
Statistica Sinica Preprint No: SS-2024-0335
Title Online-Forgetting Process for Debiased-Lasso Using

Summary Statistics
Manuscript ID SS-2024-0335

URL http://www.stat.sinica.edu.tw/statistica/
DOI 10.5705/ss.202024.0335

Complete List of Authors Xiao Guo,
Xu Zhang and
Hai Zhang

Corresponding Authors Hai Zhang
E-mails zhanghai@nwu.edu.cn

Statistica Sinica

Online-Forgetting Process for debiased-Lasso

using Summary Statistics

Xiao Guo, Xu Zhang and Hai Zhang∗

School of Mathematics, Northwest University, China

Abstract: Data removal and data forgetting have become standard requests for

users, since the enactment of regulations such as GDPR and CCPA. In this pa-

per, we study the data removal problem for statistical inference of lasso within an

online-forgetting framework, where the new data batch arrives sequentially while

the earliest data batch is removed to ensure a constant memory constraint. We

propose a new algorithm, dOnFL, which has several appealing properties: it is

computationally efficient compared to retraining the model, and it avoids access-

ing the full data batches by utilizing only the current batch and the summary

statistics of historical batches within the available time frame. In particular,

we develop an efficient debiasing technique to reduce the bias induced by the

ℓ1 penalty of lasso. Theoretically, we establish the asymptotic normality of the

proposed estimator as the total sample size of available data batches goes to in-

finity. The simulation and real data experiments demonstrate the merits of the

proposed algorithm.

*Corresponding author (zhanghai@nwu.edu.cn).

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

Key words and phrases: Data removal, Summary statistics, Statistical inference,

Lasso

1. Introduction

Advancements in computing and measurement technologies have led to a

surge in streaming data collected over time across various fields, such as the

user data from internet companies and organizations. On the other hand,

legal requirements, including the EU’s General Data Protection Regulation

(GDPR) and the California Consumer Privacy Act (CCPA), mandate that

companies and organizations should remove and forget certain user personal

data to protect their privacy. Specifically, users have the right to request

that the platform retain their personal information only for a limited time.

Therefore, statistical and machine learning methods should be developed

in an online-forgetting fashion.

In recent years, there has been a growing interest in developing methods

that address data forgetting and data removal requirements. Specifically,

Li et al. (2021) proposed an online-forgetting process for linear regression

models, where they considered the First-in-First-Delete (FIFD) scenario,

namely, the data owner is required to delete the oldest data batch upon

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://oag.ca.gov/privacy/ccpa

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

receiving the newest data batch to maintain a fixed memory limit. The

proposed method achieves perfect forgetting by yielding the same solution

as retraining the model using the available data. Guo et al. (2020) studied

the problem in a framework called certified removal, where the model, after

data removal, is indistinguishable from a model that never seen the data to

begin with. They considered the L2-regularized linear and logistic models

and developed a Newton update on the model parameters to remove the

influence of the deleted data point. There exists several other work on

data removal; see Ginart et al. (2019); Liu and Tsaftaris (2020); Izzo et al.

(2021); Bourtoule et al. (2021), among others.

Most of the aforementioned work focused on the parameter estima-

tion in statistical or machine learning models using low-dimensional data.

However, high-dimensional data are increasingly prevalent across various

application fields. In addition, apart from the parameter estimation, the

statistical inference is also vital and useful to quantify the uncertainty of

the estimated parameters.

Motivated by this, we consider the statistical inference in high-dimensional

regression under the FIFD scenario (Li et al., 2021). To solve this problem,

the online-forgetting statistical inference method should possess the follow-

ing three desirable properties. The first is computational efficiency. A naive

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

way to achieve perfect forgetting is to retrain the model. However, when the

data batches sequentially arrive, retraining the model becomes extremely

time-consuming. Therefore, the method should be time-economic. The

second is statistical accuracy. The statistical accuracy is expected to be

sacrificed in order to pursue the computational efficiency. Thus, the goal is

to seek a trade-off between the computational efficiency and the statistical

accuracy. In particular, to facilitate the statistical inference, the estimator

should be unbiased asymptotically. The third is summary statistics com-

patibility. Due to privacy and data avaliablity issues, the method should

be based on the summary statistics rather than the raw data.

The contributions of this work can be summarized as follows. First, we

develop a new algorithm calledDebiasedOnline-Forgetting Lasso (dOnFL),

tailored for statistical inference under the scenario where the data batch se-

quentially arrives and the earliest data batch are required to be removed

upon the arrival of new data batch. The algorithm only requires the current

data batch and the summary statistics of all historical data batches within

the available time frame, thereby mitigating concerns related to data avail-

ability and privacy. By eliminating the summary statistics corresponding to

the data batches to be removed, the algorithm achieves the data forgetting

requirement. To the best of our knowledge, this is the first algorithm for

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

the data removal in high-dimensional regression models. It is worth men-

tioning that the online algorithms for lasso have been studied by Langford

et al. (2009); Duchi et al. (2011); Tarres and Yao (2014); Sun et al. (2024),

among others. In these algorithms, the parameters are updated using new

data and the most recently updated parameters, which rely on old data and

therefore do not satisfy the data forgetting requirements.

Second, we develop a new and efficient debiasing technique to reduce the

bias induced by the ℓ1 penalty of lasso, in order to facilitate the following-

up statistical inference. In the offline setting, various bias-correction meth-

ods have been proposed; see Javanmard and Montanari (2014); van de

Geer et al. (2014); Zhang and Zhang (2014), among others. However, most

methods require the availability of the entire dataset. Even without this

requirement, applying these offline techniques to the current data batch and

available summary statistics would be rather time consuming in the online-

forgetting scenario, where the estimator should be updated in time once

the newest data batch arrives and the oldest data batch is removed. In the

online setting, various debiasing techniques have also been proposed; see

van de Geer et al. (2014); Chen et al. (2020); Shi et al. (2021); Deshpande

et al. (2023); Han et al. (2024), among others. However, similar to the

offline debiasing techniques, most online debiasing algorithms require the

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

entire data and the online algorithms implicitly use all the previous data.

To alleviate these issues, when the new data batch arrives, we use the new

data batch combined with the previously computed summary statistics of

the remaining available data batches to debias.

Last but not least, we provide the asymptotic normality of the proposed

estimator as the total sample size of available data batches goes to infinity,

under certain conditions. Based on the asymptotic normality, we construct

the confidence interval of the proposed estimator, in order to quantify its

uncertainty. The effectiveness of the constructed confidence interval is val-

idated by experiments.

The remainder of this paper is organized as follows. Section 1.1 in-

troduces the notations. Section 2 presents the online-forgetting process

for lasso. Section 3 establishes the asymptotic property of the proposed

method. Sections 4 and 5 evaluates the proposed method via simulation

and real data experiments. Section 6 concludes the paper. All the proofs,

technical lemmas, and additional simulations are provided in the Supple-

mentary Materials.

