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Abstract: A growth curve model (GCM) aims to characterize how an outcome variable evolves,

develops and grows as a function of time, along with other predictors. It provides a particu-

larly useful framework to model growth trend in longitudinal data. However, the estimation

and inference of GCM with a large number of response variables faces numerous challenges, and

remains underdeveloped. In this article, we study the high-dimensional multivariate-response

linear GCM, and develop the corresponding estimation and inference procedures. Our proposal

involves several innovative components. Specifically, we introduce a Kronecker product struc-

ture, which allows us to effectively decompose a very large covariance matrix, and to pool the

correlated samples to improve the estimation accuracy. We devise a highly non-trivial multi-step

estimation approach to estimate the individual covariance components separately and effectively.

We also develop rigorous statistical inference procedures to test both the global effects and the

individual effects, and establish the size and power properties as well as the proper false dis-

covery control. We demonstrate the effectiveness of the new method through both intensive

simulations, and the analysis of a longitudinal neuroimaging data for Alzheimer’s disease.

Key words and phrases: Hypothesis testing; Longitudinal data; Kronecker product; Magnetic

resonance imaging; Mixed-effects model.
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1. Introduction

A growth curve model (GCM) describes how an outcome variable evolves, develops

and grows as a function of time along with other related covariates, and is particularly

useful for modeling the growth trends in longitudinal data analyses. In a GCM, each

individual subject is assumed to have her own unique trajectory of change over time,

which represents how the outcome evolves for each subject as time progresses. Such

individual trajectories are modeled as functional curves, typically in the form of linear

functions. The model involves both fixed-effects that represent population-level rela-

tion between the predictors and outcome, as well as random-effects that account for

individual variability in the growth trajectories. These random-effects allow for indi-

vidual differences in both the starting point (intercept) and the rate of change (slope)

over time, and capture the deviations of each individual’s trajectory from the average

trajectory. GCM has been commonly used in a wide range of applications, e.g., biol-

ogy, psychology, social science, neuroscience, among others (Wei and He, 2006; Newhill

et al., 2012; Nocentini et al., 2013; Ordaz et al., 2013).

Our motivation arises from longitudinal studies of Alzheimer’s disease (AD). AD is

an irreversible neurodegenerative disorder and the leading form of dementia in elderly

subjects. It is characterized by progressive impairment of cognitive and memory func-

tions, then loss of independent living, and ultimately death. Its prevalence is rapidly

growing as the worldwide population is aging, and it becomes imperative to understand,
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diagnose, and treat this disorder (Jagust, 2018). In recent years, a number of longitudi-

nal AD studies are emerging to track and better understand the progression of AD. One

example is Marcus et al. (2010), who collected T1-weighted magnetic resonance imaging

(MRI) scans of 150 subjects aged between 60 to 96 years old. Each subject was scanned

on two or more visits, separated by at least one year, for a total of 373 image scans.

Each MRI scan was preprocessed, mapped to a common brain atlas, and summarized

as a vector of region-wise brain volume measurements. Among those subjects, 64 were

characterized as demented, and 72 were normal developing controls. A scientific ques-

tion of central interest is to track the change of brain volumes of different brain regions

across time, and understand the difference of developmental trajectories between the

AD patients and normal controls. Another example is Yan et al. (2020), who collected

blood plasma samples of 35 subjects over 70 years old and followed them up to 15 years.

Each subject were sampled three times or more, for a total of 164 plasma samples. For

each sample, the extracellular RNA (exRNA) sequence measurements were obtained.

Among those subjects, 15 were confirmed AD patients by pathological analysis of their

post mortem brains, and 9 were normal controls. A central scientific question is to

track the change of exRNA expression levels of a set of AD-related genes over time,

and differentiate their developmental trajectories between the two groups of subjects.

Such questions are pivotal for our understanding of AD development, and have im-

portant diagnostic and therapeutic implications. For both examples, GCM provides a

natural framework to address the scientific questions of interest, which translate to the
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estimation and inference of the corresponding fixed-effects parameters in the model.

Meanwhile, it is crucial to take into account the spatial correlations between different

brain regions or genes, the temporal correlations across different time points, as well as

the individual subject variability.

In this article, we study a high-dimensional multivariate-response linear GCM, and

develop the corresponding estimation and inference procedures. Our proposal directly

addresses the questions in our motivating examples, where the brain regions or genes

are modeled as the multivariate response variables. Although GCM is a classical model,

the estimation and inference of a high-dimensional multi-response GCM faces numerous

serious challenges, and remains underdeveloped. First, the dimension of the response

variables can be large, resulting in a very large covariance matrix. Meanwhile, the

number of subjects and the number of time points may be limited. To obtain a good

covariance estimator, we adopt a Kronecker product structure for the covariance, which

allows us to pool the correlated samples effectively to improve the estimation accu-

racy. Second, the covariance structure is particularly complex. Under the Kronecker

product assumption, the covariance involves three key components, including a spatial

covariance that accounts for the correlations among different regions or genes, a tem-

poral covariance that accounts for the correlations across multiple time points, and a

covariance matrix that reflects the random departure of individual subjects from the

population-level intercept and slope. We devise a highly non-trivial multi-step approach

to estimate the three covariance components separately and effectively. Last but not
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least, we develop rigorous statistical inference procedures to test both the global effects

and the individual effects, and we establish the size and power properties, as well as the

proper false discovery control. We first recognize that our covariance estimator is not

the usual sample covariance, because the means of the response variables in our setting

are different for different subjects, regions and time points. Therefore, the asymptotics

of the classical sample covariance estimator based on independent and identically dis-

tributed (i.i.d.) observations are not directly applicable. To overcome this issue, we

introduce some level of sparsity, and show that our estimator performs asymptotically

the same as the sample covariance matrix obtained by the i.i.d. centralized error terms.

We then employ an advanced version of Hanson-Wright inequality (Chen et al., 2023),

and derive the proper convergence rates of our covariance estimators, which in turn

ensure the desired theoretical guarantees for our proposed tests.

Our proposal is built upon but is also clearly different from several lines of relevant

research. The first line is classical GCM modeling, which often adopts the approach

of linear multilevel analysis. There have been numerous proposals for GCM estimation

(Kackar and Harville, 1981; Goldstein, 1986; Bryk and Raudenbush, 1992) and infer-

ence (Giesbrecht and Burns, 1985; Kenward and Roger, 1997; Carpenter et al., 1999; Li,

2015). However, most of the classical GCM solutions focus on a univariate response, or

a low and fixed dimensional response scenario, and none tackles the global testing and

multiple testing problems simultaneously. More recently, Wang et al. (2025) studies

the multi-response GCM, but focus on estimation only, without considering inference.
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In contrast, we target both types of testing problems in a high-dimensional response

scenario. The second line of related research is inference for high-dimensional linear

mixed-effects model, since GCM can essentially be rewritten as a mixed-effects model.

There have been a number of proposals toward this end (Ma et al., 2013; Bradic et al.,

2020; Law and Ritov, 2023; Li et al., 2022). However, they mostly focus on testing a

single fixed-effect coefficient, and none considers the global and multiple testing prob-

lems either. Moreover, they usually obtain an estimator of the fixed-effects through a

proxy of the covariance matrix, which may result in efficiency loss. In comparison, we

borrow the region and time information to obtain an appropriate estimator for the true

covariance matrix, which improves the power of the subsequent inferences. The third

line of related research is high-dimensional inference, including the global and multiple

testing procedures (Cai et al., 2013, 2014; Liu, 2013; Xia et al., 2018), and the test-

ing procedures involving a Kronecker product structure (Xia and Li, 2017, 2019; Chen

and Liu, 2019; Chen et al., 2023). We also adopt the Kronecker product structure to

facilitate our analysis. But we target a completely different problem from the existing

solutions. As a result, we develop an utterly different set of inferential techniques to

analyze the large and complex dependence structure among the test statistics, and then

derive the normal approximations for the global null distribution and total false discov-

eries. In summary, our proposal addresses a particularly important class of scientific

questions, and makes a useful addition to the toolbox of longitudinal data modeling.

