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REMATCHING ESTIMATORS FOR

AVERAGE TREATMENT EFFECTS

Lam Lam Hui and Kin Wai Chan

Department of Statistics and Data Science, The Chinese University of Hong Kong

Abstract: Matching estimators are widely applied in practice for their great in-
tuitive appeal. However, simple matching estimators with a fixed number of
matches (My) are generally inefficient. In this article, we propose matching es-
timators with a variable number of matches to gain efficiency via rematching.
Rather than increasing My to gain precision, which introduces an increase in
bias, the key is to rematch the treated units from the opposite direction to uti-
lize unmatched control units. Our rematching estimators are applicable to both
the average treatment effect and its counterpart for the treated population. The
proposed rematching estimators are proven asymptotically valid and uniformly
more efficient than matching estimators with the same M. Simulation results
confirm that the proposed rematching estimators substantially improve the sim-
ple matching estimators in finite samples. As an empirical illustration, we apply

the estimators proposed in this article to the National Supported Work data.

Key words and phrases: Average treatment effects, causal inference, potential

outcome.
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1. Introduction

Matching estimators are widely used to estimate the average effects of a pro-
gram, medical treatment, or policy intervention by empirical researchers

because of their great intuitive appeal. In contrast to other studies on

propensity score matching estimators (Rosenbaum and Rubin) [1983)), the

term ‘matching estimator’ in this article is reserved for estimators that
match each unit to a number of units in the opposite treatment group by

multivariate distance matching. Under the setting of matching with re-

placement, Abadie and Imbens| (2006, 2008, [2011}, 2012) conducted various

research on simple matching estimators with a fixed number of matches.
While simple matching estimators are commonly used in practice, research

has shown that some undesirable properties exist for simple matching es-

timators (Abadie and Imbens| |2006). In contrast to some regression ad-

justment estimators (e.g., Hahn (1998)); Heckman et al.| (1998); Imbens|

et al. (2005)); Chen et al. (2008)) and weighting estimators (e.g.,

and Thompson! (1952); Robins and Rotnitzky| (1995)); Hirano et al.| (2003));

(2005)), matching estimators may not be fully efficient (Abadie

and Imbens|, 2006). According to a recent work by [Lin et al. (2023)), when

matching is performed on a vector of covariates, allowing M, — oo with the

sample size leads to the semiparametric efficiency of bias-corrected match-
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ing estimators if the outcome model is appropriately specified. However,
when the outcome model is misspecified, increasing the number of matched
units through matching in the original direction may introduce matches
of lower quality leading to a bias increase, which may render the causal
interpretation of the estimates invalid. It motivates us to develop a new
matching procedure that better utilizes observations and gains efficiency
without increasing the bias too much.

The major contribution of this article is that we can achieve variance
reduction by incorporating an additional rematching step with a small value
of My, as opposed to using a much larger M, in a standard matching estima-
tor. The use of a smaller M, ensures high-quality matching units, leading to
a smaller bias. Based on a landmark paper by |Abadie and Imbens| (2006]),
which provided the first large sample analysis of simple matching estima-
tors, we show the asymptotic validity of our rematching-based estimators
when matched on a scalar covariate. By incorporating a bias correction
method by |Abadie and Imbens (2011)), our method can be asymptotically
valid even for matching based on a vector of covariates. As the simulation
results show, our bias-corrected rematching estimators lead to a substan-
tial reduction in variance compared with bias-corrected simple matching

estimators when the bias is negligible after correction and have a lower
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bias when the outcome model is misspecified. In summary, our proposed
rematching estimators with a small M, are better alternatives to the match-

ing estimators with a large M,.

2. Background and setup

Matching estimators are often used to estimate treatment effects in obser-
vational studies where experimental data are unavailable. And the now
dominant approach to analysing causal effects in observational studies was
formulated by Rubin (1973aybl |1974, 1977, |1978). For N observed units,

indexed by ¢ = 1,..., N, the ith outcome variable is

Y;(0) if D; = 0;
Y, =

Yi(1) if D; =1,
where D; indicates the treatment received (D; = 1 if treated and D; = 0
otherwise), and Y;(d) is the potential outcome under D; = d. The sizes of
the control and the treated groups are Ny and Ny, respectively, with Ny +
N; = N. A vector of covariates X; is also observed for the ¢th unit. Based
on {(Y;, Ds, X;)}Y,, we conduct the inference on the average treatment
effect

7= E{Yi(1) - Yi(0)},
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and its counterpart for the treated population defined as
" = E{Y;(1) = Y;(0) | D; = 1}

In this article, we consider continuous covariates only and ignore the
possibility of ties. Let 1{-} be the indicator function and ||-|| be the Eu-
clidean norm. By simple matching estimators, we estimate the potential

outcomes by

p

) Y; if D, =0;
Vi(0) =
\Mofl ZjGJMO(i) Y; lf DZ = 1,
(
-1 : . N
gy = J Mo Zoeawo Y D=0
Y; if D; =1,
\
where
T () = {51(0), - -, Jane ()} (2.1)

is the set of indices corresponding to the closest My matches for the unit ¢
in the opposite treatment group, i.e., j,,(¢) is the index j € {1,..., N} that

solves D; =1 — D; and

> YIX - Xl <X - X} =m (m=1,..., My).
0:Dp=1—D;
Let Ky, (i) denotes the number of times unit 7 is matched, i.e.,

