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Abstract: We propose portmanteau tests for functional white noise utilizing the sum of squared

empirical autocorrelation functions of functional time series. By applying a Hilbert space approach,

we establish the limiting properties of the test under the null hypothesis of uncorrelated but not

necessarily independent processes. The test is non-pivotal due to unknown dependence within

the sequence. To address this issue, we employ the blockwise random weighting bootstrap to ob-

tain critical values and justify its validity. Furthermore, we extend this method for diagnostics of

functional autoregressive model and demonstrate its effectiveness through extensive Monte Carlo

simulations and a real data application. An accompanying R package is provided to facilitate checks

for general functional white noise.

Key words and phrases: Blockwise random weighting bootstrap; Functional time series; Hilbert

space; White noise checks; Model diagnostics.

1. Introduction

In recent years, functional data analysis (FDA) has garnered significant attention due

to the necessity of analyzing data represented as random curves, along with important

theoretical advancements from Euclidean to non-Euclidean spaces. The monographs by
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Bosq (2000), Ramsay and Silverman (2005), and Ramsay and Hooker (2009) provided

excellent introductions to FDA, while Horváth and Kokoszka (2012) offered an in-depth

investigation of dependent functional data structures.

Building on these advances, researchers have extended FDA to functional time series

(FTS), where functional observations are collected over time. A key initial task, as in

classical time series, is testing for functional white noise to assess serial uncorrelatedness,

which is crucial for both modeling and residual diagnostics. Existing methods fall into two

main categories: time-domain portmanteau tests based on autocorrelations and frequency-

domain tests using functional periodograms.

In the time domain, early contributions by Gabrys and Kokoszka (2007) introduced

a portmanteau test by projecting functional observations onto principal components,

thereby reducing the infinite dimensional problem to a multivariate one. This approach

was later refined by Horváth et al. (2013), who proposed a test based on the L2-norms

of empirical autocovariance kernels, allowing the lag order to grow with the sample size.

Further generalizations included conditional heteroscedasticity adjusted test statistics by

(Kokoszka et al., 2017) and novel autocorrelation measures, such as spherical autocorrela-

tion introduced by Yeh et al. (2023). Meanwhile, Mestre et al. (2021) developed diagnos-

tic plots of functional autocorrelation functions and partial autocorrelation functions with

confidence bounds, facilitating visual assessment of dependence structures. However, a

common limitation of these methods lies in their reliance on strong assumptions, typically

requiring the functional sequence to be an independent and identically distributed (IID)

process or a martingale difference sequence (MDS) to derive the asymptotic distribution

of the test statistics.
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In contrast, the spectral domain offers alternative approaches to functional white

noise testing. For example, Zhang (2016) constructed a Cramér–von Mises type statistic

based on a cumulative distance between the periodogram function and its integral with

respect to the frequency. Due to the non-pivotal limiting null distribution, a block boot-

strap procedure was used to obtain critical values. Bagchi et al. (2018) proposed a test

based on the L2-distance between the estimated spectral density operator and its white

noise counterpart, showing that the test statistic is asymptotically normal, thus enabling

direct computation of critical values without bootstrapping. Characiejus and Rice (2020)

introduced a test using kernel lag-window estimators of the spectral density operator for

FTS in separable Hilbert spaces, however, the asymptotic results rely on stronger IID as-

sumptions, compared to Zhang (2016) and Bagchi et al. (2018), where the IID assumption

was relaxed. A recent survey by Kim et al. (2023) provided a comprehensive overview of

functional white noise tests in both time and spectral domains.

Although spectral domain tests offer significant contributions, our paper highlights

the advantages of the BLP portmanteau tests in the time domain for functional white

noise, due to their practical implementation and accessibility for applied researchers. Pre-

vious studies such as those by Lobato et al. (2002), Francq and Räıssi (2007), Mainassara

(2011), and Li and Zhang (2022) in finite-dimensional settings, have demonstrated that

when data are uncorrelated but not necessarily independent, the asymptotic distribution

of BLP portmanteau tests can deviate substantially due to changes in Bartlett’s formula

for the autocorrelation covariance matrix. The discrepancy in asymptotic null distribu-

tions arises from the potential nonlinear dependence structure of the time series, which

can result in severe size distortion if critical values derived under IID or MDS assump-
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tions are used. In this paper, we address this issue in the context of functional time

series analysis. We propose BLP portmanteau tests and visualization tools based on the

empirical autocorrelation functions of stationary functional time series under the weak

white noise hypothesis. Our approach accommodates nonlinear dependence within the

white noise while avoiding projection onto a fixed-dimensional subspace. Under weak

dependence conditions, we demonstrate that our test has a non-pivotal limiting distri-

bution. To approximate this distribution, we introduce a blockwise random weighting

bootstrap approach (Shao, 2011; Li and Zhang, 2022), extending its application from

finite-dimensional time series to functional time series (FTS). We establish the consis-

tency of the bootstrap approximation, which ensures our test is asymptotically valid for

a broad class of processes, including functional GARCH-type processes and other uncor-

related linear or nonlinear processes. Leveraging the above results, we construct upper

confidence bounds for empirical functional autocorrelation estimates.

The paper is organized as follows. Section 2 introduces the test statistics and outlines

the theoretical framework. Section 3 investigates the asymptotic properties of the test

statistic under both the null hypothesis and the global alternative. Section 4.1 presents

a blockwise random weighting bootstrap method to approximate the critical values of

the portmanteau test and establishes its asymptotic validity. Section 4.2 provides a by-

product of confidence bounds for the single-lag functional autocovariance function (fACF).

Monte Carlo simulations evaluating the performance of our test method on original obser-

vations, as well as diagnostic checks for fitted weak functional AR models, are presented in

Sections 5.1 and 5.2, respectively. In Section 6, we illustrate the application of our method

through a real data analysis. Section 7 concludes the paper with a summary of key find-
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ings and a discussion of limitations with promising directions for future work. Technical

proofs and additional numerical results are provided in the Supplementary Materials.

Before proceeding with the formal analysis, we first introduce the notations and defini-

tions used throughout the paper. Let H = L2[0, 1] denote the Hilbert space of real-valued

square-integrable functions on the unit interval [0, 1]. The inner product in H is defined

as ⟨f, g⟩ =
∫ 1

0
f(τ)g(τ)dτ , for any f, g ∈ H, where

∫
=

∫
[0,1]

. The corresponding norm

is ∥ · ∥ =
√

⟨·, ·⟩. All random functions X are defined in a common probability space

(Ω,A, P ). The Lp-norm of X is denoted by ∥ · ∥Lp =
(
E ∥X∥p

)1/p
. For any compact

operator, denote by ∥ · ∥S and ∥ · ∥TR the Hilbert-Schmidt norm and the trace norm re-

spectively. For a real matrix B, [B]ij denotes the (i, j)-th element of the matrix B. We

use the notation “
d→” for convergence in distribution, “

p→” for convergence in probability,

and “
D
=” for identical distribution.

2. Test statistics

Without loss of generality, we consider a sequence of mean-zero, strict stationary

FTS {Xt(τ)}∞t=1 defined on a compact interval T . We assume that a finite stretch of

observations, X1, . . . , XT , is available. Since any compact interval can be normalized to

the unit interval [0, 1], we rescale the argument τ such that T = [0, 1]. Consequently, each

Xt can be regarded as a random element in the Hilbert space H = L2[0, 1]. The main

objective is to assess whether the observed series {Xt}Tt=1 behaves as a functional white

noise sequence.