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

1.1 Notations

1.1 Notations

The following notations are generally needed. ∥A∥2 denotes the spectral

norm of the matrix A or the Euclidian norm of vector A, ∥A∥∞ denotes the

infinity norm of the matrix A, and ∥A∥0 denotes the number of non-zero

entries of the matrix or vector A. We write f(n) ≍ g(n) or f(n) = Θ(g(n))

if cg(n) ≤ f(n) ≤ Cg(n) for some constants 0 < c < C < ∞; f(n) ≲

g(n) or f(n) = O(g(n)) if f(n) ≤ Cg(n) for some constant C < ∞; and

f(n) ≳ g(n) or f(n) = Ω(g(n)) if f(n) ≥ cg(n) for some constant c > 0.

Moreover, f(n) = o(g(n)) if f(n)/g(n) → 0 as n → ∞; f(n) = op(g(n)) if

f(n)/g(n)→ 0 with probability approaching to one as n→∞.

2. Online-Forgetting Process for lasso

In this section, we develop the online-forgetting process for the lasso prob-

lem. In particular, the online-forgetting process for parameter estimation

and bias-correction are proposed, respectively. Afterwards, the confidence

interval for the debiased estimator is obtained.

2.1 Parameter Estimation

Suppose the data batches arrive sequentially. At time stamp 1 ≤ b <∞, the

data batch Db = {y(b), X(b)} is arrived. Considering the following online-

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

2.1 Parameter Estimation

forgetting scheme. At time stamp b, the data batches with time stamps

more than T prior to b are forgotten. That is, the available data batches

are D[a,b] = {Da, ..., Db}, where a = b + 1− T if b ≥ T and a = 1 if b < T .

In addition, due to the data avaliability and privacy issue, for time stamps

in the range [a, b − 1], only the summary statistics are available. For all

1 ≤ b <∞, the samples in data batch b are independently generated from

the following high-dimensional linear model,

y(b) = X(b)β0 + ϵ(b),

where y(b) ∈ Rnb is a response vector, X(b) = (x
(b)
1 , . . . , x

(b)
p) ∈ Rnb×p in-

cluding nb samples of dimension p, the true parameter β0 ∈ Rp is sparse

and unknown, and the error term ϵ(b) has i.i.d. entries with mean 0 and

variance σ2.

If the original data batches D[a,b] are all available, we can in principle

use the following offline lasso to obtain an estimator β̂[a,b] of β0,

β̂[a,b](λ[a,b]) = arg min
β∈Rp

{
1

2
∑b

j=a nj

b∑
j=a

∥y(j) −X(j)β∥22 + λ[a,b]∥β∥1

}
,

(2.1)

where we use the subscript [a, b] to emphasis that the tuning parameter λ

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

2.1 Parameter Estimation

depends on the data batches D[a,b]. However, in our set-up, the original

data except the data except the data batch Db are not available. Instead,

we only have access to the summary statistics. Define

SS [a,b] :=
{
S[a,b], U [a,b]

}
with S[a,b] :=

b∑
j=a

(X(j))TX(j) and U [a,b] :=
b∑

j=a

(X(j))Ty(j). (2.2)

With the summary statistics SS [a,b], we can then obtain β̂
[a,b]
r by the Itera-

tive Shrinkage-Thresholding Algorithm (ISTA) (see, e.g., Beck and Teboulle

(2009); Parikh et al. (2014)), i.e., repeating the following two steps:

• Step 1: β̂[a,b] ← β̂[a,b] − ηb∑b
j=a nj

(S[a,b]β̂[a,b] − U [a,b]),

• Step 2: β̂
[a,b]
r = Soft(β̂

[a,b]
r , ηbλ[a,b]) := sign(β̂

[a,b]
r)max{0, |β̂[a,b]

r |−ηbλ[a,b]},

where β̂
[a,b]
r (r = 1, . . . , p) is the r-th component of β̂[a,b] and ηb is the step

size. Note that to ensure the data forgetting, the initial value of β̂[a,b] is set

to zero at each time step, which effectively eliminates the possibility that

parameters retain information from the previously observed but forgotten

data. These two steps are carried out iteratively until convergence.

Remark 1. The ISTA algorithm belongs to the more general proximal gra-

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

2.1 Parameter Estimation

dient descent algorithm (Parikh et al., 2014). For the optimization problem

min
x

f(x) + g(x),

where f : Rn → R and g : Rn → R ∪ {+∞} are closed proper convex and

f is differentiable, it has been shown that the proximal gradient algorithm

with fixed step size converges provided that the step size η ∈ (0, L] with L

being the Lipschitz constant of ∇f(x) (Parikh et al., 2014). Following this

theoretical guidence, in practice, we fix ηb in the ISTA algorithm as

ηb =
1

λmax((X [a,b])TX [a,b])
, (2.3)

where λmax(·) denotes the maximum eigenvalue of the corresponding matrix.

Remark 2. In paractice, the tuning parameter λ[a,b] in (2.1) and the ISTA

algorithm can be selected by minimizing the prediction error of data batch Db

using the estimator sequence β̂[a,b−1](λ) obtained from previous data batches

D[a,b−1], i.e.,

arg min
λ∈λ̃

1

nb

∥y(b) −X(b)β̂[a,b−1](λ)∥22, (2.4)

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

2.2 Bias-correction

where λ̃ denotes the set of candidate values.

From Steps 1 and 2, it is evident that the parameter estimation entirely

depends on the summary statistics. When the new data batch Db+1 (b ≥

T) arrives and the most previous data batch Da is forgotten, namely, the

available data bathes are D[a+1,b+1] = {Da+1, . . . , Db, Db+1}, we only need

to update the summary statistics as follows:

S[a+1,b+1] := S[a,b] + S(b+1) − S(a) and U [a+1,b+1] := U [a,b] + U (b+1) − U (a),

(2.5)

where S(j) and U (j) are defined by (2.2) with a = b = j. By substituting the

updated summary statistics S[a+1,b+1] and U [a+1,b+1] into Step 1 and Step 2,

the new estimator β̂
[a+1,b+1]
r (r = 1, . . . , p) can be obtained.

2.2 Bias-correction

It is well-known that the lasso estimator is biased, which is harmful for

statistical inference problems such as the interval estimation. Therefore,

we need to correct the bias of the estimator β̂[a,b] obtained in Section 2.1.

In the offline setting, Zhang and Zhang (2014) proposed a method called

LDPE for removing the bias of lasso. However, LDPE is not suitable for

the online-forgetting set-up considered in this work. First, LDPE used all

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

2.2 Bias-correction

the original data for the parameter estimation and bias-correction, however,

the raw data is not available in our set-up. Second, upon the arrival (resp.

removal) of the new data batch Db+1 (resp. Da), the new training data

batches become D[a+1,b+1]. Their method corrects the bias by solving p

(p − 1)-dimensional lasso using all the raw data D[a+1,b+1], which is time

consuming when the training data sequentially updates and the number of

samples in D[a+1,b+1] is large.

