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Regression Settings using Bayesian Additive Regression Trees
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Abstract: Shapley effects are a particularly interpretable approach to assessing
how a function depends on its various inputs. The existing literature contains
various estimators for this class of sensitivity indices in the context of nonpara-
metric regression where the function is observed with noise, but there does not
seem to be an estimator that is computationally tractable for input dimensions
in the hundreds scale. This article provides such an estimator that is computa-
tionally tractable on this scale. The estimator uses a metamodel-based approach
by first fitting a Bayesian Additive Regression Trees model which is then used
to compute Shapley-effect estimates. This article also establishes a theoretical
guarantee of posterior consistency on a large function class for this Shapley-effect
estimator. Finally, this paper explores the performance of these Shapley-effect
estimators on four different test functions for various input dimensions, including

p = 500.

Key words and phrases: Nonparametric, functional ANOVA, global sensitivity

analysis, variable importance, surrogate model



1. Introduction

An important task in global sensitivity analysis is to measure how a real-
valued function depends on its various inputs. A popular measure of vari-
able importance is the class of Sobol " indices (Sobol“,1990)), which decom-
poses the variance of outputs from a function into terms due to main effects
for each input and interaction effects between the various inputs. To quan-
tify the impact of any particular input dimension, either the main-effect
Sobol” index or the total-effect Sobol” inder can be used; the latter in-
cludes all interactions between the given input and any other input whereas
the former excludes any such interaction. Straightforward interpretation of
Sobol ” indices requires an orthogonal distribution on the inputs (Song et al.,
2016)). Shapley effects (Shapley, [1952; Song et al., 2016|) form another class
of variance-based global sensitivity indices that was first introduced in the
context of game theory but has only recently been gaining traction in the
statistics literature (Owen, [2014). Although the additional computation
required to compute Shapley effects might render them unnecessary if the
inputs are known to be independent, Shapley effects remain interpretable
even if the inputs are correlated (Song et al. |2016) and hence are the more
reasonable option in such a case.

If the function of interest is known and has a simple enough form, its



exact Shapley effects can sometimes be computed analytically, particularly
when the required integrals can be computed easily. Otherwise, the Shapley
effects can be estimated using values generated from the function. Many
existing methods assume the function can be evaluated cheaply and without
observation noise and indeed work well in such a scenario. Figure [If shows
various such Shapley-effect estimators (Song et al., [2016; Benoumechiara
and Elie-Dit-Cosaque, 2019} Broto et al., 2020; |Plischke et al., 2021} |Godal,
2021) applied to n observations generated from a function (defined in the
figure caption) evaluated on i.i.d. inputs drawn uniformly from the hyper-
cube [0,1]°. When the function values are observed without noise, these
methods track the g-function’s true Shapley-effects very well. But when
independent and identically distributed (i.i.d.) Gaussian noise with mean
zero and moderate variance (defined in the figure caption) is added, these
methods struggle to capture the true values even when the number of ob-
servations increases dramatically to compensate for the observation noise.

For noisy function observations, one can first estimate the function
and then compute sensitivity indices of the estimated function as a post-
processing step. One option is to fit a metamodel to the observations; the
fitted metamodel then serves as the estimated function. (This approach is

also useful in noisefree settings when the function can only be sparsely eval-
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Figure 1: Shapley-effect estimates of various existing methods trained on

|42k —2|+(k—1)/2

oD Crosses

data drawn from the Sobol” g-function f(x) = [[5_,
represent the true Shapley-effect values. Function values are evaluated at
n i.i.d. inputs drawn uniformly from the hypercube [0, 1]°. In the top row,
function values are observed without noise. In the bottom row, the obser-
vations are function values plus i.i.d. Gaussian noise with mean zero and
variance 0.25 x 3.076, where 3.076 is the variance of the g-function under

a uniform distribution on [0,1]°. Each column represents an estimation

method: “Goda2021” is from (2021)); “mobius” and “picknfreeze”

are from Plischke et al. (2021); “shapleyPermEx” and “shapleySubsetMc”

are from Jooss et al.| (2023). Error bars represent approximate or exact 95%

confidence intervals as implemented by the method which aim to capture

the variability induced by the Monte Carlo approximation of expectations.