To address this problem, we begin by defining the functional autocorrelation function
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(fACF) at lag h, denoted by ρh, as introduced in Horváth et al. (2016):

ρh =
∥γh∥∫

γ0(τ, τ)dτ
, ∥γh∥ =

{∫∫
γ2h(τ1, τ2)dτ1dτ2

}1/2

, (2.1)

γh(τ1, τ2) = E{Xt(τ1)Xt−h(τ2)}, τ1, τ2 ∈ [0, 1], (2.2)

where γh(τ1, τ2) represents the lag-h autocovariance kernel function of the sequence {Xt},

and induces the corresponding autocovariance operator γh(·) : H 7→ H. Specifically, for

each g ∈ H and τ1 ∈ [0, 1],

γhg(τ1) = E
{
⟨Xt−h, g⟩Xt(τ1)

}
=

∫
γh(τ1, τ2)g(τ2)dτ2.

The testing hypotheses are formally stated as follows:

H0,K : ρ1 = ρ2 = · · · ρK = 0 ↔ Ha,K : ρh ̸= 0, ∃ h ∈ {1, . . . , K}, (2.3)

whereK represents the maximal lag number. This test aims to identify the autocorrelation

in the sequence up to lag K. By setting the number of lags in H0,K to 1, we naturally

obtain the following single-lag test:

H0,h : ρh = 0 ↔ Ha,h : ρh ̸= 0, ∀ h ∈ {1, . . . , K}.

Before introducing the test statistic, we first calculate the sample autocovariance
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kernel function γ̂h and the sample fACF ρ̂h, as defined in Kokoszka et al. (2017):

γ̂h(τ1, τ2) =
1

T

T∑
t=1+h

{
Xt(τ1)Xt−h(τ2)

}
, ρ̂h =

∥γ̂h∥∫ 1

0
γ̂0(τ, τ)dτ

, h ∈ {1, . . . , K}. (2.4)

Then, the test statistics for H0,h (single-lag test) and H0,K (portmanteau test) based

on these sample estimates are defined as follows:

QT,h = T ρ̂2h, VT,K = T

K∑
h=1

ρ̂2h.

We emphasize that our null hypothesis in (2.3) solely tests for the absence of autocor-

relation up to lag K and does not preclude the possibility of other forms of dependence,

such as higher-order nonlinear dependencies. To precisely characterize these potential

dependencies, we introduce the following definition.

Definition 1. A sequence {Xt} admits the representation

Xt = f(εt, εt−1, . . .), t = 1, 2, . . . , (2.5)

where the εi’s are IID elements taking values in a measurable space S, and f is a mea-

surable function f : S∞ → H. We define {ε(t)i } as an IID sequence in S for each t ∈ Z,

independent of {εi}, but with the same distribution as {εi}, and

X
(m)
t = f(εt, εt−1, . . . , εt−m+1, ε

(t)
t−m, ε

(t)
t−m−1, . . .). (2.6)
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Then {Xt} is called Lp-m-approximable (Hörmann and Kokoszka, 2010) if

∞∑
m=1

∥Xm −X(m)
m ∥Lp <∞. (2.7)

Remark 1. Definition 1 provides a quantity measure of dependence in functional obser-

vations, connecting naturally with mixing conditions through consideration of σ-algebras

separated by a temporal lag m tending to infinity. The key intuition underlying Defini-

tion 1 is that innovations εi from the distant past exert a negligible influence, permitting

their replacement by independent copies. The magnitude of this replacement effect is ex-

plicitly captured by (2.7). Furthermore, as discussed in Hörmann and Kokoszka (2010),

Definition 1 implies strict stationarity and ergodicity of the sequence Xt. These conditions

have been verified for numerous well known stationary models, both linear and nonlinear,

under mild parameter constraints. For example, Propositions 2.1–2.3 in Hörmann and

Kokoszka (2010) provide sufficient conditions ensuring Lp-m-approximability for func-

tional linear processes, functional bilinear models, and functional ARCH models. Conse-

quently, Definition 1 has become fundamental in theoretical analyses of functional time

series, as illustrated in the works of Horváth et al. (2014), Hörmann et al. (2015), Zhang

(2016), and Kokoszka and Mohammadi Jouzdani (2020), among others.Zhang (2016), and

Kokoszka and Mohammadi Jouzdani (2020), among others.

Definition 2. The pointwise definition of the nth-order cumulant kernel (Panaretos

and Tavakoli, 2013) of the series {Xt} is given by:

Cum{Xt1(τ1), . . . Xtn(τn)} =
n∑

p=1

∑
v=(v1,...,vp)

(−1)p−1(p− 1)!

p∏
l=1

E
{∏

j∈vl

Xtj(τj)
}
, (2.8)
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where the sum extends over all unordered partitions of {1, . . . , n}. A cumulant kernel of

order 2k gives rise to a corresponding 2kth-order cumulant operator Rt1,t2,...,t2k−1
(·) :

L2
(
[0, 1]k

)
→ L2

(
[0, 1]k

)
, defined as

(Rt1,t2,...,t2k−1
g)(τ1, . . . , τk) =

∫
[0,1]k

Cum
{
Xt1(τ1), . . . Xt2k−1

(τ2k−1), X0(τ2k)
}

× g(τk+1, . . . , τ2k)dτk+1 · · · dτ2k. (2.9)

Remark 2. Consider Definition 2 with k = 2 as an illustrative example. We define

al(τ1, τ2) = E
{
X0(τ1)Xl(τ2)

}
. Consequently, the 4th-order cumulant function can be

expressed as

Cum
{
Xl(τ1), Xr(τ2), Xp(τ

′
1), X0(τ

′
2)
}
= E

[
Xl(τ1)Xr(τ2)Xp(τ

′
1)X0(τ

′
2)
]
− al(τ

′
2, τ1)ap−r(τ2, τ

′
1)

− ar(τ
′
2, τ2)ap−l(τ1, τ

′
1)− ap(τ

′
2, τ

′
1)ar−l(τ1, τ2).

It is worth noting that when functional observations degenerate to random variables, i.e.,

Xt(τ) = Xt, the term Cum
{
Xl(τ1), Xr(τ2), Xp(τ

′
1), X0(τ

′
2)
}
reduces to the scalar 4th-order

cumulant (Priestly, 1981).

3. Asymptotic properties

In this section, we explore the asymptotic properties of VT,K under both the null and

alternative hypotheses. The asymptotic properties of QT,h can be readily derived from

VT,K with K = 1. Before presenting the main results, we first introduce the assumptions.

Assumption 1. The FTS {Xt} is L4-m-approximable.
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Assumption 2. The FTS {Xt} satisfies the following conditions

(i)
∑∞

s=−∞ ∥γs∥2TR <∞;

(ii)
∑∞

s1,s2,s3=−∞ ∥Rs1,s2,s3∥TR <∞.

Both assumptions impose specific restrictions on the dependence structure of the series

{Xt}. Assumption 1 ensures the L2-m-approximability of the process
{
Xt(τ1)Xt−h(τ2)

}
,

which is crucial for our analysis of asymptotic properties of the sample autocovariance

kernel functions. Assumption 2 imposes summability conditions on the trace norms of the

autocovariance operators and the fourth-order cumulant operators. These conditions are

required to guarantee the tightness of the sequence of autocovariance kernels, enabling

us to determine the limiting distribution through finite-dimensional projections, see, e.g.,

Panaretos and Tavakoli (2013) and Zhang (2016). Under these assumptions, we establish

the asymptotic theory for our test statistics VT,K and QT,h.

