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Abstract: Data removal and data forgetting have become standard requests for
users, since the enactment of regulations such as GDPR and CCPA. In this pa-
per, we study the data removal problem for statistical inference of lasso within an
online-forgetting framework, where the new data batch arrives sequentially while
the earliest data batch is removed to ensure a constant memory constraint. We
propose a new algorithm, dOnFL, which has several appealing properties: it is
computationally efficient compared to retraining the model, and it avoids access-
ing the full data batches by utilizing only the current batch and the summary
statistics of historical batches within the available time frame. In particular,
we develop an efficient debiasing technique to reduce the bias induced by the
{1 penalty of lasso. Theoretically, we establish the asymptotic normality of the
proposed estimator as the total sample size of available data batches goes to in-
finity. The simulation and real data experiments demonstrate the merits of the

proposed algorithm.
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1. Introduction

Advancements in computing and measurement technologies have led to a
surge in streaming data collected over time across various fields, such as the
user data from internet companies and organizations. On the other hand,
legal requirements, including the EU’s General Data Protection Regulation
(GDPR) and the California Consumer Privacy Act (CCPA), mandate that
companies and organizations should remove and forget certain user personal
data to protect their privacy. Specifically, users have the right to request
that the platform retain their personal information only for a limited time.
Therefore, statistical and machine learning methods should be developed
in an online-forgetting fashion.

In recent years, there has been a growing interest in developing methods
that address data forgetting and data removal requirements. Specifically,
Li et al. (2021) proposed an online-forgetting process for linear regression
models, where they considered the First-in-First-Delete (FIFD) scenario,

namely, the data owner is required to delete the oldest data batch upon

https://eur-lex.europa.eu/eli/reg/2016 /679/0j
https://oag.ca.gov/privacy/ccpa



receiving the newest data batch to maintain a fixed memory limit. The
proposed method achieves perfect forgetting by yielding the same solution
as retraining the model using the available data. Guo et al. (2020) studied
the problem in a framework called certified removal, where the model, after
data removal, is indistinguishable from a model that never seen the data to
begin with. They considered the Lso-regularized linear and logistic models
and developed a Newton update on the model parameters to remove the
influence of the deleted data point. There exists several other work on
data removal; see Ginart et al. (2019); Liu and Tsaftaris (2020); Izzo et al.
(2021); Bourtoule et al. (2021), among others.

Most of the aforementioned work focused on the parameter estima-
tion in statistical or machine learning models using low-dimensional data.
However, high-dimensional data are increasingly prevalent across various
application fields. In addition, apart from the parameter estimation, the
statistical inference is also vital and useful to quantify the uncertainty of
the estimated parameters.

Motivated by this, we consider the statistical inference in high-dimensional
regression under the FIFD scenario (Li et al., 2021). To solve this problem,
the online-forgetting statistical inference method should possess the follow-

ing three desirable properties. The first is computational efficiency. A naive



way to achieve perfect forgetting is to retrain the model. However, when the
data batches sequentially arrive, retraining the model becomes extremely
time-consuming. Therefore, the method should be time-economic. The
second is statistical accuracy. The statistical accuracy is expected to be
sacrificed in order to pursue the computational efficiency. Thus, the goal is
to seek a trade-off between the computational efficiency and the statistical
accuracy. In particular, to facilitate the statistical inference, the estimator
should be unbiased asymptotically. The third is summary statistics com-
patibility. Due to privacy and data avaliablity issues, the method should
be based on the summary statistics rather than the raw data.

The contributions of this work can be summarized as follows. First, we
develop a new algorithm called Debiased Online-Forgetting Lasso (dOnFL),
tailored for statistical inference under the scenario where the data batch se-
quentially arrives and the earliest data batch are required to be removed
upon the arrival of new data batch. The algorithm only requires the current
data batch and the summary statistics of all historical data batches within
the available time frame, thereby mitigating concerns related to data avail-
ability and privacy. By eliminating the summary statistics corresponding to
the data batches to be removed, the algorithm achieves the data forgetting

requirement. To the best of our knowledge, this is the first algorithm for



the data removal in high-dimensional regression models. It is worth men-
tioning that the online algorithms for lasso have been studied by Langford
et al. (2009); Duchi et al. (2011); Tarres and Yao (2014); Sun et al. (2024),
among others. In these algorithms, the parameters are updated using new
data and the most recently updated parameters, which rely on old data and
therefore do not satisfy the data forgetting requirements.

Second, we develop a new and efficient debiasing technique to reduce the
bias induced by the ¢; penalty of lasso, in order to facilitate the following-
up statistical inference. In the offline setting, various bias-correction meth-
ods have been proposed; see Javanmard and Montanari (2014); van de
Geer et al. (2014); Zhang and Zhang (2014), among others. However, most
methods require the availability of the entire dataset. Even without this
requirement, applying these offline techniques to the current data batch and
available summary statistics would be rather time consuming in the online-
forgetting scenario, where the estimator should be updated in time once
the newest data batch arrives and the oldest data batch is removed. In the
online setting, various debiasing techniques have also been proposed; see
van de Geer et al. (2014); Chen et al. (2020); Shi et al. (2021); Deshpande
et al. (2023); Han et al. (2024), among others. However, similar to the

offline debiasing techniques, most online debiasing algorithms require the



entire data and the online algorithms implicitly use all the previous data.
To alleviate these issues, when the new data batch arrives, we use the new
data batch combined with the previously computed summary statistics of
the remaining available data batches to debias.