We adopt the following notations in this article. For a vector a = (a1, . . . , ap)
T,
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let [a]j denote its jth entry and ∥a∥q = (
∑p

j=1 |aj|q)1/q. For a matrix A, let [A]j1,j2

denote its (j1, j2)th entry. Let λmax(A) and λmin(A) denote the maximum and minimum

eigenvalues of A, respectively. Let ∥A∥max = maxj,k |Ajk|, ∥A∥1,1 =
∑

j,k |Ajk|, and

∥A∥q = sup∥a∥q=1 ∥Aa∥q for q ≥ 1. Let ∥A∥0 denote the number of nonzero entries in

A, and let diag(A) denote the diagonal matrix with its diagonal equal to the diagonal

entries of A. For two positive sequences an and bn, an ≲ bn means that there exists

a constant c > 0, such that an ≤ cbn for all n; an ≍ bn if an ≲ bn and bn ≲ an, and

an ≪ bn if lim supn→∞ an/bn = 0.

The rest of the article is organized as follows. Section 2 presents the model and

introduces our proposed estimation and inference procedures. Section 3 establishes

the theoretical properties. Section 4 reports the simulations, and Section 5 presents

an application to a longitudinal AD study. Section 6 concludes the paper, and the

Supplementary Material collects all technical proofs and additional numerical results.

2. Model Estimation and Inference

2.1 High-dimensional multi-response GCM

Suppose there are N subjects, R response variables, and for subject i, there are longi-

tudinal data collected at Ti time points, i = 1, . . . , N . In this article, we only consider

the scenario when T1 = · · · = TN = T , and leave the scenario when the subjects

have varying numbers of observations as future research. Let yi,r,t ∈ R denote the
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rth response variable, gi,t ∈ R the time variable, xi ∈ Rp the time-invariant predic-

tor vector, and zi,t ∈ Rq the time-variant predictor vector, for subject i at time t,

i = 1, . . . , N, r = 1, . . . , R, t = 1, . . . , T . For our motivating examples, yi,r,t corresponds

to the individual brain region or gene, gi,t is the age variable, xi collects the binary

AD status, and other time-invariant covariates such as sex and education level, and

zi,t collects the time-variant covariates such as the cognitive scores. We consider the

following classical two-level GCM, at level 1,

Level 1: yi,r,t = β0,i,r + β1,i,rgi,t + ξT

rzi,t + ϵi,r,t, (2.1)

where β0,i,r, β1,i,r ∈ R are the individual-level initial state and the growth rate of the

mean growth curve for subject i at region r, respectively, ξr ∈ Rq is the time-invariant

fixed-effect of zi,t, and ϵi,r,t ∈ R is the random error, and at level 2,

Level 2: β0,i,r = µ0,r + γT

0,rxi + ζ0,i,r,

β1,i,r = µ1,r + γT

1,rxi + ζ1,i,r,

(2.2)

where µ0,r, µ1,r are the population-level intercepts, and γ0,r, γ1,r ∈ Rp are the population-

level slopes for the initial state and the growth rate of the mean growth curve of region

r, respectively, and ζ0,i,r, ζ1,i,r ∈ R are the random errors.

We assume the random errors ϵi,r,t, ζ0,i,r, ζ1,i,r follow a mean zero normal distribution,

that is,
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(ϵi,1,1, . . . , ϵi,1,T , . . . , ϵi,R,1, . . . , ϵi,R,T )
T ∼ Normal(0,ΣR ⊗ ΣT ),

(ζ0,i,r, ζ1,i,r)
T ∼ Normal(0,Σζ),

(2.3)

where ⊗ denotes the Kronecker product, ΣR ∈ RR×R captures the spatial correlation

among different regions or genes, ΣT ∈ RT×T captures the temporal correlation across

different time points, and Σζ ∈ R2×2 captures the random departure of individual

subjects from the population-level intercept and slope. Here we introduce the Kronecker

structure to simplify the covariance of the random error ϵi,r,t. Such a structure has been

often adopted in the literature (see, e.g., Yin and Li, 2012; Leng and Tang, 2012; Xia

and Li, 2017). To make ΣR and ΣT identifiable, we assume that tr(ΣT ) = T , without

loss of generality. Additionally, we assume that cov(βd,i,r1 , ϵi,r2,t) = 0 for d = 0, 1 and

r1, r2 = 1, . . . , R, and cov(ζd1,i,r1 , ζd2,i,r2) = 0 for d1, d2 = 0, 1 and r1 ̸= r2, which are

commonly imposed in the GCM literature (see, e.g., Hox and Stoel, 2005; Snijders and

Bosker, 2011).

Plugging (2.2) into (2.1), we obtain that

yi,r,t = µ0,r + µ1,rgi,t + γT

0,rxi + γT

1,rgi,txi + ξT

rzi,t + ζ0,i,r + ζ1,i,rgi,t + ϵi,r,t

=
(
µ0,r, µ1,r, γ

T

0,r, γ
T

1,r, ξ
T

r

)(
1, gi,t, x

T

i , gi,tx
T

i , z
T

i,t

)T
+
{(

ζ0,i,r, ζ1,i,r
)T(

1, gi,t
)
+ ϵi,r,t

}
(2.4)

Write yr = (y1,r,1, . . . , y1,r,T , . . . , yN,r,1, . . . , yN,r,T )
T ∈ RTN , β(r) = (ηT

r , ξ
T
r )

T ∈ R2p+q+2,

ηr = (µ0,r, µ1,r, γ
T
0,r, γ

T
1,r)

T ∈ R2p+2, ϵr = (ϵ1,r,1, . . . , ϵ1,r,T , . . . , ϵN,r,1, . . . , ϵN,r,T )
T ∈ RTN ,
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ζr = (ζ0,1,r, ζ1,1,r, . . . , ζ0,N,r, ζ1,N,r)
T ∈ R2N , r = 1, . . . , R, and

X =


X1

...

XN

 ∈ RTN×(2p+q+2), G = diag
(
{Gi}Ni=1

)
=


G1 . . . 0

0
. . . 0

0 . . . GN

 ∈ RTN×2N ,

Xi =


1 gi,1 xT

i gi,1x
T
i zT

i,1

...
...

...
...

...

1 gi,T xT
i gi,Tx

T
i zT

i,T

 ∈ RT×(2p+q+2), Gi =


1 gi,1

...
...

1 gi,T

 ∈ RT×2, i = 1, . . . , N.

Then, the model in (2.4) can be written in the matrix form as,

(y1, . . . , yR) = X
(
β(1), . . . , β(R)

)
+ (Gζ1 + ϵ1, . . . , GζR + ϵR) , (2.5)

and the covariance matrix of Gζr + ϵr is of the form,

Σ(r) = G(IN ⊗ Σζ)G
T + diag

(
{[ΣR]r,rΣT}Ni=1

)
∈ RTN×TN , r = 1, . . . , R, (2.6)

where IN ∈ RN×N is the identity matrix, and diag
(
{[ΣR]r,rΣT}Ni=1

)
is a block-diagonal

matrix with all the blocks equal to the same matrix [ΣR]r,rΣT ∈ RT×T .