Theorem 1. Under Assumptions 1, 2 and the null hypothesis H0,K,

VT,K
d→ 1[∫ 1

0
γ0(τ, τ)dτ

]2 ∞∑
l=1

ξK,lN 2
l , (3.1)

where {Nl}∞l=1 are IID N(0, 1) random variables, and {ξK,l}∞l=1 are a decreasing sequence

of eigenvalues (ξK,1 ≥ ξK,2 ≥ . . .) of the covariance operator ΨK, which is defined as

ΨK(f)(τ1, τ2) =

∫∫
ψK(τ1, τ2, τ

′
1, τ

′
2)f(τ

′
1, τ

′
2)dτ

′
1dτ

′
2, (3.2)

for any f ∈ [0, 1]2 → RK. The (i, j)-th element of the kernel function ψK : [0, 1]4 → RK×K

Statistica Sinica: Preprint 
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is given by

[
ψK(τ1, τ2, τ

′
1, τ

′
2)
]
ij
=

∞∑
s=−∞

E
{
Xi(τ1)X0(τ2)Xs+j(τ

′
1)Xs(τ

′
2)
}
. (3.3)

The coefficients {ξK,l}∞l=1 are defined by

ΨK(φK,l)(τ1, τ2) = ξK,lφK,l(τ1, τ2), with
∞∑
l=1

ξK,l <∞,

where {φK,l(τ1, τ2), l ≥ 1} are the corresponding orthonormal basis of eigenfunctions.

In short, these coefficiences are the eigenvalues of a complex covariance operator defined

in (3.2). As direct estimation of them is infeasible even for small values of K. Instead,

we propose a bootstrap method (detailed in Section 4.1) to approximate the asymptotic

distribution of VT,K .

Remark 3. Theorem 1 shows the asymptotic distribution of the portmanteau test statis-

tic VT,K , which is a weighted chi-square distribution. This result can be viewed as a

generalization of finite dimensional time series, with the weight coefficients {ξK,l} now

corresponding to the eigenvalues of an infinite dimensional covariance operator ΨK rather

than a finite dimensional matrix. The proof of Theorem 3.1 relies fundamentally on the

asymptotic distribution of the K dimensional process
(√

T γ̂1(τ1, τ2), . . . ,
√
T γ̂K(τ1, τ2)

)T
.

For a complete derivation of this key result, including the necessary technical conditions,

we refer readers to Lemma ?? in the Supplementary Materials.

To test the hypothesis H0,h at a specific lag h, we may directly apply the following

proposition derived from Theorem 1.
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Proposition 1. Under the conditions of Theorem 1, we have

∥∥√T γ̂h(τ1, τ2)− Γh(τ1, τ2)
∥∥2

= op(1), ∀ h ∈ {1, . . . , K}, (3.4)

where Γh(τ1, τ2) is a mean-zero Gaussian process in L2
(
[0, 1]2

)
with the covariance struc-

ture specified by

ψh,h = Cov
(
Γh(τ1, τ2),Γh(τ

′
1, τ

′
2)
)
=

∞∑
s=−∞

E
{
Xh(τ1)X0(τ2)Xs+h(τ

′
1)Xs(τ

′
2)
}
. (3.5)

Here ψh,h is the (h, h)-th element of the kernel ψK.

Then it follows directly that

QT,h
d→ ∥Γh∥2{∫ 1

0
γ0(τ, τ)dτ

}2

D
=

∑∞
s=1 λh,lN 2

l{∫ 1

0
γ0(τ, τ)dτ

}2 , (3.6)

where {λh,l, l ≥ 1} and {φh,l(τ1, τ2), l ≥ 1} are the eigenvalues and eigenfunctions of the

covariance operator induced by the kernel (3.5).

Proposition 1 provides the theoretical basis for constructing the upper confidence

bound of fACF at any particular lag h, as detailed in Section 4.2. Since this result is a

direct consequence of Theorem 1, we omit its proof here.

Remark 4. When sequence is an MDS, meaning that E
[
Xt(τ1)|Xt′(τ2), τ2 ∈ [0, 1]

]
= 0

for t′ < t and τ1 ∈ [0, 1], the kernel ψK(τ1, τ2, τ
′
1, τ

′
2) can be simplified as follows:

[
ψK(τ1, τ2, τ

′
1, τ

′
2)
]
ij
= E

{
Xi(τ1)X0(τ2)Xj(τ

′
1)X0(τ

′
2)
}
, for 1 ≤ i, j ≤ K.
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This result is consistent with Theorem 2 in Kokoszka et al. (2017). Furthermore, if the

sequence is assumed to be IID, the kernel ψK(τ1, τ2, τ
′
1, τ

′
2) can be further simplified to

[
ψK(τ1, τ2, τ

′
1, τ

′
2)
]
ij
=


E
{
X0(τ1)X0(τ

′
1)
}
E
{
X0(τ2)X0(τ

′
2)
}

for i = j,

0 for i ̸= j.

In this IID case, ψK(τ1, τ2, τ
′
1, τ

′
2) forms a diagonal matrix.

These cases represent two specific instances of the general white noise hypothesis.

Crucially, our proposed test maintains its validity even for uncorrelated processes that

satisfy neither the IID nor MDS assumptions.

Next, we present the asymptotic behavior of the test VT,K under Ha,K .

Theorem 2. Assume that the FTS satisfies Assumption 1 and there exists h ∈ {1, . . . , K}

such that ρh ̸= 0, then VT,K
p→ ∞ as T → ∞.

Theorem 2 establishes the asymptotic power properties of our proposed testing method,

guaranteeing its ability to detect departures from the null under suitable conditions. The

proof of this theorem is directly adapted from Theorem 3 of Kokoszka et al. (2017), with

additional details provided in the Supplementary Materials for completeness and clarity.

4. Blockwise random weighting bootstrap

4.1 Bootstrap procedure and its asymptotic validity

Due to the non-pivotal and computational complex of the limiting distribution of VT,K ,

we employ a (blockwise) random weighting bootstrap method to approximate its critical
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values. Since QT,h is a special case of VT,K , we restrict our attention to the bootstrap

implementation for VT,K . The bootstrap procedure consists of the following steps:

Step 1. Choose a block size bT , such that 1 ≤ bT < T . Divide the data into LT blocks,

denoted by Bs =
{
(s − 1)bT + 1, . . . , sbT

}
for s = 1, . . . , LT , where LT = T/bT .

For simplicity, we assume LT is an integer.

Step 2. Generate IID random draws δs, s = 1, 2, . . . , LT , independent of the data, from a

common distribution W , where E(W ) = 0, E(W 2) = 1 and E(W 4) < ∞. Define

the auxiliary variables wt = δs if t ∈ Bs, for t = 1, . . . , T .

Step 3. For each h = 1, . . . , K, compute

γ̂∗h(τ1, τ2) =
1

T

T∑
t=1+h

wt

{
Xt(τ1)Xt−h(τ2)− γ̂h(τ1, τ2)

}
,

then obtain ρ̂∗h =
∥γ̂∗h∥∫ 1

0
γ̂0(τ, τ)dτ

.

Step 4. Compute the bootstrapped test statistic V ∗
T,K = T

∑K
h=1(ρ̂

∗
h)

2.

Step 5. Repeat Steps 2-4 for B times and let V ∗
T,α be the empirical 100(1− α)% quantile

of V ∗
T,K . We reject the null hypothesis at the significance level α if VT,K > V ∗

T,α.

Remark 5. The blockwise random weighting bootstrap is actually a variation of the

conventional wild bootstrap (Wu, 1986; Liu, 1988; Mammen, 1993). The key difference

lies in the treatment of the random weights {wt}Tt=1, which are held constant within each

block of size bT while are IID across different blocks. This modification is crucial to

capture the dependence between
{
Xt(τ1)Xt−i(τ2)

}
and

{
Xt′(τ1)Xt′−j(τ2)

}
for 1 ≤ i, j ≤

Statistica Sinica: Preprint 
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K when t and t′ belong to the same block, as discussed Shao (2011), and Li and Zhang

(2022). The essential motivation of this bootstrap method is based on maintaining the

inherent dependence structure through blocking while generating bootstrap replicates via

weighted autocovariance kernels. Notably, the special cases of IID or MDS processes are

accommodated by setting bT = 1, reducing the method to the standard wild bootstrap.

