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Abstract: The conventional statistical models assume the availability of covariates

without associated costs, yet real-world scenarios often involve acquisition costs

and budget constraints imposed on these variables. Scientists must navigate

a trade-off between model accuracy and expenditure within these constraints.

In this paper, we introduce fast cost-constrained regression (FCR), designed to

tackle such problems with computational and statistical efficiency. Specifically,

we develop fast and efficient algorithms to solve cost-constrained problems with

the loss function satisfying a quadratic majorization condition. We theoretically

establish nonasymptotic error bounds for the algorithm’s solution, considering

both estimation and selection accuracy. We apply FCR to extensive numerical

simulations and four datasets from the National Health and Nutrition Exami-

nation Survey. Our method outperforms the latest approaches in various per-

formance measures, while requiring fewer iterations and a shorter runtime. The

FCR package is available at https://github.com/anonymous1116/FCR.
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1. Introduction

Statistical models are conventionally developed under the assumption that

all covariates are freely observable. However, in many real-world scenarios,

there are certain costs for acquiring each feature, as well as budgets limiting

the total expenditure. Cost refers not only to the monetary loss, but also to

any measured obstacle that prevents the user of the data from acquiring the

features. It includes financial price, privacy impacts, fairness, or subjective

disfavor. Taking these into account, data analysts must find a compromise

between model accuracy and budget constraints.

Such problems have recently been emphasized in relevant health fields

due to resource constraints specific to clinical environments (Kachuee et al.,

2019; Nguyen et al., 2021; Erion et al., 2022). To predict whether a patient

requires hospitalization or to estimate a certain health signal, performing

all possible clinical tests is ideal. However, relatively inexpensive tests alone

may provide enough information to inform the decision maker, while allow-

ing a better allocation of money, time, and human resources. At the peak of

the 2019 coronavirus disease (COVID-19) pandemic, many hospitals in the

United States reached near capacity, putting into question the efficiency of

resource allocation in the US healthcare system. Recent studies have found

that patients are often diagnosed through a larger than necessary set of
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Table 1: Top: NHANES data summary; Bottom: data cost allocation (Yu
et al., 2022)

p # conti # ctgr total cost
diabetes 45 29 4 $155
hypertension 26 18 3 $101
arthritis 46 17 8 $100
heart 158 2 38 $131

Examples Cost
Demographics Age; Income; Education Level $2 to $4
Questionnaire Average sleep length (in hours) $4
Examination Diastolic blood pressure; Systolic blood pressure $5
Laboratory Cholesterol; Triglyceride; Fibrinogen $9

testing services, which delays the care of patients with a more immediate

medical need (Nguyen et al., 2021).

Our research is driven by the four datasets from the National Health and

Nutrition Examination Survey (NHANES), preprocessed by Kachuee et al.

(2019). These datasets are used to perform classification tasks for predicting

whether a patient has diabetes, hypertension, arthritis, or heart disease.

Each dataset contains a response variable indicating the presence of the

disease and the associated covariates in each patient. Table 1 is an overview

of the datasets, providing the total number of variables p, the number of

continuous and categorical variables among them, and the total cost. The

p explanatory variables are categorized into demographics, questionnaire,

examination, and laboratory, with each variable in these categories priced at
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4 1.1 Problem Statements

$2 — $4, $4, $5, and $9, respectively. Acquiring all variables in the diabetes

dataset, for example, would cost $155. When a patient’s budget is very

small, say $10, the patient must choose whether to take a single laboratory

test or a combination of examinations, questionnaires, and demographics

for the best predictive accuracy within their constraints. One can easily

imagine how fast the complexity of the problem would grow when a larger

budget is considered, such as $50. This example nicely illustrates our central

question: How can we establish a reasonably effective model for prediction,

while reflecting the limitations imposed by restricted resources?

1.1 Problem Statements

Consider the response of interest y = (y1, . . . , yn) ∈ Rn, a set of features

X ∈ Rn×p, a cost vector c = (c1, . . . , cp) ∈ Rp, and a budget C ∈ R, where

cj is the cost needed to use the j-th feature for j = 1, . . . , p. We denote the

jth column of X by Xj ∈ Rn and the row by xi ∈ Rp. Suppose that a set

of predictors xi is associated with yi through a link function µi ≡ β⊤xi,

where β = (β1, . . . , βp) and βj’s are the coefficients of the covariate Xj.

We denote the collection of βs that satisfy the cost constraint as C = {β :∑p
j=1 cjI(βj) ≤ C} where I(βj) = 0 if βj = 0, I(βj) = 1 otherwise. For the

high-dimensional case with n < p, assume that β is sparse. The true value
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5 1.2 Literature review

of β is denoted by βtrue and βtrue
j ̸= 0 for j = 1, . . . , p0, while βtrue

j = 0

otherwise, where the sparsity of β is p0 with p0 ≤ n.

Let Φ(y, µ) be the loss function used to fit the model. The cost-

constrained problem can be written as a nonconvex minimization problem:

min
β

E
{
Φ(y,x⊤β)

}
subject to

p∑
j=1

cjI(βj) ≤ C. (1.1)

Given a dataset {(yi,xi)}ni=1, a natural way to approximate this problem is

to solve its emprical version:

min
β

1

n

n∑
i=1

Φ(yi,x
⊤
i β) subject to

p∑
j=1

cjI(βj) ≤ C. (1.2)

1.2 Literature review

Natarajan (1995) studied the best subset selection problem when the ℓ0

-norm of β is constrained. This can be considered a simplification of opti-

mization (1.2) where all cj’s are considered equal. Even in this case, they

show that the problem is NP-hard. Tibshirani (1996) and Zhao and Yu

(2006) proved that by relaxing the constraint to the ℓ1-norm, the consis-

tency of model selection is guaranteed under reasonable conditions. This

relaxation allows the incorporation of a convex optimization solver that
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makes the problem of Natarajan (1995) less demanding. However, in the

case of optimization (1.2), a similar relaxation is not natural due to the

complex relationship between the cost c and the budget C. In addition,

the nonlinear best subset selection using neural networks has been studied

in Chen et al. (2020). The shape constrained regression has been studied

extensively in Wang and Woodroofe (2007); Wang (2008); Wang and Shen

(2010, 2013).

