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Abstract: Gaussian graphical models (GGMs) have been investigated to infer

dependence (or network) structure among high-dimensional data by estimating

a precision matrix. However, while many estimation methods for GGM have

been developed, methods for testing the equality of two precision matrixes are

still limited. Because testing the equality of the precision matrix depends on

other given precision matrices, we develop a weighted conditional network test-

ing for considering other given precision matrices information and also provide

theoretical properties. None of the existing methods can be applied to test condi-

tional differences when other networks are conditionally given and different. We

demonstrate the advantage of our approach using a simulation study and genetic

pathway analysis.

Key words and phrases: Conditional Difference, Gaussian Graphical Model, Pre-

cision Matrix.
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1. Introduction

Graphical models (Friedman et al., 2008; Qiao et al., 2019) have become

popular for investigating networks in various scientific fields, such as social

science, neuroscience, precision medicine, and omics.

Most graphical models have been developed for multiple estimations of

precision matrices but not for testing their equality. Precision matrices play

a fundamental role in many high-dimensional inference problems. In the

Gaussian graphical model (GGM) framework, the difference between two

precision matrices characterizes the differential network, which measures

the amount of change in the network between two groups. Xia et al. (2015)

proposed testing the differential networks of two precision matrices and

applied this test to the detection of gene-gene interaction under a GGM.

Cai (2017) provided a substantive review paper summarizing recent devel-

opments in hypothesis testing for high-dimensional covariance structures,

including global testing for the overall pattern of covariance structures and

simultaneous testing of a large collection of hypotheses with false discovery

proportion (FDP) and false discovery rate (FDR) control. Xia et al. (2018)

proposed multiple testing procedures for the sub-matrices of a precision ma-

trix, applicable to the identification of between-pathway interactions. Xia

and Li (2019) adopted the matrix GGM framework to develop statistical
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inferential procedures for testing the equality of individual entries of par-

tial correlation matrices across multiple groups. Ye et al. (2021) proposed

a paired test of matrix graphs to infer brain connectivity networks when

groups of samples are correlated. However, none of these existing meth-

ods are able to test the difference in networks between two groups when

some components of precision matrices are conditionally given and these

given structures are different, nor can they conduct corresponding multi-

ple tests in such conditional cases. For example, we are often interested

in testing whether a specific gene network or pathway network is differ-

ent between two groups, given networks from other pathways that are also

different between two groups. Multiple high-dimensional correlated data

sets, such as pathways, are highly correlated with each other due to shared

genes and biological processes. Hence, when we test the equality of path-

way networks between two groups, it is important to account for the other

pathway network’s structures. Our goal is to develop a testing procedure

to provide a more accurate statistical inference. We refer to such testing as

“weighted conditional differential network testing.” We develop global and

multiple tests under the weighted conditional differential network testing

framework.
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1.1 Main Contribution of This Paper

1.1 Main Contribution of This Paper

Since our global and multiple test has some similarities to that of Xia et al.

(2015, 2018), we first illustrate a main contribution of our conditional test-

ing by comparing it to that model. Figures 1a-1f are simple representations

of testing in Xia et al. (2015, 2018) and our testing, where the whole square

indicates the precision matrix and each sub-square represents a sub-matrix

of the precision matrix. In the global test by Xia et al. (2015), they tested

the equality of the two precision matrices, Ω1 and Ω2, as in Figure 1a; how-

ever, as Figure 1e shows, we can test the equality of two precision matrices

by taking into account other sub-matrices, represented here by the areas

with green checkered patterns and blue stripes. Likewise, in their testing of

a given sub-matrix, Xia et al. (2018) considered other given sub-matrices,

represented by the area with green checkered patterns. However, their test-

ing is only applicable to determine whether a small off-diagonal sub-matrix

is zero. The test by Xia et al. (2018) is not applicable to the equality of

sub-matrices when there are two different given sub-matrices. As Figure

1e shows, we can conduct an equality test when the different sub-matrices

(indicated by green checkered patterns and blue stripes) are conditionally

given. Furthermore, there are significant differences between our multiple

testings and the multiple testings by Xia et al. (2015, 2018). The multiple
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1.2 The Purpose of This Paper

testings by Xia et al. (2015) and ours are for cases in which components dif-

fer between two population groups. The only difference between the testing

Xia et al. (2015) conducted and ours is whether it takes into account other

given networks (see Figures 1b and 1f). On the other hand, in the multiple

testings of Xia et al. (2018), they tested which sub-matrices were zero, as

Figure 1d shows.

Therefore, although our procedure is similar to the testing procedures

in Xia et al. (2015) and Xia et al. (2018), with the distinguishing feature

being “weighted testing”, the main difference lies in the following aspect.

The existing methods, such as Xia et al. (2015) and Xia et al. (2018),

are only applicable when given other networks are the “same” and also

to the equal sample size case, while our method can be used when given

other networks are “different” and also unequal sample size cases. Since

we use the weighting scheme of the estimated precision matrix using all

information, including given other networks, this weight affects the test

statistics.

1.2 The Purpose of This Paper

We developed our conditional differential network testing of two population

groups by incorporating “given network” and “network given other net-
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1.2 The Purpose of This Paper

works.” We explain the meanings of “given network” and “network given

other networks” in Figures 1g-1j. Let us consider the network between the

black circle nodes, which is represented by black solid lines in Figures 1g

and 1h. If there is no connection between the gray square nodes, as in

Figures 1g and 1h, the network test by Xia et al. (2015) can be used to test

the networks’ equality. However, if the connectivity is unequal between the

gray square nodes or between the black circle nodes and the gray square

nodes, as in Figures 1i and 1j, the tests by Xia et al. (2015) and by Xia

et al. (2018) can lose power. Although the networks between the black

circle nodes are the same in Figures 1i and 1j, the blue dotted lines and

red dash-dotted lines are different. We refer to the networks represented

by blue dotted lines or red dash-dotted lines as “given networks” and to

the networks represented by black solid lines as “networks given other net-

works,” which is our main interest. Moreover, we refer to a network that

consists of a “given network” and a “network given other networks” as a

“conditional network.”

We now explain why our testing is “weighted testing.” Our main tests

of interest are those that determine the conditional difference between two

precision matrices when some components of the precisions are condition-

ally given and different. Although testing procedures often assume that
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1.3 The Outline of This Paper

every diagonal element of precision matrices is the same and that sample

size is balanced between two groups, our testing procedure does not re-

quire these assumptions. Hence, we consider a weighted scheme for the

normalization of diagonal elements under the unbalanced sample sizes of

two groups. Furthermore, we use the conditional dependency of the net-

work to determine which edges are different. Although two networks can

have the same structures, their conditional dependency can differ due to

diagonal elements, which we explain in detail in Section 2.2. Thus, we need

to adjust each edge dividing these diagonal elements and refer to testing for

adjusted conditional networks as “weighted conditional testing.” Therefore,

in this paper, we develop conditional differential network testing between

two population groups by incorporating a “given network” to provide more

accurate statistical inference under the GGM.