uated and the fitted metamodel can be evaluated cheaply.) Popular meta-

models include the Gaussian Process (GP), Bayesian multivariate adaptive

regression splines (BMARS) (Denison et al.l [1998), generalized polynomial

chaos expansions (PCE) (Sudret, [2008), treed GPs |Gramacy and Taddy

(2010), dynamic trees (Gramacy et al., 2013), Gaussian radial basis func-

tion (Wu et al., 2016), artificial neural networks (Li et al. 2016)), and deep

GPs (Radaideh and Kozlowski, [2020). This paper makes its contributions

using Bayesian Additive Regression Trees (BART) (Chipman et al., 2010)

which is an increasingly popular tool for complex regression problems and

as emulators of expensive computer simulations (Chipman et al., [2012; Gra-|

macy and Haaland| 2016} Horiguchi et al.,[2022). BART is a nonparametric

sum-of-trees model embedded in a Bayesian inferential framework. Unlike
many other metamodels, BART can easily incorporate categorical inputs,
avoids strong parametric assumptions, and is relatively quick to fit even
on a large number of observations. BART even has been shown to be re-
silient to the inclusion of inert inputs, particularly when the BART prior

incorporates either the sparsity-inducing Dirichlet prior of (2018))

or the spike-and-tree prior of van der Pas and Rockova (2017); |Liu et al|

(2021)). Furthermore, the Bayesian framework provides natural uncertainty

quantification for both predictions and sensitivity-index estimates.



Some metamodels struggle more than others with the two stages in
the above approach, namely fitting the metamodel, then using the fitted
metamodel to estimate the sensitivity indices. Regarding the first stage,
many of these metamodel-based approaches struggle to fit if the number
of inputs p and function evaluations n are not small. A GP has O(n?)
computation time and struggles to fit for even p = 10. PCE has been fit
for p = 25, but it has been noted that PCE struggles to fit for larger p
(Sudret], [2008; |Crestaux et al., [2009). BMARS works for p = 200 for Sobol’
indices (Francom et al., [2018). Figure [7| of this paper provides an example
where BART fits to a p = 500 scenario with d = 250 active variables.
Regarding the second stage, if a metamodel is cheap to evaluate, then the
fitted metamodel’s Shapley effects can be estimated using Monte Carlo
integration of the Shapley-effect integrals, as done in Algorithm 1 from
Song et al.| (2016) or a parallelized version of it (Zhang and Dimitrov, 2024)).
However, this will create another layer of approximation error that can be
avoided if the metamodel allows for exact computation. On this front,
BART (Horiguchi et al., [2021)), BMARS (Francom et al., |2018)), and PCE
(Sudret, |2008)) have closed-form expressions for Sobol” indices (and thus
for Shapley effects) that can be computed exactly once the metamodel is

fit. Such expressions also exist for GPs with polynomial mean and either



a separable Gaussian, Bohman, or cubic correlation function (Oakley and
O’Haganl, 2004; |Chen et al., 2005| 2006; Marrel et al.l 2009; Moon, [2010;
Svenson et al., 2014} [Santner et al., |2018)). Table 1 in the Supplementary
Material summarizes these metamodel properties.

To our knowledge, this article is the first to provide an estimator of
a function’s Shapley effects that is computationally tractable for a rela-
tively large number of inputs and function evaluations, as well as theoret-
ical guarantees of consistency in the context of nonparametric regression
where the function is observed with noise. BART approximates a function
by a piecewise-constant function whose exact Sobol” indices are provided
by [Horiguchi et al. (2021) and can be easily computed (we will refer to these
as “BART-based Sobol” indices” for the rest of this article). Section [2f will
show these closed-form expressions can also be used to compute BART-
based Shapley effects, but because the number of expressions to compute
increases dramatically, Section |3|discusses computationally friendly approx-
imations. On the other hand, our contraction-rate results rely heavily on
recent BART theory from [Jeong and Rockova (2023), who introduce the
large class of sparse piecewise heterogeneous anisotropic Holder functions
and show that over this function class, the contraction rate for Bayesian

forests is optimal up to a logarithmic factor.



This article is organized as follows. Section [2] reviews BART, Sobol”
indices, and Shapley effects. Section [3| provides our main theoretical pos-
terior contraction results and discusses the computation of BART-based
Shapley effects. Section [4| showcases their performance on numerical ex-
amples, including data from the En-Roads climate simulator (analogous
discussion for BART-based Sobol” indices can be found in [Horiguchi et al.
(2021))). Section [5| provides discussion on future work. Our results on pos-
terior contraction for BART-based Sobol” indices and Shapley effects, as

well as proofs of these results, are included as Supplementary Material.

2. Review

Mirroring [Jeong and Rockova (2023)), this article considers regression set-
tings with either a fixed or random design. The regression model with fized

design is
Y; = fo(xi) + &, g; ~ N(0,07), i=1,...,n, (2.1)

where 02 < oo and each covariate x; € [0, 1]? is fixed. A fixed design would
be assumed if, for example, the trees in BART are allowed to split only
on observed covariate values (which was a specification used in the seminal

BART paper (Chipman et al.,2010)) or on dyadic midpoints of the domain.