N

K (i) = 3140 € Ty (0)). (2.2)

(=1
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The average treatment effects are estimated by

fo = %Zfi(l) —Y;(0) = %Z(2Di_ 1) {1+ K]A@(i)})/i (2.3)

i=1 0
M 1<i<N l Z Ny i=1 Z v My Z

D;=1

To remove the bias of matching, |Abadie and Imbens (2011) combined
matching with a bias correction proposed in Rubin| (1973b) and Quade
(1982), which produces bias-corrected matching estimators 7ope and 74y,
Despite being commonly used by practitioners, the matching estimators
7o and 7¢ are not free of problems. It is found that when there is a larger
reservoir of potential controls than treated and M, is not large enough, the
matching estimators are inefficient since some control units will likely be
discarded, leading to an efficiency loss. However, increasing M, for precision
may repeatedly include far away units as low-quality matches, accompanied
by a significant bias increase if the bias is not well-corrected; see Figure [I]
It thus motivates us to revisit the matching procedure and propose a new
generation of matching estimators to gain efficiency without increasing the

bias too much through better utilization of unmatched control units.
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Figure 1: An example of the simple matching procedure that finds matches
from the controls (triangles) for each treated unit (circles) with the hor-
izontal axis and the vertical axis representing the scalar covariate X and
the outcome Y, respectively. The markers represent the values of (X;,Y;),
1=1,...,13. We set My = 5 so that each control is matched at least once.
When 7! is the estimand of interest, the matching results are represented

by dotted loops.

3. Rematching estimators

3.1 A matching-and-rematching procedure

We propose rematching estimators to avoid efficiency loss due to points dis-
carding when there is a large reservoir of potential controls. The efficiency
gain is obtained without increasing the bias too much by rematching the

treated units from an opposite direction. The discussion in this section is



Rematching Estimators 8

Y Y
/2"\ 3,’—*\ R

II \\\ 9 ', \‘ \\

1,- T . A | Y , Y

h A TEE B R E / \
N 'S5 a7 ,IA A \ A — N A
I l‘A ! 1 10 % | [ \ ,'
v 4 \ I' Al \ I 1 A I
\\ A \\A, II 11 A,: \\ X A
\ ’,.16 L N ,/12 s R ,,'

X X

Figure 2: An example of the matching-and-rematching procedure that finds
matches from the controls (triangles) for each treated unit (circles) with the
horizontal axis and the vertical axis representing the scalar covariate X and
the outcome Y, respectively. The markers represent the values of (X;,Y;),
i =1,...,13. When M, = 3 and 7! is the estimand, the results of the
first and the second matching are represented by dotted and solid loops,

respectively.

based on 7'. Because often, matching estimators have been used when (1)
the interest is in 7/, and (2) a large reservoir of potential controls is available
(Imbens and Wooldridge, [2009)).

Figure [2|is a visualization of the whole matching process that produces
our proposed estimators. After the first matching, which is the simple
matching, a dotted loop will cover both a control unit ¢ and a treated unit ¢

if the unit ¢ is matched to unit ¢ in the matching, e.g., the 1st treated unit
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is matched to the 4th, 5th, and 6th controls if My = 3. However, no dot-
ted loops will cover unit ¢ if it remains unmatched after the first matching,
e.g., the 8th, 9th, and 10th units. When there is a large reservoir of po-
tential controls, some controls will likely be discarded without being used,
leading to an efficiency loss. To gain efficiency, we propose to rematch the
treated units after the first matching by matching those unmatched controls
to them, which means we do the rematching from an opposite direction.
Instead of performing My-nearest neighbour search for each fixed treated
unit as in the first matching process, we find only the nearest neighbour
for each fixed unmatched control. Because though matching for unmatched
points can provide efficiency gain, those unmatched points are generally not
matches of good quality and should not be overused. The final matching
results after rematching are in the right panel of Figure [2l As an example
of the rematching results represented by solid loops, the 9th and 10th units
are rematched to the 3rd unit which is the closest to the 9th and the 10th
units.

The rematching step provides a channel to extract additional informa-
tion from the observations that are originally unused. Intuitively, it has
two appealing features. First, the rematching step utilizes more observa-

tions that may lead to a reduction in variance. Second, the rematching step
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tends to match higher-quality observations in the opposite direction than
lower-quality matches in the original matching direction. Consequently,
by construction, the resulting estimator has the potential to strike a good
balance between variance and bias.