1.3 The Outline of This Paper

We organize the rest of the paper as follows. In Section 2, we introduce

some notations and definitions. In Section 3, we propose global and multi-

ple testing procedures. In Section 4, we provide the asymptotic properties

of testing conditional networks. In Section 5, we summarize the algorithms

of our global and multiple testing procedures and present their computa-
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tional complexities. In Section 6, we describe simulation studies conducted

to compare the performance of our conditional test to that of alternative

approaches. In Section 7, we describe the application of our conditional

network test to breast cancer genetic pathway analysis. Finally, we provide

concluding remarks in Section 8.

2. Testing a Conditional Network

We first define some notations in Section 2.1, describe our test hypothesis

in Section 2.2, and provide the conditions for testing in Section 2.3.

2.1 Notations and Definitions

1. Sub-matrices and sub-vectors: Let A = (ai,j)1≤i≤p,1≤j≤q ∈ Rp×q and

v ∈ Rp be a matrix and a vector. Then, we define sub-matrices and

sub-vectors as follows: Ai,·: the i-th row vector, A·,j: the j-th column

vector, A−i,·: the sub-matrix of A without the i-th row, A·,−j: the

sub-matrix of A without the j-th column, A−i,−j: the sub-matrix of

A without the i-th row and j-th column, and v−i: the sub-vector of

v without the i-th element. Also, we define averages of matrices as

follows: Āi,· =
1
q

∑q
j=1 ai,j, Ā·,j = 1

p

∑q
i=1 ai,j, Ā−i,· =

1
q

∑q
j=1 A−i,j,

Ā·,−j =
1
p

∑q
i=1Ai,−j.
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2.2 Test Hypotheses

2. Norms: For a vector v = (v1, · · · , vp) ∈ Rp, we define ℓq norm by

∥v∥q = (
∑p

i=1 |vi|q)1/q for 1 ≤ q < ∞ or ∥v∥∞ = max1≤i≤p |vi|. Also,

we define |v|min by |v|min = min1≤i≤q |vi|.

3. Conditional network: In a GGM, the network structure can be rep-

resented by its nodes’ precision matrix. A marginal network is rep-

resented by a precision matrix of a marginal distribution, but a con-

ditional network is represented by a precision matrix of a conditional

distribution that is equivalent to a sub-matrix of a precision matrix

of joint distribution.

2.2 Test Hypotheses

Let X1,X2 ∈ Rp be two independent random vectors following multivariate

normal distributions with mean µ1, µ2 and covariance Σ1, Σ2, respectively.

That is, Xd ∼ N(µd,Σd) for d = 1, 2.

A precision matrix Ωd = (Σd)−1 = (ωd
i,j)1≤i,j≤p represents a conditional

dependence network of Xd. Therefore, we test whether the two matrices

Ω1 and Ω2 have the same structrure.

Let us splitXd into two parts: one is a variable set that consists of the p1

variables in which we are interested, and the other is a variable set that con-

sists of the p2 variables in which we are not. We denote these sets asXd
(1,··· ,p1)
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2.2 Test Hypotheses

and Xd
(p1+1,··· ,p1+p2)

, respectively. Xd =
(
Xd

(1,··· ,p1)
T
,Xd

(p1+1,··· ,p1+p2)

T
)T

∈

Rp1+p2 , µd = (µd
i )1≤i≤p1+p2 , Σ

d = (σd
i,j)1≤i,j≤p1+p2 .

LetXd
I = (Xd

i )i∈I denote a sub-vector ofX
d for any tuple I in {1, · · · , p1+

p2}. Also, we can break down Σd into Σd,1,1 = Var(Xd
I1
), Σd,2,2 = Var(Xd

I2
),

and Σd,1,2 = Σd,2,1T = Cov(Xd
I1
,Xd

I2
), where I1 = (1, 2, · · · , p1) and I2 =

(p1 + 1, p1 + 2, · · · , p1 + p2).

Our main interest is the network structure of Xd
I1

conditioned by Xd
I2
.

We denote conditional covariance and precision matrices asΣd,1|2 := Var(Xd
I1
|Xd

I2
) =

Σd,1,1−Σd,1,2(Σd,2,2)−1Σd,2,1,Σd,2|1 := Var(Xd
I2
|Xd

I1
) = Σd,2,2−Σd,2,1(Σd,1,1)−1Σd,1,2,

Ωd,1|2 := (Σd,1|2)−1 = (ω
d,1|2
i,j )1≤i,j≤p1+p2 ,Ω

d,2|1 = (Σd,2|1)−1 = (ω
d,2|1
i,j )1≤i,j≤p1+p2 .

Then, we can rewriteΩd as follows: Ωd =

 Ωd,1|2 −(Σd,1,1)−1Σd,1,2Ωd,2|1

−(Σd,2,2)−1Σd,2,1Ωd,1|2 Ωd,2|1


with (Σd,2,2)−1Σd,2,1Ωd,1|2 = Ωd,2|1Σd,2,1(Σd,1,1)−1. We use Ωd,1|2 to refer to

a network given other networks, d = 1, 2, and (−(Σd,1,1)−1Σd,1,2Ωd.2|1,Ωd,2|1)

to a given network. We denote them as Ωd
I1,I1

and (Ωd
I1,I2

,Ωd
I2,I2

), respec-

tively, where Ωd
Ik,Il

= (ωd
i,j)i∈Ik,j∈Il is a sub-matrix of Ωd. And the matrix

Ωd represents a conditional network. We explained these networks in Sec-

tion 1.2. We test whether the two matrices Ω1
I1,I1

and Ω2
I1,I1

(or Ω1,1|2 and

Ω2,1|2) have the same structure. In fact, we want to investigate whether the

structure of two networks are indistinguishable, so the absolute value of the

difference between two ω1
i,j and ω2

i,j adjusted by ωd
i,i and ωd

j,j is outside of our
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2.3 Regularity Condition

interest. Our hypotheses are then H0 : maxi,j∈I1

∣∣∣∣ ω1
i,j√

ω1
i,iω

1
j,j

− ω2
i,j√

ω2
i,iω

2
j,j

∣∣∣∣ = 0

vs. H1 : maxi,j∈I1

∣∣∣∣ ω1
i,j√

ω1
i,iω

1
j,j

− ω2
i,j√

ω2
i,iω

2
j,j

∣∣∣∣ ̸= 0.

Due to the adjustment of ωd
i,j by ωd

i,i and ωd
j,j, we refer to our test

as weighted conditional testing. Furthermore, if the null hypothesis H0 is

rejected, we need to determine which edges are significantly different, as

well. Therefore, we conduct multiple tests with FDR control using the

following hypotheses: H0,i,j :
ω1
i,j√

ω1
i,iω

1
j,j

=
ω2
i,j√

ω2
i,iω

2
j,j

vs. H1,i,j :
ω1
i,j√

ω1
i,iω

1
j,j

̸=

ω2
i,j√

ω2
i,iω

2
j,j

for 1 ≤ i < j ≤ p1. Let {Xd
k = (Xd

k,1, · · · ,Xd
k,p1+p2

)T ∈ Rp1+p2 : k =

1, · · · , nd} be a set of independent nd copies of Xd for d = 1, 2 and denote

a data matrix as (Xd
k,i)1≤k≤nd,1≤i≤p1+p2 = (Xd

1, · · · ,Xd
nd
)T ∈ Rnd×(p1+p2).