2.1 BART

The regression model with random design is
Yi = fo(Xi) + &, X; ~, g; ~ N(0,00), i=1,...,n, (22

where o2 < oo, each X; € [0,1]” is a p-dimensional random covariate,
and 7 is a probability measure such that supp(r) C [0,1]’. A random
design would be assumed for estimation problems such as density estimation
or regression/classification with random design. Our posterior contraction

results deal separately with fixed or random designs.

2.1 BART

1

0.8 A

zo < 0.7

PO N |

T < 0.2 —‘

A 0.4 H
M1 ' M2
0.2 ; .
0 E Il Il Il
0 0.2 0.4 0.6 0.8 1
Ty

Figure 2: An example tree shown graphically (left) and as a piecewise-

constant regression function (right) on the input space [0, 1]2.

In a regression setting in the form of either (2.1)) and (2.2)), a BART

model approximates the unknown function fy by a sum of T' regression



2.1 BART

trees:

fo() = ) 9(:60), (2.3)
where each regression-tree function g(+;0,): [0,17 — R is piecewise con-
stant over the input space. Each parameter set ©; determines a partition
of the input space [0,1]" into boxes (i.e. hyperrectangles) and the fitted
response values assigned to each partition piece. The partition is induced
by recursively applying binary splitting rules; Figure 2] shows an illustrative
example. To regularize the model fit, the BART prior over the parameters
{©;}L, keeps the individual tree effects small, which causes each function
g(+; ©;) to contribute a small portion to the total approximation of fy. The
expected response E[Y (x) | {©;}]_,] at a given input x is then the sum of
each contribution g(x; ©,).

Though the right hand side of is piecewise constant, Jeong and
Rockoval (2023)) shows that under certain conditions, BART can approxi-
mate the unknown function fy (which itself need not be piecewise constant)
arbitrarily closely with attractive posterior contraction rates. For space con-
sideration, the Supplementary Materials will describe the types of functions
that BART can capture and the conditions made in the theorems of [Jeong

and Rockoval (2023)) that our contraction-rate results rely on.



2.2 Sobol” indices

2.2 Sobol’ indices

Let L? = L?([0,1]7) denote the space of real-valued, square-integrable func-
tions on the hypercube [0, 1]P. [Sobol *| (1990, |1993)) shows that if the random
variable X follows an orthogonal distribution whose support is [0, 1]? and if
f € L?, then the variance of f(X) can be decomposed into a sum of terms

attributed to single inputs or to interactions between sets of inputs:

Var{f(X)} = ZVvLZZVJk-F +Vig,. (2.4)

=1 k<j

where we recursively define for each variable index set P C [p]

Ve = Var[E{f(X) | Xp}] = ) _ Vo
QCP

where we set Vjp = 0 and the relation C denotes a strict subset. For
any variable index j € [p|, the term Vi;; = V; is known as the jth (un-
normalized) first-order (or main-effect) Sobol” index, and the sum 7; =
> pc(p\()) VPutiy is known as the jth (unnormalized) total-effect Sobol”
index. We note that T; > V; > 0 for all j € [p].

The Vp terms in are often divided by the total variance to produce
the normalized terms Vp/[Var{f(X)}], which have the nice interpretation
of being the proportion of the total variance attributed to the interaction
between the variables whose indices are in the index set P. If P is the

singleton {j}, then the normalized term V;/[Var{ f(X)}] can be interpreted



2.2 Sobol” indices

as the proportion of the total variance attributed to variable j by itself.
Despite this nice interpretation, the remainder of the article will assume
that such indices are unnormalized unless otherwise stated.

To see why these indices’ interpretation requires X to follow an orthog-
onal distribution, we extend the definition of Vp by allowing X to follow
a possibly non-orthogonal distribution 7 whose support is [0, 1]P. We first

define the functional cp: L? - R as

cpa(f) = Var[E-{ f(X) | Xp}] (2.5)

for any f € L2 Then the generalized Vp under the distribution 7 is recur-

sively defined as

Ver(f) =cpa(f) — > Vorl(f),

QCP

where again we set Vj.(f) = 0. Similarly, we define the generalized jth

total-effect term:

Tix(f) = D Veugpa(f)
PC([p\{47})

where C denotes a subset that is not necessarily strict. Recall that if 7 is
orthogonal and f € L?, then T} .(f) > V;(f) > 0 for all j € [p| and the
variance decomposition (2.4)) (where orthogonality implies Vp = Vp . (f) for
all P C [p]) holds. However, Theorem 2 of Song et al. (2016) asserts the

existence of a non-orthogonal distribution 7 and a function f € L? such



2.3 Shapley effects

that >0, Viz(f) > Var{f(X)} > >0 Tj~(f). In such a case, these

=1

Sobol” indices can no longer be interpreted as in the orthogonal case.