Our goal is to estimate β(r) and Σ(r), then infer the parameters regarding the mean

growth curves. Specifically, our inference aims at the population-level intercepts and

slopes of the initial state and the growth rate of the mean growth curve of region r,
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i.e., ηr = (µ0,r, µ1,r, γ
T
0,r, γ

T
1,r)

T. We study the global test and see if the population-

level growth curves are mean zero and unaffected by the predictors xi for all response

variables yr’s,

H0 : (η1, . . . , ηR) = 0 versus H1 : (η1, . . . , ηR) ̸= 0. (2.7)

We also study multiple individual tests, and aim to identify the nonzero population

mean effects, and the subset of predictors xi that affect some response variable yr,

H0,r,j : [ηr]j = 0 versus H1,r,j : [ηr]j ̸= 0, r = 1, . . . , R, j = 1, . . . , 2p+ 2. (2.8)

Meanwhile, we aim to control the false discovery rate (FDR) and the false discovery

proportion (FDP). We remark that no existing literature simultaneously tackles the

inference problems (2.7) and (2.8) in a high-dimensional multi-response GCM setting.

2.2 Parameter estimation

We recognize the key challenge of parameter estimation for our model is the covariance

matrix Σ(r) in (2.6), for r = 1, . . . , R, as it involves a large number of unknown pa-

rameters when the dimension of the response R is large, while the number of subjects

N and the number of time points T are often limited. In addition, it involves three

covariance matrices, ΣR,ΣT ,Σζ , which need to be decoupled from each other and be

estimated separately. We next develop a novel five-step procedure to estimate Σ(r).

Statistica Sinica: Preprint 
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In Step 1, we first estimate the off-diagonal elements of the spatial covariance matrix

ΣR. We comment that only the diagonal elements of ΣR are required in Σ(r) in (2.6), but

the off-diagonal elements of ΣR turn out to be useful for the estimation of ΣT ,Σζ , and

are also easier to estimate than the diagonal elements. Note that, for each individual

i, the spatial variance averaging over the time points can be written as,

Σ1,i =
1

T

T∑
t=1

var {(yi,1,t, . . . , yi,R,t)
T} =

tr(GiΣζG
T
i )

T
IR + ΣR,

for i = 1, . . . , N . A sample variance estimator of Σ1,i is,

Σ̂1,i =
1

T

T∑
t=1

(y̌i,1,t, . . . , y̌i,R,t)
T(y̌i,1,t, . . . , y̌i,R,t) ∈ RR×R. (2.9)

where y̌i,r,t = yi,r,t−ȳr,t is the centered response across subjects with ȳr,t = N−1
∑N

i=1 yi,r,t.

Here the centering is with respect to subjects, as the subjects are independent, but dif-

ferent regions and time points are not. We use the same centering for other sample

variance and covariance estimators later, and we show they achieve the desirable con-

vergence rates. We also note that the first term in Σ1,i is diagonal, and we can pool

both individual and time information to estimate the off-diagonal elements of ΣR as,

[Σ̂R]r1,r2 =
[
Σ̂1 − diag(Σ̂1)

]
r1,r2

, with Σ̂1 =
1

N

N∑
i=1

Σ̂1,i, r1, r2 = 1, . . . , R, r1 ̸= r2.

(2.10)

In Step 2, we estimate the temporal covariance matrix ΣT . Note that, for each

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0307
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individual i, the temporal covariance between two regions can be written as,

Σ2,r1,r2 = cov {(yi,r1,1, . . . , yi,r1,T )T, (yi,r2,1, . . . , yi,r2,T )T} = [ΣR]r1,r2ΣT ,

for i = 1, . . . , N, r1, r2 = 1, . . . , R, r1 ̸= r2. A sample covariance estimator of Σ2,r1,r2 is,

Σ̂2,r1,r2 =
1

N

N∑
i=1

(y̌i,r1,1, . . . , y̌i,r1,T )
T(y̌i,r2,1, . . . , y̌i,r2,T ) ∈ RT×T , (2.11)

where y̌i,r,t is as defined before. Therefore, we can pool both individual and region

information to estimate ΣT , based on the average of Σ̂2,r1,r2 across the pairs (r1, r2),

along with the estimator [Σ̂R]r1,r2 from Step 1. In addition, to help achieve a desired

convergence rate for our estimator of ΣT , we propose to choose the set of pairs (r1, r2)

with the largest K off-diagonal entries [Σ̂R]r1,r2 among all r1, r2 = 1, . . . , R, r1 < r2, and

we denote this set as S. Our study suggests that, as long as K is of the same order of

R, the corresponding estimator has a desired convergence rate, and thus we set K = R

in our implementation. That is, we estimate the temporal covariance matrix ΣT as,

Σ̂T =
1

R

∑
(r1,r2)∈S

Σ̂2,r1,r2

[Σ̂R]r1,r2
. (2.12)

In Step 3, we estimate the covariance matrix Σζ . Note that, for each individual i,

the temporal variance averaging over regions can be written as,

Σ3,i =
1

R

R∑
r=1

var {(yi,r,1, . . . , yi,r,T )T} = GiΣζG
T

i +
tr(ΣR)

R
ΣT ,

Statistica Sinica: Preprint 
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for i = 1, . . . , N . A sample variance estimator of Σ3,i is,

Σ̂3,i =
1

R

R∑
r=1

(y̌i,r,1, . . . , y̌i,r,T )
T(y̌i,r,1, . . . , y̌i,r,T ) ∈ RT×T . (2.13)

Thus, to estimate Σζ , we need to estimate κ = tr(ΣR)/R, and plug in the estimate

of ΣT from Step 2. Note that, as long as the number of time points T ≥ 3, there

exists a vector ui ∈ RT , such that ∥ui∥2 = 1, and uT
iGi = (0, 0), for i = 1, . . . , N .

Correspondingly, uT
iΣ3,iui = κ(uT

iΣTui). Therefore, we estimate κ as,

κ̂ =

∑N
i=1 u

T
i Σ̂3,iui∑N

i=1 u
T
i Σ̂Tui

. (2.14)

Similarly, as long as the two columns of Gi are linearly independent for i = 1, . . . , N ,

there exist vectors vi,1, vi,2 ∈ RT , such that vT
i,1Gi = (1, 0) and vT

i,2Gi = (0, 1). Cor-

respondingly, vT
i,j1

Σ3,ivi,j2 = [Σζ ]j1,j2 + κ(vT
i,j1

ΣTvi,j2), for j1, j2 = 1, 2. Therefore, we

estimate Σζ as,

[Σ̂ζ ]j1,j2 =
1

N

N∑
i=1

[(
vT

i,j1
Σ̂3,ivi,j2

)
− κ̂

(
vT

i,j1
Σ̂Tvi,j2

)]
, j1, j2 = 1, 2. (2.15)

In Step 4, we estimate the diagonal elements of the spatial covariance matrix ΣR.