Regarding the choice of My, “little is known about the optimal number
of matches, or about data-dependent ways of choosing it” (Imbens and
Wooldridge, 2009)). It is suggested that people fix M, at one when using
rematching estimators on finite samples as empirical researchers typically
do when using matching estimators. In the asymptotic context, increasing
My with the sample size, which shares a similar idea to that of |[Lin et al.
(2023)) is advisable for rematching estimators. However, we do not suggest
a diverging M, considering the large bias when the outcome model is not
well-specified. More attention is attached to the particular choice of My =1

in this article as our simulated data and real data are of small sample sizes.

3.2 Main proposal

Let () be an empty set. Every unmatched unit is matched to its nearest

neighbour with the index

jl(l) if KMO(i) = 0;
\Z‘e(i) = (31)

0 if Ky, (i) # 0.
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Let M.,e(¢) be the number of times unit ¢ is matched to unmatched units,
ie.,

N

Mio(£) = 1{t € To(i)}. (32)

=1

The rematching process increases the number of matched samples in the
control group by matching each treated unit ¢ to a set of controls of a
variable size

M(ﬁ) = MO + Mre(€>7

where M is the fixed number of nearest neighbours found in the first match-
ing and M,(¢) is the variable number of unmatched units matched to unit ¢
in the rematching. Then, an equal matching weight of 1/M (¢) will be given
to all control units that are matched to unit ¢, which deviates the matching
weight of those M (¢) controls from 1/M; or 0 to a non-zero variable value;
see Remark [I We now define the weighted version of the total number of

times the unit 7 is matched to treated units as

K@) =Y 1{ie JMO(K)}m

My
Mre(xﬂe@)) + MO

+1{K, (i) = 0} (3.3)

so that K (i)/My is the total matching weight assigned to unit 4. If there is
¢ € [1, N] such that 1{i € Ty, (0)} = 1, or equivalently, Ky, (i) # 0, then

unit ¢ is matched in the first matching, and after rematching, K (i)/M, =
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S i € Ty (0)}/{Myo(€) + My}. Otherwise, the originally unmatched
unit ¢ will have a matching weight of 1/{M,e(T:e(7))+ Mo} as it is rematched
to unit Ji(2). Define the set of indices of unmatched units that unit ¢ is

rematched to as
Lo())={le{l,...,N}:i€ T(l)}
The set of indices of units that unit 7 is matched to is then given by
J (1) = T, (1) U Ly (7).

The following proposition gives an equivalent form of K (), which is concise

and accessible.

Proposition 1. The term K(i) (i =1,...,N) in can be equivalently

computed as

al M,
K@)=> 1{ie J(0)}—=.
() =321 € 703
Under the proposed matching-and-rematching scheme, the potential

outcomes are estimated as

,(0) =
- M) Y jeqw Y if Di=0;
Yi(1) = JET(4)
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Remark 1. Besides giving an equal weight of 1/M(¢) to controls matched
to unit ¢, there are some possible methods to treat the M, matches and the
M,(¢) matches differently, which prevents the rematching process from in-
corporating large biases produced by matches of poor quality. For instance,
we may use a kernel function on the M (¢) matches (or all matches) to
give larger weights to controls with smaller distances. Since it is beyond
the scope of this article, we leave this technical modification for future

study.

Our proposed rematching estimators for average treatment effects 7 and

7t are given by
%:iEN Y;(1) — Y;(0) 2 1 > Y= Y;(0)
N & 1 (2 9 N K3 (2 7

respectively. Both of which average within-match differences in the poten-
tial outcome between the treated and the control units. Proposition [2] below

provides equivalent forms of 7 and 7.

Proposition 2. The rematching estimators can be equivalently written as

7= %Z(QDi— 1) {1+ [XZ))}Y (3-4)
%t:Nilz{Di_a—Di)l;Z)}n (3.5)

i=1
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Denote p(d,z) = E(Y | D = d, X = z). When the bias correction is
needed, we follow the study of Abadie and Imbens (2011) and estimate the

bias as follows:

1 L (2D; —
B= NZ e Z {#(1 = Di, Xi) = (1 = D, X;)},
i=1 JE€EITMm (%)
1 D
Bl = : (0, X;) 0, X,
zM@ S 4il0.X) - (0. %)}
=1 JEIM(7)

where fi(d,z) (d = 0,1) is a non-parametric series regression estimator

estimating p(d, x). Then the bias-corrected rematching estimators are

A

Foe=7—DB, 7. =7%"-B"

Algorithm [I] summarizes the procedure that produces our proposed re-
matching estimators. An extra bias correction step may be needed de-

pending on the data.

4. Asymptotic properties

4.1 Decomposition and bias analysis

Let (Y;, X;, D;),i =1,..., N, be independent and identical copies of (Y, X, D).
Denote 02(d,z) = var(Y | D = d,X = z). Also denote the residual as

=Y, — n(D;, X;) for each i. We first decompose 7 — 7 as

F—7={7(X)—1}+ R+ B, (4.1)



Rematching Estimators

Algorithm 1: Matching-and-Rematching Algorithm

Data: Z = {(Y;, D;, X;)}Y, and M,.
Result: 7* and 7.