Alternative methods for solving cost-constrained problems in recent lit-

erature tend to prioritize accuracy over interpretability or vice versa. Peter

et al. (2017) improved prediction accuracy using deep gradient boosting,

and Kachuee et al. (2019) used reinforcement learning. Nguyen et al. (2021)

used approaches based on well-known models, such as linear regression and

random forest, to make a greedy selection of covariates. These methods en-

sure the interpretability of the estimates, but they also use heuristics that

could call into question their consistency and accuracy when the size of the

feature is large.

Another line of approach to solve (1.2) is to use a penalized regression

technique (Tibshirani, 1996; Fan and Li, 2001; Zou and Hastie, 2005) and

greedily compare the evaluations of the loss function of β that satisfy the

cost constraint. These methods have two shortcomings. First, their empir-
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ical solutions occasionally narrow their search to only the set of covariates

with nonzero βjs. However, the true solutions may include “insignificant”

variables which are highly correlated to the significant ones and are cheaper

but sufficient to explain the response. Second, even among the true p0 sig-

nals, a brute-force comparison of the 2p0 combinations can be undesirable,

especially when p0 is large.

Recently, Yu et al. (2022) introduced an algorithm designed for high-

dimensional cost-constrained regression (HCR). It uses the first-order gra-

dient descent approach to solve the optimization problem (1.2), which oc-

casionally leads to the successful selection of non-zero entries. While the

method ensures stable convergence, it is often hampered by slow conver-

gence and diminished performance in high-dimensional regression tasks.

1.3 Our contributions

As such, we propose the Fast Cost-Constrained Regression (FCR) algo-

rithm. This scheme is systemically tailored to minimize (1.2) for a cost-

constrained problem. FCR consistently tends to outperform existing meth-

ods in identifying nonzero entries and delivering accurate regression pre-

dictions, particularly in high-dimensional settings. It achieves these results

with significantly fewer iterations and reduced computation time, as demon-
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8 1.3 Our contributions

strated through extensive experiments using both synthetic data and the

four NHANES datasets. Additionally, we establish a non-asymptotic error

bound for the solutions produced by the algorithm, quantifying both esti-

mation and selection accuracy. Our theoretical analysis shows that, under

certain conditions, the FCR algorithm guarantees an exact solution when

all true signal satisfies the budget constraint, offering a level of assurance

that other methods do not provide.

The paper is organized as follows. We introduce the algorithm of the

FCR method in a detailed manner and elaborate on how the desired charac-

teristics are achieved in Section 2. We investigate the theoretical property

of the algorithm by establishing the ℓ2 error bound of the algorithm in Sec-

tion 3. In Section 4 we numerically show that the FCR method not only

delivers accurate predictions, but also achieves this precision in notably

few iterations. In Section 5 we show that our approach shows superior

performance when applied to real-world data from the NHANES, indicat-

ing the practicability of our methods. The FCR package is available at

https://github.com//anonymous1116/FCR.
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2. Fast Cost-constrained Regression

We initially present the algorithm for linear regression with cost constraints.

Building on the principles established in linear regression, we generalize the

approach to encompass broader scenarios, including logistic regression. We

explore the extension to incorporate group-wise costs.

2.1 Fast cost-constrained linear regression

Consider when the loss function Φ(y,x⊤β) is an ℓ2-loss that leads (1.1) to

β† = argmin
β∈Rp

1

n
∥y −Xβ∥22 subject to

p∑
j=1

cjI(βj) ≤ C, (2.1)

where β† is a global minimizer. The NP hardness of the optimization

problem (2.1) adds complexity to our discussion. It should be noted that

β† also serves as a coordinate-wise minimizer. This observation enables

us to address cost constraints in a more nuanced way, viewing the impact

of each coordinate as a determining factor in deciding whether the use of

cost cj is justified. We delve into the properties of the coordinate-wise

minimizer of the optimization problem in Theorem 1, where the proof is

given in Supplement S1.

Theorem 1. Let β† be a coordinate-wise minimizer of (2.1) and I† be a
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10 2.1 Fast cost-constrained linear regression

set of nonzero indices of β†. Then each coordinate β†
j of β† satisfies

β† = T (β† + d), (2.2)

where T : Rp → Rp is a thresholding operator defined by its coordinate

Tj(β) =


0 if j /∈ I†

βj if j ∈ I†

, (2.3)

where d is defined by its coordinate dj = X⊤
j (y−Xβ†)/∥Xj∥22, j = 1, · · · , p.