Recall tr(Σ1,i) = tr(GiΣζG
T
i )R/T + tr(ΣR). Thus we estimate (NT )−1

∑N
i=1 tr(GiΨGT

i )

by tr(Σ̂1)/R− κ̂. Correspondingly, we estimate the diagonal elements of ΣR as

[Σ̂R]r,r =
[
diag(Σ̂1)− diag

{
tr(Σ̂1)/R− κ̂

}]
r,r

, r = 1, . . . , R. (2.16)
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Algorithm 1 Covariance estimation procedure

1: Estimate the off-diagonal elements of the spatial covariance matrix ΣR via (2.10).
2: Estimate the temporal covariance matrix ΣT via (2.12).
3: Estimate the covariance matrix Σζ via (2.15).
4: Estimate the diagonal elements of the spatial covariance matrix ΣR via (2.16).
5: Estimate Σ(r) by plugging the estimates Σ̂T , Σ̂ζ , and [Σ̂R]r,r into (2.6).

Finally, in Step 5, we plug the estimates Σ̂T , Σ̂ζ , and [Σ̂R]r,r into (2.6) to obtain an

estimate Σ̂(r) of Σ(r). We summarize our estimation procedure in Algorithm 1.

Once obtaining Σ̂(r), we estimate β(r) via least-squares straightforwardly as,

β̂(r) =

[
XT

{
Σ̂(r)

}−1

X

]−1

XT

(
Σ̂(r)

)−1

yr, r = 1, . . . , R. (2.17)

We make a few remarks regarding our estimation procedure.

First, we note that, to obtain a good estimator for Σ(r), we need to respectively

estimate ΣR,ΣT , and Σζ . There are different options to estimate ΣT . One is to pool

NR correlated samples together, e.g., through averaging over individual Σ̂3,i in (2.13).

However, ΣT and Σζ are not easily separable if we go this way. Recognizing that the

random departures are uncorrelated with each other across regions, we take another

option, by first obtaining the time covariance across different regions, i.e., [ΣR]r1,r2ΣT ,

then pooling TN correlated samples to estimate the off-diagonal elements of ΣR, then

averaging over individuals and different region pairs to estimate ΣT . Subsequently,

we pool NR samples to estimate Σζ , and pool NT samples to estimate [ΣR]r,r. Such

sample pooling steps are crucial to ensure an accurate estimation of ΣR,ΣT , and Σζ .
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Second, we estimate Σ1,i and Σ3,i via (2.9) and (2.13), respectively. However, we

note that, E(yi,r,t) = [X](i−1)T+t,·β
(r), where [X](i−1)T+t,· is the {(i− 1)T + t}th row of

X, and thus the means of yi,r,t are different for all (i, r, t), i = 1, . . . , N, r = 1, . . . , R, t =

1, . . . , T . Consequently, both Σ̂1,i and Σ̂3,i are not the usual sample covariance matrices.

We later develop a set of new tools to establish their convergence rates in Theorem 1.

Last but not least, in our motivating applications, the number of time-invariant

and time-variant predictors (p, q) are both relatively small compared to the product of

the sample size and the number of time points NT . As such, we simply estimate β(r)

using the least squares (2.17). Meanwhile, our method can be extended to more general

scenarios in a straightforward fashion. For instance, if max(p, q) is large, we can apply

the debiased Lasso estimator (Zhang and Zhang, 2014) by imposing certain sparsity

structures on β(r)’s. We also note that, one may replace the estimator in (2.17) with a

best linear unbiased estimator. Nevertheless, it requires inverting a large NTR×NTR

covariance matrix, with a much higher computational complexity of O(NTR)3 and

possibly reduced estimation accuracy. In contrast, our estimator in (2.17) involves

inverting an NT ×NT covariance matrix R times, leading to a reduced computational

complexity of O(NT )3R and an improved accuracy, especially when R is large.

2.3 Hypothesis testing

We next develop a global testing procedure for the hypothesis in (2.7), then a multiple

testing procedure for the hypotheses in (2.8).
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Algorithm 2 Global testing procedure

1: Compute the test statistics via (2.18).
2: Define the global test,

Ψα = I (J ≥ 2 log p̃− log log p̃+ qα) ,

where qα = − log π − 2 log{log(1 − α)−1}, I(·) is the indicator function, and α is
the pre-specified significance level.

3: Reject the null hypothesis H0 in (2.7) if Ψα = 1.

For global testing, we consider the following test statistic,

J = max
r=1,...,R,j=1,...,2p+2

J2
r,j, where J2

r,j =

([
β̂(r)

]
j

)2

[[
XT

{
Σ̂(r)

}−1

X

]−1
]
j,j

. (2.18)

We then propose a global testing procedure as summarized in Algorithm 2. The test is

built on the asymptotic property of the test statistic J , as we establish in Section 3. In-

tuitively, with some mild dependence conditions, {Jr,j : r = 1, . . . , R, j = 1, . . . , 2p+2}

are close to weakly dependent standard normal random variables under H0. Therefore,

the proposed test statistic J , which takes the form of the maximum of the square of

Jr,j’s, should be close to 2 log p̃ under the null hypothesis, where p̃ = (2p+ 2)R.

For multiple testing, the key is to control the false discovery, and we propose a

multiple testing procedure as summarized in Algorithm 3. Let τ denote the threshold

value such that H0,r,j is rejected if |Jr,j| ≥ τ , r = 1, . . . , R, j = 1, . . . , 2p + 2. Let

H0 = {(r, j) : β
(r)
j = 0, r = 1, . . . , R, j = 1, . . . , 2p + 2} denote the set of true null

hypotheses and let H = {(r, j) : r = 1, . . . , R, j = 1, . . . , 2p + 2}. Then the FDP and
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Algorithm 3 Multiple testing procedure

1: Compute the individual test statistics Jr,j via (2.18), for r = 1, . . . , R, j =
1, . . . , 2p+ 2.

2: Estimate the FDP by

F̂DP(τ) =
2{1− Φ(τ)}p̃∑

(r,j)∈H I(|Jr,j| > τ) ∨ 1
.

3: Compute the threshold value

τ̂ = inf
{
0 ≤ τ ≤ tp̃ : F̂DP(τ) ≤ α

}
, where tp̃ = (2 log p̃− 2 log log p̃)1/2 .

If τ̂ dos not exist, set τ̂ = (2 log p̃)1/2.
4: Reject H0,r,j if |Jr,j| ≥ τ̂ , for r = 1, . . . , R, j = 1, . . . , 2p+ 2.

the FDR are, respectively,

FDP(τ) =

∑
(r,j)∈H0

I(|Jr,j| > τ)∑
(r,j)∈H I(|Jr,j| > τ) ∨ 1

, FDR = E{FDP(τ)}.

We aim to find a threshold τ so that we can reject as many true positives as possible

while controlling the estimated FDP at the pre-specified level α. We note that, since

the set of true nulls H0 is unknown, we estimate |H0| by p̃ under the belief that the nulls

are dominant among the tests. Subsequently, we estimate the numerator in FDP by

2{1− Φ(τ)}p̃ based on normal approximation. We also note that, the number of false

discoveries may not be appropriately estimated if τ̂ exceeds a certain threshold (Xia

et al., 2018). We thus set a range [0, tp̃] for selecting τ̂ , and threshold it at (2 log p̃)1/2

if it is not attained in the range.
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3. Theoretical Properties

3.1 Regularity conditions

We now study the theoretical properties of the proposed estimation and inference meth-

ods. We clarify that, in our asymptotic setting, we let both the number of subjects N

and the number of response variables R to diverge to infinity. We first present a set of

regularity conditions, then examine these conditions in detail.

(C1) Suppose c−1
1 ≤ (NT )−1λmin(X

TX) ≤ (NT )−1λmax(X
TX) ≤ c1, ∥G∥max ≤ c1, and

min1≤i≤N λmin(G
T
iGi) ≥ c−1

1 , for some constant c1 > 0.

