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Abstract: Shapley effects are a particularly interpretable approach to assessing

how a function depends on its various inputs. The existing literature contains

various estimators for this class of sensitivity indices in the context of nonpara-

metric regression where the function is observed with noise, but there does not

seem to be an estimator that is computationally tractable for input dimensions

in the hundreds scale. This article provides such an estimator that is computa-

tionally tractable on this scale. The estimator uses a metamodel-based approach

by first fitting a Bayesian Additive Regression Trees model which is then used

to compute Shapley-effect estimates. This article also establishes a theoretical

guarantee of posterior consistency on a large function class for this Shapley-effect

estimator. Finally, this paper explores the performance of these Shapley-effect

estimators on four different test functions for various input dimensions, including

p = 500.
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1. Introduction

An important task in global sensitivity analysis is to measure how a real-

valued function depends on its various inputs. A popular measure of vari-

able importance is the class of Sobol´ indices (Sobol´, 1990), which decom-

poses the variance of outputs from a function into terms due to main effects

for each input and interaction effects between the various inputs. To quan-

tify the impact of any particular input dimension, either the main-effect

Sobol´ index or the total-effect Sobol´ index can be used; the latter in-

cludes all interactions between the given input and any other input whereas

the former excludes any such interaction. Straightforward interpretation of

Sobol´ indices requires an orthogonal distribution on the inputs (Song et al.,

2016). Shapley effects (Shapley, 1952; Song et al., 2016) form another class

of variance-based global sensitivity indices that was first introduced in the

context of game theory but has only recently been gaining traction in the

statistics literature (Owen, 2014). Although the additional computation

required to compute Shapley effects might render them unnecessary if the

inputs are known to be independent, Shapley effects remain interpretable

even if the inputs are correlated (Song et al., 2016) and hence are the more

reasonable option in such a case.

If the function of interest is known and has a simple enough form, its
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exact Shapley effects can sometimes be computed analytically, particularly

when the required integrals can be computed easily. Otherwise, the Shapley

effects can be estimated using values generated from the function. Many

existing methods assume the function can be evaluated cheaply and without

observation noise and indeed work well in such a scenario. Figure 1 shows

various such Shapley-effect estimators (Song et al., 2016; Benoumechiara

and Elie-Dit-Cosaque, 2019; Broto et al., 2020; Plischke et al., 2021; Goda,

2021) applied to n observations generated from a function (defined in the

figure caption) evaluated on i.i.d. inputs drawn uniformly from the hyper-

cube [0, 1]5. When the function values are observed without noise, these

methods track the g-function’s true Shapley-effects very well. But when

independent and identically distributed (i.i.d.) Gaussian noise with mean

zero and moderate variance (defined in the figure caption) is added, these

methods struggle to capture the true values even when the number of ob-

servations increases dramatically to compensate for the observation noise.

For noisy function observations, one can first estimate the function

and then compute sensitivity indices of the estimated function as a post-

processing step. One option is to fit a metamodel to the observations; the

fitted metamodel then serves as the estimated function. (This approach is

also useful in noisefree settings when the function can only be sparsely eval-
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Figure 1: Shapley-effect estimates of various existing methods trained on

data drawn from the Sobol´ g-function f(x) =
∏5

k=1
|4xk−2|+(k−1)/2

1+(k−1)/2
. Crosses

represent the true Shapley-effect values. Function values are evaluated at

n i.i.d. inputs drawn uniformly from the hypercube [0, 1]5. In the top row,

function values are observed without noise. In the bottom row, the obser-

vations are function values plus i.i.d. Gaussian noise with mean zero and

variance 0.25 × 3.076, where 3.076 is the variance of the g-function under

a uniform distribution on [0, 1]5. Each column represents an estimation

method: “Goda2021” is from Goda (2021); “mobius” and “picknfreeze”

are from Plischke et al. (2021); “shapleyPermEx” and “shapleySubsetMc”

are from Iooss et al. (2023). Error bars represent approximate or exact 95%

confidence intervals as implemented by the method which aim to capture

the variability induced by the Monte Carlo approximation of expectations.
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uated and the fitted metamodel can be evaluated cheaply.) Popular meta-

models include the Gaussian Process (GP), Bayesian multivariate adaptive

regression splines (BMARS) (Denison et al., 1998), generalized polynomial

chaos expansions (PCE) (Sudret, 2008), treed GPs Gramacy and Taddy

(2010), dynamic trees (Gramacy et al., 2013), Gaussian radial basis func-

tion (Wu et al., 2016), artificial neural networks (Li et al., 2016), and deep

GPs (Radaideh and Kozlowski, 2020). This paper makes its contributions

using Bayesian Additive Regression Trees (BART) (Chipman et al., 2010)

which is an increasingly popular tool for complex regression problems and

as emulators of expensive computer simulations (Chipman et al., 2012; Gra-

macy and Haaland, 2016; Horiguchi et al., 2022). BART is a nonparametric

sum-of-trees model embedded in a Bayesian inferential framework. Unlike

many other metamodels, BART can easily incorporate categorical inputs,

avoids strong parametric assumptions, and is relatively quick to fit even

on a large number of observations. BART even has been shown to be re-

silient to the inclusion of inert inputs, particularly when the BART prior

incorporates either the sparsity-inducing Dirichlet prior of Linero (2018)

or the spike-and-tree prior of van der Pas and Ročková (2017); Liu et al.