Last but not least, we provide the asymptotic normality of the proposed
estimator as the total sample size of available data batches goes to infinity,
under certain conditions. Based on the asymptotic normality, we construct
the confidence interval of the proposed estimator, in order to quantify its
uncertainty. The effectiveness of the constructed confidence interval is val-
idated by experiments.

The remainder of this paper is organized as follows. Section 1.1 in-
troduces the notations. Section 2 presents the online-forgetting process
for lasso. Section 3 establishes the asymptotic property of the proposed
method. Sections 4 and 5 evaluates the proposed method via simulation
and real data experiments. Section 6 concludes the paper. All the proofs,

technical lemmas, and additional simulations are provided in the Supple-

mentary Materials.



1.1 Notations

1.1 Notations

The following notations are generally needed. | A||z denotes the spectral
norm of the matrix A or the Euclidian norm of vector A, ||A||« denotes the
infinity norm of the matrix A, and ||A[ly denotes the number of non-zero
entries of the matrix or vector A. We write f(n) < g(n) or f(n) = 0(g(n))
if cg(n) < f(n) < Cg(n) for some constants 0 < ¢ < C' < o0; f(n) <
g(n) or f(n) = O(g(n)) if f(n) < Cg(n) for some constant C' < oo; and
f(n) Z g(n) or f(n) = Q(g(n)) if f(n) > cg(n) for some constant ¢ > 0.

Moreover, f(n) = o(g(n)) if f(n)/g(n) — 0 as n — oo; f(n) = 0,(g(n)) if

f(n)/g(n) — 0 with probability approaching to one as n — oc.

2. Online-Forgetting Process for lasso

In this section, we develop the online-forgetting process for the lasso prob-
lem. In particular, the online-forgetting process for parameter estimation
and bias-correction are proposed, respectively. Afterwards, the confidence

interval for the debiased estimator is obtained.

2.1 Parameter Estimation

Suppose the data batches arrive sequentially. At time stamp 1 < b < oo, the

data batch D, = {y®, X®} is arrived. Considering the following online-



2.1 Parameter Estimation

forgetting scheme. At time stamp b, the data batches with time stamps
more than 7" prior to b are forgotten. That is, the available data batches
are Dy = {Dq, ..., Db}, where a =b+1-Tifb>Tanda=1if b < T.
In addition, due to the data avaliability and privacy issue, for time stamps
in the range [a,b — 1], only the summary statistics are available. For all
1 < b < 00, the samples in data batch b are independently generated from

the following high-dimensional linear model,
y® = XO g, 4O

where y®) € R™ is a response vector, X = (mgb), o ,:E;(,b)) € R™*P in-
cluding n;, samples of dimension p, the true parameter gy € R? is sparse
and unknown, and the error term €® has 4.i.d. entries with mean 0 and
variance o2.

If the original data batches D,y are all available, we can in principle

use the following offline lasso to obtain an estimator Blabl of Bo,

BERP

b
) : 1 TG ‘
5[a’b]()\[a,b}) = arg min {ﬁ ||?J(]) - X(”ﬁH% + A[a,b]HBHl} ’

j=a "] j=a

(2.1)

where we use the subscript [a, b] to emphasis that the tuning parameter A



2.1 Parameter Estimation

depends on the data batches Dy,;. However, in our set-up, the original
data except the data except the data batch D, are not available. Instead,

we only have access to the summary statistics. Define

SSlatl . — {S[Wb]’ U[a,b}}

b b
with St .= Z(X(j))TX(j) and U+ .= Z(X(j))Ty(j). (2.2)
j=a j=a
With the summary statistics SSI*?, we can then obtain Bla’b} by the Itera-

tive Shrinkage-Thresholding Algorithm (ISTA) (see, e.g., Beck and Teboulle

(2009); Parikh et al. (2014)), i.e., repeating the following two steps:

e Step 1: B[a,b] — B[&b] — anb (S[a,b]B[a,b] D U[a,b})’

j=a "]

e Step 2: ,@,[,a’b] = Soft( Ala’b}, Mo Njap]) ‘= sign(@a’b}) max{0, |,@7[,a’b]|—nb/\[a7b}},

where B,La’b] (r=1,...,p) is the r-th component of B[a’b} and 7, is the step
size. Note that to ensure the data forgetting, the initial value of B[a’b] is set
to zero at each time step, which effectively eliminates the possibility that
parameters retain information from the previously observed but forgotten

data. These two steps are carried out iteratively until convergence.

Remark 1. The ISTA algorithm belongs to the more general proximal gra-



2.1 Parameter Estimation

dient descent algorithm (Parikh et al., 201/ ). For the optimization problem

min f(z) + g(z),

where f: R" = R and g : R* — R U {400} are closed proper conver and
f is differentiable, it has been shown that the proximal gradient algorithm
with fized step size converges provided that the step size n € (0, L] with L
being the Lipschitz constant of V f(x) (Parikh et al., 2014). Following this

theoretical gquidence, in practice, we fix n, in the ISTA algorithm as

1

"= Amax (X @DT X [a.b]) (2.3)

where Amax(+) denotes the mazimum eigenvalue of the corresponding matriz.