(C2) Suppose c−1
2 ≤ λmin(ΣT ) ≤ λmax(ΣT ) ≤ c2, c

−1
2 ≤ λmin(ΣR) ≤ λmax(ΣR) ≤ c2, and

Tλmax(Σζ) ≤ c2, for some constant c2 > 0.

(C3) Suppose there exist at least R entries of [ΣR]r1,r2 , r1 < r2, such that |[ΣR]r1,r2| ≥ c3

for some constant c3 > 0.

(C4) Denote Σ(r1,r2) = diag
(
{[ΣR]r1,r2ΣT}Ni=1

)
, for r1, r2 = 1, . . . , R, r1 ̸= r2, Σ̃

(r1,r2) =

{XT(Σ(r1,r1))−1X}−1XT{Σ(r1,r1)}−1Σ(r1,r2)[{Σ(r2,r2)}−1X]−1[XT{Σ(r2,r2)}−1X]−1, and

Dr = diag[(XT{Σ(r)}−1X)−1], for r = 1, . . . , R. Denote Σ̌(r1,r2) = D
−1/2
r1 Σ̃(r1,r2)D

−1/2
r2 .

Suppose maxr1,r2 maxj1<j2

∣∣[Σ̌(r1,r2)]j1,j2
∣∣ ≤ c4, and maxr1 ̸=r2 maxj1=j2

∣∣[Σ̌(r1,r2)]j1,j2
∣∣ ≤

c4, for some constant 0 < c4 < 1.

(C5) Denote β
(r)
−1 ∈ R2p+q+1 as the sub-vector of β(r) with the first entry µ0,r removed,

and B =
(
β
(1)
−1 , . . . , β

(R)
−1

)
∈ R(2p+q+1)×R. Let sB = ∥B∥0, cB = ∥B∥max, and
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cR = max1≤r≤R ∥β(r)
−1∥22. Let θN,T,R,B = T [{logR/(NT )}1/2 + {log T/(NR)}1/2 +

cR + sBc
2
BTR

−1]. Suppose T (log p̃) θN,T,R,B = o(1) as N,R → ∞.

Condition (C1) imposes some mild bounded eigenvalue requirement on the design

matrix X. In this article, we treat X as deterministic, and similar conditions have been

commonly imposed; see, e.g., Zhang and Zhang (2014). When the design matrix X is

random, we can simply replace this condition with the bounded eigenvalue requirement

on the covariance of X. Moreover, the condition on {GT
iGi, i = 1, . . . , N} is mild, as

each of them is a 2 × 2 matrix. Condition (C2) is placed on the eigenvalues of ΣR

and ΣT , which is relatively mild too, as it requires that most of the variables are not

highly correlated with each other across regions or over the time points. In addition,

the condition on Tλmax(Σζ) ensures the bounded eigenvalue property of the covariance

matrix Σ(r). Condition (C3) naturally holds for a general region-wise dependence struc-

ture, and it is only a sufficient condition for Theorem 1. Condition (C4) requires the

correlations are bounded away from −1 and 1, and basically excludes the singular cases.

Moreover, Conditions (C2) and (C4) are commonly assumed in the high-dimensional

literature (e.g., Bickel et al., 2008; Yuan, 2010; Cai et al., 2014; Liu, 2013; Xia et al.,

2015). Condition (C5) characterizes the mean variations across subjects, regions and

time points. Recall that our covariance estimators in (2.9), (2.11) and (2.13) are not

the usual sample covariances, because the means of the response variables are different

for different subjects, regions and time points. Condition (C5) ensures that our covari-
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ance estimators perform asymptotically the same as the sample covariance estimators

obtained by the i.i.d. centralized error terms. Condition (C5) also imposes some level

of sparsity on B, in that it requires the number of nonzero entries in B and their maxi-

mum magnitude are not too large. On the other hand, we do not impose any particular

sparsity structures on the coefficient matrix B nor the covariances ΣR, ΣT , Σζ . As such,

we do not employ any penalized procedure such as Lasso in our parameter estimation.

For our motivating applications, these regularity conditions all seem reasonable.

Specifically, for the data example in Section 5, we have N = 56 subjects, R = 68

responses, T = 3 time points, p = 4 time-invariant predictors, q = 3 time-variant pre-

dictors, and the time variable, age. Condition (C1) is reasonable, since most of those

predictors are likely to be weakly correlated. Conditions (C2)) to (C4) are suitable too,

since it is expected that the majority of the response variables are weakly correlated

across regions and time points, and those structural-connected ones are moderately

correlated across regions (Mechelli et al., 2005). Finally, Condition (C5) is acceptable,

since the terms T 2(log p̃){logR/(NT )}1/2 and T 2(log p̃){log T/(NR)}1/2 in this condi-

tion are both reasonably small in our setting. Moreover, as N and R grow, (C5) assumes

a decaying value of cR, which is equivalent as assuming a decaying maximum magnitude

cB in our application because both p and q are small. Since it is reasonable to expect

that the difference of mean growth curves between the AD and healthy controls usually

concentrate in a few regions and the magnitude of such difference is usually not too

large, the terms involving cR, cB and sB are reasonable as well.
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3.2 Estimation consistency, false discovery control and power

First, we establish the convergence rate of the covariance matrix estimator Σ̂(r) from

Algorithm 1, which is key for the subsequent size, power and error rate control analyses.

For the asymptotics, we let N and R to diverge to infinity, while we allow T, p, q to

be either fixed or to diverge, and the relations of (N,R, T, p, q) are regulated by (C5).

That is, we have the desired convergence as long as θN,T,R,B in (C5) is of order o(1).

Theorem 1. Suppose Conditions (C1) to (C3) hold, and θN,T,R,B = o(1). Then,

∥Σ̂(r) − Σ(r)∥max = OP(θN,T,R,B) = oP(1).

Theorem 1 implies the estimation consistency. Moreover, we note that, because the

means of yi,r,t are different for all {(i, r, t), i = 1, . . . N, r = 1, . . . , R, t = 1, . . . , T}, the

asymptotics of the classical sample covariance estimator based on i.i.d. observations are

not directly applicable to the sample covariance estimators such as Σ̂1,i, Σ̂2,r1,r2 and Σ̂3,i

in (2.9), (2.11) and (2.13). To obtain the desired convergence rate, we first show in Step

1 of the proof of Theorem 1 the mean variations of the response variables are negligible

across different {(i, r, t)}. We then repeatedly apply an advanced version of Hanson-

Wright inequality (Chen et al., 2023) to derive the convergence rates of [Σ̂R]r1,r2 , Σ̂T ,

Σ̂ζ , and [Σ̂R]r,r in turn, which eventually leads to the convergence rate of Σ̂(r).

Next, we derive the limiting distribution of the test statistic J in (2.18) under

the null hypothesis of the global test (2.7). We show that, (J − 2 log p̃ + log log p̃)
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weakly converges to a Gumbel random variable with cumulative distribution function,

exp{−π−1/2 exp(−ϕ/2)}, under the null. We establish the asymptotics when both the

product NT and p̃ = (2p + 2)R diverge to infinity, which hold automatically when N

and R diverge to infinity.

Theorem 2. Suppose Conditions (C1) to (C5) hold. Then for any ϕ ∈ R,

PH0 (J − 2 log p̃+ log log p̃ ≤ ϕ) → exp
{
−π−1/2 exp(−ϕ/2)

}
, as NT and p̃ → ∞.

Next, we study the asymptotic power of the proposed global test in Algorithm 2.