(2021). Furthermore, the Bayesian framework provides natural uncertainty

quantification for both predictions and sensitivity-index estimates.
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Some metamodels struggle more than others with the two stages in

the above approach, namely fitting the metamodel, then using the fitted

metamodel to estimate the sensitivity indices. Regarding the first stage,

many of these metamodel-based approaches struggle to fit if the number

of inputs p and function evaluations n are not small. A GP has O(n3)

computation time and struggles to fit for even p = 10. PCE has been fit

for p = 25, but it has been noted that PCE struggles to fit for larger p

(Sudret, 2008; Crestaux et al., 2009). BMARS works for p = 200 for Sobol’

indices (Francom et al., 2018). Figure 7 of this paper provides an example

where BART fits to a p = 500 scenario with d = 250 active variables.

Regarding the second stage, if a metamodel is cheap to evaluate, then the

fitted metamodel’s Shapley effects can be estimated using Monte Carlo

integration of the Shapley-effect integrals, as done in Algorithm 1 from

Song et al. (2016) or a parallelized version of it (Zhang and Dimitrov, 2024).

However, this will create another layer of approximation error that can be

avoided if the metamodel allows for exact computation. On this front,

BART (Horiguchi et al., 2021), BMARS (Francom et al., 2018), and PCE

(Sudret, 2008) have closed-form expressions for Sobol´ indices (and thus

for Shapley effects) that can be computed exactly once the metamodel is

fit. Such expressions also exist for GPs with polynomial mean and either
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a separable Gaussian, Bohman, or cubic correlation function (Oakley and

O’Hagan, 2004; Chen et al., 2005, 2006; Marrel et al., 2009; Moon, 2010;

Svenson et al., 2014; Santner et al., 2018). Table 1 in the Supplementary

Material summarizes these metamodel properties.

To our knowledge, this article is the first to provide an estimator of

a function’s Shapley effects that is computationally tractable for a rela-

tively large number of inputs and function evaluations, as well as theoret-

ical guarantees of consistency in the context of nonparametric regression

where the function is observed with noise. BART approximates a function

by a piecewise-constant function whose exact Sobol´ indices are provided

by Horiguchi et al. (2021) and can be easily computed (we will refer to these

as “BART-based Sobol´ indices” for the rest of this article). Section 2 will

show these closed-form expressions can also be used to compute BART-

based Shapley effects, but because the number of expressions to compute

increases dramatically, Section 3 discusses computationally friendly approx-

imations. On the other hand, our contraction-rate results rely heavily on

recent BART theory from Jeong and Rockova (2023), who introduce the

large class of sparse piecewise heterogeneous anisotropic Hölder functions

and show that over this function class, the contraction rate for Bayesian

forests is optimal up to a logarithmic factor.
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This article is organized as follows. Section 2 reviews BART, Sobol´

indices, and Shapley effects. Section 3 provides our main theoretical pos-

terior contraction results and discusses the computation of BART-based

Shapley effects. Section 4 showcases their performance on numerical ex-

amples, including data from the En-Roads climate simulator (analogous

discussion for BART-based Sobol´ indices can be found in Horiguchi et al.

(2021)). Section 5 provides discussion on future work. Our results on pos-

terior contraction for BART-based Sobol´ indices and Shapley effects, as

well as proofs of these results, are included as Supplementary Material.

2. Review

Mirroring Jeong and Rockova (2023), this article considers regression set-

tings with either a fixed or random design. The regression model with fixed

design is

Yi = f0(xi) + εi, εi ∼ N(0, σ2
0), i = 1, . . . , n, (2.1)

where σ2
0 < ∞ and each covariate xi ∈ [0, 1]p is fixed. A fixed design would

be assumed if, for example, the trees in BART are allowed to split only

on observed covariate values (which was a specification used in the seminal

BART paper (Chipman et al., 2010)) or on dyadic midpoints of the domain.
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2.1 BART

The regression model with random design is

Yi = f0(Xi) + εi, Xi ∼ π, εi ∼ N(0, σ2
0), i = 1, . . . , n, (2.2)

where σ2
0 < ∞, each Xi ∈ [0, 1]p is a p-dimensional random covariate,

and π is a probability measure such that supp(π) ⊆ [0, 1]p. A random

design would be assumed for estimation problems such as density estimation

or regression/classification with random design. Our posterior contraction

results deal separately with fixed or random designs.