Let βd
i = (βd

1,i, · · · , βd
p1+p2−1,i)

T ∈ Rp1+p2−1 be the regression coefficients

of Xd
k,i to Xd

k,−i, then Xd
k,i = βd

0,i +Xd
k,−iβ

d
i + εdk,i, β

d
i = (Σd

−i,−i)
−1Σd

−i,i =

−(ωd
i,i)

−1Ωd
−i,i and βd

0,i = µd
i−µd

−i·βd
i , where ε

d
k,i = (Xd

k,i−µd
i )−

(
Xd

k,−i − µd
−i

)
βd
i .

Because εdk,i can be represented by εdk,i = (ωd
i,i)

−1Ωd
i,·(X

d
k − µd), εdk,i ∼

N(0, (ωd
i,i)

−1), and εdk,i ⊥ Xd
k,−i. Denoting rdi,j := Cov(εdk,i, ε

d
k,j) for 1 ≤

i, j ≤ p1, we then have rdi,j =
ωd
i,j

ωd
i,iω

d
j,j
, ωd

i,j =
rdi,j

rdi,ir
d
j,j
, and

rdi,j√
rdi,ir

d
j,j

=
ωd
i,j√

ωd
i,iω

d
j,j

.

2.3 Regularity Condition

We developed our testing procedure under some conditions described in the

supplementary materials (Conditions 1-4).
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3. Global and Multiple Tests

In this section, we describe the global and multiple weighted conditional

testing procedures in Sections 3.1 and 3.2, respectively.

3.1 Global Weighted Conditional Testing Procedure

Let ε̂dk,i and r̃di,j be the estimators of εdk,i and rdi,j, which we must obtain

from the following forms: ε̂dk,i = Xd
k,i − X̄d

·,i − (Xd
k,−i − X̄d

·,−i)β̂
d
i and r̃di,j =

1
nd

∑nd

k=1 ε̂
d
k,iε̂

d
k,j. Xia et al. (2015) suggested a bias-corrected estimator r̂di,j

of rdi,j, r̂
d
i,j = −r̃di,j−r̃di,iβ̂

d
i,j−r̃dj,jβ̂

d
j−1,i for 1 ≤ i < j ≤ p1 and r̂di,i = r̃i,i for 1 ≤

i ≤ p1. Therefore, the intuitive estimator of ωd
i,j and weighted ωd

i,j (denoted

as ωd,w
i,j ) are ω̂d

i,j =
r̂di,j

r̂di,ir̂
d
j,j

and ω̂d,w
i,j =

ω̂d
i,j√

ω̂d
i,iω̂

d
j,j

=
r̂di,j√
r̂di,ir̂

d
j,j

for 1 ≤ i ≤ j ≤ p1.

To normalize ω̂d
i,j, we need to estimate ω̂d

i,j’s variance. By denoting the

following notations, we can estimate ω̂d
i,j’s variance as Ũd

i,j =
rdi,j−Ud

i,j√
rdi,ir

d
j,j

and

Ud
i,j = 1

nd

∑nd

k=1(ε
d
k,iε

d
k,j − E[εdk,iε

d
k,j]) for 1 ≤ i ≤ j ≤ p1. Then, under

Conditions 1, 3, and 4, by Lemma 9 of the supplementary materials, we

can show the following result:

max
(i,j)∈Ã

∣∣∣ω̂d,w
i,j − Ũd

i,j

∣∣∣ = Op{(log p1/nd)
1/2} max

(i,j)∈Ã
|rdi,j|+ op{(nd log p1)

−1/2} (3.1)

for any subset Ã ⊂ A = {(i, j) : 1 ≤ i ≤ j ≤ p}.
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3.1 Global Weighted Conditional Testing Procedure

Remark 1. Using equation (3.1), we can approximate the estimator ω̂d
i,j of

ωd
i,j√

ω̂d
i,iω̂

d
j,j

by the random variable Ũd
i,j, derived from the multivariate normal

distribution (εdk,i)i=1,··· ,nd
. However, while this approximation requires a suf-

ficient convergence rate, equation (3.1) only provides a relatively slow con-

vergence rate of Op{(log p1/nd)
1/2}. This necessitates Condition 2, which

indicates that the set Aτ of indices (i, j), where |rdi,j| is not small, has a

negligible size. As a result, for indices in Ac
τ , we have max(i,j)∈Ac

τ
|rdi,j| ≤

(log p1)
−1−τ . By using the equation (3.1), we can achieve a faster con-

vergence rate for ω̂d
i,j, specifically op{(nd log p1)

−1/2}, when considering the

indices in Ac
τ . For the remaining indices in Aτ , we can disregard the set

because Aτ is a small set. Therefore, using (3.1), ω̂d
i,j can be approximated

by the random variable Ũd
i,j with an appropriate convergence rate. Since

the distribution of Ũd
i,j is much easier to compute compared to that of ω̂d

i,j,

we can derive the asymptotic distribution of ω̂d
i,j through (3.1)

Therefore, our normalized estimator of the difference of weighted preci-

sion elements is ∆i,j =
ω̂1,w
i,j −ω̂2,w

i,j

(θ̂1i,j+θ̂2i,j)
1/2

for 1 ≤ i ≤ j ≤ p1, θ̂
d
i,j =

1
nd

{
1 + (β̂d

i,j)
2 r̂di,i
r̂dj,j

}
for 1 ≤ i < j ≤ p1, and θ̂di,i =

2
nd

for 1 ≤ i ≤ p1, where θ̂
d
i,j is an estimator of

θdi,j := Var(Ũd
i,j). Therefore, our test statistic is Mn = max

1≤i≤j≤p1
(∆i,j)

2, where

n = min(n1, n2). Let ∆̃i,j := ∆i,j − 1

(θ̂1i,j+θ̂2i,j)
1/2

(
ω1
i,j√

ω1
i,iω

1
j,j

− ω2
i,j√

ω2
i,iω

2
j,j

)
and

M̃n := max1≤i≤j≤p1

(
∆̃i,j

)2

. Because ∆̃i,js are normalized, we can assume
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3.2 Multiple Weighted Conditional Testing Procedure

that ∆̃i,js follow the standard normal distribution. If ∆̃i,js are independent,

we can heuristically obtain the following probability: P (M̃n − 4 log p1 +

log log p1 ≤ t) ≈ exp
{
−(8π)−1/2e−t/2

}
=: ΦM(t), where φ(x) = 1√

2π
e−

x2

2

for any t ∈ R and sufficiently large p1. From the heuristic computation,

we can define the rejection region and hypothesis test for global testing as

follows: rejection region R = {x ∈ R : x ≥ qα + 4 log p1 − log log p1} and

hypothesis test Ψα = IR(Mn), where IR is an indicator function of R and

qα = − log(8π)− 2 log | log(1− α)| for 0 < α < 1.