Moreover, T satisfies, for all β ∈ C,

∥∥∥T (β† + d)− (β† + d)
∥∥∥
2
≤

∥∥∥β − (β† + d)
∥∥∥
2
. (2.4)

From (2.2) in Theorem 1, we note that if j is in the index set I†, the

value of dj should be zero by βj = βj + dj. In other words, once the

nonzero coefficients are determined, the subvector dI† is zero, where dI†

is a subvector of d := (d1, . . . , dp) indexed by I†. This implies that the

column vector Xj of the design matrix and y−Xβ† is orthogonal, where j
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11 2.1 Fast cost-constrained linear regression

is in the corresponding set. This gives us

0 = X⊤
I†(y −Xβ†) = X⊤

I†(y −XI†β†
I†),

where XI† ∈ Rn×|I| and β†
I† ∈ R|I| are the sub design matrix of X and

vectors of β† indexed by I†. This leads to the fact that β†
I† is actually the

least squares estimate with its design matrix XI† given by

β†
I† = (X⊤

I†XI†)−1X⊤
I†y, dI† = 0. (2.5)

We further notice the role of the thresholding operator T by inequality

(2.4) in Theorem 1. This suggests that the operator T projects its input

onto the cost constraint space C, minimizing the ℓ2-distance with the input

β† + d to produce the output T (β† + d). We introduce the 0-1 knapsack

algorithm to implement the operator T . Formally, given a p-dimensional

vector a ∈ Rp, this knapsack algorithm provides an ℓ2-projection â ∈ C that

satisfies

∥a− â∥22 ≤ ∥a− b∥22 ∀ b ∈ C. (2.6)

The knapsack algorithm is originally designed to identify the optimal selec-
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12 2.1 Fast cost-constrained linear regression

tion of items from a given set, each assigned a cost and loss. It minimizes

the overall loss while the cumulative cost does not exceed a specified limit.

The right hand side of (2.6) implies that if cj is spent and jth index is cho-

sen, the value lost is none, but a2j otherwise. By inputting the loss and cost

pair ({a2j}, {cj}) for j = 1, . . . , p, and the budget C, the algorithm provides

projection (2.6) that satisfy argminb∈C ∥a− b∥22.

A commonly used approach to solve the 0-1 knapsack problem is dy-

namic programming, with a pseudo-polynomial time complexity of O(pC)

(Martello and Toth, 1990). Recent research continues to explore ways

to reduce computational costs, such as achieving complexities of O(p +

c2max log
4 cmax) where cmax = maxj cj (see Jin (2024) and the references

therein). We primarily use the dynamic programming-based algorithm from

the R package adagio (Borchers, 2022) in our simulation studies.

We create the FCR algorithm, outlined in Algorithm 1, to embody the

properties of a coordinate-wise minimizer throughout its iterations. First,

starting from the initial value β0, typically β0 = 0, we update the coor-

dinate β′s to be zk := βk + dk in the kth iteration. Since zk is not in C,

we project it into the space of C and denote it by uk := ΠC(z
k) where the

knapsack algorithm is performed. We now detect the nonzero components

of uk and denote its index set by Ik. Detecting the nonzero set Ik allows

Statistica Sinica: Preprint 
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13 2.1 Fast cost-constrained linear regression

Algorithm 1 FCR

Input: Explanatory variable X, response variable y, costs vector
(c1, · · · , cp), budget C, maxiter K, tol δ,
β0 = 0,d0 = 1/diag(X⊤X) ·X⊤(y −Xβ0)
Output: β̂

for k = 0, · · · , K do
Calculate zk = βk + dk

Project to C: uk = ΠC(z
k)

Ik = {j : uk
j ̸= 0}

βk+1
Ik = (X⊤

IkXIk)−1X⊤
Iky ; βk+1

(Ik)c
= 0

dk+1
Ik = 0; dk+1

(Ik)c
= 1/diag(X⊤

(Ik)c
X(Ik)c) ·X⊤

(Ik)c
(y −Xβk)

if Stopping criteria is met then
β̂ = βk; break

end if
end for

us to update β using least squares estimates, as we observe in Theorem 1

and Equation (2.5). Therefore, we update

βk+1
Ik = (X⊤

IkXIk)−1X⊤
Iky, βk+1

(Ik)c
= 0,

dk+1
Ik = 0, dk+1

(Ik)c
=

1

∥Xj∥22
X⊤

j (y −Xβk+1).

The FCR algorithm is in fact oriented to generalize non-convex opti-

mization methods with the constraints
∑p

j=1 I(βj) ≤ s. Foucart (2011) and

Huang et al. (2018) detected the support of the solution based on the sum of

the primal (βk) and dual (dk) approximations using the hard thresholding

operator, and the least squares solution is calculated on the detected sup-
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port. These methods are well known to show good empirical performance

and low complexity with regard to the best subset selection problem. For

the best subset selection problem where all cjs are the same, projection ΠC

is equivalent to choosing the largest βjs in order. The knapsack algorithm

replaces this procedure for general cost constraints.

The primary difference between HCR (Yu et al., 2022) and FCR lies

in the approach inspired by Theorem 1, which ensures that once the active

set Ik is identified, the solution minimizes the loss function within that

set. This process leads to dynamic updates of βk+1 and results in different

active sets Ik as the iterations progress. It has a significant impact on the

speed of each algorithm, as we demonstrate in Sections 4 and 5.

2.2 Extensions with QM* condition

Our algorithm is not limited to the case where the loss function (1.1) is an

ℓ2-loss. In fact, based on the case of ℓ2-loss, we generalize our algorithm to

the scope of quadratic majorization* (QM*). Let the empirical loss be

L(β) :=
1

n

n∑
i=1

Φ(yi,β
⊤xi). (2.7)

Define the QM* condition as follows.

Statistica Sinica: Preprint 
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15 2.2 Extensions with QM* condition

Definition 1. The loss function L is said to satisfy the QM* condition, if

and only if the following two assumptions hold:

(i) L(β) is differentiable as a function of β, i.e. ∇L(β) exists everywhere.

(ii) There exists a semipositive definite H such that for all β,η ∈ Rp,

L(β) ≤ L(η) + (β − η)⊤∇L(β) +
1

2
(β − η)⊤X⊤HX(β − η). (2.8)

The QM* condition indeed holds for many popular loss functions used

in regression and classification. It includes regression loss functions for the

generalized linear model (GLM) such as the linear and logistic models. In

addition, it incorporates the loss functions for support vector machines,

such as the squared hinge and Huberized hinge loss functions. We provide

conditions in the Supplement S2 that are sufficient to characterize a class

of loss functions that satisfies the QM* conditions.