Remark 2. In paractice, the tuning parameter Aqp in (2.1) and the ISTA
algorithm can be selected by minimizing the prediction error of data batch Dy
using the estimator sequence B[“’b_l](/\) obtained from previous data batches

D[a,b—l] ’ i. €.,

1 .
arg min—||y®) — X301\ |13, (24)
aex T



2.2 Bias-correction

where X denotes the set of candidate values.

From Steps 1 and 2, it is evident that the parameter estimation entirely
depends on the summary statistics. When the new data batch Dy,q (b >
T') arrives and the most previous data batch D, is forgotten, namely, the
available data bathes are Digy1541) = {Da+1;- -5 Dy, Dot }, we only need

to update the summary statistics as follows:

Slattbrl] . glabl { O+ _ 6@ ppq  plertett] o prledl 4 o)) _ e

(2.5)
where SU) and UY) are defined by (2.2) with a = b = j. By substituting the
updated summary statistics Sl¢+11 and Uletbb+1 into Step 1 and Step 2,

[a+1,b+1] (

the new estimator B r=1,...,p) can be obtained.

2.2 Bias-correction

It is well-known that the lasso estimator is biased, which is harmful for
statistical inference problems such as the interval estimation. Therefore,
we need to correct the bias of the estimator B [ obtained in Section 2.1.
In the offline setting, Zhang and Zhang (2014) proposed a method called
LDPE for removing the bias of lasso. However, LDPE is not suitable for

the online-forgetting set-up considered in this work. First, LDPE used all



2.2 Bias-correction

the original data for the parameter estimation and bias-correction, however,
the raw data is not available in our set-up. Second, upon the arrival (resp.
removal) of the new data batch D,y (resp. D,), the new training data
batches become Digy1 541 Their method corrects the bias by solving p
(p — 1)-dimensional lasso using all the raw data D1 p41], which is time
consuming when the training data sequentially updates and the number of
samples in D,y 41) is large.

To alleviate these issues, we develop an efficient online-forgetting pro-
cess for the bias-correction based on summary statistics. At high level, to
improve the computational efficiency, upon the arrival of new data batch,
we use the new data batch combined with the previously computed parame-
ters corresponding to the remaining available data batches to construct the
bias-correction term. The proposed debiasing approach proceeds as follows.

Suppose the training data batches are Dy, ;. For each data batch D; =
{y¥), XU}, recall 2 be the r-th column of X and let XY be the sub-
matrix of XU excluding the 7-th column. Upon the arrival of data batch

D, conduct the following lasso regression of 29 on XEJT) for each r =

7

1,...,p

T . 1 , - .
90 —ang min { S - X001 20

yeRP—1 J



2.2 Bias-correction

and denote the corresponding residual

30) = g0 X(gyﬁ ), (2.7)

T

where (2.6) can be solved efficiently by the coordinate descent algorithm
(CD) (Friedman et al., 2007), among others; the tuning parameter AY) i
(2.6) can be selected using data-dependent procedures applied to data batch

D;, such as AIC, BIC, or cross-validation, among others.

Our debiased estimator 3, 3l ={s 3lat } of Blatl is then defined as

de,r

b 1w b
dﬂél;] 5[11 L {Z(ﬁrj))Txfj)} {Z(éﬁj))Ty(j) _ Z(grj))TX(j)ﬁ[a,b}} )

j:a j:a

(2.8)

The debiased estimator Bc[;’b] is motivated by the method LDPE of Zhang
and Zhang (2014). To improve the computational efficiency, we compute
the residual 29 for each data batch D;, and use the summation term
Z?Za(éﬁj ))Ta:,(nj ) to approximate the corresponding term of LDPE that com-
putes the residual on all available datasets.

In the sequel, we provide the updating formulas when the new data

batch D, arrives and the oldest data batch D, is forgotten. To that end,



2.2 Bias-correction

denote
DS = {all o), A9} i= {074, ()Y, (D) XD} . (29)

The debiased estimator can then be written as

~ ~ 1 ~
([ltzl;] _ fladl 4 { [arb]} {a[z‘f;b} B ALa,b]ﬁ[a,b]}’ (2.10)
Ll b _ [ labl [abl glad]
which is 3 plus a debiasing term computed by DS;; Ay, s Gy Ay
with , ,
et = SO0 = Yl
Jj=a Jj=a
b b
asy) = DGy =3 Taf), (2.11)
j=a j—a
A[T“’b] — Z 5(7) TX () — ZA
j=a

Therefore, we can obtain the updated debiasing statistics

1,r ) 2r

DSLaJrl,bJrl] — {a[a+1,b+1] glet Lo+ A[a+1 b+1}}



2.2 Bias-correction

via

glot ol a[“;b] + az(,l;+1) _ agj}, A£a+1,b+1] — ALa,b] + A£b+1) _ Aga)7 i=1,2.