2.3 Shapley effects

One way to measure variable activity, regardless of dependence among in-
puts, are the Shapley effects defined by Song et al. (2016) as the Shapley
values in |(Owen| (2014)) using the functional as the “value” or “cost.”
For j € [p] the jth Shapley effect is defined as

Sin(f) =)™ Y (=PI =DUPI {epugyalf) —cra(f)}, (2:6)
P\

which has the desirable property > 7, S;~(f) = Var {f(X)} for any distri-
bution 7 (possibly nonorthogonal) whose support is [0, 1]?. Hence, the jth
(normalized) Shapley effect can be nicely interpreted as the contribution of

input j to the total output variance. Furthermore, if 7 is orthogonal, then

Vir(f) < Sjn(f) < Tim(f) (2.7)

for any f € L? and j € [p] (Owen, 2014, Section 3), i.e. the jth Shapley
effect is bounded between the jth main-effect and total-effect Sobol ” index.

Calculating can be prohibitively costly due to it being a sum of
values over all subsets of a set [p] \ {j}. Its computational tractability

will be discussed in Section [l



3. Main results and computation of Shapley effects

This section will address theoretical support and computation of Shapley
effects using a BART metamodel. The metamodel-based approach in esti-
mating Shapley effects has two approximation layers: how well the meta-
model approximates (functionals of) the underlying regression function fy,
and how well the Shapley-effect estimates approximate the Shapley effects

of the metamodel function.

3.1 Consistency Result

For the second layer, we establish posterior consistency for our BART-
based Shapley effects using (first-layer) posterior consistency for BART
from [Jeong and Rockoval (2023)). The required theoretical results, fully
developed in the Supplementary Material, characterize the posterior con-
traction as the dataset size n — oco. The contraction rate quantifies how
quickly the posterior distribution approaches the underlying function’s true

Shapley effects. In particular, for random designs, we have the following.

Corollary 1. Under the assumptions of Theorem 4 of | Jeong and Rockova
(2025) — Assumptions (A1), (A2), (A3x), (A4), (A5), (A6x), and (A7),
and the prior assigned through (P1), (P2x), and (P3x) — and Theorem 3 in

Section S7, there exist positive constants Ly p|, L7, and Lg such that as



3.2 Shapley Effect Computation

n — oo for €, in Eq. (S5.4) in Section S7,

EOH{(f7 02): |VP,7r(f) - VP,W(fO)l + |0-2 - U§| > LV,W,|P|€n YL s 7Yn} - O,

EOH{(f7 0-2): |E,7r<f) - ,-Tjﬂr(fON + |O-2 - 0(2)| > LT,7r€'rL }/17 s 7Yn} — 07

and EOH{(f, 02): 1852 (f) = Sim(fo)| + |02 — 02| > Lsen| Vi, ... ,yn} 0.

The supplement contains a similar result for fixed designs, as well as

proofs for all theoretical results.

3.2 Shapley Effect Computation

The remainder of this section will address the computation of Shapley ef-
fects, and how well the Shapley-effect estimates approximate the Shapley
effects of the metamodel function. Since BART is a Bayesian metamodel,
our focus is to address the computational aspects when fy is approximated
by Ngraw posterior draws f L Ve f (naraw) of the fitted metamodel.

For each input j € [p], we can construct a posterior distribution for the

jth Shapley effect S, »(fo) of fo using the ng.q, values

(0 —1P|—1)!|P|
Sia(f = 3 . erua(F) = ena(FD)], (3.8)
PC([PN\{5}) ’

for i = 1,...,Ngraw. We can use the sample mean of {Sjm(f(")) draw g
a point estimate for S;,(fy), and use the end points of the middle 95%

values as a 95% credible interval for S; .(fy). For each f@ . computing its



3.3 Sum over subsets

p Shapley effects would require computing the cost function (2.5 for 27
subsets of the set [p]. The exponential increase in p is undesirable, but
also the calculation of even a single cost function might be computationally

intractable if p is large enough.

3.3 Sum over subsets

We first tackle the exponential increase in p. If the inputs are orthogo-
nal, then is bounded between the main-effect and total-effect Sobol”
indices, so we can avoid computing entirely by crudely estimating it
with, for example, the mean of the two Sobol " indices. If the inputs are not
assumed to be orthogonal, we can reduce the increase from exponential to
linear by using the following random-subset approach. Rather than com-
pute the cost difference in for all 2P~! subsets, we instead compute
the cost difference for only a small number m of subsets that are randomly
created by including each j' € ([p] \ {j}) with probability 0.5. (We could
incorporate prior information about which inputs j’ are important by in-
creasing or decreasing the probability of including any particular j/. We
could also incorporate prior information about interactions between groups
of inputs by increasing the probability that they appear together in a sub-

set and decreasing the probability that they appear separately. We save



3.3 Sum over subsets

further exploration for future work.) Hence any subset P C ([p] \ {j}) is

chosen with probability |P|!(p — (|P|+ 1))!/(p!). Under this approach, we

approximate (3.8) by

Sia(fN) mm™ ) {CP}%{J'},W(JE V) - CP;”,w(f (i))}’ (39)

where Pl(i) is the {th of m randomly drawn subsets of ([p] \ {j}) for the ith
posterior draw. Hence this approach reduces the number of cost-function
calculations from ngraw X 2P 0 Ngraw X p X (2m).