The QM* condition is a modification of the QM condition (Yang and

Zou, 2015), which offers specialization without imposing significant con-

straints on the eligible classes of loss functions. The quadratic term X⊤HX

found in (2.8) is extended to a semipositive definite matrix H̃ within the

QM condition. However, the selection of H̃ typically corresponds to an

upper bound of the Hessian of Φ with respect to β. In such cases, H̃ is

Statistica Sinica: Preprint 
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expected to take the form of X⊤HX for some H, indicating a strong con-

nection between the two. It should be noted that all four loss functions

discussed in Yang and Zou (2015) satisfy the QM* condition.

Let Φ′
µ(y, µ) be the partial derivative of Φ with respect to µ. We have

∇L(η) = X⊤g(η), where gi = Φµ(yi,x
⊤
i η)/n for i = 1, . . . , n. If the loss

function satisfies the QM* condition, we can find M ∈ R that bounds H

such that H ≤ M · In. Define Q(β,η) as

Q(β,η) := L(η) + (β − η)⊤X⊤g(η) +
M

2
(β − η)⊤X⊤X(β − η).

Q(β,η) is also the upper bound for L(β) for any β,η ∈ Rp and

Q(β,η) =
M

2
∥(Xβ −Xη) +

1

M
g(η)∥22 + h(η) (2.9)

where h(η) is a function that only depends on η, not β. We then have

β† = argmin
β∈C

L(β) = argmin
β∈C

Q(β,β†) = argmin
β∈C

∥Xβ − ỹ∥22, (2.10)

where ỹ = Xβ†−g(β†)/M . The first and third equality are straightforward.

The second equality follows from two key facts: L(β) ≤ Q(β,β†) and

L(β†) = Q(β†,β†). Specifically, Q(β,β†) attains its lower bound L(β†) at
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β†. The formulation (2.10) links the QM* loss function to the case with

the ℓ2-loss. It leads to establish Theorem 2 which generalizes Theorem 1.

Theorem 2. Let β† be a coordinate-wise minimizer of (1.2), and let L(β)

satisfy the QM* condition. Then each coordinate β†
j of β† satisfies

β† = T (β† + d), (2.11)

where T : Rp → Rp is a thresholding operator defined in (2.3) and d is

defined by its coordinate dj = −X̃⊤
j g(β

†)/∥X̃j∥22, j = 1, · · · , p. Moreover,

T satisfies, for all β ∈ C,

∥T (β† + d)− (β† + d)∥2 ≤ ∥β − (β† + d)∥2. (2.12)

Theorem 2 generalizes the FCR algorithm when the loss function sat-

isfies the QM* condition. Note from (2.11) that dj = 0 for j ∈ I†, which

implies

0 = X⊤
I†g(β

†) = X⊤
I†

[
1

n

n∑
i=1

Φ(yi, (β
†)⊤xi)

]
= X⊤

I†

[
1

n

n∑
i=1

Φ(yi, (β
†)⊤I†(xi)I†)

]
,

which is the gradient of L when the design matrix is XI† in lieu of X. To

reflect this observation, we incorporate an update βk+1
Ik = argminL(β|Ik)

Statistica Sinica: Preprint 
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18 2.2 Extensions with QM* condition

Algorithm 2 Generalized FCR

Input: Explanatory variable X, response variable y, costs vector
(c1, · · · , cp), budget C, maxiter K, tol δ,
β0 = 0,d0 = −1/diag(X⊤X) ·X⊤g(β0)
Output: β̂

for k = 0, · · · , K do
Calculate zk = βk + dk

Project to C: uk = ΠC(z
k)

Ik = {j : uk
j ̸= 0}

βk+1
Ik = argminβ L(β|Ik); βk+1

(Ik)c
= 0

dk+1
Ik = 0; dk+1

(Ik)c
= −1/diag(X⊤

(Ik)c
X(Ik)c) ·X⊤

(Ik)c
g(βk)

if Stopping criteria is met then
β̂ = βk; break

end if
end for

where (β|I)j = βj1(j ∈ I). Since this minimization only concerns the

submatrix XIk , seen as a lower-dimensional regression, a computation-

ally stable algorithm can be used, such as the iterative reweighted least

squares algorithm for logistic regression. The rest of the algorithm is sim-

ilar to Algorithm 1. We update the coordinate β′s to zk = βk + dk in

the kth iteration and then project it into the space of C based on the

observation of (2.12) using the knapsack algorithm. Since we now detect

the nonzero components of uk, β is updated as above, dk+1
Ik = 0, and

dk+1
(Ik)c

= −1/diag(X⊤
(Ik)c

X(Ik)c) · X⊤
(Ik)c

g(βk). We summarize the general-

ized FCR method (GFCR) in Algorithm 2, and discuss its stopping criteria

in Supplement S3.
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It is a typical scenario in which purchasing a single component is not

possible without acquiring all the variables. Buying a variable from a survey

costs the same amount as buying all survey questionnaires. In a clinical

data set, demographic information about the patient is usually collected

all at once, rather than separately, to minimize communication expenses.

When dealing with categorical variables, the generated dummy variables

are bundled together for purchase, even if some may not be needed. We

discuss such issues in the Supplement Section S4.