@,T 7,

(2.12)

The whole procedure is summarized in Algorithm 1. We now compare
the time complexity of dOnFL with its offline counterpart, called dLASSO
algorithm. The dLASSO shares the same ISTA algorithm for parameter
estimation in Stage I as dOnFL, but utilizes all available batches to compute
the bias term in Stage II. See Algorithm S.1 in the Supplementary Materials
for the details of the dLASSO. We consider the set-up where both of dOnFL
and dLASSO update from time stamp b with available data batches being
Do) = {Dq, ..., Dy} to time stamp b+ 1 with available data batches being
Dia41,p41), where b—a+1 = T'. For simplicity, let the sample size n; = n for
each data batch, and suppose n < p. For both algorithm, denote k as the
number of iterates in the ISTA algorithm involved in Stage I (parameter
estimation) and [ as the number of iterates in the CD algorithm involved
in Stage II (bias-correction). The time complexity of dOnFL turns out
to be O(Inp* + kp?), which is lower than the time complexity O(TInp?® +
kp?) of dLASSO. The computational advantage of dOnFL over dLASSO

mainly comes from the bias-correction stage. Details of the time complexity



2.3 Interval Estimation

computation can be found in Table S.1 of the Supplementary Materials.

2.3 Interval Estimation

The effect of bias-correction is theoretically validated in Theorem 1 in Sec-

tion 3, where the asymptotic normality of the debiased estimator ﬁ[ab i

established. Before introducing Theorem 1, we here would like to use the

results to construct valid confidence interval for the true parameter (.

Based on Theorem 1, the asymptotic standard error of ﬁde s oo

where ¢ is the true standard error of the error term and

b
A = ) with mle =y T =y (E)TED, (2.13)

j=a j=a

b]

where recall the definition of 27’s and a[f;, in (2.7) and (2.11), respectively.

We estimate o using the standard estimator gl given as follows,

St {(y[a,b] _ Xleb BladT (ylad] _ xlad) flab)) }1/2
- S — 189 o
(y[a,b])Ty[a,b] _ Q(B[a,b})T(X[a,b})Ty[a,b] + (B[a,b])T(X[@b])TX[mb]B[a,b} 1/2
:{ 5o = 139, }
Vladl (B ab])TU[a,b] 4 (B[“’b])TS[“vb]B[aab] 1/2
: { >iany — (1Bl }

where V1Pl = (ylabl)Tylab] — Zb‘ (y9) Ty Zr V@ and Ut and

J=a



2.3 Interval Estimation

Algorithm 1 Debiased Online-Forgetting Lasso (dOnFL)

1:

10:
11:

12:

13:

14:

15:
16:

17:

Input: step size 7,11, regularization parameters A, 1 54.1) and )\7(~b+1), SSlebl

DS, 88U, DSY) and ny, for j=a,....bandr=1,....p.
Collect data batch: Dy, = {X 1 ¢b+D],

Stage I: Parameter estimation.

Compute statistics SS¢TD = {S(b+1),U(b+l)} with SO+ =
(X(b+1))TX(b+l) and U(b+1) — (X(b—l-l))Ty(b—l-l);

Update statistics SSl*+10+1 — {Slat1o+1] latLb+il defined in (2.5)
using SSI*Y, 8§ and SSE+D.

repeat
Step 1: B[a+1,b+1] FB[aﬂ,bﬂ]_ bzblﬂlnj (S[a+1,b+1]B[a+1,b+1]_U[a+1,b+1});
j=a+
5 b 5 b
Step 2: A" o Soft (B ny i A1) for =1,
until convergence.

Stage II: Bias-correction.
for r =1 to p do

Step 1: Compute ﬁﬁb“) = 1:7(«b+1) — X(_b:rl)’?ﬁbﬂ), where

. . 1 b+1
501 = arg min {\\x£b+1> - XG0+ A&b*”‘”“l} |
"/ERP71 anrl

1,r 2%2r

Step 2: Compute DSng) = {a(bH) a(bH),Ang)} with

afﬁl) _ (2£b+1))Tx£b+1);agl?jl) _ (2£b+1))Ty(b+1);A§b+1) _ (2£b+1))TX(b+1)

and update psletibtll {a[f:l’bﬂ],a[;jl’bﬂ],A[ﬂH’bH}} defined in

(2.12) using DS, DS and DSV,

Step 3: Using Blet10+1 t0 construct the debiased estimator

~ 2 -1 ~
C[lcg;l,bﬂ} 'L(H_Lb—H] {a[f:—l’bﬂ]} {a[;jl’bH] 4[Ta+1,b+1]5[a+1,b+1]} .
end for

Store and Clear: Store SSlet1o+1] DSL“H’I)H}, S8, DSQ), n; for j =
a+1,....,b+1and r=1,...,p; and clear others.