2.1 BART
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Figure 2: An example tree shown graphically (left) and as a piecewise-

constant regression function (right) on the input space [0, 1]2.

In a regression setting in the form of either (2.1) and (2.2), a BART

model approximates the unknown function f0 by a sum of T regression
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2.1 BART

trees:

f0(·) ≈
T∑
t=1

g(·; Θt), (2.3)

where each regression-tree function g(·; Θt) : [0, 1]
p → R is piecewise con-

stant over the input space. Each parameter set Θt determines a partition

of the input space [0, 1]p into boxes (i.e. hyperrectangles) and the fitted

response values assigned to each partition piece. The partition is induced

by recursively applying binary splitting rules; Figure 2 shows an illustrative

example. To regularize the model fit, the BART prior over the parameters

{Θt}Tt=1 keeps the individual tree effects small, which causes each function

g(·; Θt) to contribute a small portion to the total approximation of f0. The

expected response E
[
Y (x) | {Θt}Tt=1

]
at a given input x is then the sum of

each contribution g(x; Θt).

Though the right hand side of (2.3) is piecewise constant, Jeong and

Rockova (2023) shows that under certain conditions, BART can approxi-

mate the unknown function f0 (which itself need not be piecewise constant)

arbitrarily closely with attractive posterior contraction rates. For space con-

sideration, the Supplementary Materials will describe the types of functions

that BART can capture and the conditions made in the theorems of Jeong

and Rockova (2023) that our contraction-rate results rely on.
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2.2 Sobol´ indices

2.2 Sobol´ indices

Let L2 ≡ L2([0, 1]p) denote the space of real-valued, square-integrable func-

tions on the hypercube [0, 1]p. Sobol´ (1990, 1993) shows that if the random

variable X follows an orthogonal distribution whose support is [0, 1]p and if

f ∈ L2, then the variance of f(X) can be decomposed into a sum of terms

attributed to single inputs or to interactions between sets of inputs:

Var{f(X)} =

p∑
j=1

Vj +

p∑
j=1

∑
k<j

Vjk + · · ·+ V1,2,...,p (2.4)

where we recursively define for each variable index set P ⊆ [p]

VP := Var[E{f(X) | XP}]−
∑
Q⊂P

VQ

where we set V∅ = 0 and the relation ⊂ denotes a strict subset. For

any variable index j ∈ [p], the term V{j} = Vj is known as the jth (un-

normalized) first-order (or main-effect) Sobol´ index, and the sum Tj =∑
P⊆([p]\{j}) VP∪{j} is known as the jth (unnormalized) total-effect Sobol´

index. We note that Tj ≥ Vj ≥ 0 for all j ∈ [p].

The VP terms in (2.4) are often divided by the total variance to produce

the normalized terms VP/[Var{f(X)}], which have the nice interpretation

of being the proportion of the total variance attributed to the interaction

between the variables whose indices are in the index set P . If P is the

singleton {j}, then the normalized term Vj/[Var{f(X)}] can be interpreted
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2.2 Sobol´ indices

as the proportion of the total variance attributed to variable j by itself.

Despite this nice interpretation, the remainder of the article will assume

that such indices are unnormalized unless otherwise stated.

To see why these indices’ interpretation requires X to follow an orthog-

onal distribution, we extend the definition of VP by allowing X to follow

a possibly non-orthogonal distribution π whose support is [0, 1]p. We first

define the functional cP,π : L
2 → R as

cP,π(f) = Varπ[Eπ{f(X) | XP}] (2.5)

for any f ∈ L2. Then the generalized VP under the distribution π is recur-

sively defined as

VP,π(f) := cP,π(f)−
∑
Q⊂P

VQ,π(f),

where again we set V∅,π(f) = 0. Similarly, we define the generalized jth

total-effect term:

Tj,π(f) =
∑

P⊆([p]\{j})

VP∪{j},π(f)

where ⊆ denotes a subset that is not necessarily strict. Recall that if π is

orthogonal and f ∈ L2, then Tj,π(f) ≥ Vj,π(f) ≥ 0 for all j ∈ [p] and the

variance decomposition (2.4) (where orthogonality implies VP = VP,π(f) for

all P ⊆ [p]) holds. However, Theorem 2 of Song et al. (2016) asserts the

existence of a non-orthogonal distribution π and a function f ∈ L2 such
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2.3 Shapley effects

that
∑p

j=1 Vj,π(f) > Varπ{f(X)} >
∑p

j=1 Tj,π(f). In such a case, these

Sobol´ indices can no longer be interpreted as in the orthogonal case.

2.3 Shapley effects

One way to measure variable activity, regardless of dependence among in-

puts, are the Shapley effects defined by Song et al. (2016) as the Shapley

values in Owen (2014) using the functional (2.5) as the “value” or “cost.”