3.2 Multiple Weighted Conditional Testing Procedure

When the global null hypothesis is rejected, we need to determine which

edges are significant. If we set the size of each tests (H0,i,j vsH1,i,j) as α, the

family-wise type I error approaches 1 as the number of tests approaches in-

finity because Family-wise type I error = E

[ ⋃
1≤i<j≤p1

Reject H0,i,j

∣∣∣∣ ⋂
1≤i<j≤p1

H0,i,j

]
≈ 1− (1− α)p1(p1−1)/2 ≈ 1. Therefore, we need to consider the FDP and FDR,

as well. With the following notations, I = {(i, j) : 1 ≤ i < j ≤ p1},

I0 =

{
(i, j) ∈ I :

ω1
i,j√

ω1
i,iω

1
j,j

=
ω2
i,j√

ω2
i,iω

2
j,j

}
, N(t) = {(i, j) ∈ I : |∆i′,j′| ≥ t},

N0(t) = {(i, j) ∈ I0 : |∆i′,j′ | ≥ t}, we can define FDP and FDR as

FDP(t) = N0(t)
max(N(t),1)

and FDR(t) = E[FDP(t)], where t is a threshold

that determines where H0,i,j is rejected.
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For multiple tests, we must choose t(> 0) while FDP(t) ≤ α for

0 < α < 1. We denote this t as t0 and obtain t0 using t0 = inf{0 ≤

t ≤ 2(log p1)
1/2 : FDP(t) ≤ α}. Because FDP(t) is unknown, we should ap-

proximate either FDP(t) or N0(t). By using the fact thatΩds are sparse and

|∆i,j| is similar to Z ∼ N(0, 1) for (i, j) ∈ I0, we can approximate N0(t) ≈

2[1−Φ(t)]|I0| ≈ [1−Φ(t)](p21−p1). By using this approximation, we can then

estimate t0 as t̂0 = inf
{
0 ≤ t ≤ 2(log p1)

1/2 :
{1−Φ(t)}(p21−p1)

max(N(t),1)
≤ α

}
, where

Φ(t) =
∫ t

−∞ φ(x)dx is the standard normal cumulative distribution func-

tion. Therefore, we can perform the multiple tests with threshold t̂0. For

1 ≤ i < j ≤ p1, our decision rule is Reject H0,i,j if and only if |∆i,j| ≥ t̂0.

4. Asymptotic Properties of Weighted Conditional Network Test

In this section, we describe our testing procedures’ asymptotic properties.

We derive the asymptotic distribution of test statistic and asymptotic size

under the null hypotheses, asymptotic power, and properties of FDR in

Sections 4.1, 4.2, and 4.3, respectively.

4.1 Asymptotic Distribution of Test Statistic

We derive the asymptotic distribution of test statisticMn and an asymptotic

size α of the global test under Conditions 1-4 and describe them in Theorem
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4.2 Asymptotic Power of Test Ψα

1.

Theorem 1. Under Conditions 1, 2, 3, and 4, for any t ∈ R,

P (M̃n − 4 log p1 + log log p1 ≤ t) → ΦM(t) as n, p1 → ∞. (4.1)

In particular, under Conditions 1, 2, 3, 4, and H0, for any t ∈ R,

P (Mn − 4 log p1 + log log p1 ≤ t) → ΦM(t) as n, p1 → ∞.

Therefore, the global test Ψα has an asymptotic size α: limn,p1→∞ E[Ψα|H0] =

limn,p1→∞ P (Mn ≥ qα+4 log p1−log log p1|H0) = 1−exp{−(8π)−1/2e−qα/2} =

α, where qα = − log(8π)− 2 log | log(1− α)| for 0 < α < 1.

4.2 Asymptotic Power of Test Ψα

For the power of the test Ψα, we need some pairs of distinct precision matri-

ces (Ω1,Ω2). We define a class of precision matrices as U(c) := U(c,
√
log p1)

=

(Ω1,Ω2) : sup
1≤i≤j≤p1

1

(θ1i,j + θ2i,j)
1/2

∣∣∣∣∣∣ ω1
i,j√

ω1
i,iω

1
j,j

−
ω2
i,j√

ω2
i,iω

2
j,j

∣∣∣∣∣∣ ≥ c(log p1)
1/2

. The

smaller c is, the closer (Ω1,Ω2) in U(c) are. Theorem 2 states that c = 4 is

a sufficient distance to reach the asymptotic power of 1. We demonstrate

how the power of the test based on our weighted statistic converges to 1 as

p1 and n approach infinity in Theorem 2.
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4.2 Asymptotic Power of Test Ψα

Theorem 2. Under Conditions 1, 2, 3, and 4, if K−1 < n1

n2
< K for some

K > 0, the power of the test Ψα approaches 1 as n1, n2, and p1 approach

infinity in U(4). That is, inf(Ω1,Ω2)∈U(4) P (Ψα = 1) → 1 as n, p1 → ∞.

Theorem 2 guarantees that the convergence of the power even when

the dimension p1 is sufficiently larger than the sample sizes n1 and n2,

with log p1 = o{n1/5} where n = min{n1, n2}. Thus we need the scale

assumption log p1 = o{n1/5} for p1 and n in Condition 3.

If f(p1) diverges to infinity faster than (log p1)
1/2, then Theorem 2

holds for any small c > 0. That means if log p1 = o{(f(p1))2}, then

inf(Ω1,Ω2)∈U(c,f(p1)) P (Ψα = 1) → 1 as n1, n2, p1 → ∞. Therefore, in Theo-

rem 3, we can check that (log p1)
1/2 is the optimal rate to reach asymptotic

power of 1.

Theorem 3. Suppose log p1 = o{n1} and K−1 < n1

n2
< K for some K > 0.

For any 0 < α, γ < 1 with α + γ < 1, there exists c0 > 0 such that

inf(Ω1,Ω2)∈U(c0) supTα∈Tα P (Tα = 1) ≤ 1 − γ, for sufficiently large n, p1,

where Tα is the set of all α-level tests.

Theorem 3 says that if f(p1) = o{(log p1)1/2}, then inf(Ω1,Ω2)∈U(c,f(p1)) P (Ψα =

1) ̸→ 1 as n, p1 → ∞ for any c > 0.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0330



4.3 Properties of Asymptotic FDR

4.3 Properties of Asymptotic FDR

We demonstrate the FDP and FDR of the test based on our weighted

statistic converge to αq0
q

as p1 and n approach infinity in Theorem 4.