3. Theoretical Analysis

In this section, we establish nonasymptotic error bounds for the solution

sequence generated by Algorithm 1. We investigate with the solution β∗

of (1.1) where we write I∗ = {j : β∗
j ̸= 0}. We focus on high-dimensional

linear regression y = Xβtrue+ζ, where βtrue is the true unknown coefficient,

X is assumed to be centered and
√
n-normalized, and ζ = (ζ1, . . . , ζn)

T is

the mean zero random error vector. We assume that ζ1, . . . , ζn are i.i.d with

a sub-Gaussian distribution that satisfies E[exp(tζi)] ≤ exp(σ2t2/2) for all

t ∈ R and i = 1, . . . , n. Initially, we adopt various definitions from Zhang

and Huang (2008) and Huang et al. (2018) that guide the examination of

FCR’s properties.
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Definition 2. X satisfies the sparse Riesze condition (SRC) with order s

and spectrum bound {b−(s), b+(s)} if

0 < b−(s) ≤
∥XIγ∥22
n∥γ∥22

≤ b+(s) < ∞ ∀ 0 ̸= γ ∈ R|I|,

for I ⊂ {1, 2, . . . , p} and |I| ≤ s, and we denote this condition by X ∼

SRC{s, b−(s), b+(s)}.

Definition 3. The sparse orthogonality constant θs1,s2 is defined by the

smallest value such that

∥X⊤
IXJγ∥2
n∥γ∥2

≤ θs1,s2 , ∀ 0 ̸= γ ∈ R|J |,

where I,J ⊂ {1, . . . , p}, |I| ≤ s1, |J | ≤ s2, and I ∩ J = ∅.

The SRC condition outlines the range of eigenvalues for the diagonal

submatrices of the Gram matrix X⊤X/n, while the sparse orthogonality

constant relates to the off-diagonal elements. By definitions, the ranges of

the constants are b−(s) ≤ 1 ≤ b+(s) and 0 ≤ θs1,s2 ≤ 1. We also define a

projection β̄ of βtrue into the cost constraint space C under the ℓ2 distance,

that is, β̄ = argminβ∈C ∥β − βtrue∥2, and the distance RC := ∥β̄ − βtrue∥2.

Now, we assume the structure of the realized design matrix X. Let us
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define q as an upper bound for the size of Ik and I∗, that is, q := max{|Ik| :

k ≥ 1} ∨ |I∗|. Define a constant that depends on the spectrum bound and

the sparse orthogonality constant of the design matrix X such that

r :=
2θq,q + (1 +

√
2)θ2q,q

b−(q)2
+

(1 +
√
2)θq,q

b−(q)
.

Theorem 3 establishes the property of the FCR algorithm within the

assumption r < 1. The value r provides an approximate measure of the

correlation between the variables, with a smaller r indicating a weaker cor-

relation. Sufficient conditions are provided for a design matrix to satisfy

the SRC (Zhang and Huang, 2008; Huang et al., 2018). This assumption is

satisfied, for instance, if b+(2q) ≤ 1.1599 and b−(2q) ≥ 0.8401 (Huang et al.,

2018), where the best subset selection is discussed within this assumption.

We generalize the results in the article to the setting of cost-constrained

constraints beyond the ℓ0-constraint.

Theorem 3. Suppose r < 1. Then, for any α ∈ (0, 1/2), we have

∥β∗ |I∗\Ik+1 ∥2 ≤ rk+1∥β∗∥2 + b1b2RC + b1ϵ, (3.1)

∥βk+1 − β∗∥2 ≤ b3r
k∥β∗∥2 + b2b4RC + b4ϵ, (3.2)
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with probability at least 1− 2α where

b1 =
r

(1− r)θq,q
, b2 =

√
b+(q)b+(p0)b+(p0 + q)

b−(p0 + q)
, b3 = 1 +

θq,q
b−(q)

,

b4 =

(
b1b3 +

1

b−(q)

)
, and ϵ = σ

√
2q log(p/α)

n
.

Theorem 3 establishes the ℓ2 error bound for the approximation errors of

the sequence generated by the FCR in the (k+1)th iteration. In particular,

(3.1) gives the ℓ2-bound of the elements in I∗ not included in the nonzero

set in the (k + 1)th iteration. Inequality (3.2) provides an upper bound

for the ℓ2 estimation error of βk+1. With the certain assumption that

r < 1, we show that these error bounds geometrically decay to the model

error measured by b1b2RC + b1ϵ and b2b4RC + b4ϵ, respectively, with high

probability. We present its proof in the Supplement S1.

The outcome of Theorem 3 provides an interpretation of the FCR prop-

erty, consistent with the observations in the simulations outlined in Section

4. First, the larger n increases the efficiency of the algorithm. The part

of the error bound ϵ diminishes with larger data sizes n, which aligns with

the numerical results as described in the first row of Figure 3. Further-

more, when operating within a constrained budget, the task of identifying

optimal combinations of cost-effective variables becomes more challenging.
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In practical terms, a tighter budget amplifies the difficulty of excluding

insignificant variables. In extreme cases, where the budget is just above

the cost of each variable with identical pricing, pinpointing the relevant

variables becomes more challenging after eliminating the insignificant ones.

These findings are consistent with the results summarized in the second row

of Figure 2 and in the first row of Figure 3.

We remark that the underlying assumptions of our results limit the

general applicability of the problem. The value of r critically hinges on

the sparse orthogonality constants θq,q being small, which basically requires

that any pairs of groups of covariates cannot be too correlated. As a result,

this assumption may not fully capture all situations. However, our results

provide valuable insights into the practical use of the FCR method. In many

modern data settings, where steps are taken to reduce multicollinearity (e.g.

through design or preprocessing), the variables are weakly correlated with

each other. Also, the theory’s applicability extends to cases where the

significant ones are weakly correlated with many cheaper variables, rather

than just a single correlated variable.

When the budget increases to meet condition
∑p0

j=1 cjI(βj) ≤ C, the

algorithm transforms effectively into a solver for the problem of selecting

the best subset. We demonstrate that the FCR algorithm can successfully
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identify nonzero coefficients in this scenario. To facilitate this, we introduce

a notation: m̄, the minimum true value of β∗ i.e. m̄ := min{β∗
j : j ∈ I∗}.

