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REMATCHING ESTIMATORS FOR

AVERAGE TREATMENT EFFECTS
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Department of Statistics and Data Science, The Chinese University of Hong Kong

Abstract: Matching estimators are widely applied in practice for their great in-

tuitive appeal. However, simple matching estimators with a fixed number of

matches (M0) are generally inefficient. In this article, we propose matching es-

timators with a variable number of matches to gain efficiency via rematching.

Rather than increasing M0 to gain precision, which introduces an increase in

bias, the key is to rematch the treated units from the opposite direction to uti-

lize unmatched control units. Our rematching estimators are applicable to both

the average treatment effect and its counterpart for the treated population. The

proposed rematching estimators are proven asymptotically valid and uniformly

more efficient than matching estimators with the same M0. Simulation results

confirm that the proposed rematching estimators substantially improve the sim-

ple matching estimators in finite samples. As an empirical illustration, we apply

the estimators proposed in this article to the National Supported Work data.

Key words and phrases: Average treatment effects, causal inference, potential

outcome.
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Rematching Estimators 2

1. Introduction

Matching estimators are widely used to estimate the average effects of a pro-

gram, medical treatment, or policy intervention by empirical researchers

because of their great intuitive appeal. In contrast to other studies on

propensity score matching estimators (Rosenbaum and Rubin, 1983), the

term ‘matching estimator’ in this article is reserved for estimators that

match each unit to a number of units in the opposite treatment group by

multivariate distance matching. Under the setting of matching with re-

placement, Abadie and Imbens (2006, 2008, 2011, 2012) conducted various

research on simple matching estimators with a fixed number of matches.

While simple matching estimators are commonly used in practice, research

has shown that some undesirable properties exist for simple matching es-

timators (Abadie and Imbens, 2006). In contrast to some regression ad-

justment estimators (e.g., Hahn (1998); Heckman et al. (1998); Imbens

et al. (2005); Chen et al. (2008)) and weighting estimators (e.g., Horvitz

and Thompson (1952); Robins and Rotnitzky (1995); Hirano et al. (2003);

Abadie (2005)), matching estimators may not be fully efficient (Abadie

and Imbens, 2006). According to a recent work by Lin et al. (2023), when

matching is performed on a vector of covariates, allowing M0 →∞ with the

sample size leads to the semiparametric efficiency of bias-corrected match-
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Rematching Estimators 3

ing estimators if the outcome model is appropriately specified. However,

when the outcome model is misspecified, increasing the number of matched

units through matching in the original direction may introduce matches

of lower quality leading to a bias increase, which may render the causal

interpretation of the estimates invalid. It motivates us to develop a new

matching procedure that better utilizes observations and gains efficiency

without increasing the bias too much.

The major contribution of this article is that we can achieve variance

reduction by incorporating an additional rematching step with a small value

of M0, as opposed to using a much larger M0 in a standard matching estima-

tor. The use of a smaller M0 ensures high-quality matching units, leading to

a smaller bias. Based on a landmark paper by Abadie and Imbens (2006),

which provided the first large sample analysis of simple matching estima-

tors, we show the asymptotic validity of our rematching-based estimators

when matched on a scalar covariate. By incorporating a bias correction

method by Abadie and Imbens (2011), our method can be asymptotically

valid even for matching based on a vector of covariates. As the simulation

results show, our bias-corrected rematching estimators lead to a substan-

tial reduction in variance compared with bias-corrected simple matching

estimators when the bias is negligible after correction and have a lower

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0306



Rematching Estimators 4

bias when the outcome model is misspecified. In summary, our proposed

rematching estimators with a small M0 are better alternatives to the match-

ing estimators with a large M0.

2. Background and setup

Matching estimators are often used to estimate treatment effects in obser-

vational studies where experimental data are unavailable. And the now

dominant approach to analysing causal effects in observational studies was

formulated by Rubin (1973a,b, 1974, 1977, 1978). For N observed units,

indexed by i = 1, . . . , N , the ith outcome variable is

Yi =


Yi(0) if Di = 0;

Yi(1) if Di = 1,

where Di indicates the treatment received (Di = 1 if treated and Di = 0

otherwise), and Yi(d) is the potential outcome under Di = d. The sizes of

the control and the treated groups are N0 and N1, respectively, with N0 +

N1 = N . A vector of covariates Xi is also observed for the ith unit. Based

on {(Yi, Di, Xi)}Ni=1, we conduct the inference on the average treatment

effect

τ = E{Yi(1)− Yi(0)},

Statistica Sinica: Preprint 
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and its counterpart for the treated population defined as

τ t = E{Yi(1)− Yi(0) | Di = 1}.