To alleviate these issues, we develop an efficient online-forgetting pro-

cess for the bias-correction based on summary statistics. At high level, to

improve the computational efficiency, upon the arrival of new data batch,

we use the new data batch combined with the previously computed parame-

ters corresponding to the remaining available data batches to construct the

bias-correction term. The proposed debiasing approach proceeds as follows.

Suppose the training data batches are D[a,b]. For each data batch Dj =

{y(j), X(j)}, recall x(j)
r be the r-th column of X(j) and let X

(j)
−r be the sub-

matrix of X(j) excluding the r-th column. Upon the arrival of data batch

Dj, conduct the following lasso regression of x
(j)
r on X

(j)
−r for each r =

1, . . . , p

γ̂(j)
r = arg min

γ∈Rp−1

{
1

2nj

∥x(j)
r −X

(j)
−rγ∥22 + λ(j)

r ∥γ∥1
}
, (2.6)

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

2.2 Bias-correction

and denote the corresponding residual

ẑ(j)r := x(j)
r −X

(j)
−r γ̂

(j)
r , (2.7)

where (2.6) can be solved efficiently by the coordinate descent algorithm

(CD) (Friedman et al., 2007), among others; the tuning parameter λ
(j)
r in

(2.6) can be selected using data-dependent procedures applied to data batch

Dj, such as AIC, BIC, or cross-validation, among others.

Our debiased estimator β̂
[a,b]
de = {β̂[a,b]

de,r } of β̂[a,b] is then defined as

β̂
[a,b]
de,r = β̂[a,b]

r +

{
b∑

j=a

(ẑ(j)r)Tx(j)
r

}−1 { b∑
j=a

(ẑ(j)r)Ty(j) −
b∑

j=a

(ẑ(j)r)TX(j)β̂[a,b]

}
.

(2.8)

The debiased estimator β̂
[a,b]
de is motivated by the method LDPE of Zhang

and Zhang (2014). To improve the computational efficiency, we compute

the residual ẑ(j) for each data batch Dj, and use the summation term∑b
j=a(ẑ

(j)
r)Tx

(j)
r to approximate the corresponding term of LDPE that com-

putes the residual on all available datasets.

In the sequel, we provide the updating formulas when the new data

batch Db+1 arrives and the oldest data batch Da is forgotten. To that end,

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

2.2 Bias-correction

denote

DS(j)
r :=

{
a
(j)
1,r, a

(j)
2,r, A

(j)
r

}
:=

{
(ẑ(j)r)Tx(j)

r , (ẑ(j)r)Ty(j), (ẑ(j)r)TX(j)
}
. (2.9)

The debiased estimator can then be written as

β̂
[a,b]
de,r = β̂[a,b]

r +
{
a
[a,b]
1,r

}−1 {
a
[a,b]
2,r − A[a,b]

r β̂[a,b]
}
, (2.10)

which is β̂
[a,b]
r plus a debiasing term computed byDS [a,b]

r =
{
a
[a,b]
1,r , a

[a,b]
2,r , A

[a,b]
r

}
with

a
[a,b]
1,r :=

b∑
j=a

(ẑ(j)r)Tx(j)
r =

b∑
j=a

a
(j)
1,r,

a
[a,b]
2,r :=

b∑
j=a

(ẑ(j)r)Ty(j) =
b∑

j=a

a
(j)
2,r,

A[a,b]
r :=

b∑
j=a

(ẑ(j)r)TX(j) =
b∑

j=a

A(j)
r .

(2.11)

Therefore, we can obtain the updated debiasing statistics

DS [a+1,b+1]
r :=

{
a
[a+1,b+1]
1,r , a

[a+1,b+1]
2,r , A[a+1,b+1]

r

}

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

2.2 Bias-correction

via

a
[a+1,b+1]
i,r := a

[a,b]
i,r + a

(b+1)
i,r − a

(a)
i,r , A[a+1,b+1]

r := A[a,b]
r + A(b+1)

r − A(a)
r , i = 1, 2.

(2.12)

The whole procedure is summarized in Algorithm 1. We now compare

the time complexity of dOnFL with its offline counterpart, called dLASSO

algorithm. The dLASSO shares the same ISTA algorithm for parameter

estimation in Stage I as dOnFL, but utilizes all available batches to compute

the bias term in Stage II. See Algorithm S.1 in the Supplementary Materials

for the details of the dLASSO. We consider the set-up where both of dOnFL

and dLASSO update from time stamp b with available data batches being

D[a,b] = {Da, ..., Db} to time stamp b+ 1 with available data batches being

D[a+1,b+1], where b−a+1 = T . For simplicity, let the sample size nj = n for

each data batch, and suppose n < p. For both algorithm, denote k as the

number of iterates in the ISTA algorithm involved in Stage I (parameter

estimation) and l as the number of iterates in the CD algorithm involved

in Stage II (bias-correction). The time complexity of dOnFL turns out

to be O(lnp2 + kp2), which is lower than the time complexity O(T lnp2 +

kp2) of dLASSO. The computational advantage of dOnFL over dLASSO

mainly comes from the bias-correction stage. Details of the time complexity

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

2.3 Interval Estimation

computation can be found in Table S.1 of the Supplementary Materials.

2.3 Interval Estimation

The effect of bias-correction is theoretically validated in Theorem 1 in Sec-

tion 3, where the asymptotic normality of the debiased estimator β̂
[a,b]
de is

established. Before introducing Theorem 1, we here would like to use the

results to construct valid confidence interval for the true parameter β0.

Based on Theorem 1, the asymptotic standard error of β̂
[a,b]
de,r is στ̂

[a,b]
r ,

where σ is the true standard error of the error term and

τ̂ [a,b]r =

√
m

[a,b]
r /a

[a,b]
1,r with m[a,b]

r :=
b∑

j=a

m(j)
r :=

b∑
j=a

(ẑ(j)r)T ẑ(j)r , (2.13)

where recall the definition of ẑ
(j)
r ’s and a

[a,b]
1,r in (2.7) and (2.11), respectively.

We estimate σ using the standard estimator σ̂
[a,b]
ϵ given as follows,

σ̂[a,b]
ϵ :=

{
(y[a,b] −X [a,b]β̂[a,b])T (y[a,b] −X [a,b]β̂[a,b])∑b

j=a nj − ∥β̂[a,b]∥0

}1/2

=

{
(y[a,b])Ty[a,b] − 2(β̂[a,b])T (X [a,b])Ty[a,b] + (β̂[a,b])T (X [a,b])TX [a,b]β̂[a,b]∑b

j=a nj − ∥β̂[a,b]∥0

}1/2

=

{
V [a,b] − 2(β̂[a,b])TU [a,b] + (β̂[a,b])TS[a,b]β̂[a,b]∑b

j=a nj − ∥β̂[a,b]∥0

}1/2

where V [a,b] := (y[a,b])Ty[a,b] =
∑b

j=a(y
(j))Ty(j) :=

∑b
j=a V

(j), and U [a,b] and

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

2.3 Interval Estimation

Algorithm 1 Debiased Online-Forgetting Lasso (dOnFL)

1: Input: step size ηb+1, regularization parameters λ[a+1,b+1] and λ
(b+1)
r , SS [a,b],

DS [a,b]r , SS(j), DS(j)r and nj , for j = a, . . . , b and r = 1, . . . , p.
2: Collect data batch: Db+1 = {X(b+1), y(b+1)}.