We consider the following class of regression coefficients {β(r), r = 1, . . . , R},

U(c) =

{
{β(r)

j }(r,j)∈H : max
r,j

|β(r)
j |

[{XT(Σ(r))−1X}−1]
1/2
j,j

≥ c(log p̃)1/2

}
.

By the bounded eigenvalue conditions in (C1) and (C2), the denominator
[
[XT{Σ(r)}−1X]−1

]1/2
j,j

is of order (NT )−1/2. Therefore, the class U(c) includes all coefficient matrices that have

one of the entries with a magnitude of order {log p̃/(NT )}1/2, where Condition (C5)

can be satisfied. As a simple example, {β(r), r = 1, . . . , R} belongs to U(c) if it only

has one nonzero entry, β
(r0)
j0

with (r0, j0) ∈ H, and |β(r0)
j0

| = C{log p̃/(NT )}1/2 for some

large enough constant C > 0. In such a setting, sB = 1, cR and c2B are both of order

log p̃/(NT ), and henceforth Condition (C5) is easily satisfied.

Theorem 3. Suppose Conditions (C1) to (C3), and (C5) hold. Then,
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inf
{β(r)

j }∈U(2
√
2)

P(Ψα = 1) → 1, as NT and p̃ → ∞.

We immediately see that, based on this theorem, if we set the constant c as 2
√
2,

then our proposed global test enjoys a full power asymptotically.

Finally, we establish the error rate control of the proposed multiple testing pro-

cedure in Algorithm 3. We introduce one more regularity condition (C6), which en-

sures that τ̂ is attained in the range [0, (2 log p̃ − 2 log log p̃)1/2]. We note that Con-

dition (C6) only requires a few entries of {β(r)
j } to have a magnitude of the order

{log p̃}(1+ρ)/2/(NT )1/2, and is thus mild. Moreover, when this condition is not satisfied,

the asymptotic FDR control can still be obtained but more conservatively.

(C6) Denote Sρ =

{
(r, j) ∈ H :

{
β
(r)
j

}2

/
[
{XT(Σ(r))−1X}−1

]
j,j

≥ (log p̃)1+ρ

}
. Sup-

pose |Sρ| ≥ {1/(π1/2α) + δ}(log p̃)1/2 for some ρ > 0 and δ > 0.

Theorem 4. Suppose Conditions (C1) to (C6) hold, and p̃0 = |H0| ≍ p̃. Then,

lim
(NT,p̃)→∞

FDR

αp̃0/p̃
= 1, lim

(NT,p̃)→∞

FDP (τ̂)

αp̃0/p̃
= 1 in probability.

3.3 Extension to sub-Gaussian distribution

In our GCM model, we have assumed that the errors follow a Gaussian distribution as

in (2.3). We now extend it to the sub-Gaussian distribution. More specifically, instead

of assuming that Σ
−1/2
T ϵiΣ

−1/2
R and Σ

−1/2
ζ ζi,r have i.i.d. Gaussian entries, we assume they

have i.i.d. sub-Gaussian entries, and study the corresponding theoretical properties. We
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begin with a regularity condition.

(C7) Suppose log p̃ = o[{N/max(p, q)}1/4], ∥X∥max = O(1), E{exp(νϵ2i,r,t)} ≤ c5, and

E{exp(νζ2d,i,r)} ≤ c5, for some constants ν, c5 > 0, i = 1, . . . , N , r = 1, . . . , R,

t = 1, . . . , T , and d = 0, 1.

Condition (C7) is mild, as both p and q are small in our targeted settings, and the

bounded design matrix is also reasonable.

Next, we establish the theoretical properties under the sub-Gaussian scenario.

Theorem 5. Suppose Condition (C7) holds.

(i) Suppose the same conditions in Theorem 2 hold. Then, for any ϕ ∈ R,

PH0 (J − 2 log p̃+ log log p̃ ≤ ϕ) → exp
{
−π−1/2 exp(−ϕ/2)

}
, as p̃ → ∞.

(ii) Suppose the same conditions in Theorem 3 hold. Then,

inf
{β(r)

j }∈U(2
√
2)

P(Ψα = 1) → 1, as p̃ → ∞.

(iii) Suppose the same conditions in Theorem 4 hold, and (log p̃)7+ε = O{N/max(p, q)}

for some small constant ε > 0. Then,

lim
p̃→∞

FDR

αp̃0/p̃
= 1, lim

p̃→∞

FDP (τ̂)

αp̃0/p̃
= 1 in probability.
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We remark that, under the sub-Gaussian condition, our test statistic can be written

as a sum of 2N +NT random variables with unequal variances. In comparison to the

well established normal approximation where the test statistic can be expressed as the

sum of i.i.d. sub-Gaussian random variables, our case is more challenging, as we need

to perform truncations on those 2N+NT non-identically distributed random variables,

which leads to a more complicated normal approximation on the sum of those variables.

See the proof of Theorem 5 for more details.

4. Simulation Studies

4.1 Simulation setup

We study the finite-sample performance of the proposed method. We also compare with

a simple alternative solution that fits one response variable at a time using the restricted

maximum likelihood (REML) approach. That is, we obtain the coefficient estimates

using REML, compute the test statistic Jr,j following (2.18), and carry out the global

and multiple testing procedures accordingly. We note that REML is widely employed

in classical GCM modeling. Moreover, we have chosen not to numerically compare

with the solutions based on high-dimensional linear mixed-effects model such as Li

et al. (2022), for several reasons. First, this family of methods all assume i.i.d. random

errors, ignore the spatial correlations, and target the inference for a single fixed-effect

coefficient. Second, their estimation does not effectively pool the sample information
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across times or regions as our method does. Finally, their test statistics rely on the cross-

validated estimation of a huge proxy covariance matrix with dimension RTN × RTN ,

and the subsequent (2p + q + 2)R-dimensional debiasing procedure requires running

Lasso (2p + 2)R times. As such, the involved computation is prohibitively expensive

and extremely slow.

We simulate the model following the setup in (2.5) and (2.6). We set N =

{100, 200}, T = {4, 8}, R = {50, 100}, p = 10, and q = 2. We draw gi,t randomly from

Uniform[0, 1], and generate each entry of xi and zi,t independently from Normal(0, 1),

for i = 1, . . . , N , t = 1, . . . , T . We randomly set 5% of the coefficients {ξr} as non-zero,

which equal 0.2 in the global testing case and 0.5 in the estimation evaluations and the

multiple testing case.

We consider two structures for the temporal covariance matrix ΣT , an autoregres-

sive structure and a moving average structure. Specifically, we begin with [Σ
′
T ]t1,t2 =

0.4|t1−t2| for 1 ≤ t1, t2 ≤ T , and [Σ
′
T ]t1,t2 = 1/(|t1 − t2| + 1) for |t1 − t2| ≤ 3 and 0

otherwise. We next set Σ
′′
T = Σ

′
T ⊙ VT , to adopt different variances among the time

points, where ⊙ is the Hadamard product, and VT = uTu
T
T , with uT = (1, 2, 3, 4)T for

T = 4, and uT = (1, 2, 3, 4, 1, 2, 3, 4)T for T = 8. We then set ΣT = {T/tr(Σ′′
T )}Σ

′′
T , so

that tr(ΣT ) = T . We also consider two structures for the spatial covariance matrix ΣR.