Theorem 4. Suppose that |Aτ ∩ I0| = o{pν1} for any ν > 0. Assume

that q0 = |I0| ≥ cp21 for some c > 0. Let q = (p21 − p1)/2. Then, under

Conditions 1, 2, and 4 with p1 ≤ cnr for some c > 0 and r > 0, we have

FDP(t̂0)
αq0/q

→ 1, in probability, and FDR(t̂0)
αq0/q

→ 1, as n, p1 → ∞.

According to Theorem 4, the FDP and FDR converge even if the dimen-

sion p1 is much larger than the sample sizes n1 and n2, as long as p1 ≤ cnr

for some constants c > 0 and r > 0, where n = min{n1, n2}. Unlike Theo-

rem 2, this result ensures convergence even in cases of unbalanced sample

sizes. That is, the convergence of the FDP and FDR can be expected even

when n1 ≫ n2 or n2 ≫ n1.

Remark 2. We assume the comparability of n1 and n2, i.e., K
−1 < n1

n2
< K

for some K > 0 in Theorems 2 and 3, which is also assumed in Xia et al.

(2015). However, in Theorems 1 and 4, we admit the n1 ≫ n2 or n2 ≫ n1

case.

Remark 3. Our method and Xia et al. (2018)’s method appear similar

in that both consider subnetworks. However, a significant distinction lies
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in the conditions related to the size of the subnetwork. Their focus is on

identifying which subnetworks differ when the number of subnetworks ( p
p1
) is

very large. In contrast, our model aims to identify which edges differ within

a subnetwork when the subnetwork itself is large, leading us to assume a

relationship between p1 and n. Therefore, the primary difference between

Xia et al. (2018) and our work lies in whether the focus is on differences

between subnetworks or within a subnetwork.

5. Computational Algorithms for Weighted Conditional Testing

We program from estimation to testing using Python code. The summaries

of algorithms we used are described in Algorithms 1-3 of the supplementary

materials. We compare the computational costs by comparing the noncon-

ditional test (NCT) by Xia et al. (2015) with our weighted conditional

testing. The weighted conditional test (WCT) has computational costs in

terms of O{(p1 + p2)
4 + (p1 + p2)

3n + (p1 + p2)n
2}, which is the same as

the NCT when p2 = O{p1}. When the number of nodes p1 = p2 = p and

sample sizes n1 = n2 = 50, 100, the computational plots are displayed in

Figures 13 and 14 of the supplementary materials.
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6. Simulation Studies

In this section, we conduct a simulation study to investigate the perfor-

mance of our weighted conditional network testing. We compare the NCT

by Xia et al. (2015) with WCT in terms of size, power, and FDR. Addition-

ally, we include the non-weighted conditional test (NWCT) to distinguish

between conditional testing and the effect of weighting. We conducted sim-

ulations for various scenarios as follows: 1) same sample size sample size

and same dimension of network, 2) different sample sizes and same dimen-

sion of network, 3) same sample size and different dimensions of network,

and 4) different diagonal elements. We only describe the first scenario, and

the results for the scenario are provided in Table 1 of the main document

and Tables 1-2 of the supplementary materials, with detailed settings and

results for scenarios 2), 3), and 4) included in Section S4 and Tables 3-14

of the supplementary materials.

We consider four types of precision matrices Ω(m), m = 1, . . . , 4. In

the first scenario (Table 1 of the main document and Tables 1-2 of the

supplementary materials), we set n = n1 = n2 = 100 and p̃ = p1 =

p2 = 50, 100, 200. For each combination of n, p̃, and m, we conduct 1000

simulations and study the performance of our approach when n ≈ p̃, n > p̃,

and n < p̃. For size, power, and FDR, we consider two situations: one has
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6.1 Types of Simulated Precision Matrix

the same given networks and the other has different given networks. The

simulated precision matrix, size, power, and FDR are described in Sections

6.1-6.4.

6.1 Types of Simulated Precision Matrix

We generate four types of sparse precision matrices, Ω(m), m = 1, . . . , 4,

described as follows:(Ω1,Ω2)

1. Ω(1) = (ωi,j) as a (p1 + p2) × (p1 + p2) matrix with ωi,i = 1, ωi+1,i =

ωi,i+1 = 0.6, ωi+2,i = ωi,i+2 = 0.36, ωi,j = ωj,i = 1 for (i, j) ∈ A,

otherwise ωi,j = 0, where A is a set of randomly chosen p1 elements

in {(i, j) : 1 ≤ i ≤ p1, p1 + 1 ≤ j ≤ p1 + p2}. This precision matrix is

a pentadiagonal matrix.

2. Ω(2) = (ωij) as a scale-free network generated by the Barabasi-Albert

algorithm. For Ω(2), the number of new edges connected to new nodes

is 2 and ωi,i = 1, ωi,j ∼ Uniform(−1, 1), if i and j are connected.

3. Ω(3) = (ωi,j) as ωi,i = 1, ωi,j = ωj,i ∼ 0.8 × Binomial(1, 0.05), for

1 ≤ i < j ≤ p1 + p2.

4. Ω(4) = (ωi,j) as ωi,i = 1, ωi,j = ωj,i = 0.5 for 1 ≤ k ≤ p1+p2
10

, i =

10(k − 1) + 1, and i+ 1 ≤ j ≤ i+ 9.
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6.2 Asymptotic Size of Test

From Ω(m) for m = 1, 2, 3, 4, we generate pairs of precision matrices

(Ω1,Ω2) according to the simulation purpose of each. Simple examples of

Ω(m) for p1 = p2 = 10 and m = 1, 2, 3, 4 are displayed in Figure 1 of the sup-

plementary materials. For each Ω(m), the submatrix Ω
(m)
I1,I1

and (Ω
(m)
I1,I2

,Ω
(m)
I2,I2

)

represent shaded and unshaded parts in Figure 1 of the supplementary ma-

terials.

6.2 Asymptotic Size of Test

To investigate the size of the tests, we consider two situations. One has the

same given networks in which (Ω1
I1,I2

,Ω1
I2,I2

) = (Ω2
I1,I2

,Ω2
I2,I2

), and the other

has a different given networks in which (Ω1
I1,I2

,Ω1
I2,I2

) ̸= (Ω2
I1,I2

,Ω2
I2,I2

).