3: Stage I: Parameter estimation.
4: Compute statistics SS(b+1) =

{
S(b+1), U (b+1)

}
with S(b+1) =

(X(b+1))TX(b+1) and U (b+1) = (X(b+1))T y(b+1);
5: Update statistics SS [a+1,b+1] =

{
S[a+1,b+1], U [a+1,b+1]

}
defined in (2.5)

using SS [a,b], SS(a) and SS(b+1);
6: repeat

7: Step 1: β̂[a+1,b+1] ← β̂[a+1,b+1]− ηb+1∑b+1
j=a+1 nj

(S[a+1,b+1]β̂[a+1,b+1]−U [a+1,b+1]);

8: Step 2: β̂
[a+1,b+1]
r ← Soft

(
β̂
[a+1,b+1]
r , ηb+1λ[a+1,b+1]

)
for r = 1, ..., p;

9: until convergence.

10: Stage II: Bias-correction.
11: for r = 1 to p do

12:

Step 1: Compute ẑ
(b+1)
r = x

(b+1)
r −X

(b+1)
−r γ̂

(b+1)
r , where

γ̂(b+1)
r = arg min

γ∈Rp−1

{
1

2nb+1
∥x(b+1)

r −X
(b+1)
−r γ∥22 + λ(b+1)

r ∥γ∥1
}
;

13:

Step 2: Compute DS(b+1)
r =

{
a
(b+1)
1,r , a

(b+1)
2,r , A

(b+1)
r

}
with

a
(b+1)
1,r = (ẑ(b+1)

r)Tx(b+1)
r ; a

(b+1)
2,r = (ẑ(b+1)

r)T y(b+1);A(b+1)
r = (ẑ(b+1)

r)TX(b+1)

and update DS [a+1,b+1]
r =

{
a
[a+1,b+1]
1,r , a

[a+1,b+1]
2,r , A

[a+1,b+1]
r

}
defined in

(2.12) using DS [a,b]r , DS(a)r and DS(b+1)
r ;

14:

Step 3: Using β̂[a+1,b+1] to construct the debiased estimator

β̂
[a+1,b+1]
de,r = β̂[a+1,b+1]

r +
{
a
[a+1,b+1]
1,r

}−1 {
a
[a+1,b+1]
2,r −A[a+1,b+1]

r β̂[a+1,b+1]
}
.

15: end for

16: Store and Clear: Store SS [a+1,b+1], DS [a+1,b+1]
r , SS(j), DS(j)r , nj for j =

a+ 1, . . . , b+ 1 and r = 1, . . . , p; and clear others.
17: Output: The non-debiased estimator β̂[a+1,b+1] and debiased estimator

β̂
[a+1,b+1]
de .

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

2.3 Interval Estimation

S[a,b] are the summary statistics defined in (2.2). The estimator β̂[a,b] is

defined in Section 2.1.

Upon the arrival of the new data batch Db+1 and the removal of the

old data batch Da, we obtain β̂
[a+1,b+1]
de,r . The estimated standard error of

β̂
[a+1,b+1]
de,r , denoted by σ̂

[a+1,b+1]
ϵ τ̂

[a+1,b+1]
r , can be updated using statistics as

follows,

σ̂[a+1,b+1]
ϵ =

{
V [a+1,b+1] − 2(β̂[a+1,b+1])TU [a+1,b+1] + (β̂[a+1,b+1])TS[a+1,b+1]β̂[a+1,b+1]∑b+1

j=a+1 nj − ∥β̂[a+1,b+1]∥0

}1/2

;

(2.14)

τ̂ [a+1,b+1]
r =

√
m

[a+1,b+1]
r /a

[a+1,b+1]
1,r , (2.15)

where

V [a+1,b+1] = V [a,b] + V (b+1)− V (a) and m[a+1,b+1]
r = m[a,b]

r +m(b+1)
r −m(a)

r .

(2.16)

The process for constructing the confidence interval is summarized in

Algorithm 2.

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

Algorithm 2 (1-α)-confidence interval estimation

1: Input: significance level α, summary statistics V [a,b], m
[a,b]
r , V (j), and m

(j)
r ,

for j = a, . . . , b and r = 1, . . . , p, and all the input of Algorithm 1.
2: Collect data batch: Db+1 = {y(b+1), X(b+1)};
3: Using Algorithm 1 to obtain the non-debiased estimator β̂[a+1,b+1] and debi-

ased estimator β̂
[a+1,b+1]
de , and the auxiliary summary statistics.

4: Compute V (b+1) = (y(b+1))T y(b+1) and m
(b+1)
r = (ẑ

(b+1)
r)T ẑ

(b+1)
r , and update

V [a+1,b+1] and m
[a+1,b+1]
r using (2.16);

5: Compute σ̂
[a+1,b+1]
ϵ and τ̂

[a+1,b+1]
r using (2.14) and (2.15);

6: Obtain (1− α)-confidence interval estimators of β0,r,(
β̂
[a+1,b+1]
de,r − Φ−1(1−

α

2
)
(
σ̂
[a+1,b+1]
ϵ τ̂

[a+1,b+1]
r

)
, β̂

[a+1,b+1]
de,r +Φ−1(1−

α

2
)
(
σ̂
[a+1,b+1]
ϵ τ̂

[a+1,b+1]
r

))
.

7: Store and Clear: Store V [a+1,b+1], m
[a+1,b+1]
r , V (j), and m

(j)
r , for j =

a+ 1, . . . , b+ 1 and r = 1, . . . , p, and clear others.
8: Output: The (1− α)-confidence interval estimator of β0 in line 6.

3. Asymptotic Normality

In this section, we focus on the debiased estimator β̂
[a,b]
de,r defined in (2.10)

and establish its asymptotic property. To that end, we first introduce the

assumptions and notations.

Assumption 1. We assume the following assumptions hold:

(i) The row vectors of each data batch X(j) for j = 1, 2, . . . are i.i.d.

sub-Gaussian random vectors with covariance matrix Σ;

(ii) The smallest eigenvalue σmin of Σ satisfiesand 0 < C < σmin, where

M is some positive constant;

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

(iii) The maximum diagonal element of Σ satisfies maxjΣj,j = O(1);

(iv) The error terms ϵ
(j)
l ’s for j = 1, 2, . . . and l = 1, ..., nj are i.i.d. sub-

Gaussian random variables with variance σ2 and finite sub-Gaussian

parameter.