In this article, we consider continuous covariates only and ignore the

possibility of ties. Let 1{·} be the indicator function and ‖·‖ be the Eu-

clidean norm. By simple matching estimators, we estimate the potential

outcomes by

Ŷi(0) =


Yi if Di = 0;

M−1
0

∑
j∈JM0

(i) Yj if Di = 1,

Ŷi(1) =


M−1

0

∑
j∈JM0

(i) Yj if Di = 0;

Yi if Di = 1,

where

JM0(i) = {j1(i), . . . , jM0(i)} (2.1)

is the set of indices corresponding to the closest M0 matches for the unit i

in the opposite treatment group, i.e., jm(i) is the index j ∈ {1, . . . , N} that

solves Dj = 1−Di and

∑
`:D`=1−Di

1{‖X` −Xi‖ ≤ ‖Xj −Xi‖} = m (m = 1, . . . ,M0).

Let KM0(i) denotes the number of times unit i is matched, i.e.,

KM0(i) =
N∑
`=1

1{i ∈ JM0(`)}. (2.2)

Statistica Sinica: Preprint 
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The average treatment effects are estimated by

τ̂0 =
1

N

N∑
i=1

Ŷi(1)− Ŷi(0) =
1

N

N∑
i=1

(2Di − 1)

{
1 +

KM0(i)

M0

}
Yi, (2.3)

τ̂ t0 =
1

N1

∑
1≤i≤N
Di=1

Yi − Ŷi(0) =
1

N1

N∑
i=1

{
Di − (1−Di)

KM0(i)

M0

}
Yi.

To remove the bias of matching, Abadie and Imbens (2011) combined

matching with a bias correction proposed in Rubin (1973b) and Quade

(1982), which produces bias-corrected matching estimators τ̂0,bc and τ̂ t0,bc.

Despite being commonly used by practitioners, the matching estimators

τ̂0 and τ̂ t0 are not free of problems. It is found that when there is a larger

reservoir of potential controls than treated and M0 is not large enough, the

matching estimators are inefficient since some control units will likely be

discarded, leading to an efficiency loss. However, increasing M0 for precision

may repeatedly include far away units as low-quality matches, accompanied

by a significant bias increase if the bias is not well-corrected; see Figure 1.

It thus motivates us to revisit the matching procedure and propose a new

generation of matching estimators to gain efficiency without increasing the

bias too much through better utilization of unmatched control units.

Statistica Sinica: Preprint 
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Figure 1: An example of the simple matching procedure that finds matches

from the controls (triangles) for each treated unit (circles) with the hor-

izontal axis and the vertical axis representing the scalar covariate X and

the outcome Y , respectively. The markers represent the values of (Xi, Yi),

i = 1, . . . , 13. We set M0 = 5 so that each control is matched at least once.

When τ t is the estimand of interest, the matching results are represented

by dotted loops.

3. Rematching estimators

3.1 A matching-and-rematching procedure

We propose rematching estimators to avoid efficiency loss due to points dis-

carding when there is a large reservoir of potential controls. The efficiency

gain is obtained without increasing the bias too much by rematching the

treated units from an opposite direction. The discussion in this section is

Statistica Sinica: Preprint 
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Figure 2: An example of the matching-and-rematching procedure that finds

matches from the controls (triangles) for each treated unit (circles) with the

horizontal axis and the vertical axis representing the scalar covariate X and

the outcome Y , respectively. The markers represent the values of (Xi, Yi),

i = 1, . . . , 13. When M0 = 3 and τ t is the estimand, the results of the

first and the second matching are represented by dotted and solid loops,

respectively.

based on τ t. Because often, matching estimators have been used when (1)

the interest is in τ t, and (2) a large reservoir of potential controls is available

(Imbens and Wooldridge, 2009).

Figure 2 is a visualization of the whole matching process that produces

our proposed estimators. After the first matching, which is the simple

matching, a dotted loop will cover both a control unit i and a treated unit `

if the unit i is matched to unit ` in the matching, e.g., the 1st treated unit

Statistica Sinica: Preprint 
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is matched to the 4th, 5th, and 6th controls if M0 = 3. However, no dot-

ted loops will cover unit i if it remains unmatched after the first matching,

e.g., the 8th, 9th, and 10th units. When there is a large reservoir of po-

tential controls, some controls will likely be discarded without being used,

leading to an efficiency loss. To gain efficiency, we propose to rematch the

treated units after the first matching by matching those unmatched controls

to them, which means we do the rematching from an opposite direction.