Remark 6. We highlight that our bootstrap method differs from the block bootstrap

method employed by Zhang (2016). The key distinction manifests in Step 3, where we im-

plement weighted de-meaned autocovariance structures, which may be compared with re-

sampling blocks of the transformed data
{
Yth(τ1, τ2) = Xt(τ1)Xt−h(τ2)+Xt(τ2)Xt−h(τ1)−

γ̂h(τ1, τ2) − γ̂h(τ2, τ1)
}
in Zhang (2016). The advantages of our random weighting boot-

strap become particularly pronounced when extending the method to model diagnostics

(e.g., residual correlation analysis). As demonstrated in Section 5.2, our approach natu-

rally incorporates parameter estimation effects through direct weighting of the estimation

equations, yielding both computational simplicity and streamlined theoretical analysis.

In contrast, adapting the block bootstrap would require explicit incorporation of estima-

tion effects into Yth(τ1, τ2), therefore, the theoretical justification and computation will

be more complicated.

Establishing the theoretical validity of bootstrap methods in infinite-dimensional func-

tional spaces introduces unique challenges that do not arise in finite-dimensional contexts.

Existing works addressing these challenges include Politis and Romano (1994a,b), who es-

tablished asymptotic validity for stationary bootstrap procedures applied to estimators in

weakly dependent stationary Hilbert spaces. Dehling et al. (2015) proved the consistency

of a non-overlapping block bootstrap under specific near-epoch dependence conditions
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within Hilbert spaces. More recently, Pilavakis et al. (2020) developed a moving block

bootstrap (MBB) approach for testing equality of lag-zero autocovariance operators across

multiple independent functional time series. Our bootstrap method differs fundamentally

from these existing infinite-dimensional techniques by incorporating random weights, ne-

cessitating novel proof techniques. Before presenting the relevant theoretical results, we

first introduce assumptions.

Assumption 3. The FTS {Xt} satisfies the following conditions

(i)
∑∞

s=−∞ |s| · ∥γs∥TR <∞;

(ii)
∑∞

s1,s2,s3=−∞ |si| · ∥Rs1,s2,s3∥TR <∞, i = 1, 2, 3.

Assumption 4. For each J = 1, 2, . . . , 7, and for each j = 1, 2, . . . , J , we have

∞∑
s1,...,sJ=−∞

|sj| · ∥Cum(Xs1 , Xs2 , . . . , XsJ , X0)∥[0,1]J+1 <∞. (4.1)

Remark 7. Assumption 3 is required to guarantee the tightness of the sequence of boot-

strapped autocovariance kernels
(√

T γ̂∗1(τ1, τ2), . . . ,
√
T γ̂∗K(τ1, τ2)

)T
. Assumption 4 speci-

fies summability conditions on joint cumulants, crucial for deriving the second-order mo-

ment bound of the conditional variance of the bootstrapped test statistic. Both assump-

tions were also introduced in Zhang (2016). While direct verification of these assumptions

in functional spaces may be challenging, their interpretation becomes more transparent in

the univariate setting. In fact, Assumptions 1–4 are natural generalizations of conditions

employed by Shao (2011) for univariate time series. Those conditions are derived from the

GMC(α) conditions (Wu and Shao, 2004), which characterizes processes with exponential

decay of dependence (short memory), including many widely used nonlinear models such
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as bilinear, threshold, and various GARCH specifications. Consequently, the assumptions

we adopt here can be viewed as functional extensions of the GMC(α) conditions.

To study the conditional convergence of V ∗
T,K given the sample, we adopt the concept

“in distribution in probability”, following Definition 2 of Li et al. (2003). This concept

provides a rigorous framework for analyzing the asymptotic behavior of bootstrap statis-

tics conditioned on the observed data.

Based on this notion, the consistency of the proposed bootstrap procedure is estab-

lished as follows.

Theorem 3. Assume that bT → +∞ and bT/T → 0 as T → +∞. Suppose the FTS

{Xt} satisfies Assumptions 1, 3 and 4. Then under both the null hypothesis H0,K and

alternative Ha,K, we have

d
{
L
(
V ∗
T,K

∣∣XT

)
,L(VT,K)

}
→ 0,

in probability as T → ∞, where d is any metric that induces weak convergence in

L2
(
[0, 1]2

)K
, and L(Z|XT ) denotes the conditional distribution of the random element

Z ∈ L2
(
[0, 1]2

)K
given the sample XT := {Xt}Tt=1.

Remark 8. To establish Theorem 3, it is sufficient to demonstrate that

d

[
L
{(√

T γ̂∗1(τ1, τ2), . . . ,
√
T γ̂∗K(τ1, τ2)

)T∣∣XT

}
,L

{(
Γ1(τ1, τ2), . . . ,ΓK(τ1, τ2)

)T}] → 0,

in probability as T → ∞. The proof of the above property follows the similar steps as

Lemma ??, focusing on demonstrating the sequence
(√

T γ̂∗1(τ1, τ2), . . . ,
√
T γ̂∗K(τ1, τ2)

)T
.
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Readers can refer to the Supplemental Materials for more details.

4.2 Upper confidence bound for single-lag fACF

The bootstrap methodology developed in Section 4.1 can be directly adapted to

construct lag-wise upper confidence bounds for the functional autocorrelation function

(fACF).This yields an informative graphical diagnostic for assessing serial dependence

patterns in functional time series at any specified lag. Following the fACF formulation

defined in Section 2, we calculate the lag h sample fACF ρ̂h as :

ρ̂h =
∥γ̂h∥∫

γ̂0(τ, τ)dτ
=

1√
T

√
QT,h.

Let Q∗
T,h,α denote the empirical 100(1−α)% quantile of Q∗

T,h obtained from the boot-

strap procedure in Section 4.1. The upper confidence bound for ρh is then given by:

Ĉh(1− α) =
1√
T

√
Q∗

T,h,α.

For a given α, significant deviations of ρ̂h, h = 1, . . . , K, beyond this boundary can

be used to detect serial correlation at lag h in the functional time series. In particular,

under the null hypothesis that the sequence is weak white noise, the upper confidence

bound for ρh varies with the lag h, contrasting with the constant upper bound derived

under the IID assumption as presented in Mestre et al. (2021).
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5. Simulation Study

In this section, we perform Monte Carlo simulations to assess the effectiveness of

the proposed test and bootstrap method described in Sections 3 and 4. Although the

asymptotic properties of the test have been rigorously analyzed for the observed data,

simulations are conducted to demonstrate the finite-sample performance of the test when

applied to the residuals, thereby evaluating the adequacy of the model.

5.1 White noise checking on observations

We consider the following data generating processes (DGPs):

(a) IID-BM:
{
Xt(τ), τ ∈ [0, 1]

}
t∈Z is a sequence of IID Brownian motion (BM).