Output: The non-debiased estimator ﬁA[a“’b*” and debiased estimator
5la+1,b41]
de :




2.3 Interval Estimation

Slebl are the summary statistics defined in (2.2). The estimator Sl is

defined in Section 2.1.
Upon the arrival of the new data batch D;,; and the removal of the

old data batch D,, we obtain ngrl’b“]. The estimated standard error of

Ala+1,b+1] ~ [a+1,b+1]f_[a+1,b+1}
T

der , denoted by ¢ , can be updated using statistics as

follows,

v4a+1b+1]__QUya+1ﬁ+u)Tlﬂa+1@+1]+_0§m+1@+1bqjgm+1ﬁ+1h§m+1ﬁ+1]}1/2

§2b+1 n __”Bm+1b+uuo

O/\_[a+1,b+1] _ {
L =
j=a+1"%

(2.14)

ﬁga+17b+1] _ /mq[na—&-l,b—&-l]/a[ﬁjl,b—i-l]’ (2.15)

where

V[a—&—l,b—l—l} _ V[a,b] + V(b—i—l) - V(a) and m[a—l—l,b—l—l] _ mLa,b} + m£b+1) o mgia).

T

(2.16)

The process for constructing the confidence interval is summarized in

Algorithm 2.



Algorithm 2 (1-«)-confidence interval estimation

1: Input: significance level a, summary statistics ylabl m[ra’b], V@, and m&j )

for j=a,...,band r =1,...,p, and all the input of Algorithm 1.
2: Collect data batch: D, = {y(+D), xt+D}. A
3: Using Algorithm 1 to obtain the non-debiased estimator St and debi-

ased estimator Bgzﬂ’bﬂ}, and the auxiliary summary statistics.

4: Compute VO+D = (yO+D)Ty+1) and Pt = P20 3nq update

Vet and a0 yeing (2.16);

5: Compute Gl anq plotlb+y using (2.14) and (2.15);

6: Obtain (1 — «)-confidence interval estimators of Sy,

)

(B[a+l’b+1] _ <I>_1(1 _ g) (&£a+1,b+l]ﬁ£a+1,b+l]) 7B[a+1,b-¢-1] +q>—1(1 _ g) <&£a+1,b+1]€_r[a+1,b+1])> )

de,r de,r

7: Store and Clear: Store V/[otLb+1] m,[ﬂaH’bH], V), and mﬁj), for j =
a+1,....,b+1and r=1,...,p, and clear others.
8: Output: The (1 — a)-confidence interval estimator of 5y in line 6.

3. Asymptotic Normality

In this section, we focus on the debiased estimator ﬁAC[;;l;] defined in (2.10)
and establish its asymptotic property. To that end, we first introduce the

assumptions and notations.
Assumption 1. We assume the following assumptions hold:

(i) The row vectors of each data batch X9 for j = 1,2,... are ii.d.

sub-Gaussian random vectors with covariance matriz X;

(i) The smallest eigenvalue 0y, of ¥ satisfiesand 0 < C' < Opin, where

M is some positive constant;



(1ii) The mazimum diagonal element of ¥ satisfies max;%;; = O(1);

(iv) The error terms el(j) 'sforj=1,2,...andl=1,..,n; are iid. sub-
Gaussian random variables with variance o* and finite sub-Gaussian

parameter.

Define © = 7! and its row sparsity level s, = #{k : O, # 0,7 < k}.
Define the sparsity level of the true parameter 5y as so = #{j : fo; # 0}.

For r =1,...,p, define

7, = arg min E[||z, — X_,.7||3]. (3.1)
yeRpP—1

Recall the bias-correction step of Algorithm 1, (3.1) is actually the popula-
tion version of (2.6). Regardless of the computational efficiency, the ideal

estimator for v, in the offline setting is

b
1 ) 1 . . ~
it o= arg min {— > el = X913 + A

~yeRp—1

|”YH1} : (3.2)

j=a ") j=a

The next lemma shows that under certain conditions, the estimator in (2.6)
is close to that in (3.2), which is critical in establishing the asymptotic

normality of 3 C[;l;] :

Lemma 1. Suppose Assumption I holds, n; 2 s,logp, A = ,/k;ﬂ in
J



(2.6) forj=1,...,b, and 5\[a7b] = /Zlbogp in (3.2). Then, forr=1,...,p,
j=a

with probability at least 1-p>, the %j) in (2.6) and the ﬁq[na’b] in (3.2) satisfies

~(17 ~la logp
B9 — e, S sy B2, (3.3
J

With Lemma 1 at hand, the next theorem provides the asymptotic

[a,]

de,r

properties of B

2 S0 10gp7

~Y

M) = OB in (2.6) forj=1,..b, 7 =1,...,p, and Aay < /<22
i ’ Zj:anj

n (2.1), Moy =< Zlﬁipnj in (3.2). If

Theorem 1. Suppose Assumption 1 holds, n; 2 s.logp, Z?:a n;

SpS, lo b m; b— 2]
0 8P 2 VT (1) ana LZOEER )
Zj:a nj Zj:a nj

then forr =1,2,...,p and large enough Z?:a n;, we have

(f_[a,b})fl( alab] Bor) = w7[qa,b] + ALM])

" de,r

where (7)1 < ,/Z?:a ny, wi ~ N(0,02), and A" = o,(1). This

means

~la —1/Ahla, d
(e~ 5,) L N(0,0%).