1 Step 1 (Matching step): For i € {1,..., N}, perform My-nearest
neighbour search to find Jiy, (i) defined in (2.1)).

2 Step 2 (Weighting step): For i € {1,..., N}, compute the number
of times unit ¢ is matched, i.e., Ky, (i) defined in (£2.2)).

3 Step 3 (Rematching step): For i € {1,..., N}, find the index of the
nearest neighbour for potentially unmatched unit ¢ as in (3.1)).

4 Step 4 (Re-weighting step): For ¢ € {1,..., N}, obtain the number
of times unit ¢ is matched to unmatched units as in . For
i€{l,...,N}, obtain K (i) defined in (3.3).

5 Step 5: Estimate 7 and 7¢ by rematching estimators defined in

and @3).

where
7() = 3 YA X)) — (0, X)),

R= %i(wi—m{u };Z)}e
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Here, 7(X) is the average conditional treatment effect, R is a weighted
average of the residuals, and B is the conditional bias relative to 7(X).
The decomposition (4.1]) is also employed by |Abadie and Imbens| (2006)).

Similarly, we can decompose 7t — 7t as
7t = {ft(X) — Tt} + R+ B,
where

(X) = Nil D Dip(1L, Xi) = (0. X)),

N

R' = NL]-Z{DZ -1 —Di>[§g)}€i,

i=1

B = 5 0 5 2 {H0.X) ~ 0 (0.,))

=1 JEJT(4)

All asymptotic results are stated as N — oo unless otherwise stated. Regu-
larity conditions for our asymptotic theory are included in the supplement;
see Assumptions S1-S6.

Let X C R* be the support of X and X, C R* be the support of X given
D = 0. We establish bounds on the stochastic order of the conditional bias

terms as follows.
Theorem 1 (Conditional Bias). Suppose Assumption S1 holds.

1. If Assumption S2 holds and x — u(d,x) (d = 0,1) is Lipschitz con-

tinuous on X, then B = O,(N~YVk).



Rematching Estimators 17

2. If Assumption S3 holds and x — p(0,x) is Lipschitz continuous on

Xy, then Bt = O,(N; '').

The theorem above shows that the bias of our proposed rematching
estimators is of the same order as that of simple matching estimators, which
makes the causal interpretation of our proposals as credible as that of simple
matching estimators. Moreover, Theorem |[l| has a great impact on the
asymptotic normality of rematching estimators.

From part 1 of the theorem, B = O,(N~') when the dimension of the
continuous covariate is k = 1. As we shall see in Section , NYH7(X) —
7} = NY2R = O,(1) is asymptotically normal under regularity conditions.
Consequently, the asymptotic normality of N/ 2(7 — 1) is achieved, hence,
the rematching estimator is N'/2-consistent. When there are more than
one continuously distributed covariate, i.e., k > 1, bias correction is needed
in order to attain the N'/2-consistency of the rematching estimator.

Part 2 of this theorem is particularly useful since matching estimators
nearly always estimate the average effect for the treated when a large reser-
voir of controls is available. Generally, the bias is ignorable when there is
only one continuous covariate or the number of controls is sufficiently large.
To be precise, if the two group sizes go to infinity at different rates such

that Ny = O,(Ng), then Bt = O,{N;/®"}. Therefore, if s < 2/k, then
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B = 0,(Ny Y %), which will be dominated in the large sample distribution

of # — 7 by 7(X) — 7 and R', which are of size O,(N; /?).

4.2 Variance improvement

We first investigate the conditional variance of 7. Conditional on Xi.ny =
(X1,...,Xy)T and Dy = (Dy,...,Dy)T, the weighted version of the
number of times a unit is used as a match, K(7), is deterministic. Hence,

according to (3.4), the conditional variance of 7 is

: LS, KOV .
Var(T | Dl:N;XI:N> == WZ 1 + 7 o (DZ7X’L>
0

i=1
Similarly, according to (3.5)), its counterpart for the average effect of the
treatment on the treated is

N

. 1 INORE
Val"(Tt | DI:N7X11N> = m Z {Dz < (1 — Dz) ]\4(0)} UQ(Di,XZ').
1 =1

Let VI = Nvar(7 | Di.y, X1.y) and VI = Nyvar(7! | Dy.y, X1.n). The
lemma below shows the finiteness of the expectation of these conditional

variances.
Lemma 1 (Conditional variances). Suppose Assumption S1 holds.

1. Suppose Assumption S2 holds. For i € {1,...,N}, K(i) = O,(1),

and E{K3},(i)} is bounded uniformly in N for any g > 0.
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2. Suppose Assumption S3 holds. Fori € {1,...,N}, (No/N1)E{K3,(i) |

D; = 0} is bounded uniformly in N for any q > 0.