Corollary 1. Let
∑p0

i=1 cjI(β
true
j ) ≤ C. Then,

β∗ = βtrue.

Under the same conditions as in Theorem 3, for any α ∈ (0, 1/2), with

probability at least 1− 2α,

∥βk − β∗∥2 ≤ 2b4ϵ if k ≥ log1/r
b3∥β∗∥2

b4ϵ
.

Furthermore, assume that m̄ > b1ϵ/ξ for some 0 < ξ < 1, then we have

I∗ ⊂ Ik if k ≥ log1/r
∥β∗∥2

(1− ξ)m̄
.

Corollary 1 demonstrates the ability of the FCR algorithm to effectively

detect nonzero coefficients in the situation of
∑p0

i=1 cjI(β
true
j ) ≤ C. Initially,

in that case, we show that the desired solution is the nonzero coefficients.

Moreover, it establishes that after a sufficiently large number of iterations,

the ℓ2-distance between the k-th estimates and the true coefficients has the

bound of ϵ up to a constant after a sufficiently large iteration with high
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probability. Furthermore, under the additional assumption that the mini-

mum value of the true β∗ is sufficiently larger than ϵ, the FCR algorithm is

shown to accurately identify a subset of nonzero coefficients. It provides a

practical applicability of FCR that ensures that the budget is not wasted,

at least when the budget is enough.

Our findings align with those presented in Theorem 4 and Corollary 8 of

Huang et al. (2018), which delves into the best subset selection problems.

Despite addressing the more challenging nonconvex constraints, we suc-

cessfully obtain comparable outcomes under identical circumstances. The

difficulty in formulating theorems lies in identifying sets Ik+1, Ik, and I∗.

Unlike Huang et al. (2018), where sets have fixed sizes, ours vary based on

iteration and cost-constraint structures. Lemma 4 in the Supplement S1

establishes the association among these sets.

4. Numerical Results

4.1 A motivating example

Imagine a scenario in which the response y is generated from Xβtrue +

ζ. We choose n = 2000, p = 1000, p0 = 8, and X is generated from a

multivariate Gaussian distribution with mean 0, with correlations among

the first 24 displayed in the left panel of Figure 1. In particular, variables
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(x1, . . . , x8) and (x17, . . . , x24) exhibit a significant correlation. In instances

where certain variables are prohibitively expensive, alternative variables

should be explored as substitutes.

In order to make such scenarios, the first 24 entries of βtrue and c are

set to have their components as following,

βtrue
1:24 = (β1, . . . , β4, β5, . . . , β8︸ ︷︷ ︸

2

, β9 . . . , β16, β17 . . . , β24︸ ︷︷ ︸
0

)

c1:24 = (c1, . . . , c4︸ ︷︷ ︸
$20

, c5, · · · c8︸ ︷︷ ︸
$10

, c9 . . . , c16, c17 . . . , c24︸ ︷︷ ︸
$1 or $2

),

and the rest of βtrue is set to be 0 and that of c $1 or $2. In such case,

consider a scenario where the maximum budget available is limited to $50.

Despite the significance of the first eight variables, using all of them incurs

a cost of $20 × 4 + $10 × 4 = $120. Given the relatively high cost of the

first four variables, β1–β4, a sensible approach is to opt for variables that

exhibit strong correlation with them but have a lower cost, such as β17–β20,

requiring only $1 or $2 each. Through a brutal force search, we find that

the optimal variables for this situation are β5–β8 and β17–β20 (middle, and

upper right solid line in Figure 1), and obtain the solution value of (1.1)

as well. We experiment whether the feasible algorithms select the correct

variables. To evaluate the performance under these conditions, we generate
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Figure 1: Left: Correlation matrix of X1:24; Middle: true β from (1.2)
(solid line) with 90% bands for LASSO (top) and FCR (bottom) over 100
simulations; Right: HCR performance (top) and implementation time (bot-
tom).

100 different pairs of X and y and compare their outcomes.

One of the näıve but feasible approaches is to try to find sufficient

values of the hyperparameter of the regularization term and to find feasible

sets of βjs that satisfy the cost restrictions. Among them, the prediction

error can be estimated and the combination of βjs that minimize the error

can be chosen. We apply LASSO (Tibshirani, 1996) to this approach. We

compare LASSO, HCR, and FCR in the above scenario and plot the results

on the middle and right sides of Figure 1. We iterate three algorithms

100 times with various pairs of X and y, showcasing the 90% confidence

bands for the estimated values of each method. These bands are then

overlaid on the plot depicting the true solution. As depicted in the upper
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middle section of Figure 1, LASSO tends to exhibit conservative variable

selection, occasionally favoring less favorable options among the initial four

coefficients while neglecting other cost-effective variables. Although the

methods successfully identify nonzero coefficients, this behavior results in

lower prediction errors, primarily due to the lack of systematic consideration

of cost constraints in variable selections. On the other hand, FCR and

HCR tend to select relatively desirable variables (lower middle and upper

right of Figure 1). The FCR accurately selects the desired variables β5–

β8 and β17–β20, occasionally incorporating β24, although with a negligible

estimated value. Meanwhile, the HCR tends to make appropriate variable

choices; however, its estimated values exhibit a larger variance compared to

the FCR estimates. The HCR method occasionally selects cost-ineffective

variables β22-β24 with larger estimated values. We measure the time taken

by the three methods and display the results in the lower right panel of

Figure 1. The FCR completes its estimate in less than a second, whereas

the HCR exhibits a longer time elapsed with considerable variability.

