial trends in both Ca and CTC, ensuring approxi-

mate stationarity in the residual spatial processes prior to modal estimation.

Figure 2: Spatial Perspectives of Soil Dataset

Figure 2 provides a spatial and distributional overview of the soil dataset

and motivates the use of spatial modal regression. The top row displays the
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3.2 Empirical Analysis of Soil Data

raw surfaces of Ca and CTC, both of which exhibit spatial trends and large-

scale variation, indicating the presence of nonstationarity in the original

data. Following the detrending procedure, the resulting surfaces (bottom-

left panels) reveal localized irregularities and fine-scale spatial heterogene-

ity, suggesting complex spatial dynamics that are unlikely to be captured

by global smoothing techniques or mean regression models. Notably, the

empirical density of the detrended CTC values (bottom-right panel) shows

marked asymmetry and possible multimodality, with heavy tails and de-

viations from Gaussian behavior. These distributional departures are fur-

ther substantiated by the estimated conditional density of CTC given Ca

(bottom-middle panel), which displays complex, ridged patterns and non-

elliptical contours. Such structures violate key assumptions of mean regres-

sion, potentially leading to estimates that fall in regions of low probability

density and obscure the dominant spatial response behavior. As modal re-

gression is robust to distributional asymmetry and tail behavior, it provides

a more interpretable model for conditional spatial structure of the soil data.

Figure 3 presents a comparative analysis of spatial estimation results

derived from mean regression and the proposed modal regression, highlight-

ing substantive differences in both magnitude and spatial structure. The

top-left panel displays the estimated mean regression surface, which shows a
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Figure 3: Mean and Modal Estimation Results

generally smooth gradient, with an initial upward trend in CTC followed by

a noticeable decline across certain regions of the spatial domain. The modal

regression surface (top-middle panel), by contrast, reveals more localized

variability and maintains a plateau-like structure in high-Ca regions. This

suggests that modal regression better preserves spatial features that may be

flattened or misrepresented by mean regression. The top-right panel depicts

the pointwise difference between the two regression surfaces (modal minus

mean). Notably, the modal estimates are consistently higher in regions with

elevated Ca content, suggesting that the mean regression surface may be

biased downward by sparse or extreme low-CTC values. The bottom-left
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wireframe plot offers a complementary 3D view of these differences, empha-

sizing the high-frequency spatial structure and spatially clustered deviations

that occur primarily in agronomically meaningful areas. The lower row of

contour plots reinforces this interpretation. The mean regression contours

(bottom-middle) appear overly smooth and may miss important local fea-

tures, whereas the modal regression contours (bottom-right) exhibit sharper

boundaries and more localized plateaus. These localized features are agri-

culturally interpretable, as they may reflect real spatial heterogeneity driven

by underlying soil composition, management zones, or drainage patterns.

Importantly, the plateauing behavior observed in the modal surface aligns

with established agronomic findings, which suggest that increasing Ca con-

centration enhances CTC only up to a certain point, beyond which addi-

tional Ca does not yield further gains; see White (2005) and Brady and Weil

(2016). The modal regression surface accurately captures this saturation

pattern by maintaining high but stable CTC values in regions with high Ca.

By contrast, the mean regression surface suggests a decline in CTC in these

regions, a result that is not only inconsistent with agronomic findings but

also likely driven by the influence of heavy-tailed residuals or skewed error

structures. These findings underscore the utility of modal regression as a

robust and informative tool for spatial modeling in agricultural contexts.
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4. Concluding Remarks

We in this paper propose a nonparametric spatial modal regression model

designed to uncover relationships between the dependent variable and spa-

tial covariates that may be overlooked by conventional spatial mean or quan-

tile regression approaches. Under mild regularity conditions, the asymptotic

normality of the estimators ofm(x) and its gradient is established by relying

on a Bahadur representation. By virtue of a Gaussian kernel, we construct a

modified MEM algorithm to numerically estimate the developed model and

provide rules for bandwidth selection in practice. The proposed estimation

procedure is supported by both asymptotic theory and favorable finite sam-

ple properties through simulation studies and empirical analysis. Addition-

ally, we discuss several extensions, including scenarios where the size of the

rectangular domain tends to infinity at different rates, and provide insights

into various other model perspectives to offer a comprehensive understand-

ing of the suggested regression. Finally, to avoid the curse of dimension-

ality and relax the linearity assumption, we extend the developed model

to propose an additive spatial modal regression model; see Supplementary

Material-S5. All presented findings can serve as a foundation for future re-

search on mode-based analysis in spatial settings, with broad potential for

applications in environmental science, agriculture, and beyond.
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Supplementary Material

The Supplementary Material contains comments for MEM algorithm and

theoretical conditions, boundary analysis, additional simulations, general-

izations to additive and extended spatial modal regression models, as well

as technical proofs of the main theorems and supporting lemmas.
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