(As an aside, this approach is equivalent to how subsets are chosen in
the random-permutation scheme of (Castro et al.| (2009)): under this scheme,
any subset P C ([p]\ {j}) can be obtained by any permutation of [p] whose
first |P| elements are the elements in P and whose (|P| + 1)th element
is j. Because there are |P|!(p — (|P| + 1))! such permutations of [p|] and
each permutation of [p] is drawn with equal probability (p!)~!, the subset
P is selected with probability |P|!(p — (|P|+ 1))!/(p!). Song et al.| (2016);
van Campen et al| (2018)); Yang et al,| (2024) provide improvements and
modifications on this “simple random sampling” of permutations.)

What value of m should be used for ? Both its computational cost
and its fidelity to increase with m X ngrqw. We argue that if ng.q., > 1
(a requirement for any decent posterior summary of the surrogate model),

then m = 1 random subset will suffice. Because the randomness from the



3.3 Sum over subsets

original MCMC mechanism is independent of how the random subsets are
chosen, is just a noisier version of . Our approach does not inflate
the correlation between any two MCMC draws. Also, it does not introduce
any additional bias, seeing as each random subset P is i.i.d. and is drawn
with probability exactly equal to the weight (p — |P| — 1)!|P|!/(p!) in the
Shapley-effect expression . Now we consider the additional variability
induced by the random subsets. For each j € [p], we aim to approximate the
cumulative distribution function (CDF) F), ; of the posterior distribution of
the jth Shapley effect by an empirical CDF comprised of ng4.q,, MCMC
draws. (Here the sample size n is fixed and finite, but if the metamodel has
posterior consistency, then lim,,_, F, ; would be a step function consisting
of a single jump located at the true jth Shapley effect of the underlying
regression function fy.) Generally speaking, MCMC draws are thinned in
order to be approximately i.i.d. from the limiting distribution. If we assume
ii.d. MCMC draws, Donsker’s theorem (Donsker, 1952)) tells us that as
Ndraw — 00, both empirical CDFs — one using random subsets, the other
using exact subsets — will converge to the target CDF F), ; at the same

rate O(n;ﬁ

), regardless of how many random subsets are used. Thus, we
do not need to increase the number of random subsets in order to reduce

the additional variability, since this variability will already shrink to zero



3.4 Cost calculation

as Ngraw — 00. Hence we use m = 1 for all experiments in this paper.

3.4 Cost calculation

We now consider how each calculation of is affected by which meta-
model is used. For any metamodel that can be evaluated cheaply, Algo-
rithm 1 of Song et al.| (2016) can be used to approximate the integrals
in for the metamodel by first sampling from the input distribution
many times and then evaluating the metamodel on the many generated
inputs. However, keeping the resulting integral approximation error small
will likely require the number of random permutations and hence the com-
putation time for each integral to grow at least linearly in p (Tang), 2024]),
and thus for all p inputs the computation time to grow at least quadratically
in p. Additionally, approximating in this way produces two inference
issues illustrated in the independent-inputs example in Section 4.1, First,
even though the exact cost difference in is nonnegative for indepen-
dent inputs by definition, the estimated cost difference can be negative and
hence often produces negative Shapley-effect values for inert inputs (see
e.g., the Morris function GP estimates in Section , which creates in-
terpretability issues. Second, the variability due to approximating is

much larger than the variability due to the random subsets/permutations



(see Section for more detail on this point).

For these reasons, it is desirable to compute exactly, which can be
done for some metamodels. For BART, a closed-form expression for
can be found using Theorem 1 of Horiguchi et al| (2021)). For Bayesian
MARS, |Francom et al.| (2018)) provides a closed-form expression for esti-
mating Sobol” indices and contains a numerical example with p = 200. For
a GP, a closed-form expression can be found for certain correlation func-
tions, but these functions are typically restrictive i.e., assume stationarity
and isotropy. Exact computation of each of these expressions is easy when
the inputs are independent, but otherwise is challenging, in which case we

will resort to using Algorithm 1 of [Song et al.| (2016)).

4. Numerical examples

This section explores the numerical performance of BART-based Shapley
effects. (BART-based Sobol” indices are evaluated in detail in [Horiguchi
et al| (2021) and [Horiguchi (2020)) and hence are not evaluated in this pa-
per.) Details of the test functions used in this section are listed in Section S6

in the Supplementary Material.