Define Θ = Σ−1 and its row sparsity level sr = #{k : Θr,k ̸= 0, r ≤ k}.

Define the sparsity level of the true parameter β0 as s0 = #{j : β0,j ̸= 0}.

For r = 1, . . . , p, define

γr := arg min
γ∈Rp−1

E[∥xr −X−rγ∥22]. (3.1)

Recall the bias-correction step of Algorithm 1, (3.1) is actually the popula-

tion version of (2.6). Regardless of the computational efficiency, the ideal

estimator for γr in the offline setting is

γ̂[a,b]
r := arg min

γ∈Rp−1

{
1∑b

j=a nj

b∑
j=a

∥x(j)
r −X

(j)
−rγ∥22 + λ̃[a,b]∥γ∥1

}
. (3.2)

The next lemma shows that under certain conditions, the estimator in (2.6)

is close to that in (3.2), which is critical in establishing the asymptotic

normality of β̂
[a,b]
de,r .

Lemma 1. Suppose Assumption 1 holds, nj ≳ sr log p, λ
(j)
r ≍

√
log p
nj

in

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

(2.6) for j = 1, . . . , b, and λ̃[a,b] ≍
√

log p∑b
j=a nj

in (3.2). Then, for r = 1, . . . , p,

with probability at least 1-p-3, the γ̂
(j)
r in (2.6) and the γ̂

[a,b]
r in (3.2) satisfies

∥γ̂(j)
r − γ̂[a,b]

r ∥1 ≲ sr

√
log p

nj

. (3.3)

With Lemma 1 at hand, the next theorem provides the asymptotic

properties of β̂
[a,b]
de,r .

Theorem 1. Suppose Assumption 1 holds, nj ≳ srlogp,
∑b

j=a nj ≳ s0 log p,

λ
(j)
r ≍

√
log p
nj

in (2.6) for j = 1, . . . , b, r = 1, . . . , p, and λ[a,b] ≍
√

log p∑b
j=a nj

in (2.1), λ̃[a,b] ≍
√

log p∑b
j=a nj

in (3.2). If

s0sr log p
∑b

j=a

√
nj∑b

j=a nj

= op(1) and
(b− a)s2r log p∑b

j=a nj

= op(1),

then for r = 1, 2, . . . , p and large enough
∑b

j=a nj, we have

(τ̂ [a,b]r)−1(β̂
[a,b]
de,r − β0,r) := w[a,b]

r +∆[a,b]
r ,

where (τ̂
[a,b]
r)−1 ≍

√∑b
j=a nj, w

[a,b]
r ∼ N (0, σ2), and ∆

[a,b]
r = op(1). This

means

(τ̂ [a,b]r)−1(β̂
[a,b]
de,r − β0,r)

d−→ N (0, σ2).

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

Theorem 1 shows that the debiased estimator is asymptotically unbi-

ased and the convergence rate is of the standard order (
∑b

j=a nj)
−1/2. Theo-

rem 1 also provides theoretical support for the confidence interval proposed

in Algorithm 2.

4. Simulation

In this section, we evaluate the finite sample performance of the proposed al-

gorithm dOnFL. In Section 4.1, we verify the effect of debiasing in dOnFL.

In Section 4.2, we test the computational efficiency of dOnFL. In Section

4.3, we examine the robustness of dOnFL to the distribution of noise and

covariates, and to the selection of tuning parameters.

The following three algorithms are generally compared:

• dOnFL: the proposed algorithm. The tuning parameter λ[a,b] in (2.1)

is selected by minimizing the prediction error; see Remark 2. The

tuning parameter λ
(b)
r in (2.6) is selected using AIC. The step size ηb

is set as the theoretical value; see Remark 1 for details.

• OnFL: the counterpart of dOnFL without debiasing (i.e., Stage II of

Algorithm 1). The tuning parameters and step size are selected using

the same procedures as in dOnFL.

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

• dLASSO: the offline counterpart of dOnFL, ; see Algorithm S.1. It

consists with dOnFL in Stage I, but differs in Stage II by leveraging

all available data batches D[a,b] up to time stamp b (1 ≤ b < ∞) to

compute the bias term. Therefore, dLASSO can be regarded as the

baseline method for statistical accuracy. The tuning parameters and

step size are also selected using the same procedures as in dOnFL.

Experimental set-up: The general parameter settings are as follows,

with some modifications in Section 4.3. We fix the number of avaliable

batches at each time stamp as T = b− a+ 1 = 3. We assume the identical

sample size nj’s in each data batch size and let nj vary in {10, 20, 30, 40, 50, 60},

that is, the number sample sizes in each time stamp vary in {30, 60, 90, 120, 150, 180}.

The dimension of true parameters is p = 200. The true parameter spar-

sity level s0 = 10, with s0/2 strong signals β0,s = 1 and s0/2 weak signals

β0,w = 0.3. The variance of Gaussian noise is σ = 0.3. The covariates are

generated from the zero-mean multivariate Gaussian distribution. We con-

sider two set-up for the covariance matrices: set-up I: Σ = {0.4|i−j|}i,j=1,...,p;

set-up II: Σ = I. All the experiments througout the paper were performed

on a laptop with Intel Core i7-1165G7 CPU 2.80GHz, 16GB memory, and

64-bit WS operating-system.

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

4.1 Bias evaluation

4.1 Bias evaluation

We validate the debiasing ability of the proposed method dOnFL and com-

pare it with the non-debiased counterpart OnFL, as well as the offline coun-

terpart dLASSO. To this end, we measure the scaled L1 norm of three

methods with respect to the strong signals and weak signals. Specifically,

the scaled L1 norm with respect to strong signal is defined as ∥β̂s−β0,s∥1
∥β0,s∥1 ,

where β̂s denotes the estimated parameters of the strong signals. The av-

erage scaled L1 norm of the estimators obtained at all the time stamps is

reported. Similarly, we can define the scaled L1 norm with respect to weak

signal.

Figures 1 and 2 display the average results over 20 replications under the

two set-ups for the covariance matrix, respectively. We have the following

observations. First, dOnFL consistently outperform OnFL, showing the

efficacy of debiasing. Second, dOnFL performs only slightly worse than or

comparably to the baseline method dLASSO, despite using fewer samples

for debiasing. Third, as expected, for both methods, the strong signals are

estimated more accurately than the weak signals.

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

4.2 Computational efficiency evaluation

0.
05

0.
10

0.
15

0.
20

Sc
ale

d
L 1

 n
or

m

Sample size

β0,r = 0.3 (OnFL)
β0,r = 0.3 (dOnFL)
β0,r = 0.3 (dLASSO)

30 60 90 120 150 180

(a) Scaled L1 norm of weak signals
0.

05
0.

10
0.

15
0.