3. Suppose x — o2(d,x) is Lipschitz continuous in X, for d = 0,1. If
Assumption S2 holds, then E(VE) = O(1). If Assumption S3 holds,

then E(VEY) = O(1).
According to Theorem [1, B = O,(1/N) and B" = O,(1/Ny) when
k =1. And B" = 0,(N; Y ?) when the number of controls is sufficiently
large compared to the number of treated. In these cases, the bias terms B
and B! are dominated in the large sample distributions of 7 — 7 and 7! — 7%,
respectively, and given the value of Ny, the unconditional variances of 7

and 7t are

E(vR,t) + VT(X),t
N ’

E(VE) + v7X)
N )

var(7) ~ var(7') ~

respectively, where ay ~ by means ay/by — 1 as N — oo; and
V) = B {u(1, X) — p(0, X) — 71,
YTt = g [{u(l, X) = p(0,X) = 7Y | D = 1] .
According to |Abadie and Imbens| (2006), investigating the asymptotic
variance of matching estimators when k£ > 2 is challenging. We leave the

general case for future study. The theorem below shows the asymptotic

efficiency gain for the special case with a scalar covariate, i.e., k = 1.
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Theorem 2 (Asymptotic efficiency gain). Suppose k = 1. If Assumptions

S1, S2 and S4 hold, and fo(x) and fi(x) are continuous on X, then

Nvar(7) < Nvar(7)

2 2
_ (1+ 1 )E [01<Xi) + 05 (Xi) + YT

oM e(X;)  1—e(Xy)
1 2 2
— oy Ble(X)ot(X:) + (1 = e(X:))og (X0)] +o(1),

where e(x) = pr(D = 1|X = x) is the propensity score.

The strict inequality holds when Ky (i) = 0 for some 4, i.e., when
rematching can be done. The exact form of Nvar(7y) in the theorem above is
given by |/Abadie and Imbens| (2006)). The asymptotic unconditional variance

of 7 is not available due to the complicated form of K (i); see Remark [2|

Remark 2. Unlike K, (7), which has a simple form and follows a binomial
distribution, our K (7) has a more complicated form, making it difficult to
derive the unconditional variance of the estimator. Specifically, we need to
consider the distribution and the first two moments of X /(Y + M), where
X and Y are two dependent binomial random variables. It is difficult to
find moments of the ratio of two binomial distributions, not to mention
rewriting the moments in terms of propensity scores like what |[Abadie and
Imbens| (2006) and Hahn| (1998)) did. Thus, it is hard to derive explicitly

the exact efficiency loss relative to the semi-parametric efficiency bound in
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Hahn| (1998) or the exact efficiency gain relative to the standard matching

estimator in |Abadie and Imbens| (2006).

To derive a representation of the unconditional variance, we need the
following notation. Let Bin(n,p) denote the binomial distribution with
n € N trails and success probability p € [0,1]. Let Bern(p) denote the
Bernoulli distribution with success probability p. Now, we let p = pr(D =
1) denoting the treated ratio and let f;(x) denote the density function of X

under D = d. The theorem below gives the form of unconditional variances.

Theorem 3 (Unconditional variances). Suppose that k = 1, fo(z) = fi(z),
and MoN, < Ny. Further suppose that x — o*(d, ) =: 02 is a constant as
a function of x for each d € {0,1}. Define the random variables K, I, and

H as follows given the values of Ny and Ny:

K~ Bin(MoNo, 1/N1), I~ BeI’H(MoNl/NQ),

[H | I] a BIH(NO - M0N1 + I— 1, ]_/Nl)

1. If Assumptions S2 and S4 hold, then

K 2

Nvar(#) — o?pE (1 + ﬁo)
I 1-1 2

21—pE (1 745,

+oo(1—p) (+H+MO+H+1+MO) + ’

K\? I
Nvar(7y) = o?pE (14— ) +02(1—p)E (14— | + V™.
My My
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2. If Assumptions S3 and S4 hold, then

I N 1-1
H+M, H+1+ M,

2
Nyvar(7) — Ufp + 03(1 —p)E ( ) + YTt

I 2
vaar(%é) — O'%p + 0’3(1 — p)E (M) + VT(X),t.
0

Note that K and [K, (i) | D; = 1] have identical distributions, and so
do I and [Ky, () | D; = 0]. Also, [H | I], Myo(¢), and M,o(Je(2)) — 1 follow
the same distribution. To study the variance improvement of our proposed
estimators over simple matching estimators under this assumption, we need
the condition that MyN; < Ny to simulate scenarios with unmatched con-
trols. When there are no unmatched controls after the simple matching,
the rematching estimator 7% and the simple matching estimator 7§ produce
the same estimate. According to the proposition below, our proposal has a

uniform variance improvement over the simple matching estimator.