For j ∈ [p] the jth Shapley effect is defined as

Sj,π(f) = (p!)−1
∑

P⊆([p]\{j})

(p− |P | − 1)! |P |!
{
cP∪{j},π(f)− cP,π(f)

}
, (2.6)

which has the desirable property
∑p

j=1 Sj,π(f) = Varπ{f(X)} for any distri-

bution π (possibly nonorthogonal) whose support is [0, 1]p. Hence, the jth

(normalized) Shapley effect can be nicely interpreted as the contribution of

input j to the total output variance. Furthermore, if π is orthogonal, then

Vj,π(f) ≤ Sj,π(f) ≤ Tj,π(f) (2.7)

for any f ∈ L2 and j ∈ [p] (Owen, 2014, Section 3), i.e. the jth Shapley

effect is bounded between the jth main-effect and total-effect Sobol´ index.

Calculating (2.6) can be prohibitively costly due to it being a sum of

values (2.5) over all subsets of a set [p]\ {j}. Its computational tractability

will be discussed in Section 3.
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3. Main results and computation of Shapley effects

This section will address theoretical support and computation of Shapley

effects using a BART metamodel. The metamodel-based approach in esti-

mating Shapley effects has two approximation layers: how well the meta-

model approximates (functionals of) the underlying regression function f0,

and how well the Shapley-effect estimates approximate the Shapley effects

of the metamodel function.

3.1 Consistency Result

For the second layer, we establish posterior consistency for our BART-

based Shapley effects using (first-layer) posterior consistency for BART

from Jeong and Rockova (2023). The required theoretical results, fully

developed in the Supplementary Material, characterize the posterior con-

traction as the dataset size n → ∞. The contraction rate quantifies how

quickly the posterior distribution approaches the underlying function’s true

Shapley effects. In particular, for random designs, we have the following.

Corollary 1. Under the assumptions of Theorem 4 of Jeong and Rockova

(2023) – Assumptions (A1), (A2), (A3∗), (A4), (A5), (A6∗), and (A7),

and the prior assigned through (P1), (P2∗), and (P3∗) – and Theorem 3 in

Section S7, there exist positive constants LV,π,|P |, LT,π, and LS such that as
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3.2 Shapley Effect Computation

n → ∞ for ϵn in Eq. (S5.4) in Section S7,

E0Π
{
(f, σ2) : |VP,π(f)− VP,π(f0)|+ |σ2 − σ2

0| > LV,π,|P |ϵn

∣∣∣Y1, . . . , Yn

}
→ 0,

E0Π
{
(f, σ2) : |Tj,π(f)− Tj,π(f0)|+ |σ2 − σ2

0| > LT,πϵn

∣∣∣Y1, . . . , Yn

}
→ 0,

and E0Π
{
(f, σ2) : |Sj,π(f)− Sj,π(f0)|+ |σ2 − σ2

0| > LSϵn

∣∣∣Y1, . . . , Yn

}
→ 0.

The supplement contains a similar result for fixed designs, as well as

proofs for all theoretical results.

3.2 Shapley Effect Computation

The remainder of this section will address the computation of Shapley ef-

fects, and how well the Shapley-effect estimates approximate the Shapley

effects of the metamodel function. Since BART is a Bayesian metamodel,

our focus is to address the computational aspects when f0 is approximated

by ndraw posterior draws f̂ (1), . . . , f̂ (ndraw) of the fitted metamodel.

For each input j ∈ [p], we can construct a posterior distribution for the

jth Shapley effect Sj,π(f0) of f0 using the ndraw values

Sj,π(f̂
(i)) =

∑
P⊆([p]\{j})

(p− |P | − 1)! |P |!
p!

[
cP∪{j},π(f̂

(i))− cP,π(f̂
(i))

]
, (3.8)

for i = 1, . . . , ndraw. We can use the sample mean of {Sj,π(f̂
(i))}ndraw

i=1 as

a point estimate for Sj,π(f0), and use the end points of the middle 95%

values as a 95% credible interval for Sj,π(f0). For each f̂ (i), computing its
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3.3 Sum over subsets

p Shapley effects would require computing the cost function (2.5) for 2p

subsets of the set [p]. The exponential increase in p is undesirable, but

also the calculation of even a single cost function might be computationally

intractable if p is large enough.