Theorem | shows that the debiased estimator is asymptotically unbi-

. b N—1/2
ased and the convergence rate is of the standard order (3_,_, n;)~"/*. Theo-
rem | also provides theoretical support for the confidence interval proposed

in Algorithm 2.

4. Simulation

In this section, we evaluate the finite sample performance of the proposed al-
gorithm dOnFL. In Section 4.1, we verify the effect of debiasing in dOnFL.
In Section 4.2, we test the computational efficiency of dOnFL. In Section
1.3, we examine the robustness of dOnFL to the distribution of noise and
covariates, and to the selection of tuning parameters.

The following three algorithms are generally compared:

e dOnFL: the proposed algorithm. The tuning parameter A4 in (2.1)
is selected by minimizing the prediction error; see Remark 2. The
tuning parameter A i (2.6) is selected using AIC. The step size 1,

is set as the theoretical value; see Remark 1 for details.

e OnFL: the counterpart of dOnFL without debiasing (i.e., Stage II of
Algorithm 1). The tuning parameters and step size are selected using

the same procedures as in dOnFL.



e dLASSO: the offline counterpart of dOnFL, ; see Algorithm S.1. It
consists with dOnFL in Stage I, but differs in Stage II by leveraging
all available data batches Dy, up to time stamp b (1 < b < 00) to
compute the bias term. Therefore, dLASSO can be regarded as the
baseline method for statistical accuracy. The tuning parameters and

step size are also selected using the same procedures as in dOnFL.

Experimental set-up: The general parameter settings are as follows,
with some modifications in Section 4.3. We fix the number of avaliable
batches at each time stamp as T'=5b — a + 1 = 3. We assume the identical
sample size n;’s in each data batch size and let n; vary in {10, 20, 30, 40, 50, 60},
that is, the number sample sizes in each time stamp vary in {30, 60, 90, 120, 150, 180}.
The dimension of true parameters is p = 200. The true parameter spar-
sity level so = 10, with so/2 strong signals fys = 1 and s¢/2 weak signals
Bow = 0.3. The variance of Gaussian noise is ¢ = 0.3. The covariates are
generated from the zero-mean multivariate Gaussian distribution. We con-
sider two set-up for the covariance matrices: set-up I: 3 = {0.4""j‘}i7]~:17._,,p;
set-up II: ¥ = 1. All the experiments througout the paper were performed
on a laptop with Intel Core i7-1165G7 CPU 2.80GHz, 16GB memory, and

64-bit WS operating-system.



4.1 Bias evaluation

4.1 Bias evaluation

We validate the debiasing ability of the proposed method dOnFL and com-
pare it with the non-debiased counterpart OnFL, as well as the offline coun-
terpart dLASSO. To this end, we measure the scaled L norm of three

methods with respect to the strong signals and weak signals. Specifically,

13s—Bo,sl1

the scaled L; norm with respect to strong signal is defined as ol

where BS denotes the estimated parameters of the strong signals. The av-
erage scaled L; norm of the estimators obtained at all the time stamps is
reported. Similarly, we can define the scaled L; norm with respect to weak
signal.

Figures 1 and 2 display the average results over 20 replications under the
two set-ups for the covariance matrix, respectively. We have the following
observations. First, dOnFL consistently outperform OnFL, showing the
efficacy of debiasing. Second, dOnFL performs only slightly worse than or
comparably to the baseline method dLASSO, despite using fewer samples
for debiasing. Third, as expected, for both methods, the strong signals are

estimated more accurately than the weak signals.
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Figure 1: The performance of dOnFL,OnFL and dLASSO in terms of the
scaled L; norm under the set-up I for the covariance matrix. The scaled
Ly norm is reported separately for strong and weak signals. The sample
size represents the number of samples in the avaliable batches at each time

stamp.

4.2 Computational efficiency evaluation

We evaluate the computational efficiency of dOnFL and compare it with the
offline counterpart dLASSO. The goal is to test whether dOnFL enhances
the computational efficiency with limited loss of the statistical accuracy.
Regarding the computational efficiency, we test the median running
time (seconds) of two algorithms over 20 replications. Specifically, the run-
ning time is the total time over all time stamps as the number of sample size
varies. Regrading the statistical accuracy, we test three measures. The first
is the scaled L; norm defined in Section 4.1. The second is the length of

the estimated confidence interval. The third is the coverage rate of the esti-
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Figure 2: The performance of dOnFL, OnFL and dLASSO in terms of the
scaled L; norm under the set-up II for the covariance matrix. The scaled
Ly norm is reported separately for strong and weak signals. The sample
size represents the number of samples in the avaliable batches at each time
stamp.

mated confidence interval, namely, the probability of the estimated interval
covering the true underlying parameter.