20
Sc

ale
d

L 1
 n

or
m

Sample size

β0,r = 1 (OnFL)
β0,r = 1 (dOnFL)
β0,r = 1 (dLASSO)

30 60 90 120 150 180

(b) Scaled L1 norm of strong signals

Figure 1: The performance of dOnFL,OnFL and dLASSO in terms of the
scaled L1 norm under the set-up I for the covariance matrix. The scaled
L1 norm is reported separately for strong and weak signals. The sample
size represents the number of samples in the avaliable batches at each time
stamp.

4.2 Computational efficiency evaluation

We evaluate the computational efficiency of dOnFL and compare it with the

offline counterpart dLASSO. The goal is to test whether dOnFL enhances

the computational efficiency with limited loss of the statistical accuracy.

Regarding the computational efficiency, we test the median running

time (seconds) of two algorithms over 20 replications. Specifically, the run-

ning time is the total time over all time stamps as the number of sample size

varies. Regrading the statistical accuracy, we test three measures. The first

is the scaled L1 norm defined in Section 4.1. The second is the length of

the estimated confidence interval. The third is the coverage rate of the esti-

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

4.2 Computational efficiency evaluation

0.
05

0.
10

0.
15

0.
20

Sc
al

ed
 L

1 n
or

m

Sample size

β0,r = 0.3 (OnFL)
β0,r = 0.3 (dOnFL)
β0,r = 0.3 (dLASSO)

30 60 90 120 150 180

(a) Scaled L1 norm of weak signals
0.

05
0.

10
0.

15
0.

20
Sc

al
ed

 L
1 n

or
m

Sample size

β0,r = 1 (OnFL)
β0,r = 1 (dOnFL)
β0,r = 1 (dLASSO)

30 60 90 120 150 180

(b) Scaled L1 norm of strong signals

Figure 2: The performance of dOnFL, OnFL and dLASSO in terms of the
scaled L1 norm under the set-up II for the covariance matrix. The scaled
L1 norm is reported separately for strong and weak signals. The sample
size represents the number of samples in the avaliable batches at each time
stamp.

mated confidence interval, namely, the probability of the estimated interval

covering the true underlying parameter.

Figures 3 and 4 show the average (median for the running time) results

over 20 replications under the two set-ups for the covariance matrix, re-

spectively. We have the following observations. First, the proposed method

dOnFL shows superior advantage over dLASSO in terms of the compu-

tational efficiency; see also the discussions for time complexity in Section

2. Second, the proposed method dOnFL is close to dLASSO in terms of

statistical accuracy, though slightly inferior. In particular, compared with

dLASSO, dOnFL achieves a shorter interval length at the expense of a lower

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

4.2 Computational efficiency evaluation

coverage probability. And the scaled L1 norm of two methods are compara-

ble. Based on these observations, we conclude that dOnFL greatly enhances

the computational efficiency without sacrificing the statistical accuracy too

much.

40
60

80
10

0
12

0
14

0
Ru

nn
in

g
tim

e

Sample size

dOnFL
dLASSO

30 60 90 120 150 180

(a) Running time (seconds)

0.
2

0.
4

0.
6

0.
8

Sc
ale

d
L 1

 n
or

m

Sample size

β0,r ≠ 0 (dOnFL)
β0,r ≠ 0 (dLASSO)

30 60 90 120 150 180

(b) Scaled L1 norm

0.
8

1.
0

1.
2

1.
4

1.
6

CI
−l

en
gt

h

Sample size

β0,r ≠ 0 (dOnFL)
β0,r ≠ 0 (dLASSO)

30 60 90 120 150 180

(c) Length of interval

0.
7

0.
8

0.
9

1.
0

Co
ve

ra
ge

 ra
te

Coverage rate=0.95

Sample size

β0,r ≠ 0 (dOnFL)
β0,r ≠ 0 (dLASSO)

30 60 90 120 150 180

(d) Coverage rate

Figure 3: The performance of dOnFL and dLASSO in terms of the running
time (seconds), scaled L1 norm, length of interval and coverage rate under
the set-up I for the covariance matrix.

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

4.2 Computational efficiency evaluation

50
10

0
15

0
20

0
Ru

nn
in

g
tim

e

Sample size

dOnFL
dLASSO

30 60 90 120 150 180

(a) Running time (seconds)

0.
2

0.
4

0.
6

0.
8

Sc
al

ed
 L

1 n
or

m

Sample size

β0,r ≠ 0 (dOnFL)
β0,r ≠ 0 (dLASSO)

30 60 90 120 150 180

(b) Scaled L1 norm

0.
6

0.
8

1.
0

1.
2

1.
4

C
I−

le
ng

th

Sample size

β0,r ≠ 0 (dOnFL)
β0,r ≠ 0 (dLASSO)

30 60 90 120 150 180

(c) Length of interval

0.
7

0.
8

0.
9

1.
0

C
ov

er
ag

e
ra

te

Coverage rate=0.95

Sample size

β0,r ≠ 0 (dOnFL)
β0,r ≠ 0 (dLASSO)

30 60 90 120 150 180

(d) Coverage rate

Figure 4: The performance of dOnFL and dLASSO in terms of the running
time (seconds), scaled L1 norm, length of interval and coverage rate under
the set-up II for the covariance matrix.

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

4.3 Sensitivity analysis and additional experiments

4.3 Sensitivity analysis and additional experiments

First, we test the robustness of dOnFL against the distribution of covariates

and noise. Specifically, we consider several combinations of settings where

the covariates follow Gaussian, Uniform, or t-distributions, and the noise

follows Exponential, Uniform, or t-distributions. Apart from the distribu-

tional assumptions, the basic experimental setups are the same as described

above. Table 1 presents the results when the covarites are Gaussian under

set-up I and the noise terms are i.i.d. U(−0.5, 0.5). More results are regu-

lated to Table S.2-S.6 in the Supplementary Materials. It turns out in all the

considered set-ups, the dOnFL has advantage in computational efficiency

over the dLASSO without sacrificing much statistical accuracy, which shows

the robustness of the proposed algorithm.

Second, we conduct experiments to compare the effect of three meth-

ods for the tuning parameter selection in (2.6), namely, AIC, BIC, cross-

validation (CV), on the statistical performance of three methods, namely,

dOnFL, OnFL and dLASSO. The experimental set-up is the same with

that introduced at the begining of this section with the identical covari-

ance matrix. The results are regulated to Figure S.1 in the Supplementary

Materials. The results demonstrate that all three methods exhibit robust

performance regardless of the tuning parameter selection approach.

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

4.3 Sensitivity analysis and additional experiments

Table 1: The average performance of dOnFL, OnFL and dLASSO over 20
replications as the sample size (i.e., the number of samples in the avail-
able batches at each time stamp) increases. The error terms are i.i.d.
U(−0.5, 0.5) and the covariates for each sample are i.i.d. p-dimensional
Gaussian N(0,Σ) with Σij = 0.4|i−j|.