6.2.1 Global Test with Same Given Networks

To generate two precision matrices under H0 and have the same given net-

works, we set Ω1 = Ω2 = 1
1+δ

D1/2
(
Ω(m) + δI

)
D1/2 and m = 1, . . . , 4,

where D is a diagonal matrix whose diagonal elements are uniformly dis-

tributed between 0.5 and 2.5 independently and δ =
∣∣λmin(Ω

(m))
∣∣+0.05. As

a result, we have the same given networks, (Ω1
I1,I2

,Ω1
I2,I2

) = (Ω2
I1,I2

,Ω2
I2,I2

),

under H0. To calculate the empirical size of the test, we generate 1, 000

copies of X1 ∼ N(0, (Ω1)−1) and X2 ∼ N(0, (Ω2)−1).
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6.3 Asymptotic Power of Test

6.2.2 Global Test with Different Given Networks

We generate some differences in the given networks by changing some el-

ements. Let Ṽ = (vi,j), a symmetric (p1 + p2) × (p1 + p2) matrix that

vi+p1,j+p1 = vi+p1,j+p1 = vk,j+p1 = vj+p1,k ∼ Uniform
(
−ωmax

3
, ωmax

3

)
, where

ωmax = maxi ω
(m)
i,i and i, j, and k are uniformly distributed for 1 ≤ i < j ≤

p2 and 1 ≤ k ≤ p1. Then, we set newΩ1 andΩ2: Ω1 = 1
1+δ

D1/2
(
Ω(m) + δI

)
D1/2

andΩ2 = 1
1+δ

D1/2
(
Ω(m) + Ṽ + δI

)
D1/2, where δ = min(

∣∣λmin(Ω
(m))

∣∣ , |λmin(Ω
(m)+

Ṽ)|)+0.05. As a result, we have the different given networks: (Ω1
I1,I2

,Ω1
I2,I2

) ̸=

(Ω2
I1,I2

,Ω2
I2,I2

) under H0. To calculate the empirical size of the test, we gen-

erate 1000 copies of X1 ∼ N(0, (Ω1)−1) and X2 ∼ N(0, (Ω2)−1).

6.3 Asymptotic Power of Test

In the same way, we evaluated the size of the test, and we also consider two

situations to investigate the power of the test.

6.3.1 Global Test with Same Given Networks

To generate two precision matrices under H1 and have the same given net-

works, we use another sparse symmetric matrix W̃, of which each element is

0 except eight elements whose location and value are uniformly distributed

in 1 ≤ i, j ≤ p1 and (−2
√

log p1/n · ωmax,
√

log p1/n · ωmax) ∪ (
√
log p1/n ·
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6.4 Empirical FDR of Test

ωmax, 2
√
log p1/n · ωmax), where ωmax = maxi ω

(m)
ii , respectively. We set

Ω1 = 1
1+δ

D1/2
(
Ω(m) + δI

)
D1/2 and Ω2 = 1

1+δ
D1/2

(
Ω(m) + W̃ + δI

)
D1/2,

where δ = min(
∣∣λmin(Ω

(m))
∣∣ , |λmin(Ω

(m) + W̃)|) + 0.05. As a result, we

have the same given networks, (Ω1
I1,I2

,Ω1
I2,I2

) = (Ω2
I1,I2

,Ω2
I2,I2

), under H1.

We generate 1000 copies of X1 ∼ N(0, (Ω1)−1) and X2 ∼ N(0, (Ω2)−1).

6.3.2 Global Test with Different Given Networks

To emphasize the role of given networks, we generate some differences in

the given network by changing some elements under H1. We add Ṽ = (vi,j),

defined in Section 6.2.2. Then, we have Ω1 and Ω2 as the following: Ω1 =

1
1+δ

D1/2
(
Ω(m) + δI

)
D1/2 and Ω2 = 1

1+δ
D1/2

(
Ω(m) + W̃ + Ṽ + δI

)
D1/2,

where m = 1, . . . , 4 and δ = min(
∣∣λmin(Ω

(m))
∣∣ , |λmin(Ω

(m) + W̃ + Ṽ)|) +

0.05. As a result, we have the different given networks, (Ω1
I1,I2

,Ω1
I2,I2

) ̸=

(Ω2
I1,I2

,Ω2
I2,I2

), under H1. We generate 1000 copies of X1 ∼ N(0, (Ω1)−1)

and X2 ∼ N(0, (Ω2)−1).

6.4 Empirical FDR of Test

We also investigate FDR for two situations when α = 0.1 and 0.2.
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6.5 Simulation Results

6.4.1 Multiple Test with Same Given Networks

We consider a setting similar to that of Section 6.3.1, except that the num-

ber of nonzero elements of W̃ is 40. We generate 100 copies of X1 ∼

N(0, (Ω1)−1) and X2 ∼ N(0, (Ω2)−1). For the multiple test, we choose κd

in (S1.1). For κ = 1/20, 2/20, · · · , 39/20, 40/20, we choose

κ̂0 = argmin
∑10

l=1

[∑
1≤i<j≤p1

I{|∆i,j |≥Φ−1(1−l[1−Φ{(log p1)1/2}]/10)}
lp1(p1−1)[1−Φ{(log p1)1/2}]/10

− 1

]2
.

6.4.2 Multiple Test with Different Given Networks

We use the same setting as in Section 6.3.2, except that the number of

nonzero elements of W̃ is 40. We generate 100 copies of X1 ∼ N(0, (Ω1)−1)

and X2 ∼ N(0, (Ω2)−1).

6.5 Simulation Results

Empirical Size: The empirical size with the same given networks for

the first scenario (same sample size and same dimension of network) is

summarized in the first part of Table 1. As shown in Table 1, the type I

errors of the WCT and the NWCT are smaller than those of the NCT. The

difference between the two type I errors of WCT and NCT is larger than

1% except for (p̃,m) = (200, 1), (100, 2), and (200, 2). Additionally, the

difference in type I error between WCT and the NWCT is mostly within
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6.5 Simulation Results

0.5%. We also observe that the WCT and the NWCT have smaller type I

errors than NCT does, even in the same given networks case. The empirical

size with different given networks for the first scenario is in the second part

of Table 1. When we consider the situation of the different given networks,

the WCT and the WNCT outperform the NCT. The type I error of the

WCT (and the NWCT) remains below 5% except for (p̃,m) = (50, 1) and

(50, 3) ((p̃,m) = (100, 2) and (50, 3) for the NWCT). In the (p̃,m) = (50, 1),

(50, 3), (100, 2) cases, the type I errors of the WCT and NWCT are still

close to the significance level of α = 5%. Conversely, the NCT generally

exhibits a type I error exceeding 10%. When (p̃,m) = (50, 1) and (50, 3),

the type I error is much larger than 20%. The slight difference between the

given networks makes the NCT work much worse, while the WCT and the

NWCT perform well.

Empirical Power: The tests’ empirical power with the same given net-

works for the first scenario (same sample size and same dimension of net-

work) is summarized in the third part of Table 1. As we see in Table 1, the

almost power of the WCT is greater than 99%, whereas the powers of the

NWCT and the NCT are smaller than 99%. Also, the difference in power

between the WCT and the NCT is greater than 1%, while the NWCT is

more than 0.5% lower than the NCT. The WCT has more power than the
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6.5 Simulation Results

NWCT and the NCT does, even in the same given networks case. The

tests’ empirical power with different given networks for the first scenario is

in the last part of Table 1. The power of the WCT is greater than 95%

except for the (p̃,m) = (200, 2) case. However, the power values for the

NWCT and the NCT is smaller than 95%.

Empirical FDR: The empirical FDR and power with the same given

networks for the first scenario (same sample size and same dimension of

network) are summarized in Table 1 of the supplementary materials. As

observed in Table 1 of the supplementary materials, there is no significant

difference in the empirical FDRs among the WCT, the NWCT, and the

NCT, but the WCT consistently demonstrates higher power than others.