Figures 3 and 4 show the average (median for the running time) results
over 20 replications under the two set-ups for the covariance matrix, re-
spectively. We have the following observations. First, the proposed method
dOnFL shows superior advantage over dLASSO in terms of the compu-
tational efficiency; see also the discussions for time complexity in Section
2. Second, the proposed method dOnFL is close to dLASSO in terms of
statistical accuracy, though slightly inferior. In particular, compared with

dLASSO, dOnFL achieves a shorter interval length at the expense of a lower
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coverage probability. And the scaled L; norm of two methods are compara-
ble. Based on these observations, we conclude that dOnFL greatly enhances

the computational efficiency without sacrificing the statistical accuracy too

much.
S
— —»— dOnFL —%—  B,,.#0 (dOnFL)
o —— dLASSO —— Po.# 0 (dLASSO)
QT *® 4
— /0 =3
Qo | O é
ES / S ¢ |
an o 5 (=3
= o =
= < T
£ g e — &= S~
O /x/ ¥ ——x
- /x/x . \o\x\
g 19— g o :x
T T T T T T T T T T T T
30 60 90 120 150 180 30 60 90 120 150 180
Sample size Sample size
(a) Running time (seconds) (b) Scaled L; norm
—e BO.,;&OEdOnFL) —— Bo_,¢OEdOnFL)
© —— By, # 0 (dLASSO) - —o— By, # 0 (dLASSO)
9. =
rerage rate=0.95
- "\o A LCoveragerate=0.95 ... ......... o
£ \ \ N 079——-— R=
) S /
= [
5 - \ o\ % o | x/
—_ % o o<
\x
o _| \x — <o
=3 \x PR <
T T T T T T T T T T T T
30 60 90 120 150 180 30 60 90 120 150 180
Sample size Sample size
(c) Length of interval (d) Coverage rate

Figure 3: The performance of dOnFL and dLASSO in terms of the running
time (seconds), scaled L; norm, length of interval and coverage rate under
the set-up I for the covariance matrix.
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Figure 4: The performance of dOnFL and dLASSO in terms of the running
time (seconds), scaled L; norm, length of interval and coverage rate under
the set-up II for the covariance matrix.
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4.3 Sensitivity analysis and additional experiments

First, we test the robustness of dOnFL against the distribution of covariates
and noise. Specifically, we consider several combinations of settings where
the covariates follow Gaussian, Uniform, or ¢-distributions, and the noise
follows Exponential, Uniform, or ¢-distributions. Apart from the distribu-
tional assumptions, the basic experimental setups are the same as described
above. Table | presents the results when the covarites are Gaussian under
set-up I and the noise terms are 4.i.d. U(—0.5,0.5). More results are regu-
lated to Table S.2-S.6 in the Supplementary Materials. It turns out in all the
considered set-ups, the dOnFL has advantage in computational efficiency
over the dLASSO without sacrificing much statistical accuracy, which shows
the robustness of the proposed algorithm.

Second, we conduct experiments to compare the effect of three meth-
ods for the tuning parameter selection in (2.6), namely, AIC, BIC, cross-
validation (CV), on the statistical performance of three methods, namely,
dOnFL, OnFL and dLASSO. The experimental set-up is the same with
that introduced at the begining of this section with the identical covari-
ance matrix. The results are regulated to Figure S.1 in the Supplementary
Materials. The results demonstrate that all three methods exhibit robust

performance regardless of the tuning parameter selection approach.
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Table 1: The average performance of dOnFL, OnFL and dLASSO over 20
replications as the sample size (i.e., the number of samples in the avail-
able batches at each time stamp) increases. The error terms are i.i.d.

U(—0.5,0.5) and the covariates for each sample are i.i.d. p-dimensional
Gaussian N (0,%) with ¥;; = 0.4171,

Sample Size

30 60 90 120 150 180

OnFL 0.187 0.171 0.168 0.162 0.159 0.157
dOnFL 0.184 0.122 0.101 0.081 0.081 0.071
dLASSO 0.193 0.119 0.097 0.079 0.064 0.048

OnFL 0.175 0.151 0.142 0.138 0.135 0.141
dOnFL 0.099 0.067 0.049 0.040 0.034 0.031
dLASSO 0.097 0.060 0.042 0.032 0.025 0.022
dOnFL 1.393 1.172 0.958 0.901 0.774 0.763
dLASSO 1.522 1.386 1.192 1.162 1.022 0.993
dOnFL 0.645 0.775 0.853 0.921 0.922 0.942
dLASSO 0.670 0.833 0.911 0.930 0.930 0.943
dOnFL 40.340  44.305 52.345 60.100  66.700 69.070
dLASSO 46.745 58.800 77.245 97.660 117.415 127.160

Performance Metric Algorithm

Scaled L1 norm of
weak signals 8o, = 0.3

Scaled L1 norm of
strong signals Bo,r =1

ClI-length

Coverage rate

Running time (seconds)

Third, apart from the tuning parameter in (2.6), we also test vari-
ous step sizes in the ISTA algorithm for lasso to see the sensitivity of all
methods. See the experimental details and results in Table S.7 in the Sup-
plementary Materials. It turns out for all the tested step size, the proposed
method dOnFL performs better than OnFL and comparable to dLASSO.

Finally, we conduct a higher dimensional experiment with (p = 800)
and 7' = b—a+1 = 2. We assume the identical sample size n;’s in
each data batch size and let n; vary in {80,120, 160, 200, 240}, that is, the
number sample sizes in each time stamp vary in {160,240, 320,400, 480}.