4.1 Exact vs Monte Carlo cost calculation

4.1 Exact vs Monte Carlo cost calculation

This section explores the computational and accuracy differences between
computing the cost exactly as in and estimating the cost using Algo-
rithm 1 of Song et al.| (2016|) when the inputs are independent. For our first
set of experiments, we create a dataset with n = 50p observations and noise
variance o = 0.25Var{f(X)} from for each test function f and each
p € {5,50,200}. To each dataset, we fit a BART model with ng4.4, = 1000
posterior draws and 200 trees with code from Pratolal (2023). For compar-
ison, we also fit a Gaussian process (GP) model and estimate the Shapley
effects of the fitted GP mean model using Algorithm 1 of |Song et al.| (2016])
as implemented in shapleyPermRand, which was the only function in the
sensitivity R package (looss et al., [2023)) that we found could fit to our
p = 50 data sets in a reasonable amount of time. Parameter specifications
are in the caption of Figure |3l For the p = 200 cases, we could not read the
large GP-model file sizes into R and hence do not include these results.
We first compare the GP estimates to the BART estimates. Figure
shows the Shapley-effect confidence intervals of the GP approach as com-
puted by the sensitivity package, and Figure [4] shows our Shapley-effect
credible intervals using BART as defined in (3.9). The GP model seems

to capture the large Shapley effects better than the BART model does,
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GP confidence intervals

p:5 p: 50
0.8
06 * g
0.4+ =
021 % =3
0.0 Xxx ;xxIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 2
03] ¥ % g
= 02X Fi% z
014 X R E
& 0.0 XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII g
>
D
80448 x
= =
N 24 Me X g
XXx x% 0
0.0 R et 5 o e e e Y 0 3 SIS 1 s oy 0 B e
02pexRe| [ BXEEX g
0.1 £
=]
TTrTr LTI T I I L T T T ooy Ty |2

12345 0 10 20 30 40 50
Variable index j

Figure 3: 95% confidence intervals (computed by sensitivity) for the
Shapley-effect estimates from a GP fit to n = 50p observations with d = 5
active variables. Crosses indicate a function’s true Shapley effects. The
shapleyPermRand approach samples Ny +m(p—1)NoN; inputs to estimate
expectation. Per Song et al. (2016), we set Ny = 10° samples to estimate
the total variance, and Nop = 1 and N; = 3 to estimate the outer and inner
expectations, respectively. For p = 5 we use m = 10° random permutations;

for p = 50 we reduce this to m = 3 x 10 to avoid numerical overflow.

which might be explained by the fact that the data-generating functions
are all continuously differentiable and thus are well suited for GPs. How-

ever, the GP model also seems to have more trouble setting the inactive
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BART credible intervals
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Figure 4: 95% credible intervals (as in (3.9))) over 1000 posterior draws for

the Shapley-effect estimates from a BART model fit to n = 50p observations

with d = 5 active variables. Crosses indicate a function’s true Shapley

effects. For p = 50 and p = 200, only the first 25 input variables are shown

for space considerations.

variables to have zero estimated Shapley effect; indeed, for the g-function
with p = 50, the confidence intervals for many of the inactive variables are
higher than the interval for the active variable j = 5. Furthermore, the
GP confidence intervals for all inactive variables cover negative values (as
computed by the sensitivity package), even though Shapley effects are

nonnegative by definition. In contrast, the BART credible intervals never
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cover negative values. Finally, the GP confidence intervals are wider than
the BART credible intervals for the inert inputs, which is surprising since
both intervals capture the variability due to the Shapley-effect estimation
of the metamodel, but the BART intervals also capture the metamodel’s
posterior uncertainty (i.e., how accurately the metamodel fits the true re-
gression function), whereas the GP intervals do not. (We emphasize that
this stems from the different methods of estimating the Shapley effects of
the respective metamodels — see Section |3.4]— rather than from the differ-
ence between GP and BART'.) Hence we can conclude that in this scenario,
the m = 1 subset approximation in Section |3.3| produces negligible errors,
especially compared to the approximation error from the estimation of
even with 3000 random permutations.