4.2 Simulation results

To study the properties of each algorithm, we investigated each method

in various scenarios. The simulation settings in this section reflect typical
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Table 2: Simulation setting summaries
Model cj C0 C p p0 ρij(p0)

S1
Linear

Regression
1:10 146 25, 50, 75, 100 1000 24 0

S2
Linear

Regression
1:10 146 80 1000 16

0.2, 0.4,
0.6, 0.8

S3
Linear

Regression
1:50 686 200, 400, 600, 800 1000 24 0.3

S4
Linear

Regression
1:10

grouped
68 15, 30, 45, 60 1000 32 0

S5
Logistic

Regression
1:10 146 25, 50, 75, 100 1000 24 0.5

S6
Logistic

Regression
1:10 146 80 1000 24

0.2, 0.4,
0.6, 0.8

scenarios encountered when costs are involved in the implementation of

regression tasks. Both linear and logistic regression are considered, and so

are the cases of high-dimensional (n < p) to low-dimensional (n ≥ p). We

fix p = 1000 for all simulations, while the cost scale, the amount of budget,

and the correlation among the covariates X ′
js are varied to highlight the

effectiveness of our method depending on various situations. We investigate

six different simulations and denote them as S1 to S6. While we describe

the detailed simulation settings in the following subsection and Supplement

S5, they are summarized in Table 2.

To evaluate the performance of these methods, we use five measures:

(1). The prediction error ∥ytest −Xtestβ̂∥22/ntest for the regression task and

1
n

∣∣∣ytest ̸= sign(Xtestβ̂)
∣∣∣ for the logistic model; (2). The false negative rate

(FNR*):= |{j : β∗
j ̸= 0, β̂j = 0}|/|{j : β∗

j ̸= 0}|; (3). The false positive
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rate (FPR*):= |{j : β∗
j = 0, β̂j ̸= 0}|/|{j : β∗

j = 0}|; (4). The estimation

error ∥β∗ − β̂∥22; (5). The elapsed time of the algorithms in the software

R, where β∗ is the solution to the optimization problem (1.1); (6) The

area under the receiver operating characteristic curve (AUC) for the logistic

model. Through an exhaustive search, we can identify β∗ in straightforward

scenarios such as S1 and S2 . However, for S3 to S6, since obtaining the

true set of β∗ is challenging both analytically and computationally, we only

report the prediction error, AUC and the elapsed time. FNR* measures

how less the algorithm selects cost-efficient variables. If β∗
j is not selected,

the algorithm will lose cost-efficiency even though the algorithm buys other

nonzero significant variables. On the other hand, FPR∗ measures how much

the algorithm selects cost-inefficient variables. However, the larger value of

FPR* error does not necessarily mean that the algorithm works in a cost-

inefficient way. Even when none of the variables is selected, the FPR* error

should be zero, but it provides undesirable estimates. Therefore, careful

consideration is needed to interpret the FPR* measures.

As illustrated above, we compare our method with two other methods.

First, we take into account the comparison with HCR (Yu et al., 2022),

which deals first with the cost-constrained regression problem. We choose

the hyperparameter as the largest eigenvalue of X⊤X/n plus 0.1 in the
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Figure 2: S1 results of the prediction error (the first row), and the FNR*
(second), and FPR* (third). FCR, HCR, and LASSO are indicated in the
solid, dashed, and dot dashed line, respectively

same way as Yu et al. (2022) to set in their simulations. Next, we compare

with LASSO, which finds a nonzero β′s using cross-validation using the

package glmnet (Tay et al., 2023) and näıvely search for a combination

of βjs that minimizes objective functions. The elapsed time for LASSO

include solving LASSO for a path of regularization parameters and find

feasible sets of parameters.

In Simulation 1 (S1), the predictor X = (x1, · · · ,xn)
⊤ is generated

from a Gaussian distribution with mean 0p and covariance Ip. Regard-
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Figure 3: S1 results of the estimator error (the first row), and the elapsed
time (second).

ing the generation of the first p0 = 24 elements of βtrue, the first quarter

of them is generated from N(4, 0.25), the next quarter from N(3, 0.25),

the next N(2, 0.25), and finally N(1, 0.25). We vary the budget by C =

{25, 50, 75, 100}. For each j ∈ {1, 2, · · · , p}, we choose cj, the cost of col-

lecting the jth variable, randomly from the set of integers {1, 2, . . . , 10}.

Throughout this section, we generate different X 100 times and iterate

each algorithm 100 times, and indicate the mean of the measures and its

95% confidence interval in the figures.

We divide the simulation results into Figures 2 and 3. Figure 2 sum-

marizes the performance of the prediction error, FNR* and FPR*, and

Figure 3 the estimation error and the time elapsed over the budget C =

{25, 50, 75, 100}. We can see that the predictive error of the FCR method
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decreases as the budget increases. The total budget to fully explain the

response variable is 146, which the model performs better as the budget

approaches. Compared to other methods, the FCR method shows supe-

rior predictive performance and small variance (cf. the first row of Figure

2). This is distinctive when n is small (cf. top left in Figure 2), but it

is still the case when n is medium and large (see the top middle and top

right of Figure 2). The second row of Figure 2 indicates the FNR* for

each method. The FCR method finds a cost-effective variable uniformly,

regardless of whether the budget is tight or abundant. The third row of

Figure 2 indicates the FPR* for each method. Compared to HCR, FCR

chooses less cost-inefficient variables over budget and sample size. We can

see that HCR tends to spend its budget inefficiently as the budget in-

creases. Interestingly, the näıve LASSO method shows comparably good

FPR* performance. This is because the näıve LASSO spends the budget

conservatively so that it does not search for variables regardless of redun-

dancy. The FPR* of FCR is comparable to that of this frugal method.

The lower FNR* and FPR* of FCR lead to the top-quality performance in

the estimator power as shown in the first row of Figure 3. Moreover, the

superior achievement of FCR is achieved in a much shorter time than other

methods. The näıve LASSO approach needs a similar time no matter what
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the sample size is due to its brutal search nature. For HCR, the elapsed

time is similar to the näıve LASSO approach for small n, but it improves

as the sample size increases. On the other hand, FCR takes only a much

shorter time to implement compared with the other two methods.