The distribution set-up of the noise and covariates are the same with the



set-up II introduced at the begining of this section. The results, summarized
in Table S.8 in the Supplementary Materials, also show that the proposed
dOnFL exhibits slightly lower statistical accuracy compared to dLASSO,

but achieves significantly higher computational efficiency.

5. Real data analysis

In this section, we test the efficacy of dOnFL on three real datasets, Medical
Cost Personal Dataset, California Housing Dataset and Blog Posts Dataset.
To mimic the online-forgetting set-up, we divided each dataset into B total
batches. New batch arrives sequentially and the oldest batch are removed.
The details of each dataset and the corresponding parameter set-ups are as

follows.

Medical Cost Personal Dataset. This dataset contains the age (dis-
crete), sex (binary), body mass index (BMI) (continuous), number of chil-
dren (discrete), smoking status (binary), region of residence (categorical
with 4 classes) and medical cost (continuous) of 1,330 individuals. The goal
is to predict the medical cost using other variables. The raw data can be
found at https://www.kaggle.com/datasets/mirichoi0218/insurance.

We equally divide the dataset into B = 35 batches.


https://www.kaggle.com/datasets/mirichoi0218/insurance

California Housing Dataset. In this dataset, each samples represents a
block group in California from the 1990 Census, comprising a total of 20,640
block groups. The goal is to predict the median house value within each
block group using the covariates including median income, median age, total
population, number of households, and the total number of rooms across
all houses in the block group. The raw data is constructed by Pace and
Barry (1997) and can be found at https://www.dcc.fc.up.pt/~1torgo/
Regression/cal_housing.html. We equally divide the dataset into B =

36 batches.

Blog Posts Dataset. This dataset includes the number of comments
received within 24 hours of a blog post being published, as well as 280
factors that may influence the number of comments. Each sample corre-
sponds to a blog. The goal is to predict the number of comments using
280 variables include average, standard deviation, min, max and median of
the length of time between the publication of the blog post and “current”
time, the length of the blog post and so on. We consider the blog posts
between February 1, 2012, and March 31, 2012, which results in 7,624 sam-
ples. The raw data can be downloaded from https://archive.ics.uci.

edu/ml/datasets/BlogFeedback. We observe that various variables have


https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://archive.ics.uci.edu/ml/datasets/BlogFeedback
https://archive.ics.uci.edu/ml/datasets/BlogFeedback

many zeros which may affect the accuracy of prediction. Thus, before im-
plementing the proposed algorithm, we conduct the lasso using the whole
dataset. The number of selected variables results in 21. We treat the blog
post corresponding to each day as one batch which results in B = 59 total
batches.

For each of the three datasets, we evaluate the accuracy and efficiency
of the proposed method dOnFL. In terms of the accuracy, we compare
dOnFL with the non-debiased counterpart OnFL. We also compare the
offline algorithm dLASSO, serving as the gold-standard for the accuracy of
the online-forgetting algorithms. The details of algorithms can be found in
Section 4. We report the average scaled L; norm over all the time stamps as
the number of retained batches 1" vary. The norm is then averaged over 20
replications. The results for three datasets are shown in Figure 5. In terms
of the efficiency, we compare dOnFL with the offline algorithm dLASSO.
We report the median running time (seconds) over 20 replications as the
time stamp increases. The results for three datasets are shown in Figure 6.

Similar to the simulation, from the results, we observe that the proposed
dOnFL shows superior efficiency than the offline counterpart dLASSO while
maintaining satisfactory statistical accuracy. In addition, the non-debiased

OnFL performs worse than dOnFL, showing the efficacy of the debiasing



technique.
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Figure 5: The performance of dOnFL, OnFL, and dLASSO in terms of
scaled L; norm on three real datasets.
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Figure 6: The performance of dOnFL and dLASSO in terms of running
time (seconds) on three real datasets.

6. Conclusion

In this paper, we considered the problem of data removal for statistical in-

ference of lasso. To that end, we developed a new algorithm dOnFL within



the online-forgetting framework, where the new data batches arrive sequen-
tially while the earliest data batches are removed to maintain a constant
memory constraint. In particular, we proposed a new debiasing technique to
efficiently reduce the bias induced by lasso. The proposed algorithm dOnFL
enjoys computational efficiency and statistical accuracy, and it is summary
statistics-based. We established the asymptotic normality of dOnFL and
provided the method for confidence interval estimation. Numerical experi-
ments showed the advantage of dOnFL over several competitors.

There are many ways to extend the content of this paper. First, in our
algorithm, the users’ privacy was preserved to some extent by using the
summary statistics instead of the raw data. It is meaningful to study the
problem under a more rigorous privacy-preserving framework, e.g., the dif-
ferential privacy (Dwork et al., 2006; Cai et al., 2023). Second, it would be
interesting to consider other framework for data removal, e.g., the certified
removal (Guo et al., 2020), for the high-dimensional regression problem.
In addition, it is beneficial but challenging to develop the iterative algo-
rithm for data removal just like the stochastic gradient descent algorithm

for online learning (Han et al., 2024).



7. Supplementary material

The supplementary material contains the proofs of the main theoretical
results, the technical lemmas, further details of the dLASSO algorithm and

its comparison with dOnFL, as well as additional experimental results.
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