For each α, the FDRs for the WCT, the NWCT, and the NCT are ap-

proximately α. Additionally, the power is consistently higher for α = 0.2

compared to α = 0.1. The power of the WCT is around 45% ∼ 50% when

α = 0.1 and 53% ∼ 58% when α = 0.2. In contrast, the power of the

NWCT (resp. NCT) is around 35% ∼ 43% (resp. 38% ∼ 45%) when

α = 0.1 and 40% ∼ 48% (resp. 45% ∼ 50%) when α = 0.2. Although all

of the methods decrease the power compared to the global test, our method

performs better than others. The empirical FDR and the power with differ-

ent given networks for the first scenario are in Table 2 of the supplementary
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6.5 Simulation Results

materials. The results with different given networks is similar to that of the

given networks case.

Summary: We have developed two approaches (WCT and NWCT) to

improve the testing method by considering both conditional testing and

adjusting the diagonal elements. Conditional testing effectively reduces

Type I error but still lowers the power. Adjusting the diagonal elements

increases the power. As a result, NWCT, which applies only conditional

testing, shows significantly lower Type I errors than NCT but also lower

power. Meanwhile, WCT, which incorporates both conditional testing and

adjustment of diagonal elements, achieves both lower Type I error and

higher power. We note that although, in Theorem 2, we showed that the

power of all three methods converges to 1 as n, p1 → ∞ in the simulation

results, the power of NWCT is lower than that of WCT and NCT because

n and p1 are not sufficiently large compared to the conditions of Theorem

2. Therefore, our simulation results suggest that the WCT outperformed

the NCT, in terms of type I error, power of the global test, and power of

the multiple test, whereas two methods did not have any clear superiority

in terms of FDR. In general, the WCT tends to outperform the NCT as

the given networks have different structures.
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7. Breast Cancer Genetic Pathways

Our main question of interest concerns the equality of two precision matrices

of genetic pathways between White and non-White female racial groups

when one or all other pathways are conditionally given. The human breast

cancer data set was collected from the University of Texas M.D. Anderson

Cancer Center (Shi et al., 2010), which contains 22, 283 gene expression

measurements from 176 White patients and 102 non-White patients. We

collect 25 pathways (Xu et al., 2019) whose ID, name, and the numbers of

genes were listed in Table 15 of the supplementary materials. We then tested

all pairs-wise comparisons, so we conducted
(
25
2

)
multiple comparisons. Due

to the page limitation, we only provided small sets of results. See other sets

of results in Section S5 of the supplementary materials.

We compare our approach with the NCT by Xia et al. (2015). Using our

approach, we also consider both the WCT and the non-weighted conditional

test (NWCT), and then we compare them with the NCT of a pathway

given other pathways. Here, the NWCT is a test in which we apply only

the conditional data, without the weighted procedure of the WCT. We

compare the network of the White group (d = 1) to that of the non-White

group (d = 2). We have n1 = 176 (the number of White patients) and

n2 = 92 (the number of non-White patients). Here, p1 = the number of
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genes in the pathway given other pathways, and p2 = the number of genes

in the given pathway and not in the testing pathway. For k = 1, · · · , nd,

i = 1, · · · , (p1 + p2), and d = 1, 2, let X1
k,i = k-th White patient’s i-th

gene data in the pathway given other pathways and X2
k,i = k-th non-White

patient’s i-th gene data in the pathway given other pathways for 1 ≤ i ≤ p1

and X1
k,i = k-th White patient’s (i− p1)-th gene data in the given pathway

and X2
k,i = k-th non-White patient’s (i − p1)-th gene data in the given

pathway for p1 + 1 ≤ i ≤ p1 + p2.

We display selected results in Figures 2-12 and Tables 16-18 of the sup-

plementary materials and Figure 2 of the main document. In the bar-shaped

graphs displayed in Figures 2, 3, 6, 7, 10, and 11 of the supplementary ma-

terials, the x-axis and y-axis represent |∆i,j| (or |∆NCT
i,j |) and the index of

edges, respectively. We note that |∆i,j| = |ω̂1,w
i,j − ω̂2,w

i,j |/(θ̂1i,j + θ̂2i,j)
1/2 is the

statistic for the multiple test in theWCT, and |∆NCT
i,j | = |ω̂1

i,j − ω̂2
i,j|/(θ̂

1,NCT
i,j + θ̂2,NCT

i,j )1/2

is the statistic for the multiple test in the NCT, where θ̂d,NCT
i,j = θ̂di,j/(r̂

d
i,ir̂

d
j,j)

for d = 1, 2. The red vertical and green vertical lines are t̂0 for α = 0.1 and

α = 0.2, respectively. The insignificant edges for α = 0.1, 0.2 are plotted

on the right side of the figure, while significant edges are plotted on the left

side of the figure with the edge names on the line. If a significant edge is

significant under α = 0.1, the edge is colored red; otherwise, it is colored
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green. In the circle-shaped graphs displayed in Figures 4, 8, and 12 of the

supplementary materials, the name of the gene in the testing network is dis-

played in the circle. Two connected genes are significant. The left side of

the circle-shaped graph is the result for the WCT, and the right side of the

circle-shaped graph is the result for the NCT. In the other circle-shaped

graphs displayed in Figure 2 of the main document and Figures 5 and 9

of the supplementary materials, the solid black line represents two genes

whose edge is significant in both the WCT and the NCT, the dash-dotted

orange line represents an edge that is significant only in the WCT, and the

dashed purple line represents an edge that is significant only in the NCT.

The left side of the circle-shaped graph is the result with significance level

of α = 0.1, and the right side of the circle-shaped graph is the result with

significance level of α = 0.2. In Tables 16-18 of the supplementary mate-

rials, we summarize the significant edges for each test (NCT, NWCT, and

WCT) with significance level of 0.2. In each row, we place the common

significant edges.

In the case of testing pathway 113 conditioned by pathway 137, as we

display in Figures 2, 3, 4, and 5 and Table 17 of the supplementary materi-

als, the NCT detects more significant edges than the WCT and NWCT do.

In fact, the global test for the WCT and NWCT do not reject the global

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0330



null hypothesis. Thus, only the NCT detects the three significant edges.

The main difference between WCT/NWCT and NCT is that WCT/NWCT

can be used even when the given networks are different, whereas NCT is

only applicable when the two given networks are identical. Therefore, this

outcome can be interpreted as the outcome when the given two networks

are different.

For the case of testing pathway 137 conditioned by pathway 717, as we

see in Table 16 and Figures 6, 7, 8, and 9 of the supplementary materials,

the WCT detects more significant edges than the NCT does. In the result of

the WCT, there are eight significant edges, whereas the NCT detects only

one significant edge. Although the numbers of significant edges are different,

an edge FASLG−MAP2K7 is a common significant edge detected by both

the WCT and the NCT. In this case, our method, WCT, also reveals more

findings than NWCT. WCT employs a weighted precision matrix adjusting

the effect of each gene, while NWCT does not adjust this effect. Therefore,

this outcome is likely due to the significant effect of each gene.