Instead of performing M0-nearest neighbour search for each fixed treated

unit as in the first matching process, we find only the nearest neighbour

for each fixed unmatched control. Because though matching for unmatched

points can provide efficiency gain, those unmatched points are generally not

matches of good quality and should not be overused. The final matching

results after rematching are in the right panel of Figure 2. As an example

of the rematching results represented by solid loops, the 9th and 10th units

are rematched to the 3rd unit which is the closest to the 9th and the 10th

units.

The rematching step provides a channel to extract additional informa-

tion from the observations that are originally unused. Intuitively, it has

two appealing features. First, the rematching step utilizes more observa-

tions that may lead to a reduction in variance. Second, the rematching step

Statistica Sinica: Preprint 
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tends to match higher-quality observations in the opposite direction than

lower-quality matches in the original matching direction. Consequently,

by construction, the resulting estimator has the potential to strike a good

balance between variance and bias.

Regarding the choice of M0, “little is known about the optimal number

of matches, or about data-dependent ways of choosing it” (Imbens and

Wooldridge, 2009). It is suggested that people fix M0 at one when using

rematching estimators on finite samples as empirical researchers typically

do when using matching estimators. In the asymptotic context, increasing

M0 with the sample size, which shares a similar idea to that of Lin et al.

(2023) is advisable for rematching estimators. However, we do not suggest

a diverging M0 considering the large bias when the outcome model is not

well-specified. More attention is attached to the particular choice of M0 = 1

in this article as our simulated data and real data are of small sample sizes.

3.2 Main proposal

Let ∅ be an empty set. Every unmatched unit is matched to its nearest

neighbour with the index

Jre(i) =


J1(i) if KM0(i) = 0;

∅ if KM0(i) 6= 0.

(3.1)

Statistica Sinica: Preprint 
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Let Mre(`) be the number of times unit ` is matched to unmatched units,

i.e.,

Mre(`) =
N∑
i=1

1{` ∈ Jre(i)}. (3.2)

The rematching process increases the number of matched samples in the

control group by matching each treated unit ` to a set of controls of a

variable size

M(`) = M0 +Mre(`),

where M0 is the fixed number of nearest neighbours found in the first match-

ing and Mre(`) is the variable number of unmatched units matched to unit `

in the rematching. Then, an equal matching weight of 1/M(`) will be given

to all control units that are matched to unit `, which deviates the matching

weight of those M(`) controls from 1/M0 or 0 to a non-zero variable value;

see Remark 1. We now define the weighted version of the total number of

times the unit i is matched to treated units as

K(i) =

[
N∑
`=1

1{i ∈ JM0(`)}
M0

Mre(`) +M0

]

+1{KM0(i) = 0} M0

Mre(Jre(i)) +M0

(3.3)

so that K(i)/M0 is the total matching weight assigned to unit i. If there is

` ∈ [1, N ] such that 1{i ∈ JM0(`)} = 1, or equivalently, KM0(i) 6= 0, then

unit i is matched in the first matching, and after rematching, K(i)/M0 =

Statistica Sinica: Preprint 
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`=1 1{i ∈ JM0(`)}/{Mre(`) + M0}. Otherwise, the originally unmatched

unit i will have a matching weight of 1/{Mre(Jre(i))+M0} as it is rematched

to unit Jre(i). Define the set of indices of unmatched units that unit i is

rematched to as

Lre(i) = {` ∈ {1, . . . , N} : i ∈ Jre(`)}.

The set of indices of units that unit i is matched to is then given by

J (i) = JM0(i) ∪ Lre(i).

The following proposition gives an equivalent form of K(i), which is concise

and accessible.

Proposition 1. The term K(i) (i = 1, . . . , N) in (3.3) can be equivalently

computed as

K(i) =
N∑
`=1

1{i ∈ J (`)} M0

M(`)
.

Under the proposed matching-and-rematching scheme, the potential

outcomes are estimated as

Ỹi(0) =


Yi if Di = 0;

M(i)−1
∑

j∈J (i) Yj if Di = 1,

Ỹi(1) =


M(i)−1

∑
j∈J (i) Yj if Di = 0;

Yi if Di = 1.

Statistica Sinica: Preprint 
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Remark 1. Besides giving an equal weight of 1/M(`) to controls matched

to unit `, there are some possible methods to treat the M0 matches and the

Mre(`) matches differently, which prevents the rematching process from in-

corporating large biases produced by matches of poor quality. For instance,

we may use a kernel function on the Mre(`) matches (or all matches) to

give larger weights to controls with smaller distances. Since it is beyond

the scope of this article, we leave this technical modification for future

study.