3.3 Sum over subsets

We first tackle the exponential increase in p. If the inputs are orthogo-

nal, then (3.8) is bounded between the main-effect and total-effect Sobol´

indices, so we can avoid computing (3.8) entirely by crudely estimating it

with, for example, the mean of the two Sobol´ indices. If the inputs are not

assumed to be orthogonal, we can reduce the increase from exponential to

linear by using the following random-subset approach. Rather than com-

pute the cost difference in (3.8) for all 2p−1 subsets, we instead compute

the cost difference for only a small number m of subsets that are randomly

created by including each j′ ∈ ([p] \ {j}) with probability 0.5. (We could

incorporate prior information about which inputs j′ are important by in-

creasing or decreasing the probability of including any particular j′. We

could also incorporate prior information about interactions between groups

of inputs by increasing the probability that they appear together in a sub-

set and decreasing the probability that they appear separately. We save
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3.3 Sum over subsets

further exploration for future work.) Hence any subset P ⊆ ([p] \ {j}) is

chosen with probability |P |!(p − (|P | + 1))!/(p!). Under this approach, we

approximate (3.8) by

Sj,π(f̂
(i)) ≈ m−1

m∑
l=1

{
c
P

(i)
l ∪{j},π(f̂

(i))− c
P

(i)
l ,π

(f̂ (i))
}
, (3.9)

where P
(i)
l is the lth of m randomly drawn subsets of ([p] \ {j}) for the ith

posterior draw. Hence this approach reduces the number of cost-function

calculations from ndraw × 2p to ndraw × p× (2m).

(As an aside, this approach is equivalent to how subsets are chosen in

the random-permutation scheme of Castro et al. (2009): under this scheme,

any subset P ⊆ ([p]\{j}) can be obtained by any permutation of [p] whose

first |P | elements are the elements in P and whose (|P | + 1)th element

is j. Because there are |P |!(p − (|P | + 1))! such permutations of [p] and

each permutation of [p] is drawn with equal probability (p!)−1, the subset

P is selected with probability |P |!(p− (|P | + 1))!/(p!). Song et al. (2016);

van Campen et al. (2018); Yang et al. (2024) provide improvements and

modifications on this “simple random sampling” of permutations.)

What value of m should be used for (3.9)? Both its computational cost

and its fidelity to (3.8) increase with m×ndraw. We argue that if ndraw ≫ 1

(a requirement for any decent posterior summary of the surrogate model),

then m = 1 random subset will suffice. Because the randomness from the
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3.3 Sum over subsets

original MCMC mechanism is independent of how the random subsets are

chosen, (3.9) is just a noisier version of (3.8). Our approach does not inflate

the correlation between any two MCMC draws. Also, it does not introduce

any additional bias, seeing as each random subset P is i.i.d. and is drawn

with probability exactly equal to the weight (p − |P | − 1)!|P |!/(p!) in the

Shapley-effect expression (2.6). Now we consider the additional variability

induced by the random subsets. For each j ∈ [p], we aim to approximate the

cumulative distribution function (CDF) Fn,j of the posterior distribution of

the jth Shapley effect by an empirical CDF comprised of ndraw MCMC

draws. (Here the sample size n is fixed and finite, but if the metamodel has

posterior consistency, then limn→∞ Fn,j would be a step function consisting

of a single jump located at the true jth Shapley effect of the underlying

regression function f0.) Generally speaking, MCMC draws are thinned in

order to be approximately i.i.d. from the limiting distribution. If we assume

i.i.d. MCMC draws, Donsker’s theorem (Donsker, 1952) tells us that as

ndraw → ∞, both empirical CDFs — one using random subsets, the other

using exact subsets — will converge to the target CDF Fn,j at the same

rate O(n
−1/2
draw), regardless of how many random subsets are used. Thus, we

do not need to increase the number of random subsets in order to reduce

the additional variability, since this variability will already shrink to zero
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3.4 Cost calculation

as ndraw → ∞. Hence we use m = 1 for all experiments in this paper.

3.4 Cost calculation

We now consider how each calculation of (2.5) is affected by which meta-

model is used. For any metamodel that can be evaluated cheaply, Algo-

rithm 1 of Song et al. (2016) can be used to approximate the integrals

in (2.5) for the metamodel by first sampling from the input distribution

many times and then evaluating the metamodel on the many generated

inputs. However, keeping the resulting integral approximation error small

will likely require the number of random permutations and hence the com-

putation time for each integral to grow at least linearly in p (Tang, 2024),

and thus for all p inputs the computation time to grow at least quadratically

in p. Additionally, approximating (2.5) in this way produces two inference

issues illustrated in the independent-inputs example in Section 4.1. First,

even though the exact cost difference in (2.6) is nonnegative for indepen-

dent inputs by definition, the estimated cost difference can be negative and

hence often produces negative Shapley-effect values for inert inputs (see

e.g., the Morris function GP estimates in Section 4.1), which creates in-

terpretability issues. Second, the variability due to approximating (2.5) is

much larger than the variability due to the random subsets/permutations
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(see Section 4.1 for more detail on this point).

For these reasons, it is desirable to compute (2.5) exactly, which can be

done for some metamodels. For BART, a closed-form expression for (2.5)

can be found using Theorem 1 of Horiguchi et al. (2021). For Bayesian

MARS, Francom et al. (2018) provides a closed-form expression for esti-

mating Sobol´ indices and contains a numerical example with p = 200. For

a GP, a closed-form expression can be found for certain correlation func-

tions, but these functions are typically restrictive i.e., assume stationarity

and isotropy. Exact computation of each of these expressions is easy when

the inputs are independent, but otherwise is challenging, in which case we

will resort to using Algorithm 1 of Song et al. (2016).