For Simulation 2-6 (S2-S6), we obtain similar results to those above.

As summarized in Table 2, we vary the correlation ρ among the covariates

of X (S2), the cost distribution (S3), and grouped costs that are discussed

in Section S4 (S4). We also consider the logistic regression discussed mainly

in Section 2.2 in S5 and S6.

We detail the simulation settings and report the corresponding results

in Supplement S5. It is important to emphasize that for non-convex opti-

mization problems like this, one method may not be universally superior to

the other. Despite this, our proposed FCR method demonstrates distinct

advantages over HCR as seen in the simulation results. The FCR method

not only tends to perform better in high-dimensional cases but also achieves

comparable or superior results with significantly fewer iterations, resulting

in greater computational efficiency.
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5. Real Data Analysis

We perform a real-world analysis with the four data sets described in Table

1. Kachuee et al. (2019) performed a survey to assign an associated cost

(ranging from $2 to $9) to each feature, taking into account subject factors

such as convenience and subjective usefulness of each feature. We also

refine the data by removing less common questionnaire responses or other

categories. As described in Table 1, most variables in diabetes data are

continuous, while most heart data are categorical. Table S1 in Supplement

Section S6 illustrates the cost distribution for each dataset. By examining

the four sets of data, we can assess the effectiveness of the algorithms in

various scenarios.

We implement logistic grouped cost-constrained regression for each dataset

and compare it with HCR and LASSO. For each dataset, we randomly split

it into training and test datasets, with a ratio of 0.8 and 0.2. While we it-

erate the split of the data 100 times, we record AUC, prediction error,

negative log-likelihood, and time elapsed on various budgets C.

The superiority of FCR over HCR is evident in real-world applications.

The box plot of each performance is presented in Figure 4 on the budgets for

both methods (AUC, the prediction error, and the negative log-likelihood

from left to right column). The first row corresponds to the diabetes study,
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Figure 4: NHANES data analysis summary: For every budget C, boxplots
display the results of FCR (left, solid outline), HCR (middle, dotted out-
line), and LASSO (right, dashed outline).

followed by hypertension in the second, arthritis in the third, and heart

in the final row. Despite variations in the characteristics of the four data

sets, FCR consistently demonstrates a higher AUC, a lower prediction error,

and a lower negative log-likelihood than HCR. This consistent superiority

underscores the practical efficacy of FCR in its application to clinical data.

In the context of budget considerations, improved performance suggests
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Figure 5: Top: the elapsed time in R for NHANES data analysis. Bottom:
the diabetes study’s loss function trajectory of FCR (dashed) and HCR
(dotted) for each budget.

substantial potential for cost savings.

In addition, FCR achieves its outstanding performance in a considerably

shorter time frame. In the diabetes study, FCR is, on average, 28 times

faster than HCR, and in the hypertension study it is 30 times faster, as

seen in the top of Figure 5. To closely see the difference, we plot the loss

function trajectories for both methods in the diabetes study in the bottom

of Figure 5. FCR accomplishes its task in fewer than 10 iterations, whereas

HCR requires a minimum of 300 iterations to complete its task. We present

the trajectories of the other studies in Figure S7 in Supplement Section S6.

When compared to LASSO, FCR performs better in terms of predictive
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accuracy for diabetes, arthritis, and hypertension datasets, but underper-

forms for the heart dataset. This discrepancy appears to stem from the

configuration of the cost vectors in the heart dataset. The LASSO method

can be preferable when (i) the significant variable is not expensive enough,

so that (ii) the cheaper variables cannot sufficiently explain the response

instead of the expensive one. This conservative approach works well for the

heart dataset, where LASSO effectively selects the key variables. Table S1

shows that the number of variables in the heart dataset whose cost 5 is zero

and cost 9 is very small, which turns out to be insignificant. The LASSO

method, as expected, tends to identify nonzero coefficients conservatively,

selecting significant variables, some of which are not that expensive, at

most cost 4, and others are even cheap with cost 2. On the other hand,

FCR selects nonzero coefficients in a more distributed manner, emphasiz-

ing variables with lower costs (e.g., cost 2), which results in suboptimal

performance for the heart dataset.

In contrast, for the diabetes, arthritis, and hypertension datasets, the

cost constraints are more intricate, making LASSO’s conservative approach

less effective. The complex cost structure in these datasets demands a

method like FCR, which is specifically designed to handle cost-constrained

regression problems. This aligns with our initial motivation for this article
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and highlights the need for a method tailored to cost-sensitive scenarios.

6. Conclusion

This paper introduces FCR, a novel method adapted for scenarios in which

variables incur costs. The FCR gains its soluction in an accelerated way

and reaches it with robust predictive modeling capabilities. We establish a

non-asymptotic error bound for FCR, ensuring desirable characteristics.

FCR has proven to be promising, but there is still room for growth

in both theoretical and algoritmic ways. Elucidating the precise rationale

behind the FCR poses a challenge due to the non-convex nature and the

complicated structure of the cost constraint C. Another direction for further

development is to adapt the framework to more general regression settings,

such as nonlinear models and random forests. Expanding the application

of FCR to such models not only diversifies the options available to users,

but improves its predictive capabilities.

Supplementary Materials

The proofs of Theorems 1, 2 and 3 are provided in Section S1. The suffi-

cient conditions for QM* and several loss functions that satisfy QM* are

presented in Section S2. The stopping criteria for the FCR and GFCR
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algorithms are discussed in S3. Additional details and results of numerical

experiments and NHANES data analysis are given in Sections S5, and S6.
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