Our proposed rematching estimators for average treatment effects τ and

τ t are given by

τ̂ =
1

N

N∑
i=1

Ỹi(1)− Ỹi(0), τ̂ t =
1

N1

∑
1≤i≤N
Di=1

Yi − Ỹi(0),

respectively. Both of which average within-match differences in the poten-

tial outcome between the treated and the control units. Proposition 2 below

provides equivalent forms of τ̂ and τ̂ t.

Proposition 2. The rematching estimators can be equivalently written as

τ̂ =
1

N

N∑
i=1

(2Di − 1)

{
1 +

K(i)

M0

}
Yi, (3.4)

τ̂ t =
1

N1

N∑
i=1

{
Di − (1−Di)

K(i)

M0

}
Yi. (3.5)

Statistica Sinica: Preprint 
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Denote µ(d, x) = E(Y | D = d,X = x). When the bias correction is

needed, we follow the study of Abadie and Imbens (2011) and estimate the

bias as follows:

B̂ =
1

N

N∑
i=1

(2Di − 1)

M(i)

∑
j∈JM (i)

{µ̂(1−Di, Xi)− µ̂(1−Di, Xj)},

B̂t =
1

N1

N∑
i=1

Di

M(i)

∑
j∈JM (i)

{µ̂(0, Xi)− µ̂(0, Xj)},

where µ̂(d, x) (d = 0, 1) is a non-parametric series regression estimator

estimating µ(d, x). Then the bias-corrected rematching estimators are

τ̂bc = τ̂ − B̂, τ̂ tbc = τ̂ t − B̂t.

Algorithm 1 summarizes the procedure that produces our proposed re-

matching estimators. An extra bias correction step may be needed de-

pending on the data.

4. Asymptotic properties

4.1 Decomposition and bias analysis

Let (Yi, Xi, Di), i = 1, . . . , N , be independent and identical copies of (Y,X,D).

Denote σ2(d, x) = var(Y | D = d,X = x). Also denote the residual as

εi = Yi − µ(Di, Xi) for each i. We first decompose τ̂ − τ as

τ̂ − τ = {τ̄(X)− τ}+R +B, (4.1)

Statistica Sinica: Preprint 
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Algorithm 1: Matching-and-Rematching Algorithm

Data: Z = {(Yi, Di, Xi)}Ni=1 and M0.

Result: τ̂ t and τ̂ .

1 Step 1 (Matching step): For i ∈ {1, . . . , N}, perform M0-nearest

neighbour search to find JM0(i) defined in (2.1).

2 Step 2 (Weighting step): For i ∈ {1, . . . , N}, compute the number

of times unit i is matched, i.e., KM0(i) defined in (2.2).

3 Step 3 (Rematching step): For i ∈ {1, . . . , N}, find the index of the

nearest neighbour for potentially unmatched unit i as in (3.1).

4 Step 4 (Re-weighting step): For ` ∈ {1, . . . , N}, obtain the number

of times unit ` is matched to unmatched units as in (3.2). For

i ∈ {1, . . . , N}, obtain K(i) defined in (3.3).

5 Step 5: Estimate τ and τ t by rematching estimators defined in

(3.4) and (3.5).

where

τ̄(X) =
1

N

N∑
i=1

{µ(1, Xi)− µ(0, Xi)},

R =
1

N

N∑
i=1

(2Di − 1)

{
1 +

K(i)

M0

}
εi,

B =
1

N

N∑
i=1

(2Di − 1)

 1

M(i)

∑
j∈J (i)

{µ(1−Di, Xi)− µ (1−Di, Xj)}

 .
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Here, τ̄(X) is the average conditional treatment effect, R is a weighted

average of the residuals, and B is the conditional bias relative to τ(X).

The decomposition (4.1) is also employed by Abadie and Imbens (2006).

Similarly, we can decompose τ̂ t − τ t as

τ̂ t − τ t =
{
τ̄ t(X)− τ t

}
+Rt +Bt,

where

τ̄ t(X) =
1

N1

N∑
i=1

Di{µ(1, Xi)− µ(0, Xi)},

Rt =
1

N1

N∑
i=1

{
Di − (1−Di)

K(i)

M0

}
εi,

Bt =
1

N1

N∑
i=1

Di

 1

M(i)

∑
j∈J (i)

{µ(0, Xi)− µ (0, Xj)}

 .
All asymptotic results are stated as N →∞ unless otherwise stated. Regu-

larity conditions for our asymptotic theory are included in the supplement;

see Assumptions S1–S6.

Let X ⊂ Rk be the support of X and X0 ⊂ Rk be the support of X given

D = 0. We establish bounds on the stochastic order of the conditional bias

terms as follows.