(b) FGARCH(1,1): {Xt(τ)} follows

Xt(τ) = σt(τ)εt(τ), σ2
t (τ) = δ(τ) + α(X2

t−1)(τ) + β(σ2
t−1)(τ), (5.1)

where δ = 0.01 (a constant function), α and β are integral operators defined, for

x ∈ L2
(
[0, 1]

)
and τ ∈ [0, 1], by

(αx)(τ1) = (βx)(τ1) : =

∫
α(τ1, τ2)x(τ2)dτ2 =

∫
β(τ1, τ2)x(τ2)dτ2

=

∫
12τ1(1− τ1)τ2(1− τ2)x(τ2)dτ2,

where εt(τ) =

√
ln(2)

2200τ
Bt(

2400τ

ln 2
), τ ∈ [0, 1], and

{
Bt(τ), τ ∈ [0, 1]

}
t∈Z is an IID-BM

process. This particular process setting is also used in Cerovecki et al. (2019) to

mimic high-frequency intraday returns.
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(c) Fbilinear(1,U): Xt+1(τ) =
∫∫

ϕl(τ, τ1, τ2)Xt(τ1)εt(τ2)dτ1dτ2+εt+1(τ), τ ∈ [0, 1], where

{εt(τ)} follows the IID-BM process. ϕl(τ, τ1, τ2) = l× τ(1− τ)τ1(1− τ1)τ2(1− τ2), the

constant l is determined such that ∥ϕl∥4 = U ∈ (0, 1), see Hörmann and Kokoszka

(2010). Here we set U = 0.3 to ensure the approximability of the process.

(d) FAR(1,S)-BM: Xt(τ1) =
∫
ϕc(τ1, τ2)Xt−1(τ2)dτ2 + εt(τ1), τ1 ∈ [0, 1], where {εt(τ1)}

follows the IID-BM process. ϕc(τ1, τ2) = c exp
{
−(τ 21 + τ 22 )/2

}
is the Gaussian kernel,

the constant c is chosen to satisfy ∥ϕc∥ = S ∈ (0, 1) and S represents the departure

from the null hypothesis.

The first three DGPs: (a) the functional IID sequence (strong white noise), (b) the

functional MDS (semi-strong white noise), and (c) the functional uncorrelated process

(weak white noise, WWN) are used to assess the size of the test. DGP (d), which rep-

resents a functional autoregressive (FAR) process, is employed to evaluate the power of

the test. For each DGP, simulations are performed with a sample size of T , using an

equidistant grid of J = 200 points that span the unit interval. Integral calculations are

performed using an equidistant grid of 50 points in the interval [0, 1]. Additionally, for

DGPs (b), (c), and (d), a burn-in sample of length 50 is generated to reduce the effects

of initial values.

The sample paths from DGP (a) to (d), with a sample size of T = 100, are illustrated

in the upper panels of Figure 1. The corresponding autocorrelograms for each process are

displayed in the lower panels. The blue dashed lines in the autocorrelograms denote the

95% upper functional WWN confidence bounds for the process, as obtained in Section

4.2. It is evident that the first three functional processes are serially uncorrelated, while

the last one exhibits significant autocorrelations at the first two lags.
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Figure 1. Upper panels: 100 sample paths of DGPs (a) to (d). Lower panels: sample

autocorrelograms with 95% upper WWN confidence bounds.

We denote our (blockwise) random weighting bootstrap test as (B)RWB. The random

weights wt are generated from two types of distributions: (i) N(0, 1); (ii) a Bernoulli

distribution defined as (see Patilea et al., 2016):

wt =


1−

√
5

2
w.p.

√
5 + 1

2
√
5
,

1 +
√
5

2
w.p.

√
5− 1

2
√
5
.

(5.2)

We compare it with the tests proposed by Gabrys and Kokoszka (2007) (thereafter

GK) and Kokoszka et al. (2017) (thereafter KRS). The GK test is constructed based on

functional principal components (FPCs), and its asymptotic distribution is obtained as a

chi-squared distribution under the IID null hypothesis. The test statistic is defined as

GT,K,p = T

K∑
h=1

p∑
i,j=1

rf,h(i, j)rb,h(i, j),
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where rf,h(i, j) and rb,h(i, j) represent the (i, j)-th entries of C−1
0 Ch and ChC

−1
0 , respec-

tively. Here, C0 and Ch are the sample covariance and lag-h autocovariance matrices

constructed from empirical FPCs, and p denotes the number of FPCs. Usually, the value

of p is chosen such that the cumulative variation explained by the first p principal com-

ponents exceeds 90%.

The KRS test is constructed based on the cumulative sum of squared L2-norm of the

autocovariance kernels of the first K lags, which is defined as

RT,K = T
K∑

h=1

∥γ̂h∥2.

The asymptotic distribution of RT,K is derived under moment conditions that are typically

satisfied by functional GARCH-type models, which makes this approach robust for testing

serial correlation in such sequences. Additionally, they employ the Welch-Satterthwaite

method to approximate the limiting distribution of the test statistic by utilizing its first-

and second-order moments.

We first assess the empirical sizes of various tests under the null hypothesis. The pa-

rameterK is set to values of 1, 3, 5, 8 and 10. Empirical rejection rates are calculated based

on 1,000 independent replications, with each replication involving B = 500 bootstrapped

iterations. For DGPs (a) and (b), we set bT = 1, while for DGP (c), the blockwise random

weighting bootstrap (BRWB) method is used. Although we have provided theoretical con-

ditions for the selection of block size in Section 3, finding a universally applicable method

in practice is challenging, and thus a data-driven approach is often recommended; see

Zhang (2016) for a minimum volatility method. It is worth noting that our bootstrap
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weights are applied to the sequence of centralized covariances, which exhibits a rapidly

diminishing dependence. As a result, the block size can generally be chosen relatively

small. Our simulation results demonstrate that the selection of block size has minimal

impact on the outcomes, indicating that the proposed test is highly robust to variations

in block size. To illustrate this robustness, we compare the results using different block

sizes. Specifically, we use bT = 3 and 6 for T = 200, and bT = 4 and 8 for T = 800. The

empirical results of the three different tests across various DGPs are presented in Table

1, corresponding to the nominal significance levels of 10%, 5%, and 1%, respectively.

The findings from Table 1 are summarized as follows:

(i) All three tests perform well under DGP (a) that the process is an IID sequence,

although the GK test tends to be conservative for large K and small sample size, which is

an intrinsic characteristic of finite-dimensional portmanteau tests. The KRS test exhibits

some upward size distortion, but this issue diminishes as the sample size increases.

(ii) The GK test has a severe over-rejection problem under DGPs (b) and (c), sug-

gesting that the critical values taken from the functional IID assumption are not valid for

functional MDS or functional WWN.

(iii) The KRS test performs reasonably well for DGP (b), although it seems slightly

conservative, especially for large K, which is consistent with the findings in Kokoszka

et al. (2017). At the same time, it has an over-rejection problem for DGP (c), and

the size distortion becomes more pronounced as the sample size increases. This finding

indicates the invalidity of the KRS test to uncorrelated yet non-martingale difference

sequences and further illustrates the significance of our proposed testing method.

(iv) Although the RWB/BRWB tests generally perform well across all DGPs, we

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0316



24

Table 1. Empirical sizes in the percentage of GK, KRS and RWB (BRWB) tests. The

empirical sizes of BRWB test are presented in bold.