Theoretically, we could increase the number of random permutations
in order to reduce the Monte Carlo error of estimating to an arbi-
trarily small amount, but as discussed in Section [3.4 maintaining a small
approximation error for computing the cost function for all p inputs
will likely require the computation time to grow at least quadratically in p.
But how does the exact computation of , which we recall is currently
only implemented for BART, scale with increasing p? For two regression

functions, p = 3,...,10, and fixed n = 500, Figure |5 shows that the com-
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putation time of training a BART model appears to be constant in p. The
figure also shows that computing the Shapley effects of the fitted BART
model using the exact appears to grow faster than quadratic in p.
This implies that the exact-cost approach scales better in p than the Monte
Carlo approach if the number of random permutations increases in order to
maintain a small Monte Carlo approximation error from estimating .
(Because the computation times for the exact-cost approach is specific to
BART, the behavior may not generalize if the exact-cost approach is im-

plemented for other metamodels.)

o Ishigami (3 active inputs) Morris (p active inputs)
)
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Figure 5: For n = 500 and various p, the figure shows the run times of
training the BART model (1000 posterior draws, 9000 burn-in draws, M1-
chip 4-core laptop) and of computing the Shapley effects of the fitted BART
model using the exact (2.5). “Compute exact cost (scaled)” indicates the
latter run time divided by p? (and multiplied by 30 for better visual com-

parison) to get an upper bound on how it scales with p for fixed n.
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Similarly, Figure [0 explores how these calculations scale with increasing
n for fixed p = 3. The BART training time appears to grow sublinearly in n
(a little faster than rate v/n), and the Shapley-effect calculation time using
exact computation of appears to grow more slowly than log{log(n)}.
This justifies the use of BART if n increases with p. (Section 5 of [Pratola

et al.| (2014) studies the scalability of a parallel BART MCMC algorithm.)
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Figure 6: Left: run times of training a BART model (1000 posterior draws,
9000 burn-in draws, M1-chip 4-core laptop) and of computing the Shapley
effects of the fitted BART model using the exact for p = 3 and various
n. Center and right panels scale these run times to get an upper bound on

how the two run times scale with n for fixed p = 3.

We further examine the BART results in Figure [ For the Friedman
and Morris functions, the true Shapley effects are contained in the credible

intervals and are often near the center of the intervals. For the g-function,
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the p = 5 scenario shows the credible intervals struggling a bit to capture
the true Shapley effects, but the p = 200 scenarios show better performance
from the intervals. This p = 200 result becomes even more notable if we
consider the fitted BART models do not use (P1)’s tree prior with Dirichlet
sparsity from |Linero (2018), and that the g function is purely a product
of univariate functions. For the Bratley function, the intervals struggle
quite a bit to capture the true Shapley effects. For this challenging Bratley
function, we next explore what parameters or priors should be changed to
improve the Shapley-effect estimates. Of the three directions we explored
— increasing the number of trees to 300, weakening the tree-depth prior to
encourage higher order interactions, and increasing n — only the third (with
200 trees, the same tree-depth prior as in the first set of explorations, and
p = 5) yielded estimates closer to the true Shapley effects. This provides
assurance that for these more challenging functions, the estimates can be
close to the true Shapley effects if n is large enough without having to
change any other parameters or priors.

Finally, we explore the performance of BART-based Shapley effects for
d = 250 active input variables and input dimension p = 500, which is a
regime that bottlenecks most other methods. (We omit GP results here

due to not being able to compute GP-based Shapley-effect estimates.) For
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Figure 7: 95% credible intervals (as computed in (3.9))) over 300 posterior
draws for the Shapley-effect estimates from a BART model fit to n = 50p
observations. Horizontal line corresponds to the function’s true Shapley

effects of the d = 250 active variables.

ease, we use the Morris function since its Shapley effects are 1/d for the d
active variables. Figure [7] shows that BART clearly distinguishes between
the first 250 inputs (these intervals are centered around 1/d) and the second

250 inputs (these intervals are centered around zero) for such a large p.

4.2 Robustness of Shapley-effect estimates to input correlation

Now we explore how sensitive the estimated Shapley effects are to varying
degrees of correlation. When the inputs are not independent, our proposed
BART-based estimator requires being able to compute the input probability
measure of various subsets of the input space [0, 1]P (this point is discussed
further in Section [f]). Hence, here we compute the cost function using

Monte Carlo integration as implemented by the sensitivity R package.
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Linear model with three Gaussian inputs: f(X) = X1 + X2 + X3
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Figure 8: Shapley effects estimated by BART and BMARS (as implemented
in the BASS R package, Francom and Sansd, [2020). The boxplot variability
comes from 5 replicates of the process described in Section [4.2] The solid

curves represent the function’s true Shapley effects.

It can be difficult to analytically compute Shapley effects for even
moderately complicated functions. Here we use the regression function
f(x) = x1 + x5 + x3, where the inputs have a trivariate Gaussian distribu-
tion with mean zero and covariance matrix > with entries X1 = Yoy = 1,
Y33 =4, Yoz = Y39 = 2p (where —1 < p < 1), and zero for all other entries.
Thus, the input distribution is parameterized by the correlation p between
input variables X3 and Xj3. For each p € {—0.9,—0.5,0,0.5,0.9}, we gener-
ate n = 1000 input values according to p, and then evaluate the regression
function with additive Gaussian noise whose standard deviation is 0.1 times
the standard deviation of the regression function under p. We then fit a

BART model and a Bayesian MARS (BMARS) model to these observa-
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tions before using the shapleyPermEx () function from the sensitivity R
package to estimate the function’s Shapley effects. (The parameters we use
are Nv=1000, No=100, Ni=3.) We repeat this process five times.