Specifically, we begin with the precision matrix Ω
′
R, and consider a hub graph where

the nodes are evenly partitioned into disjoint groups with 5 nodes each while there

exists one node connecting all the other nodes inside each group, and a small-world
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graph, with one starting neighbor and 5% probability of rewiring. We set the diago-

nal values to one, and draw the non-zero entries of the off-diagonal values randomly

from Uniform[−0.6,−0.2] ∪ [0.2, 0.6]. We next set Ω
′′
R = (Ω

′
R + δRIR)/(1 + δR), where

δR = max{0.05,−λmin(Ω
′
R)}. We then set ΣR = {R/tr(Ω

′′−1
R )}Ω′′−1

R . Finally, we set the

random departure covariance ΣΨ = T−1 ( 6 3
3 9 ).

We also carry out additional simulations to evaluate the performance of our pro-

posed method when the error terms in (2.3) follow a non-Gaussian distribution, when

the Kronecker product structure in (2.3) does not hold, and when R is much larger

than N . We report those results in the Supplementary Material.

4.2 Estimation results

We first evaluate the empirical performance of the parameter estimation. We vary

the proportion of the non-zero coefficients {[ηr]j}, i.e., ω = 1− |H0|/{(2p+ 2)R} =

{0.03, 0.05}, and set the non-zero entries of {[ηr]j} equal to 0.5. We repeat the exper-

iment 200 times. To evaluate the estimation accuracy of the covariance matrix Σ(r),

we report the average and standard error of the bias criterion
{
[Σ̂(r)]b1,b2 − [Σ(r)]b1,b2 :

1 ≤ r ≤ R, |b1 − b2| ≤ T
}
, as Σ(r) and Σ̂(r) are both block-diagonal matrices. To eval-

uate the estimation accuracy of the regression coefficient β(r), we report the average

and standard error of the bias criterion
{
β̂
(r)
j − β

(r)
j : 1 ≤ r ≤ R, 1 ≤ j ≤ 2p + 2

}
.

We report the results for T = 4 in Table 1, and the results for T = 8 in Table S1

of the Supplementary Material in the interest of space. We observe from these tables
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Table 1: Parameter estimation: the bias and standard error based on 200 data replica-
tions for the autoregressive and moving average temporal structures with T = 4.

Temporal structure Autoregressive Moving average

ω = 0.03 ω = 0.05 ω = 0.03 ω = 0.05

R N accuracy hub small hub small hub small hub small
Bias and SE of covariance estimation

50
100

Bias 0.0798 0.0653 0.1487 0.1411 0.0817 0.0657 0.1467 0.1455

SE 0.5043 0.3680 0.5206 0.3879 0.4886 0.3727 0.5054 0.3941

200
Bias 0.0742 0.0669 0.1205 0.1151 0.0748 0.0664 0.1205 0.1151

SE 0.2502 0.2175 0.3255 0.2328 0.2587 0.2291 0.3229 0.2444

100
100

Bias 0.0935 0.0887 0.1540 0.1484 0.0960 0.0909 0.1554 0.1504

SE 0.4200 0.3787 0.4767 0.4531 0.4211 0.3839 0.4718 0.4520

200
Bias 0.0831 0.0742 0.1342 0.1328 0.0838 0.0747 0.1336 0.1331

SE 0.3638 0.2244 0.2666 0.2401 0.3538 0.2363 0.2753 0.2520

Bias and SE of coefficient estimation

50
100

Bias 0.0002 -0.0006 0.0005 0.0001 0.0003 -0.0006 0.0005 0.0000

SE 0.1682 0.1688 0.1688 0.1686 0.1672 0.1682 0.1677 0.1675

200
Bias -0.0002 0.0002 0.0001 0.0003 -0.0002 0.0002 0.0001 0.0003

SE 0.1103 0.1101 0.1106 0.1106 0.1097 0.1094 0.1099 0.1099

100
100

Bias 0.0002 0.0000 0.0005 -0.0003 0.0001 0.0000 0.0005 -0.0003

SE 0.1688 0.1688 0.1689 0.1689 0.1677 0.1678 0.1678 0.1678

200
Bias 0.0000 -0.0001 -0.0001 -0.0001 0.0000 -0.0001 -0.0001 -0.0001

SE 0.1108 0.1104 0.1104 0.1106 0.1102 0.1097 0.1097 0.1099

that, the bias and standard error of the covariance estimation are larger for a larger ω,

while those of the regression coefficient estimation do not change much. This matches

our theoretical convergence rate in Theorem 1, as a larger ω represents a larger sB

and cR, thus a larger θN,T,R,B. In addition, as the sample size increases, both the bias

and the standard error of the coefficient estimation decrease. We also briefly comment

that the biases associated with covariance estimation and coefficient estimation differ

in magnitude. However, our intention here is not to directly compare these two types
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Table 2: Global testing: the empirical size and power in percentage based on 2000
replications for the autoregressive and moving average temporal structures with T = 4
and 8, and the significance level α = 0.05.

T = 4 T = 8

Empirical Size Empirical Power Empirical Size Empirical Power

R N Method hub small hub small hub small hub small
Auto-regressive temporal structure

50
100

Proposed 5.6 4.2 20.5 15.7 5.4 6.0 52.4 58.1

REML 9.5 9.8 25.1 23.6 11.1 9.0 49.6 53.0

200
Proposed 4.3 5.0 58 55.1 5.0 5.9 99.4 99.9

REML 6.0 6.2 56.1 55.5 6.9 7.0 98.6 98.3

100
100

Proposed 4.3 4.4 17.7 17.3 5.8 5.0 74.5 65.3

REML 9.8 11.1 27.4 29 12.2 10.6 69.2 67.6

200
Proposed 4.3 3.9 61.1 67.1 5.1 4.8 100.0 99.9

REML 7.0 7.6 65.4 68.3 7.2 7.0 99.7 99.4

Moving average temporal structure

50
100

Proposed 5.6 4.2 21.2 14.6 6.2 7.2 54.9 64.1

REML 9.7 9.2 24.6 23.4 10.8 10.0 47.8 51.7

200
Proposed 4.7 4.7 58.3 54.9 5.1 6.1 99.5 99.8

REML 6.1 5.9 54.8 54.2 6.9 7.6 97.9 97.4

100
100

Proposed 4.7 4.0 17.7 16.4 6.7 5.7 79.0 68.3

REML 10.0 11.1 27.4 28.0 12.2 11.1 66.6 65.1

200
Proposed 4.2 3.7 61.1 67.2 5.3 5.2 100.0 100.0

REML 7.0 7.9 63.7 66.4 7.6 7.1 99.4 99.0

of bias. Instead, we examine how each bias changes as ω increases. We see that the

bias of covariance estimation increases as ω increases, whereas the bias of coefficient

estimation remains relatively stable across different values of ω.

4.3 Global testing results

We next evaluate the performance of the global testing procedure. To evaluate the

size of the test, we set ω = 0, whereas to evaluate the power of the test, we set
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ω = 0.05 and set the non-zero entries of {[ηr]j} equal to 0.2. We set the significance

level α = 0.05. Table 2 reports the empirical size and power, in percentages, based

on 2000 data replications. We see that the empirical size is close to the significance

level under all settings, especially for a larger sample size N . In contrast, the testing

method based on REML has serious size inflation in most settings. For those cases

where REML controls the size relatively well, our method achieves a better power. In

addition, we also observe that the proposed method achieves a notable power gain when

the sample size N or the number of time points T increases, which again agrees with

our theoretical findings.