K = 1 K = 3 K = 5 K = 8 K = 10

Test W 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

(a) IID-BM

T = 200 GK 9.6 5.0 1.4 8.4 5.1 1.4 10.1 5.3 1.5 8.3 4.2 0.7 8.3 4.2 1.0

KRS 10.7 6.4 1.7 9.9 6.0 1.9 11.6 6.6 2.1 12.1 5.7 1.5 11.0 6.0 1.6

RWB
N(0, 1) 9.8 4.5 0.7 9.6 4.4 0.7 10.0 4.5 0.8 7.7 3.7 0.5 9.9 4.9 0.9

Bernoulli 9.6 4.4 0.7 9.3 4.5 0.6 10.3 4.4 1.2 8.5 4.5 0.6 11.7 5.5 0.8

T = 800 GK 9.8 5.4 1.4 10.8 5.2 2.1 10.0 5.9 1.2 9.4 5.7 1.6 9.5 5.3 1.8

KRS 11.6 5.6 1.3 8.0 4.8 1.8 8.6 4.8 1.6 11.0 5.8 1.3 9.7 5.5 1.6

RWB
N(0, 1) 10.6 4.7 1.2 10.4 5.0 0.9 11.0 5.4 1.4 10.2 5.8 1.0 10.1 5.1 0.4

Bernoulli 11.2 5.1 0.9 11.3 4.9 1.2 11.2 5.1 1.2 10.6 5.6 1.1 10.5 5.6 0.6

(b) FGARCH(1,1)

T = 200 GK 28.3 16.9 10.5 26.1 18.5 9.2 36.7 27.0 13.8 32.6 22.6 11.2 31.3 20.1 10.3

KRS 9.2 4.6 0.5 10.2 4.8 1.1 9.6 3.9 0.5 7.7 3.5 0.6 7.0 3.3 0.7

RWB
N(0, 1) 9.6 4.2 0.7 9.2 3.9 0.8 7.4 3.4 0.6 8.7 3.2 0.5 7.4 3.9 0.4

Bernoulli 9.4 4.4 0.7 8.9 4.5 0.9 7.6 3.6 0.6 9.4 4.0 0.5 8.7 4.3 0.5

T = 800 GK 46.2 39.9 22.6 49.5 40.3 25.8 65.7 55.4 38.2 56.3 45.8 30.9 54.2 47.1 33.1

KRS 8.9 4.2 0.5 8.9 4.5 1.0 8.9 4.5 0.6 8.1 4.5 0.8 7.6 4.1 0.7

RWB
N(0, 1) 10.6 5.0 1.2 10.7 5.2 1.1 8.4 4.0 0.7 8.7 3.3 0.8 7.6 3.9 0.5

Bernoulli 11.0 4.9 0.8 11.2 5.2 1.5 9.1 4.4 0.7 9.0 3.6 0.9 8.9 4.4 0.5

(c) Fbilinear(1,0.3)

T = 200 GK 29.4 17.0 5.9 27.3 19.5 6.2 31.1 21.0 7.1 27.9 16.1 6.9 30.5 18.3 5.7

KRS 12.3 7.0 2.5 13.2 6.9 1.8 13.8 6.8 1.8 11.9 6.9 1.35 11.4 6.6 1.4

BRWB N(0, 1) 10.7 4.8 1.2 11.5 5.5 0.5 9.2 4.4 0.9 9.7 4.2 0.8 8.8 4.2 0.4

(bT = 3) Bernoulli 11.4 5.3 1.1 10.4 5.4 1.3 9.3 4.9 0.9 10.5 5.3 0.8 7.4 4.5 0.9

BRWB N(0, 1) 11.2 5.9 0.8 11.4 5.3 0.4 8.9 3.7 0.8 9.1 3.5 0.3 7.3 2.7 0.2

(bT = 6) Bernoulli 11.2 5.7 1.2 10.2 4.8 0.7 9.8 4.8 0.6 9.1 4.7 0.4 7.1 4.0 0.7

T = 800 GK 47.7 40.2 23.5 45.3 42.1 26.3 51.4 49.3 21.5 47.2 39.9 31.3 53.4 48.7 34.1

KRS 14.5 8.2 3.1 13.5 7.7 2.3 12.2 7.7 2.6 11.5 6.2 2.6 11.7 6.7 1.9

BRWB N(0, 1) 12.2 5.6 1.6 10.0 4.8 1.0 10.6 5.5 0.6 11.2 5.5 0.8 10.2 4.2 1.4

(bT = 4) Bernoulli 11.2 5.3 1.3 10.0 5.1 1.1 11.6 6.8 1.1 9.9 4.9 0.9 11.3 6.5 1.4

BRWB N(0, 1) 11.5 5.4 1.6 9.3 4.7 0.9 10.2 5.2 1.0 11.0 5.4 0.6 9.0 4.0 1.0

(bT = 8) Bernoulli 11.1 5.1 1.5 9.5 5.3 0.9 11.1 6.4 1.1 9.7 4.6 1.0 11.1 5.0 1.4
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still observe some upward size distortion for certain K values in DGP (c). However,

the proposed test outperforms the two alternative methods in most cases. In particular,

empirical sizes are close to nominal ones, even for large values of K, suggesting that they

can effectively overcome the inherent shortcomings associated with portmanteau tests.

(v) The proposed RWB/BRWB tests are robust to both the choice of block size and

the distribution of the random weighting variable, demonstrating insensitivity to user-

specified parameters.

Next, we use DGP (d) FAR(1,S)-BM process to evaluate the empirical power of the

(B)RWB test and the other comparative methods. Here S represents the Hilbert-Schmidt

norm of the autoregressive operator, which quantifies the degree of departure from the null

hypothesis (S = 0). To evaluate powers, S is set to 0.2, 0.4, 0.6, and 0.8. For simplicity,

we take K = 6 in VT,K , GT,K,p and RT,K , considering the sample sizes of T = 100, 300, 500.

The block size in our method is fixed at bT = 3 across all sample sizes, and the random

weights are generated as IID standard normal random variables.

The empirical rejection rates of the three test statistics based on 1000 replications

are shown in Figure 2. The rejection rates across the three tests for FAR(1,S)–BM are

almost identical, although the proposed test exhibits a notable power advantage as the

sample size increases. As expected, the empirical power of all tests increases with the

norm S. Furthermore, the empirical power converges more rapidly to 1 as the sample size

T increases, demonstrating the effectiveness of the tests in detecting deviations from the

null hypothesis in larger samples.
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Figure 2. Empirical powers of the three tests for DGP (d) FAR(1,S)-BM. The nominal

significance level is α = 0.05.

5.2 Diagnostic checking for FAR models

In this subsection, we illustrate the practical use of our proposed test for diagnostic

checking of functional autoregressive (FAR) models, specifically focusing on the FAR(1)

model. Although conceptually similar to the univariate AR(1) model, the FAR(1) model

provides greater flexibility by allowing for varying degrees of nonlinearity in its autore-

gressive operators. This adaptability has made it widely applicable, as shown in studies

like Kargin and Onatski (2008) and Chen et al. (2021), among others.

The FAR(1) model is defined as follows:

Xt(τ1) =

∫
ϕc(τ1, τ2)Xt−1(τ2)dτ2 + εt(τ1), τ1 ∈ [0, 1], (5.3)

where ϕc(τ1, τ2) represents a kernel function and the innovations {εt} constitute a mean-

zero H-valued white noise sequence.
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We aim to test the following hypotheses:

H0 : {Xt(τ)} satisfies an FAR(1) representation,

against the alternative

HA : {Xt(τ)} does not admit an FAR(1) representation or admits an

FAR(p) representation with p > 1.

To evaluate model adequacy, the above hypothesis test can be transformed into a

white noise test for the error sequence. To achieve this, we first perform the estimation.