Performance Metric Algorithm
Sample Size

30 60 90 120 150 180

Scaled L1 norm of
weak signals β0,r = 0.3

OnFL 0.187 0.171 0.168 0.162 0.159 0.157

dOnFL 0.184 0.122 0.101 0.081 0.081 0.071

dLASSO 0.193 0.119 0.097 0.079 0.064 0.048

Scaled L1 norm of
strong signals β0,r = 1

OnFL 0.175 0.151 0.142 0.138 0.135 0.141

dOnFL 0.099 0.067 0.049 0.040 0.034 0.031

dLASSO 0.097 0.060 0.042 0.032 0.025 0.022

CI-length
dOnFL 1.393 1.172 0.958 0.901 0.774 0.763

dLASSO 1.522 1.386 1.192 1.162 1.022 0.993

Coverage rate
dOnFL 0.645 0.775 0.853 0.921 0.922 0.942

dLASSO 0.670 0.833 0.911 0.930 0.930 0.943

Running time (seconds)
dOnFL 40.340 44.305 52.345 60.100 66.700 69.070

dLASSO 46.745 58.800 77.245 97.660 117.415 127.160

Third, apart from the tuning parameter in (2.6), we also test vari-

ous step sizes in the ISTA algorithm for lasso to see the sensitivity of all

methods. See the experimental details and results in Table S.7 in the Sup-

plementary Materials. It turns out for all the tested step size, the proposed

method dOnFL performs better than OnFL and comparable to dLASSO.

Finally, we conduct a higher dimensional experiment with (p = 800)

and T = b − a + 1 = 2. We assume the identical sample size nj’s in

each data batch size and let nj vary in {80, 120, 160, 200, 240}, that is, the

number sample sizes in each time stamp vary in {160, 240, 320, 400, 480}.

The distribution set-up of the noise and covariates are the same with the

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

set-up II introduced at the begining of this section. The results, summarized

in Table S.8 in the Supplementary Materials, also show that the proposed

dOnFL exhibits slightly lower statistical accuracy compared to dLASSO,

but achieves significantly higher computational efficiency.

5. Real data analysis

In this section, we test the efficacy of dOnFL on three real datasets, Medical

Cost Personal Dataset, California Housing Dataset and Blog Posts Dataset.

To mimic the online-forgetting set-up, we divided each dataset into B total

batches. New batch arrives sequentially and the oldest batch are removed.

The details of each dataset and the corresponding parameter set-ups are as

follows.

Medical Cost Personal Dataset. This dataset contains the age (dis-

crete), sex (binary), body mass index (BMI) (continuous), number of chil-

dren (discrete), smoking status (binary), region of residence (categorical

with 4 classes) and medical cost (continuous) of 1,330 individuals. The goal

is to predict the medical cost using other variables. The raw data can be

found at https://www.kaggle.com/datasets/mirichoi0218/insurance.

We equally divide the dataset into B = 35 batches.

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

https://www.kaggle.com/datasets/mirichoi0218/insurance

California Housing Dataset. In this dataset, each samples represents a

block group in California from the 1990 Census, comprising a total of 20,640

block groups. The goal is to predict the median house value within each

block group using the covariates including median income, median age, total

population, number of households, and the total number of rooms across

all houses in the block group. The raw data is constructed by Pace and

Barry (1997) and can be found at https://www.dcc.fc.up.pt/~ltorgo/

Regression/cal_housing.html. We equally divide the dataset into B =

36 batches.

Blog Posts Dataset. This dataset includes the number of comments

received within 24 hours of a blog post being published, as well as 280

factors that may influence the number of comments. Each sample corre-

sponds to a blog. The goal is to predict the number of comments using

280 variables include average, standard deviation, min, max and median of

the length of time between the publication of the blog post and “current”

time, the length of the blog post and so on. We consider the blog posts

between February 1, 2012, and March 31, 2012, which results in 7,624 sam-

ples. The raw data can be downloaded from https://archive.ics.uci.

edu/ml/datasets/BlogFeedback. We observe that various variables have

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://archive.ics.uci.edu/ml/datasets/BlogFeedback
https://archive.ics.uci.edu/ml/datasets/BlogFeedback

many zeros which may affect the accuracy of prediction. Thus, before im-

plementing the proposed algorithm, we conduct the lasso using the whole

dataset. The number of selected variables results in 21. We treat the blog

post corresponding to each day as one batch which results in B = 59 total

batches.

For each of the three datasets, we evaluate the accuracy and efficiency

of the proposed method dOnFL. In terms of the accuracy, we compare

dOnFL with the non-debiased counterpart OnFL. We also compare the

offline algorithm dLASSO, serving as the gold-standard for the accuracy of

the online-forgetting algorithms. The details of algorithms can be found in

Section 4. We report the average scaled L1 norm over all the time stamps as

the number of retained batches T vary. The norm is then averaged over 20

replications. The results for three datasets are shown in Figure 5. In terms

of the efficiency, we compare dOnFL with the offline algorithm dLASSO.

We report the median running time (seconds) over 20 replications as the

time stamp increases. The results for three datasets are shown in Figure 6.

Similar to the simulation, from the results, we observe that the proposed

dOnFL shows superior efficiency than the offline counterpart dLASSO while

maintaining satisfactory statistical accuracy. In addition, the non-debiased

OnFL performs worse than dOnFL, showing the efficacy of the debiasing

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

technique.

0.
00

1
0.

00
3

0.
00

5
0.

00
7

Sc
al

ed
 L

1 n
or

m

Number of training batches (T)

OnFL
dOnFL
dLASSO

2 4 6 8 10 12 14 16

(a) Medical Cost Personal
Dataset

0.
01

0
0.

01
5

0.
02

0

Sc

al
ed

L
1n

or
m

Number of training batches (T)

OnFL
dOnFL
dLASSO

6 10 14 18 22 26

OnFL
dOnFL
dLASSO

OnFL
dOnFL
dLASSO

(b) California Housing
Dataset

0.
01

3
0.

01
5

0.
01

7
0.

01
9

Sc
al

ed
 L

1 n
or

m

Number of training batches (T)

OnFL
dOnFL
dLASSO

4 6 8 10 12 14 16

(c) Blog Posts Dataset

Figure 5: The performance of dOnFL, OnFL, and dLASSO in terms of
scaled L1 norm on three real datasets.

2.
6

2.
7

2.
8

2.
9

R
un

ni
ng

 ti
m

e
(s

)

Number of training batches (T)

dOnFL
dLASSO

22 24 26 28 30 32

(a) Medical Cost Personal
Dataset

2
3

4
5

6
7

R
un

ni
ng

 ti
m

e
(s

)

Number of training batches (T)

dOnFL
dLASSO

24 26 28 30 32 34

(b) California Housing
Dataset

9
10

11
12

13
R

un
ni

ng
 ti

m
e

(s
)

Number of training batches (T)

dOnFL
dLASSO

8 11 14 17 20 23 26

(c) Blog Posts Dataset

Figure 6: The performance of dOnFL and dLASSO in terms of running
time (seconds) on three real datasets.