4. Numerical examples

This section explores the numerical performance of BART-based Shapley

effects. (BART-based Sobol´ indices are evaluated in detail in Horiguchi

et al. (2021) and Horiguchi (2020) and hence are not evaluated in this pa-

per.) Details of the test functions used in this section are listed in Section S6

in the Supplementary Material.
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4.1 Exact vs Monte Carlo cost calculation

4.1 Exact vs Monte Carlo cost calculation

This section explores the computational and accuracy differences between

computing the cost exactly as in (3.8) and estimating the cost using Algo-

rithm 1 of Song et al. (2016) when the inputs are independent. For our first

set of experiments, we create a dataset with n = 50p observations and noise

variance σ2
0 = 0.25Var{f(X)} from (2.1) for each test function f and each

p ∈ {5, 50, 200}. To each dataset, we fit a BART model with ndraw = 1000

posterior draws and 200 trees with code from Pratola (2023). For compar-

ison, we also fit a Gaussian process (GP) model and estimate the Shapley

effects of the fitted GP mean model using Algorithm 1 of Song et al. (2016)

as implemented in shapleyPermRand, which was the only function in the

sensitivity R package (Iooss et al., 2023) that we found could fit to our

p = 50 data sets in a reasonable amount of time. Parameter specifications

are in the caption of Figure 3. For the p = 200 cases, we could not read the

large GP-model file sizes into R and hence do not include these results.

We first compare the GP estimates to the BART estimates. Figure 3

shows the Shapley-effect confidence intervals of the GP approach as com-

puted by the sensitivity package, and Figure 4 shows our Shapley-effect

credible intervals using BART as defined in (3.9). The GP model seems

to capture the large Shapley effects better than the BART model does,
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4.1 Exact vs Monte Carlo cost calculation

Figure 3: 95% confidence intervals (computed by sensitivity) for the

Shapley-effect estimates from a GP fit to n = 50p observations with d = 5

active variables. Crosses indicate a function’s true Shapley effects. The

shapleyPermRand approach samples NV +m(p−1)NONI inputs to estimate

expectation. Per Song et al. (2016), we set NV = 105 samples to estimate

the total variance, and NO = 1 and NI = 3 to estimate the outer and inner

expectations, respectively. For p = 5 we usem = 105 random permutations;

for p = 50 we reduce this to m = 3× 103 to avoid numerical overflow.

which might be explained by the fact that the data-generating functions

are all continuously differentiable and thus are well suited for GPs. How-

ever, the GP model also seems to have more trouble setting the inactive
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4.1 Exact vs Monte Carlo cost calculation

Figure 4: 95% credible intervals (as in (3.9)) over 1000 posterior draws for

the Shapley-effect estimates from a BART model fit to n = 50p observations

with d = 5 active variables. Crosses indicate a function’s true Shapley

effects. For p = 50 and p = 200, only the first 25 input variables are shown

for space considerations.

variables to have zero estimated Shapley effect; indeed, for the g-function

with p = 50, the confidence intervals for many of the inactive variables are

higher than the interval for the active variable j = 5. Furthermore, the

GP confidence intervals for all inactive variables cover negative values (as

computed by the sensitivity package), even though Shapley effects are

nonnegative by definition. In contrast, the BART credible intervals never
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4.1 Exact vs Monte Carlo cost calculation

cover negative values. Finally, the GP confidence intervals are wider than

the BART credible intervals for the inert inputs, which is surprising since

both intervals capture the variability due to the Shapley-effect estimation

of the metamodel, but the BART intervals also capture the metamodel’s

posterior uncertainty (i.e., how accurately the metamodel fits the true re-

gression function), whereas the GP intervals do not. (We emphasize that

this stems from the different methods of estimating the Shapley effects of

the respective metamodels — see Section 3.4 — rather than from the differ-

ence between GP and BART.) Hence we can conclude that in this scenario,

the m = 1 subset approximation in Section 3.3 produces negligible errors,

especially compared to the approximation error from the estimation of (2.5)

even with 3000 random permutations.

Theoretically, we could increase the number of random permutations

in order to reduce the Monte Carlo error of estimating (2.5) to an arbi-

trarily small amount, but as discussed in Section 3.4, maintaining a small

approximation error for computing the cost function (2.5) for all p inputs

will likely require the computation time to grow at least quadratically in p.

But how does the exact computation of (2.5), which we recall is currently

only implemented for BART, scale with increasing p? For two regression

functions, p = 3, . . . , 10, and fixed n = 500, Figure 5 shows that the com-
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putation time of training a BART model appears to be constant in p. The

figure also shows that computing the Shapley effects of the fitted BART

model using the exact (2.5) appears to grow faster than quadratic in p.