The kernel function ϕc(τ1, τ2) can be expressed as a double expansion in terms of K0 basis

functions ηk for k = 1, . . . , K0 as follows:

ϕc(τ1, τ2) =

K0∑
k,l=1

bklηk(τ1)ηl(τ2) = η(τ1)
TBη(τ2),

where η = (η1, . . . , ηK0)
T, and B is a K0 × K0 matrix of coefficients bkl. Consequently,

the coefficient matrix B can be estimated by minimizing the following objective function:

SSE(B) =

∫ T∑
t=1

{
Xt(τ1)−

∫
ηT(τ1)Bη(τ2)Xt−1(τ2)dτ2

}2
dτ1. (5.4)

We then compute the test statistic based on the residuals {ε̂t} as follows:

VT,K,ε̂ = T

K∑
h=1

ρ̂2h,ε̂, where ρ̂h,ε̂ =
∥γ̂h,ε̂∥∫

γ̂0,ε̂(τ, τ)dτ
,

and γ̂h,ε̂(τ1, τ2) =
1
T

∑T
t=1+h

{
ε̂t(τ1)ε̂t−h(τ2)

}
.
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Since the estimation effect is involved in the test statistic and is not asymptotically

negligible, it must be adequately accounted for. To address this issue, we introduce a new

blockwise random weighting bootstrap method, which differs slightly from the approach

discussed in Section 4.1, to obtain the estimated critical values for the test. The steps of

the proposed bootstrap procedure are as follows:

Step 1’. The same as in Step 1.

Step 2’. Generate IID random draws δs, s = 1, 2, . . . , LT , independent of the data, from

a common distribution V , where E(V ) = 1, E(V 2) = 1 and E(V 4) < ∞. Define

the auxiliary variables vt = δs if t ∈ Bs, for t = 1, . . . , T . Then, calculate

the bootstrapped estimation ϕ∗
c(τ1, τ2) by minimizing the weighted least squares

objective function:

B̂∗ := argmin
B

∫ T∑
t=1

vt
{
Xt(τ1)−

∫
ηT(τ1)Bη(τ2)Xt−1(τ2)dτ2

}2
dτ1.

Step 3’. Let ε̂∗t (τ1) = Xt(τ1)−
∫
ηT(τ1)B̂

∗η(τ2)Xt−1(τ2)dτ2. Then define

γ̂∗h,ε̂(τ1, τ2) := γ̂h,ε̂∗(τ1, τ2) =
1

T

T∑
t=1+h

vt
{
ε̂∗t (τ1)ε̂

∗
t−h(τ2)− γ̂h,ε̂(τ1, τ2)

}
,

for h = 1, . . . , K. Calculate ρ̂∗h,ε̂ =
∥γ̂∗h,ε̂∥∫

γ̂0,ε̂(τ, τ)dτ
.

Step 4’. Compute the bootstrapped test statistic V ∗
T,K,ε̂ = T

∑K
h=1(ρ̂

∗
h,ε̂)

2.

Step 5’. Repeat Steps 2’-4’ for B times and denote the empirical 100(1 − α)% sample

quantile of V ∗
T,K,ε̂ as V ∗

T,ε̂,α. Reject the null hypothesis at the significance level α
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if VT,K,ε̂ > V ∗
T,ε̂,α.

To illustrate the empirical sizes and powers of our test procedure on model checking,

we consider the following DGPs (e) and (f):

(e) FAR(1,S)-Fbilinear(1,U): Xt(τ1) =
∫
ϕc(τ1, τ2)Xt−1(τ2)dτ2 + εt(τ1), τ1 ∈ [0, 1], where

{εt(τ1)} follows Fbilinear(1,U). The parameter c is chosen so that ∥ϕc∥ = S ∈ (0, 1).

(f) FAR(2,S1,S2)-Fbilinear(1,U): Xt(τ1) =
∫
ϕc(τ1, τ2)Xt−1(τ2)dτ2+

∫
ϕc′(τ1, τ2)Xt−2(τ2)dτ2

+ εt(τ1), τ1 ∈ [0, 1], where {εt(τ1)} follows Fbilinear(1,U). The parameters c and c′

are chosen so that ∥ϕc∥ = S1, ∥ϕc′∥ = S2, and S1 + S2 < 1 guarantee the stationarity

of the process (Kokoszka and Reimherr, 2013).

We generate 1000 replications from DGPs (e) and (f) with sample sizes 200 and 800,

respectively, and fit the data by the FAR(1) model specified in Equation (5.3). Following

Step 2’, we consider two types of distributions: the standard Exponential distribution

and a Bernoulli distribution defined as follows (see Zhu (2016), Li and Zhang (2022)):

vt =


3−

√
5

2
w.p.

√
5 + 1

2
√
5
,

3 +
√
5

2
w.p.

√
5− 1

2
√
5
.

(5.5)

For each replication, we perform B = 500 bootstrap iterations with block sizes bT = 3, 6

for T = 200 and bT = 4, 8 for T = 800, to compute empirical critical values. The rejection

rates are summarized in Table 2.

Table 2 highlights several key findings:

(i) The BRWB test demonstrates satisfactory empirical sizes, even with smaller sample

sizes. However, the test tends to be undersized when K increases, a limitation that can
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Table 2. Empirical sizes and powers of BRWB on model checking of DGP (e) FAR(1,0.3)-

Fbilinear(1,0.3) and (f) FAR(2,0.3,0.5)-Fbilinear(1,0.3).

K = 1 K = 3 K = 5 K = 8 K = 10

Test V 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

(e) FAR(1,0.3)-Fbilinear(1,0.3)

T = 200 BRWB Std.Exp. 10.6 5.3 0.8 10.2 4.4 0.9 9.0 2.8 0.2 6.2 3.9 0.3 6.3 4.0 0.3

(bT = 3) Bernoulli 11.8 5.9 1.3 11.8 5.6 1.1 11.6 6.1 1.0 8.7 3.8 0.8 8.1 4.1 0.7

BRWB Std.Exp. 10.9 4.5 0.7 10.3 4.5 0.7 8.4 2.2 0.3 7.9 3.3 0.4 7.7 3.0 0.2

(bT = 6) Bernoulli 12.7 7.5 1.4 11.3 6.2 1.2 11.2 6.5 0.9 8.9 4.0 0.8 8.7 4.4 0.5

T = 800 BRWB Std.Exp. 9.6 5.1 0.9 8.3 4.3 0.6 9.7 5.0 0.7 8.0 3.7 0.4 8.0 4.3 0.4

(bT = 4) Bernoulli 11.0 6.0 1.5 11.0 5.8 1.4 11.2 6.4 1.7 9.1 4.7 1.1 10.7 5.2 1.1

BRWB Std.Exp. 9.7 4.3 0.6 8.5 4.1 0.4 9.8 4.4 0.8 6.9 3.9 0.4 7.6 3.6 0.3

(bT = 8) Bernoulli 11.2 5.2 1.5 11.4 5.0 1.7 11.2 6.2 1.5 9.0 4.8 1.2 11.7 4.8 1.0

(f) FAR(2,0.3,0.5)-Fbilinear(1,0.3)

T = 200 BRWB Std.Exp. 99.9 98.3 85.9 99.9 99.6 92.6 99.8 97.0 79.4 97.9 92.9 56.4 95.7 85.5 44.0

(bT = 3) Bernoulli 99.8 98.9 91.6 99.9 99.8 97.1 99.9 97.2 90.4 99.0 95.2 83.9 97.9 92.5 75.9

BRWB Std.Exp. 99.7 97.8 81.2 99.9 99.1 86.7 99.5 96.4 68.7 96.8 86.4 36.2 94.1 76.1 31.8

(bT = 6) Bernoulli 99.9 98.9 90.9 99.9 99.7 96.3 99.9 97.3 89.9 98.8 94.7 78.7 97.7 91.3 68.7

T = 800 BRWB Std.Exp. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(bT = 4) Bernoulli 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BRWB Std.Exp. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(bT = 8) Bernoulli 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

be effectively mitigated by increasing the sample size. In particular, its size performance

remains consistent across different block sizes and random weight distributions.