Figure |8 shows the estimated Shapley effects for these five correlation
values. We see that both BART and BMARS seem to recover the true
Shapley effects even for large correlations between inputs 2 and 3. There
also does not seem to be any systematic performance difference between
the two metamodels. Hence, if we extrapolate these results to larger input
dimensions and account for the curse of dimensionality of the Monte Carlo
approach to computing the cost function, we believe that the resulting large
variability from the MC approach is likely to overshadow any performance
difference due to the chosen metamodel. This further motivates the task of

computing the cost function exactly under dependent inputs (see Section.

4.3 Application to climate simulator

Here we estimate Shapley effects from data generated from the En-ROADS
climate simulator (Climate Interactive et all 2020). This simulator is a
mathematical model of how global temperature is influenced by changes in
energy, land use, consumption, agriculture, and other factors. It is designed

to be easily used by the general public. The model is an ordinary differential
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Sensitivity index estimates for En-Roads climate simulator
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Figure 9: 95% credible intervals (as computed in (3.9))) for (normalized)
first-order Sobol ” indices (SI), Shapley effects (SH), and total-effect Sobol

indices (TSI) over 1000 posterior draws from a BART model fit to climate

simulator data (Climate Interactive et al., [2020)).

equation solved by Euler integration and synthesizes the important drivers
of climate in a computationally efficient and easy-to-use web interface.

The data consists of n = 110 observations with p = 11 inputs and was

collected using the scheme described in Horiguchi et al.| (2021). To this

data we fit a BART model and compute Shapley-effect estimates using the
implementation in with 1000 posterior draws, 200 trees, and
the remaining default parameter settings.

Figure [9] shows the estimates for the first-order Sobol” index, Shapley
effect, and total-effect Sobol " index of the 11 inputs. For each input, the re-

lationship ([2.7)) between the three indices is shown. As expected given this

relationship and the analysis in [Horiguchi et al. (2021)), the small differences




between the Shapley-effect estimates and the two Sobol ’-index estimates
indicate small interaction effects between any group of inputs. Hence, take-
aways about the impact of each input are the same as discussed in |Horiguchi
et al.| (2021)). In particular, the four most impactful inputs seem to be car-

bon price, energy efficiency of buildings, methane, and economic growth.

5. Discussion

This article establishes posterior contraction rates for Sobol -index and
Shapley-effect estimators computed using BART. The proofs of our con-
traction rates required proving a property similar to Lipschitz continuity
for Sobol” indices and Shapley effects before using recent contraction-rate
results that apply to function spaces with heterogeneous smoothness and
sparsity in high dimensions and to fixed and random designs. This article
also illustrates the computational tractability and performance of BART-
based Shapley effects on four different test functions under orthogonal in-
puts and p = 500. Code to fit BART models and compute Sobol” index
and Shapley effect estimates is found in |Pratola (2023)).

Our theoretical consistency results apply to input distributions that are
not orthogonal, and thus uncertainty quantification of the Shapley effects

would maintain its validity under such distributions. However, to imple-



ment our approach under such distributions, we would need to be able to
compute the cost function. Specifically, the input distribution would affect
the values of the probability measure of the boxes that the BART ensemble
partitions the input space into. Under independent inputs, the probability
measure is simply the volume (i.e., the Lebesgue measure) of the boxes,
which is what we currently have implemented. Current Monte Carlo meth-
ods of approximating the cost function require being able to sample from
the input distribution. It is more useful (and more challenging) to learn
the input distribution based on the observed covariates, and then use this
learned distribution to estimate the cost function. For our BART-based
approach, this can be possibly achieved by replacing the volume of each
hyperrectangle used to compute BART-based Sobol” indices and Shapley
effects with the proportion of observations that fall in each hyperrectangle.
Another possible approach would be to incorporate a tree-based density
estimation method suitable for higher-dimensional spaces, such as |Awaya

and Ma/ (2024alb). We will reserve this exploration as future work.

Supplementary Material

The online Supplementary Material contains a summary table of metamodel

properties, a review of posterior contraction theory, and the preliminaries
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required to establish the posterior asymptotic results. It further presents
the statements and proofs of these asymptotic results, along with detailed
proofs of results from the main text. Definitions of the functions used in
the experiments described in Section 5 of the main paper are provided,
together with additional experiments examining how the metamodels scale

with input dimensionality.
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