This implies that the exact-cost approach scales better in p than the Monte

Carlo approach if the number of random permutations increases in order to

maintain a small Monte Carlo approximation error from estimating (2.5).

(Because the computation times for the exact-cost approach is specific to

BART, the behavior may not generalize if the exact-cost approach is im-

plemented for other metamodels.)

Figure 5: For n = 500 and various p, the figure shows the run times of

training the BART model (1000 posterior draws, 9000 burn-in draws, M1-

chip 4-core laptop) and of computing the Shapley effects of the fitted BART

model using the exact (2.5). “Compute exact cost (scaled)” indicates the

latter run time divided by p2 (and multiplied by 30 for better visual com-

parison) to get an upper bound on how it scales with p for fixed n.
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4.1 Exact vs Monte Carlo cost calculation

Similarly, Figure 6 explores how these calculations scale with increasing

n for fixed p = 3. The BART training time appears to grow sublinearly in n

(a little faster than rate
√
n), and the Shapley-effect calculation time using

exact computation of (2.5) appears to grow more slowly than log{log(n)}.

This justifies the use of BART if n increases with p. (Section 5 of Pratola

et al. (2014) studies the scalability of a parallel BART MCMC algorithm.)

Figure 6: Left: run times of training a BART model (1000 posterior draws,

9000 burn-in draws, M1-chip 4-core laptop) and of computing the Shapley

effects of the fitted BART model using the exact (2.5) for p = 3 and various

n. Center and right panels scale these run times to get an upper bound on

how the two run times scale with n for fixed p = 3.

We further examine the BART results in Figure 4. For the Friedman

and Morris functions, the true Shapley effects are contained in the credible

intervals and are often near the center of the intervals. For the g-function,
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4.1 Exact vs Monte Carlo cost calculation

the p = 5 scenario shows the credible intervals struggling a bit to capture

the true Shapley effects, but the p = 200 scenarios show better performance

from the intervals. This p = 200 result becomes even more notable if we

consider the fitted BART models do not use (P1)’s tree prior with Dirichlet

sparsity from Linero (2018), and that the g function is purely a product

of univariate functions. For the Bratley function, the intervals struggle

quite a bit to capture the true Shapley effects. For this challenging Bratley

function, we next explore what parameters or priors should be changed to

improve the Shapley-effect estimates. Of the three directions we explored

– increasing the number of trees to 300, weakening the tree-depth prior to

encourage higher order interactions, and increasing n – only the third (with

200 trees, the same tree-depth prior as in the first set of explorations, and

p = 5) yielded estimates closer to the true Shapley effects. This provides

assurance that for these more challenging functions, the estimates can be

close to the true Shapley effects if n is large enough without having to

change any other parameters or priors.

Finally, we explore the performance of BART-based Shapley effects for

d = 250 active input variables and input dimension p = 500, which is a

regime that bottlenecks most other methods. (We omit GP results here

due to not being able to compute GP-based Shapley-effect estimates.) For
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Figure 7: 95% credible intervals (as computed in (3.9)) over 300 posterior

draws for the Shapley-effect estimates from a BART model fit to n = 50p

observations. Horizontal line corresponds to the function’s true Shapley

effects of the d = 250 active variables.

ease, we use the Morris function since its Shapley effects are 1/d for the d

active variables. Figure 7 shows that BART clearly distinguishes between

the first 250 inputs (these intervals are centered around 1/d) and the second

250 inputs (these intervals are centered around zero) for such a large p.

4.2 Robustness of Shapley-effect estimates to input correlation

Now we explore how sensitive the estimated Shapley effects are to varying

degrees of correlation. When the inputs are not independent, our proposed

BART-based estimator requires being able to compute the input probability

measure of various subsets of the input space [0, 1]p (this point is discussed

further in Section 5). Hence, here we compute the cost function (2.5) using

Monte Carlo integration as implemented by the sensitivity R package.
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4.2 Robustness of Shapley-effect estimates to input correlation

Figure 8: Shapley effects estimated by BART and BMARS (as implemented

in the BASS R package, Francom and Sansó, 2020). The boxplot variability

comes from 5 replicates of the process described in Section 4.2. The solid

curves represent the function’s true Shapley effects.

It can be difficult to analytically compute Shapley effects for even

moderately complicated functions. Here we use the regression function

f(x) = x1 + x2 + x3, where the inputs have a trivariate Gaussian distribu-

tion with mean zero and covariance matrix Σ with entries Σ11 = Σ22 = 1,

Σ33 = 4, Σ23 = Σ32 = 2ρ (where −1 < ρ < 1), and zero for all other entries.