4.4 Multiple testing results

We next evaluate the performance of the multiple testing procedure. We adopt the

same setting as in Section 4.2, and set the pre-specified FDR level α = 0.1. We report

the empirical FDR and power in Table 3 based on 200 data replications with T = 4,

and in Table S2 of the Supplementary Material with T = 8. We see from these tables

that, for the empirical FDR, the proposed method has FDR well under control across

all settings, while the testing method based on REML has some FDR inflation for

the cases with a small sample size and a large dimension, e.g., when N = 100 and

R = 100. For the empirical power, the proposed method is in general more powerful

than REML, especially when both methods have the FDR under control. We also see

that the empirical power of our method increases and the power gain is more apparent
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Table 3: Multiple testing: the empirical FDR and power in percentage based on 200
data replication for the autoregressive and moving average temporal structures with
T = 4 and the FDR level α = 0.1.

Temporal structure Autoregressive Moving average

ω = 0.03 ω = 0.05 ω = 0.03 ω = 0.05

R N method hub small hub small hub small hub small

Empirical FDR

50
100

Proposed 6.82 9.23 7.47 7.07 7.06 7.02 7.18 7.01

REML 9.46 8.85 11.83 12.34 9.35 8.27 11.76 12.58

200
Proposed 7.65 7.69 7.52 7.44 7.86 7.66 7.33 7.47

REML 10.42 10.67 10.99 11.18 10.39 10.51 10.78 11.23

100
100

Proposed 7.05 7.85 6.78 6.85 7.02 7.60 6.68 6.73

REML 12.48 13.18 11.74 11.96 12.53 13.31 11.78 11.89

200
Proposed 7.17 7.99 6.85 6.56 7.33 8.07 6.79 6.68

REML 10.57 10.94 10.58 10.25 10.39 10.89 10.59 10.22

Empirical Power

50
100

Proposed 34.98 35.98 48.43 47.04 37.09 35.68 48.71 47.48

REML 36.55 34.42 49.78 48.84 35.89 33.32 49.54 48.55

200
Proposed 91.52 91.67 90.68 92.54 92.21 92.15 91.41 93.01

REML 89.14 88.80 89.20 90.84 89.82 89.42 89.85 91.29

100
100

Proposed 39.76 40.09 47.05 46.87 40.29 40.54 47.49 47.36

REML 41.23 41.44 49.55 49.33 41.61 41.38 49.61 49.59

200
Proposed 90.45 91.20 92.53 93.10 90.95 91.74 93.05 93.59

REML 88.70 88.34 91.32 91.60 89.31 89.15 91.89 92.06

when N or T increases.

5. Longitudinal Neuroimaging Analysis

Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder characterized

by progressive impairment of cognitive functions, then global incapacity and ultimately

death. It is the leading form of dementia, and is currently affecting 5.8 million American

adults aged 65 years or older. Its prevalence continues to grow, and is projected to
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reach 13.8 million by 2050 (Alzheimer’s Association, 2020). It is thus crucial to better

understand, diagnose, and treat this disorder (Jagust, 2018). We analyze a dataset

OASIS-2 from Open Access Series of Imaging Studies (www.oasis-brains.org). The

data consists of a longitudinal collection of 150 subjects aged 60 to 96. Each subject was

scanned on two or more visits, separated by at least one year for a total of 373 imaging

sessions. For each subject, multiple T1-weighted MRI scans measuring brain gray

matter volume were obtained. The subjects are all right-handed and include both men

and women. Among them, 72 were characterized as nondemented throughout the study,

and 64 were characterized as demented at the time of their initial visits and remained

so for subsequent scans (Marcus et al., 2010). We process the data and only include in

our data analysis the subjects with T = 3 time points and meeting the quality control

criteria. This results in N = 56 subjects. We then further process the MRI images and

parcellate the brain into R = 68 regions-of-interest (ROIs) using the Desikan-Killiany

atlas (Desikan et al., 2006). For each subject, we also include the binary AD status,

sex, education, and socioeconomic status as the time-invariant covariates with p = 4,

and the mini-mental state examination score (Folstein et al., 1975), atlas scaling factor

(Buckner et al., 2004), and estimated total intracranial volume (Buckner et al., 2004)

as the time-variant covariates with q = 3.

We apply the proposed method with the pre-specified FDR level α = 0.05. The

residual plots and the QQ-plots in Section C.5 of the Supplementary Material suggest

that the GCM model seems to be a reasonable choice for this data. Our test identifies
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Figure 1: Scattershot for grey matter volume versus age in three identified brain regions.
The short lines denote the individual growth curves of 20 randomly selected subjects
from both the AD group and the healthy group. The long bold lines denote the overall
growth curves of the two groups.

50 significant coefficients among the total of 680 coefficients. We focus on the ones asso-

ciated with the binary AD status, and three brain regions are identified, i.e., the lingual

gyrus of the left hemisphere, the lingual gyrus of the right hemisphere, and the banks of

the superior temporal sulcus of the right hemisphere. Figure 1 plots the estimated mean

growth curves for individual subjects and the overall trend in those identified regions.

We see that, for the lingual gyrus of the left hemisphere and the banks of the superior

temporal sulcus of the right hemisphere, both the intercept and slope coefficients differ

significantly between the groups of subjects with AD and without, suggesting different

starting values as well as different decaying rates. Meanwhile, for the lingual gyrus

of the right hemisphere, only the slope coefficient differs significantly between the two

groups, suggesting a different decaying rate for the AD patients. These identified brain

regions also agree with the AD literature well. In particular, the lingual gyrus is lo-

cated in the occipital lobe, primarily in the visual processing areas of the brain. Its
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primary functions include visual processing, visual memory, and visual recognition. It

is found associated with emotional processing and visual hallucinations under certain

neurological conditions. The superior temporal sulcus is located within the temporal

lobe. It plays a significant role in a variety of cognitive and perceptual functions, in-

cluding processing of auditory and speech information, narrative comprehension, social

cognition, among others. Yang et al. (2019) found that the cortical thickness of both

lingual gyrus regions demonstrate significance between the AD patients and healthy

controls. Guo et al. (2020) found that banks of the superior temporal sulcus is the

highest beta amyloid affected region, where beta amyloid is one of the most prominent

pathological proteins of AD (Jack et al., 2013).

6. Discussion

In this article, we have proposed a new set of estimation and inference procedures

for the high-dimensional multi-response GCM. It fills an existing gap in the literature

and helps address an important family of scientific questions studying the longitudinal

growth trend. Meanwhile, the methodological innovations mainly lie in the proposed

multi-step estimation approach and the establishment of the proper convergence rates

of the covariance estimators. The former enables us to effectively utilize the data

information, while the latter allows us to obtain the desired theoretical guarantees for

the proposed tests.

There are several potential extensions of the current proposal. Due to our targeting
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motivation examples, we consider a large number of response variables, but a relatively

small number of predictor variables in our setting. It is possible to extend to high-

dimensional predictors as well. Moreover, we focus on a linear type model, which we

believe is a good starting point. It is also warranted to consider a nonlinear type GCM.

Finally, in this article, we focus on the balanced data setting, where each subject has

the longitudinal data collected at the same time points. Such a setting is commonly

encountered in numerous applications. It also simplifies the methodology development,

whereas the resulting solution is already highly nontrivial. Nevertheless, it is worthwhile

to study the unbalanced data setting as well. Toward that end, we may impose a

Kronecker covariance structure for each individual subject, and modify some regularity

conditions. A full investigation of these extensions are beyond the scope of this article,

and we leave them as future research.

Supplementary Material

The Supplementary Material contains all technical proofs of the theoretical results and

additional numerical results.
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