6. Conclusion

In this paper, we considered the problem of data removal for statistical in-

ference of lasso. To that end, we developed a new algorithm dOnFL within

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

the online-forgetting framework, where the new data batches arrive sequen-

tially while the earliest data batches are removed to maintain a constant

memory constraint. In particular, we proposed a new debiasing technique to

efficiently reduce the bias induced by lasso. The proposed algorithm dOnFL

enjoys computational efficiency and statistical accuracy, and it is summary

statistics-based. We established the asymptotic normality of dOnFL and

provided the method for confidence interval estimation. Numerical experi-

ments showed the advantage of dOnFL over several competitors.

There are many ways to extend the content of this paper. First, in our

algorithm, the users’ privacy was preserved to some extent by using the

summary statistics instead of the raw data. It is meaningful to study the

problem under a more rigorous privacy-preserving framework, e.g., the dif-

ferential privacy (Dwork et al., 2006; Cai et al., 2023). Second, it would be

interesting to consider other framework for data removal, e.g., the certified

removal (Guo et al., 2020), for the high-dimensional regression problem.

In addition, it is beneficial but challenging to develop the iterative algo-

rithm for data removal just like the stochastic gradient descent algorithm

for online learning (Han et al., 2024).

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

7. Supplementary material

The supplementary material contains the proofs of the main theoretical

results, the technical lemmas, further details of the dLASSO algorithm and

its comparison with dOnFL, as well as additional experimental results.

Acknowledgments

This research was partially supported by the National Natural Science

Foundation of China (Nos.12301384, 12326615) and the Major Key Project

of PCL under Grant PCL2024A06. The authors are grateful to the edi-

tor, associate editor, and two anonymous reviewers for their helpful and

insightful comments.

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

REFERENCES

References

Beck, A. and M. Teboulle (2009). A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM Journal on Imaging Sciences 2 (1), 183–202.

Bourtoule, L., V. Chandrasekaran, C. A. Choquette-Choo, H. Jia, A. Travers, B. Zhang, D. Lie,

and N. Papernot (2021). Machine unlearning. In 2021 IEEE Symposium on Security and

Privacy (SP), pp. 141–159. IEEE.

Cai, Z., S. Li, X. Xia, and L. Zhang (2023). Private estimation and inference in high-dimensional

regression with fdr control. arXiv preprint arXiv:2310.16260 .

Chen, X., J. D. Lee, X. T. Tong, and Y. Zhang (2020). Statistical inference for model parameters

in stochastic gradient descent. Annals of Statistics 48, 251–273.

Deshpande, Y., A. Javanmard, and M. Mehrabi (2023). Online debiasing for adaptively collected

high-dimensional data with applications to time series analysis. Journal of the American

Statistical Association 118 (542), 1126–1139.

Duchi, J., E. Hazan, and Y. Singer (2011). Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research 12 (7), 2121–2159.

Dwork, C., F. McSherry, K. Nissim, and A. Smith (2006). Calibrating noise to sensitivity in

private data analysis. In Theory of Cryptography Conference, pp. 265–284. Springer.

Friedman, J., T. Hastie, H. Höfling, and R. Tibshirani (2007). Pathwise coordinate optimization.

The Annals of Applied Statistics 1 (2), 302–332.

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

REFERENCES

Ginart, A., M. Guan, G. Valiant, and J. Y. Zou (2019). Making AI forget you: Data deletion

in machine learning. Advances in Neural Information Processing Systems 32.

Guo, C., T. Goldstein, A. Hannun, and L. Van Der Maaten (2020, 13–18 Jul). Certified data

removal from machine learning models. In H. D. III and A. Singh (Eds.), Proceedings

of the 37th International Conference on Machine Learning, Volume 119 of Proceedings of

Machine Learning Research, pp. 3832–3842. PMLR.

Han, R., L. Luo, Y. Lin, and J. Huang (2024). Online inference with debiased stochastic gradient

descent. Biometrika 111 (1), 93–108.

Izzo, Z., M. A. Smart, K. Chaudhuri, and J. Zou (2021). Approximate data deletion from ma-

chine learning models. In International Conference on Artificial Intelligence and Statistics,

pp. 2008–2016. PMLR.

Javanmard, A. and A. Montanari (2014). Confidence intervals and hypothesis testing for high-

dimensional regression. Journal of Machine Learning Research 15 (1), 2869–2909.

Langford, J., L. Li, and T. Zhang (2009). Sparse online learning via truncated gradient. Journal

of Machine Learning Research 10, 777–801.

Li, Y., C.-H. Wang, and G. Cheng (2021). Online forgetting process for linear regression models.

In International Conference on Artificial Intelligence and Statistics, pp. 217–225. PMLR.

Liu, X. and S. A. Tsaftaris (2020). Have you forgotten? a method to assess if machine learn-

ing models have forgotten data. In Medical Image Computing and Computer Assisted

Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8,

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

REFERENCES

2020, Proceedings, Part I 23, pp. 95–105. Springer.

Pace, R. K. and R. Barry (1997). Sparse spatial autoregressions. Statistics & Probability

Letters 33 (3), 291–297.

Parikh, N., S. Boyd, et al. (2014). Proximal algorithms. Foundations and trends® in Opti-

mization 1 (3), 127–239.

Shi, C., R. Song, W. Lu, and R. Li (2021). Statistical inference for high-dimensional mod-

els via recursive online-score estimation. Journal of the American Statistical Associa-

tion 116 (535), 1307–1318.

Sun, L., M. Wang, S. Zhu, and A. Barbu (2024). A novel framework for online supervised

learning with feature selection. Journal of Nonparametric Statistics, 1–27.

Tarres, P. and Y. Yao (2014). Online learning as stochastic approximation of regularization

paths: Optimality and almost-sure convergence. IEEE Transactions on Information The-

ory 60 (9), 5716–5735.

van de Geer, S., P. Bühlmann, Y. A. Ritov, and R. Dezeure (2014). On asymptotically optimal

confidence regions and tests for high-dimensional models. Annals of Statistics 42, 1166–

1202.

Zhang, C.-H. and S. S. Zhang (2014). Confidence intervals for low dimensional parameters in

high dimensional linear models. Journal of the Royal Statistical Society Series B: Statistical

Methodology 76 (1), 217–242.

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

REFERENCES

Xiao Guo, School of Mathematics, Northwest University, Xi’an, China

Xu Zhang, School of Mathematics, Northwest University, Xi’an, China

Hai Zhang, School of Mathematics, Northwest University, Xi’an, China

E-mail: zhanghai@nwu.edu.cn

Statistica Sinica: Preprint
doi:10.5705/ss.202024.0335

	Introduction
	Notations

	Online-Forgetting Process for lasso
	Parameter Estimation
	Bias-correction
	Interval Estimation

	Asymptotic Normality
	Simulation
	Bias evaluation
	Computational efficiency evaluation
	Sensitivity analysis and additional experiments

	Real data analysis
	Conclusion
	Supplementary material