Thus, the input distribution is parameterized by the correlation ρ between

input variables X2 and X3. For each ρ ∈ {−0.9,−0.5, 0, 0.5, 0.9}, we gener-

ate n = 1000 input values according to ρ, and then evaluate the regression

function with additive Gaussian noise whose standard deviation is 0.1 times

the standard deviation of the regression function under ρ. We then fit a

BART model and a Bayesian MARS (BMARS) model to these observa-
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tions before using the shapleyPermEx() function from the sensitivity R

package to estimate the function’s Shapley effects. (The parameters we use

are Nv=1000, No=100, Ni=3.) We repeat this process five times.

Figure 8 shows the estimated Shapley effects for these five correlation

values. We see that both BART and BMARS seem to recover the true

Shapley effects even for large correlations between inputs 2 and 3. There

also does not seem to be any systematic performance difference between

the two metamodels. Hence, if we extrapolate these results to larger input

dimensions and account for the curse of dimensionality of the Monte Carlo

approach to computing the cost function, we believe that the resulting large

variability from the MC approach is likely to overshadow any performance

difference due to the chosen metamodel. This further motivates the task of

computing the cost function exactly under dependent inputs (see Section 5).

4.3 Application to climate simulator

Here we estimate Shapley effects from data generated from the En-ROADS

climate simulator (Climate Interactive et al., 2020). This simulator is a

mathematical model of how global temperature is influenced by changes in

energy, land use, consumption, agriculture, and other factors. It is designed

to be easily used by the general public. The model is an ordinary differential
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4.3 Application to climate simulator

Figure 9: 95% credible intervals (as computed in (3.9)) for (normalized)

first-order Sobol´ indices (SI), Shapley effects (SH), and total-effect Sobol´

indices (TSI) over 1000 posterior draws from a BART model fit to climate

simulator data (Climate Interactive et al., 2020).

equation solved by Euler integration and synthesizes the important drivers

of climate in a computationally efficient and easy-to-use web interface.

The data consists of n = 110 observations with p = 11 inputs and was

collected using the scheme described in Horiguchi et al. (2021). To this

data we fit a BART model and compute Shapley-effect estimates using the

implementation in Pratola (2023) with 1000 posterior draws, 200 trees, and

the remaining default parameter settings.

Figure 9 shows the estimates for the first-order Sobol´ index, Shapley

effect, and total-effect Sobol´ index of the 11 inputs. For each input, the re-

lationship (2.7) between the three indices is shown. As expected given this

relationship and the analysis in Horiguchi et al. (2021), the small differences
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between the Shapley-effect estimates and the two Sobol´-index estimates

indicate small interaction effects between any group of inputs. Hence, take-

aways about the impact of each input are the same as discussed in Horiguchi

et al. (2021). In particular, the four most impactful inputs seem to be car-

bon price, energy efficiency of buildings, methane, and economic growth.

5. Discussion

This article establishes posterior contraction rates for Sobol´-index and

Shapley-effect estimators computed using BART. The proofs of our con-

traction rates required proving a property similar to Lipschitz continuity

for Sobol´ indices and Shapley effects before using recent contraction-rate

results that apply to function spaces with heterogeneous smoothness and

sparsity in high dimensions and to fixed and random designs. This article

also illustrates the computational tractability and performance of BART-

based Shapley effects on four different test functions under orthogonal in-

puts and p = 500. Code to fit BART models and compute Sobol´ index

and Shapley effect estimates is found in Pratola (2023).

Our theoretical consistency results apply to input distributions that are

not orthogonal, and thus uncertainty quantification of the Shapley effects

would maintain its validity under such distributions. However, to imple-
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ment our approach under such distributions, we would need to be able to

compute the cost function. Specifically, the input distribution would affect

the values of the probability measure of the boxes that the BART ensemble

partitions the input space into. Under independent inputs, the probability

measure is simply the volume (i.e., the Lebesgue measure) of the boxes,

which is what we currently have implemented. Current Monte Carlo meth-

ods of approximating the cost function require being able to sample from

the input distribution. It is more useful (and more challenging) to learn

the input distribution based on the observed covariates, and then use this

learned distribution to estimate the cost function. For our BART-based

approach, this can be possibly achieved by replacing the volume of each

hyperrectangle used to compute BART-based Sobol´ indices and Shapley

effects with the proportion of observations that fall in each hyperrectangle.

Another possible approach would be to incorporate a tree-based density

estimation method suitable for higher-dimensional spaces, such as Awaya

and Ma (2024a,b). We will reserve this exploration as future work.

Supplementary Material

The online Supplementary Material contains a summary table of metamodel

properties, a review of posterior contraction theory, and the preliminaries
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required to establish the posterior asymptotic results. It further presents

the statements and proofs of these asymptotic results, along with detailed

proofs of results from the main text. Definitions of the functions used in

the experiments described in Section 5 of the main paper are provided,

together with additional experiments examining how the metamodels scale

with input dimensionality.
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