Proposition 3. Under the conditions in Theorem[3, the difference between

Nyvar(74) and Nyvar(7') satisfies that
Ny {var(7}) — var(7") }

I\° I 1—1 2
2 J— [ J—
—oll p)E{(MO) <H+M0+H+1+MO) }>0'

Based on Theorem [3, we compare rematching estimators with simple

matching estimators by simulation experiments. Since matching estimators
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are used nearly always when the quantity of interest is the average effect
on the treated and there are more controls than treated, we only include
the results for the estimators of 7t and consider a design with the treated
ratio p = 0.05,0.1,0.15,0.2,0.25,0.3, and M, = 1,2,3,4,5. For each case,
we set the sample size as N = 100 and the conditional error variance as
0%(d,r) = 1. Assume we have prior knowledge that the average treatment
effect conditional on the covariates is a constant, i.e., u(1,z) — (0, z) = 7
for all z, and hence, V™) = (. We use the percentage decrease in variance,
i.e., {var(7})—var(7")} /var(7}), as a measure of the ability of our rematching
process to gain efficiency.

Figure [3] visualizes the reduction in variance across different treated
ratios and different numbers of fixed matches. Since Theorem [ assumes
there are unmatched units after the simple matching, i.e., MyN; < Ny, the
maximum possible My depends on the treated ratio p = Nj/(Ny + Ny).
In any case, the proposed estimator 7! is always more precise than the
traditional 7}. Fixing M, at a particular value, the smaller the treated
ratio, the greater the percentage reduction in variance. Given a specific p,
the smaller the number of fixed matches, the greater the variance reduction
percentage. The results with My = 1 are worth noticing as people typically

fix My at one when using matching estimators. In particular, when My =1
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Figure 3: Plots of simulation results of variances of 7§ and 7" across differ-
ent My in various settings: (a) Plot of percentage variance reduction with
p = 0.05,0.1,0.15,0.2,0.25,0.3; (b)—(d) Variance plots of 7} (dashed line)
and 7¢ (solid line) fixing p at 0.05,0.15,0.25, respectively. The variances

are approximated by simulation based on 24 replications.
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and p = 0.05, the variance is reduced by around 50%; see also Remark [3]
Although previous results are based on the condition that fy(z) = fi(z),
it is interesting to discuss the impact of the density ratio on the variance

reduction; see Remark

Remark 3. Since M, < Ny/N; and fo(z) = fi(z), the variance of the
rematching estimator 7¢ is roughly a constant across M. To reach roughly
the same variance as the rematching estimator, we need to increase My to
the largest value that satisfies My < Ny/N; as specified in Theorem , ie.,
My < (1 — p)/p. However, even if M is increased to the largest possible
value, the variance of the matching estimator is still larger than the variance

of the rematching estimator.

Remark 4. Intuitively, if the density ratio is large across different X, i.e.,
the covariate distribution is quite different between the treated and the
control groups, our estimator with rematching will utilize more informa-
tion than the matching estimator when a small to moderate M is chosen.
Because when fy(x)/fi(x) is large, the number of neighbours within a par-
ticular distance is quite different among units. Then, our estimator with a
small Mj is more efficient than the matching estimator with a large but not
large enough M, since a really large M, is needed to include more informa-

tion in this case. But increasing M, infinitely is risky because additional
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bias may be introduced. Moreover, the higher the density ratio, the more
pronounced the bias caused by the increase in M, for the sake of efficiency.
4.3 Consistency and asymptotic normality

Here, we show that the proposed matching estimators are consistent for
7 and 7'. Without the bias term or after the bias correction, they are
N'/2_consistent and asymptotically normal; see Theorems [4] [5|, and []

Let N(u,0?) denote the normal distribution with mean p € R and

variance o2 € RT.

Theorem 4 (Consistency). Suppose Assumption S1 holds.
1. If Assumptions S2 and S4.1 hold, then 7 — 7 — 0 in probability.
2. If Assumptions S3 and S4.1 hold, then 7t — 7t — 0 in probability.

Theorem 5 (Asymptotic Normality). Suppose Assumptions S1 and S/

hold.

1. If Assumption S2 holds, then {VE + VTCOV-12NV2(2 - B — 1) —

N(0,1) in distribution.

2. If Assumption S8 holds, then {V Rt 4 VTN 12N 2(3t _ Bt 1ty _y

N(0,1) in distribution.
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Theorem [ which adopts a similar form as Theorem 4 in [Abadie and
Imbens| (2006), states the asymptotic normality of 7 and 7* after subtracting
B and Bt. Though a similar form is adopted, the formulas of some terms in-
cluding VE, V&t B, and B* adopt different forms from those in|Abadie and
[mbens| (2006]) since our matching-and-rematching procedure can produce

matching results that differ greatly from simple matching results.

Theorem 6 (Consistency and Asymptotic Normality for 71, and 7). Sup-

pose that Assumptions S1 and S4-S6 hold.

1. Suppose Assumption 82 hold, then NY/2(B — B) — 0 in probability,

and {VE + VTEN2ZNY2(% 0 — 1) — N(0,1) in distribution.

2. Suppose Assumption S3 hold, then N11/2(Bt — BY) — 0 in probability,

and {V7' + VT(X)’t}_l/QNllm(ﬂic — 7% = N(0,1) in distribution.