(ii) A comparison between bootstrapped tests using standard exponential random

weights and those using Bernoulli random weights shows that the former performs better

in this setting. In contrast, the latter tends to produce slightly oversized results.

(iii) The BRWB test exhibits reasonable power. Although its empirical power may

decrease as K increases - an inherent characteristic of portmanteau tests - it improves

with larger sample sizes, achieving values close to 1 when T = 800. Furthermore, the

power performance is robust to variations in random weights and block sizes.
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In general, these simulation results underscore the effectiveness of the proposed test

in evaluating the adequacy of FAR models.

6. Real data analysis

In this section, we apply the proposed testing procedure to analyze electricity price

data, which plays a pivotal role in shaping the dynamics of the energy market, economic

stability, and the formulation of government policies. Given the substantial influence of

electricity prices on various sectors, a precise analysis of this data is crucial for stakehold-

ers, including policymakers, energy providers, and investors. Such an analysis enables

informed decision-making that promotes economic efficiency and ensures a reliable elec-

tricity supply.

The dataset under examination consists of hourly electricity prices from the Spanish

Electricity Market, provided by the Spanish Electricity Market Operator (www.omie.es),

covering the period from January 1, 2014, to December 31, 2014. This dataset has been

previously analyzed in Mestre et al. (2021), where the functional autocorrelation and

partial autocorrelation functions were investigated. However, their analysis did not in-

clude a comprehensive modeling procedure within the context of our proposed framework,

highlighting the need for a thorough evaluation of model adequacy in this important ap-

plication.

We represent the original price curves, after linear interpolation, as {Xt(τ), t =

1, 2, . . . , 365, τ ∈ [1, 24]}. The left panel of Figure 3 displays the average daily elec-

tricity price curves for each day of the week, with each day differentiated by color. As

shown in the left panel of Figure 3, the curves exhibit a distinct intraday pattern, with
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prices being lower during the early morning hours and higher during peak demand periods.

Additionally, average electricity prices on weekends are notably lower than on weekdays,

reflecting typical market behavior influenced by reduced industrial demand. To account

for the strong weekly effect present in the data, we define the differenced series {Yt(τ)},

where Yt(τ) = Xt(τ)−Xt−7(τ) and present this series in the right panel of Figure 3. We

then assess the stationarity of {Yt(τ)} using the test proposed by Horváth et al. (2014),

yielding a p-value of 0.785. Based on this result, we conclude that the differenced sequence

{Yt(τ)} can be considered stationary at the 5% significance level.

Figure 3. Left: Average daily electricity price curves {Xt(τ)} for each day of the week in

the Spanish market in 2014. Right: The corresponding weekly differenced curves {Yt(τ)}.

Next, we apply our test to the differenced series {Yt(τ)}. As demonstrated in the

simulation study (Section 5), the test statistic exhibits robustness with respect to the

choices of tuning parameters. This robustness is also reflected in the real data application,

where consistent conclusions are obtained across various settings. Specifically, we apply

our BRWB bootstrap test to {Yt(τ)} with bT = 1, 3, 6, K = 1, 3, 5, 8, 10 and random

weights drawn from both N(0, 1) and Bernoulli distribution as specified in (5.2). In

all cases, our test strongly rejects the null hypothesis of serial uncorrelatedness, with
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extremely small p-values below 10−4. Furthermore, The left panel of Figure 5 presents

the sample autocorrelogram along with the 95% upper confidence bounds under the WWN

assumption (using our BRWB test with bT = 3 and Bernoulli weights), the MDS bound

from the KRS test, and the IID bound proposed by Mestre et al. (2021). Significant

correlations are observed at several lags across all tests, with a particularly large value at

lag 7, suggesting the presence of serial correlations and a potential seasonal effect.

In light of this, we propose to use the Hyndman-Ullah method (Hyndman and Ullah,

2007), referred to as the “HU” model, to fit the data. This approach involves three

key steps: (i) By utilizing the idea of truncated Karhunen–Loève expansion, we project

each of the functional time series onto the first J eigenfunctions of the sample covariance

operator, thereby obtaining what is known as the functional principal component (FPC)

scores; (ii) for each FPC score series, we fit a seasonal autoregressive integrated moving

average (SARIMA) model. In particular, different models may be employed for different

score series; (iii) using the models from step (ii), we compute fitted values for the score

series and subsequently recover the corresponding fitted curves using the FPCs. This

entire process then results in residual curves.

In our analysis, we select a truncation parameter of J = 3, applying the corresponding

HU(3) model to the process {Yt(τ)}. Each score series is fitted with a SARIMA model

specified as follows: (1, 0, 1)× (1, 0, 0)7, (2, 1, 0)× (1, 0, 0)7, and (0, 0, 0)× (1, 0, 0)7. Figure

4 displays the fitted curves (purple dashed lines) for four selected days in 2014. A visual

comparison of these fitted curves with the actual curves (blue lines) demonstrates that

the HU(3) model provides an excellent fit. Furthermore, the right panel of Figure 5 shows

the sample autocorrelogram of the residuals from the fitted HU(3) model, along with
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the 95% WWN upper bound with bT = 3 and standard exponential random weightings,

95% MDS upper bound and 95% IID upper bound. We observe that ρ̂h at several lags

exceed the 95% IID upper bound, and the sample autocorrelation at lag 7 exceeds the

MDS upper bound, while all values lie within the WWN upper bound. This discrepancy

suggests that the IID and MDS upper bounds reject the hypothesis of model adequacy.

However, our test, which accounts for more general dependencies, provides more robust

upper bounds that support the adequacy of the fitted model. Therefore, this approach

not only confirms the suitability of the HU(3) model but also helps mitigate the risk of

overfitting, ensuring a more reliable evaluation of model performance.

Figure 4. Fitted electricity price curves using HU(3) model for January 1, April 30,

September 28, and December 31 in 2014 (dashed lines), together with true curves for

those days (solid lines).

7. Conclusion

In this paper, we propose a blockwise random weighting bootstrap (BRWB) proce-

dure for general functional white noise checks and establish its asymptotic validity using
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Figure 5. Left: The autocorrelogram of {Yt(τ)} with 95% WWN, MDS and IID upper

bounds. Right: The autocorrelogram of residuals with 95% WWN, MDS and IID upper

bounds.

empirical process theory. Our approach offers several notable advantages. First, our test

accommodates a broader white noise structure, which effectively addresses potential over-

rejections that can arise from restrictive IID or MDS assumptions commonly used in white

noise testing. Second, the test is constructed based on squared functional autocorrelation

functions, which differs from methods that rely on the functional principal components.

This design eliminates the need to pre-select the number of principal components, enhanc-

ing robustness in respect to variations in autocovariance magnitude. Third, the proposed

BRWB procedure is robust to the selection of block sizes and random weights and can be

readily extended to adequacy checks for weak functional autoregressive models.

In summary, our approach builds upon the classical Box-Pierce-type portmanteau test

and extends it to the Hilbert space, providing valuable theoretical insights for modeling

functional time series. Moreover, we offer practical support through an R package to

facilitate the implementation of general functional white noise checks.

Despite these contributions, there are certain limitations. Notably, while we extend

the proposed test to adequacy checks for weak functional autoregressive models and in-
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troduce a corresponding bootstrap procedure, as discussed in Section 5.2, the theoretical

investigation of how estimation affects the asymptotic distribution of the test remains

incomplete. Additionally, our analysis focuses on global power, while local power, which

warrants further exploration, is left for future study.

Supplementary Material

All technical details and additional numerical studies can be found in the Supplemen-

tary Material.
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Hörmann, S. and P. Kokoszka (2010). Weakly dependent functional data. The Annals of Statistics 38(3), 1845–

1884.
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