In the case of testing pathway 1206 conditioned by pathway 750, as

we see in Figure 2 of the main document and Figures 10, 11, and 12 and

Table 18 of the supplementary materials, the WCT detects 17 significant

edges (under α = 0.1: 0, α = 0.2: 17), but the NCT detects 11 significant
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edges (under α = 0.1: 7, α = 0.2: 11). Although the numbers of significant

edges are different, all significant edges under α = 0.1 for the NCT are

also significant edges under α = 0.2 for the WCT. Also, significant edges

under α = 0.2 for the NCT, except an edge PSMD2 × CLASP1, are also

significant edges under α = 0.2 for the WCT.

As we can see in the results, our proposed algorithm, WCT, reveals

more and fewer findings compared to other methods (NCT or NWCT),

depending on the situation. However, based on the ability of our weighted

test, which can detect the difference between two networks when given two

networks are different, adjusting individual gene effect, simulation results,

and relevant literature on breast cancer, we conclude that the interactions

identified by WCT are significantly more reliable than those detected by

NCT and NWCT.

Since WCT employs the weighted conditional precision matrices, WCT

can be applied to more general situations where two given networks are

different, or the effects of each gene are significantly distinct. Moreover,

as demonstrated in Tables 1, 2, 5, 6, 9, 10, 13, and 14 (simulation results

for multiple testing) of the supplementary materials, the WCT shows ap-

proximately 10% higher power than NWCT and NCT, while all three tests

exhibit comparable false discovery rates (FDR). Furthermore, some results
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obtained using our method have been linked to breast cancers through liter-

ature review, although not all. These reviews are documented in Section S5

of the supplementary materials. Based on this evidence, we conclude that

the interactions identified by WCT are substantially more reliable than

those detected by NCT and NWCT.

8. Discussion

In this paper, we proposed a WCT for the equality of two conditional net-

works between two population groups. Because the difference of dependence

structures depends on other components of dependence, simultaneous in-

ferences play an important role in having greater power and in avoiding

incorrect inferences. We also provided multiple testing procedures and the-

oretical properties of this testing procedure.

We showed that the power of our WCT is about 1.4 times higher than

that of NCT in both global and multiple tests. Especially when we con-

ducted multiple tests, we observed that the power values were not suffi-

ciently large compared with the global test. This result from multiple tests

may be affected by the dependency among multiple tests. In future re-

search, we further investigate how dependency structures among multiple

testings affect the power of multiple testings.
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Note that our WCT was developed for the equality of two conditional

networks two population groups. However, there could be more than two

population groups. Thus, it is worthwhile to extend our testing procedures

for multiple population groups. We also noted that our approach was de-

veloped under the GGM. However, this Gaussian assumption is often not

applicable to real application. Hence, it is worthwhile to develop a test-

ing procedure under the non-Gaussian case, such as one using the Copula

method. Last but not least, although some significant gene connectivity as-

sociated to breast cancer were identified, they need to be further validated

biologically.

Supplementary Material

Technical proofs, additional tables and figures referenced are available in a

separate file for the online Supplementary material of this paper.
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Table 1: Empirical sizes (%) and powers (%) for testing the equality of two

precision matrices (Ω1,Ω2) when same or different given networks using the

weighted conditional test (WCT), nonweighted conditional test (NWCT), and

nonconditional test (NCT); (Ω1,Ω2) are generated under H0 using Ω(m), m =

1, . . . , 4, with the number of nodes of the network given other networks p1 = p̃

= 50, 100, 200, the number of nodes of the given network p2 = p̃ = 50, 100, 200,

sample size n1 = n2 = 100, and significance level α = 0.05. For m = 1, 2, 3, 4,

Ω(1) is a pentadiagonal matrix, Ω(2) is a scale-free network, Ω(3) is a symmetric

matrix whose upper off-diagonal elements are from Binomial distribution, and

Ω(4) is a symmetric matrix whose randomly assigned off-diagonal elements is 0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Empirical sizes (%) with the same given networks
{
(Ω1

I1,I2
,Ω1

I2,I2
) = (Ω2

I1,I2
,Ω2

I2,I2
)
}

p̃ WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

50 3.5 3.1 5.7 2.2 3.5 4.2 2.2 3.7 4.6 2.4 2.8 3.6

100 2.7 2.7 3.7 3.0 3.2 3.4 2.3 2.9 3.7 2.9 2.9 4.4

200 3.6 3.7 4.1 2.2 2.2 2.3 1.9 2.4 3.1 2.2 2.9 3.4

Empirical sizes (%) with different given networks
{
(Ω1

I1,I2
,Ω1

I2,I2
) ̸= (Ω2

I1,I2
,Ω2

I2,I2
)
}

p̃ WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

50 5.5 4.7 21.1 3.5 4.1 13.4 6.2 5.3 21.1 4.5 4.5 18.0

100 3.9 3.9 17.1 4.6 5.2 12.5 3.9 3.7 19.6 4.2 4.1 18.0

200 3.2 3.0 15.3 3.0 3.0 10.2 2.5 2.7 19.5 2.9 3.2 13.1

Empirical powers (%) with the same given networks case
{
(Ω1

I1,I2
,Ω1

I2,I2
) = (Ω2

I1,I2
,Ω2

I2,I2
)
}

p̃ WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

50 99.3 97.4 98.2 98.4 94.4 95.4 99.6 97.9 98.4 99.7 98.1 98.7

100 99.9 96.4 97.0 99.0 93.7 94.7 99.9 97.3 97.8 99.3 96.1 97.3

200 99.4 92.7 94.4 98.2 89.6 91.6 99.9 93.1 94.0 98.7 91.6 93.1

Empirical powers (%) with different given networks
{
(Ω1

I1,I2
,Ω1

I2,I2
) ̸= (Ω2

I1,I2
,Ω2

I2,I2
)
}

p̃ WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

50 97.6 89.7 94.2 96.1 88.5 91.0 98.1 91.6 94.1 97.4 90.2 92.9

100 97.1 88.7 92.0 95.6 85.9 89.6 98.4 87.9 93.5 96.7 85.5 90.1

200 97.8 82.4 86.7 93.7 73.9 80.6 98.3 80.3 86.3 95.2 80.0 85.9
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(a) Global test of Xia et al. (2015) (b) Multiple test of Xia et al. (2015)

(c) Test a given sub-matrix of Xia et al.

(2018)

(d) Multiple test in Xia et al. (2018)

(e) Global test of weighted conditional

differential network testing

(f) Multiple test of weighted conditional

differential network testing

(g) (h)

(i) (j)

Figure 1: (a) and (b) are the global and multiple test for Xia et al. (2015).

(c) and (d) are the global and multiple test for Xia et al. (2018). (e) and

(f) are the global and multiple test for our weighted global and multiple

test. (g) and (h) have the same given networks and networks given other

networks. (i) and (j) have the same networks given other networks and

different given networks.
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