The theorem above implies that we can estimate the bias of rematch-
ing estimators at a similar speed to that of estimating the bias of simple
matching estimators, which is faster than N'/2 for the estimated average
treatment effect and Nll /2 for the estimated average treatment effect on
the treated. Also, the normalized variance remains the same after the bias

correction.
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4.4 Variance estimation

By the matching strategy mentioned in |Abadie and Imbens (2006), we

estimate o?(D;, X;) as

J 1 i
73(Dy, X;) = —— Y;——E Y
o ( ’ ) J + 1 J p ZJ( ) ?
where J is the number of matches used, {;() is the index of the jth closest

match of the same treatment group for unit 4, £;(i) = {l1(7),...,1;(i)}, and

EJ(Z):{]G{L,N}D]:DZ and Z 1{XZ—XZ||<|XJ—XZ||}<J}
I#j:Dy=D;

Then, we propose to estimate V = VE 4+ V7% and V¢ = VL L V(X2 by

o1 N . oy
VZN;{Y@'(U—YZ-(O)—T}

(50 (22) (50}

t 1 A1 2
E;N{Yi—m(m— }
S [FOKO )

respectively. The consistency is guaranteed as follows, which allows us to
perform statistical inference on 7 and 7°. For example, confidence interval

for 7 and 7! can be computed.

Theorem 7. If Assumptions S1, S2 and S4 hold, then |V — V| = o0,(1). If

Assumptions S1, S3 and S4 hold, then |V' — V| = 0,(1).
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5. Simulation experiments

We evaluate the performance of rematching estimators by Monte Carlo
simulation with ten design cases: Cases 1(a)—(e) concern a scalar covariate,
whereas Cases 2(a)—(e) concern multiple covariates. Due to space con-
straints, only four cases are shown in Figure 4| with the complete results
deferred to the supplement. We follow previous studies and focus on the
average treatment effect on the treated 7¢. Based on [Frolich| (2004)), Busso
et al| (2014) and Otsu and Rai (2017), we consider the following data-

generating process: Fori=1,..., N and d =0, 1,

where ¢; ~ N(0,0.5%), v; ~ Beta(1,1), and & ~ Beta(1,1) are mutually
independent; x — P(x) is a function for specifying the propensity score;
x — m(z) is a mean function; and ¢ is a constant. Here Beta(a, §) de-
notes the beta distribution with parameters a, § > 0. For Cases 1(a)—(e),
let X; ~ Beta(1.2,1.2). For Cases 2(a)—(e), let X; be a 6-dimensional co-
variate containing both continuous and discrete components. The detailed
simulation designs, including the settings of P(-), m(-), ¢, and the distribu-
tion of X;, are available in the supplement.

We first consider cases with a scalar X. The bias term is negligible since
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Figure 4: A graph showing the performance comparison between 7¢ (triangle

with a dashed line) and 7! (triangle with a solid line) when X is a scalar

and between their bias-corrected versions, 73y, (circle with a dashed line)

and 7, (circle with a solid line), when X is multi-dimensional.
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B! = 0,(1/Ny) is of sufficiently low order. From Figure ] we find that our
proposed estimator 7! performs better than the simple matching estimator
7t across different choices of My in all scalar covariate cases, i.e., Cases
1(a) and 1(b), as the rematching process allows more efficiency gain while
maintaining a negligible bias when X is a scalar. Also, the mean squared
error is comprised mainly of the variance, which makes the leftmost and
the rightmost graphs almost identical in each case. The gain in precision
by increasing M, diminishes rapidly after 4, which is consistent with the
findings of Rosenbaum, (2020). The declining trend in the mean squared
error (MSE) and variance, along with the convergence of both methods
as My increases, may give the impression that the rematching process is
redundant as higher M, already ensures a more precise estimation by 7¢.
However, as we shall see later, the bias can increase to a non-negligible
magnitude with My when there are multiple covariates. This is undesirable
given the focus on decreasing the bias in the literature of causal inference
(Imbens and Wooldridge, [2009)).

For all multivariate cases, we compare the performance of the rematch-
ing estimator, the simple matching estimator, and their bias-corrected ver-
sions. We also include in the comparison the genetic matching estimator

(Diamond and Sekhon, [2013)), which uses a state-of-art iterative algorithm
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to maximize a criterion related to covariate balance. Since the mean squared
errors of 7, and 7§, are much lower compared with others, we move the
complete simulation result to the supplement and show only the results for
Ty and 7§ . in Figure . The performance of the bias-corrected estimators
depends on the regression-based bias estimation. When the deviation from
the true outcome model of the specified model is small, Case 2(a) for in-
stance, it is favourable to increase M, for efficiency, which is consistent with
the findings in Lin et al. (2023), meaning that we can increase the num-
ber of fixed matches for %ébc with the sample size for better estimation.
However, using our proposed estimator gives an ideal result even at a very
small number of fixed matches (e.g., My = 1). Also, we may not always
be able to specify the model correctly in practice. In Case 2(b), where the
bias is not well-corrected, an interesting finding is that our proposal 7y, is
able to achieve a lower bias across M,. Considering that bias is a good
measure of the covariate balance and a smaller bias means a more valid
causal interpretation, our proposal with a small M, is generally better than
the original proposal.

In all cases, our matching-and-rematching procedure gains efficiency
while maintaining low bias, which sits well with the focus on the credibility

of the causal inference in the literature (Imbens and Wooldridge, 2009).
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Practically, people simply fix My = 1 when using matching estimators. For
this particular choice of Mj, our matching-and-rematching procedure gives
better estimation results since it allows more efficiency gain when the bias
is negligible or the outcome model is well-specified and less precision loss

when the outcome model is misspecified.

6. Empirical application

We apply rematching estimators to analyze the National Supported Work
data, an evaluation of a job training program analyzed by LaLonde| (1986)),
Heckman and Hotz (1989), Dehejia and Wahbal (1999), Imbens| (2003)), and
Smith and Todd (2005). The dataset is available on Rajeev Dehejia’s web-
site (http://users.nber.org/ rdehejia/nswdata2.html). It contains
experimental and non-experimental samples; see the supplement for de-
tails. As is common in previous studies, we focus on the average effect of
the program on earnings for the treated.

Table [Il summarizes the results for the estimates and standard errors.
Although the true treatment effect is unknown, the difference-in-mean esti-
mate for the experimental data, which is 1.79 with a standard error of 0.67,
can be regarded as a benchmark. The 95% confidence interval obtained by

a normal approximation to the limiting distribution is [0.48,3.11]. For the
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Table 1: Experimental and nonexperimental estimates for the NSW data.

My=1 My=4 My =16 M, =64 My = Ny
Est. (SE) Est. (SE) Est. (SE) Est. (SE) Est. (SE)
Experimental
7 1.82 (0.85) 2.08 (0.72) 1.97 (0.68) 2.23 (0.69) 1.79 (0.67)
Tope 1.87 (0.84) 1.90 (0.73) 1.74 (0.68) 1.63 (0.69) 1.77 (0.66)
7t 1.94 (0.81) 2.04 (0.72) 1.97 (0.68) 2.23 (0.69) 1.79 (0.67)
7. 1.99 (0.80) 1.88 (0.72) 1.75 (0.68) 1.63 (0.69) 1.77 (0.66)
Non-experimental
7¢ 114 (1.25) 1.23 (1.08) 0.66 (1.02) —0.32 (0.86) —3.65 (0.75)
Tope 1.82 (1.26) 2.06 (1.08) 1.96 (1.03) 2.32 (0.83) 1.83 (0.77)
7t 1.05 (1.22) 1.13 (1.08) 0.61 (1.02) —0.32 (0.86) —3.65 (0.75)
7. 2.02 (1.22) 2.11 (1.08) 1.96 (1.04) 2.29 (0.88) 1.83 (0.77)

non-experimental sample, the estimated treatment effects by our proposed
bias-adjusted estimator and by the bias-adjusted simple matching estima-
tor are all inside the experimental 95% confidence interval. It is found that
the standard errors of our proposal 7. are smaller than those of the bias-
adjusted matching estimator by |Abadie and Imbens| (2011)) when M, = 1,
which is consistent with our goal of increasing efficiency by rematching.
However, because each pair of the treated and the control groups are close
in size, which results in a small number of unmatched controls for large M,

the improvement in standard error is insignificant for My > 1 according to
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Table [I Moreover, setting My = 1 results in the use of the highest qual-
ity matches, reducing bias in both matching and rematching estimators.
Therefore, we consider My = 1 for our analysis below.

In particular, we are interested in testing whether the treatment ef-
fect is positive, i.e., testing Hy : 7° = 0 against H; : 7 > 0. The p-
value can be computed by the normal approximation to the asymptotic
distribution. Based on the non-experimental sample, we find that when
My = 1, the p-values based on the classical matching estimator 7§, and
our proposed rematching estimator 7{, are 1 — ®(1.82/1.26) = 7.43% and
1 —®(2.02/1.22) = 4.88%, respectively, where ®(-) is the distribution func-
tion of N(0,1). It means that our proposed test successfully identifies the
treatment effect at 5% significance level while 7§, fails in doing so.

In a nutshell, our proposed estimator 7{. is generally more efficient,

resulting in a more powerful test and maintaining statistical validity.

7. Conclusion

In this article, we propose new matching estimators of treatment effects and
derive their large sample properties. In contrast to the simple matching, our
matching-and-rematching procedure gains efficiency without increasing the

bias too much by rematching for the treated units from an opposite direc-
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tion, which matches each treated unit with a variable number of unmatched
controls and increases the matched sample size. Our method is applicable
to both the average treatment effect and its counterpart for the treated
population. Simulation results indicate that our method works well in fi-
nite samples, suggesting it may be a useful estimator in practice. Finally,
an application to the National Supported Work data reveals an interesting

test result.

Supplementary Material

The supplement contains technical assumptions, proofs of main results,
additional simulation results, a detailed description of the real-data appli-

cation, and a summary of existing work; see Sections S1-S5, respectively.
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