Theorem 1 (Conditional Bias). Suppose Assumption S1 holds.

1. If Assumption S2 holds and x 7→ µ(d, x) (d = 0, 1) is Lipschitz con-

tinuous on X , then B = Op(N
−1/k).

Statistica Sinica: Preprint 
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2. If Assumption S3 holds and x 7→ µ(0, x) is Lipschitz continuous on

X0, then Bt = Op(N
−1/k
0 ).

The theorem above shows that the bias of our proposed rematching

estimators is of the same order as that of simple matching estimators, which

makes the causal interpretation of our proposals as credible as that of simple

matching estimators. Moreover, Theorem 1 has a great impact on the

asymptotic normality of rematching estimators.

From part 1 of the theorem, B = Op(N
−1) when the dimension of the

continuous covariate is k = 1. As we shall see in Section 4.3, N1/2{τ̄(X)−

τ} = N1/2R = Op(1) is asymptotically normal under regularity conditions.

Consequently, the asymptotic normality of N1/2(τ̂ − τ) is achieved, hence,

the rematching estimator is N1/2-consistent. When there are more than

one continuously distributed covariate, i.e., k > 1, bias correction is needed

in order to attain the N1/2-consistency of the rematching estimator.

Part 2 of this theorem is particularly useful since matching estimators

nearly always estimate the average effect for the treated when a large reser-

voir of controls is available. Generally, the bias is ignorable when there is

only one continuous covariate or the number of controls is sufficiently large.

To be precise, if the two group sizes go to infinity at different rates such

that N1 = Op(N
s
0 ), then Bt = Op{N1/(sk)

1 }. Therefore, if s < 2/k, then

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0306
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Bt = op(N
−1/2
1 ), which will be dominated in the large sample distribution

of τ̂ − τ by τ̄ t(X)− τ and Rt, which are of size Op(N
−1/2
1 ).

4.2 Variance improvement

We first investigate the conditional variance of τ̂ . Conditional on X1:N =

(X1, . . . , XN)T and D1:N = (D1, . . . , DN)T, the weighted version of the

number of times a unit is used as a match, K(i), is deterministic. Hence,

according to (3.4), the conditional variance of τ̂ is

var(τ̂ | D1:N , X1:N) =
1

N2

N∑
i=1

{
1 +

K(i)

M0

}2

σ2(Di, Xi).

Similarly, according to (3.5), its counterpart for the average effect of the

treatment on the treated is

var(τ̂ t | D1:N , X1:N) =
1

N2
1

N∑
i=1

{
Di − (1−Di)

K(i)

M0

}2

σ2(Di, Xi).

Let V R = Nvar(τ̂ | D1:N , X1:N) and V R,t = N1var(τ̂ t | D1:N , X1:N). The

lemma below shows the finiteness of the expectation of these conditional

variances.

Lemma 1 (Conditional variances). Suppose Assumption S1 holds.

1. Suppose Assumption S2 holds. For i ∈ {1, . . . , N}, K(i) = Op(1),

and E{Kq
M(i)} is bounded uniformly in N for any q > 0.

Statistica Sinica: Preprint 
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2. Suppose Assumption S3 holds. For i ∈ {1, . . . , N}, (N0/N1)E{Kq
M(i) |

Di = 0} is bounded uniformly in N for any q > 0.

3. Suppose x 7→ σ2(d, x) is Lipschitz continuous in X , for d = 0, 1. If

Assumption S2 holds, then E(V R) = O(1). If Assumption S3 holds,

then E(V R,t) = O(1).

According to Theorem 1, B = Op(1/N) and Bt = Op(1/N0) when

k = 1. And Bt = op(N
−1/2
1 ) when the number of controls is sufficiently

large compared to the number of treated. In these cases, the bias terms B

and Bt are dominated in the large sample distributions of τ̂ − τ and τ̂ t− τ t,

respectively, and given the value of N1, the unconditional variances of τ̂

and τ̂ t are

var(τ̂) ∼ E(V R) + V τ(X)

N
, var(τ̂ t) ∼ E(V R,t) + V τ(X),t

N1

,

respectively, where aN ∼ bN means aN/bN → 1 as N →∞; and

V τ(X) = E {µ(1, X)− µ(0, X)− τ}2 ,

V τ(X),t = E
[{
µ(1, X)− µ(0, X)− τ t

}2 | D = 1
]
.

According to Abadie and Imbens (2006), investigating the asymptotic

variance of matching estimators when k ≥ 2 is challenging. We leave the

general case for future study. The theorem below shows the asymptotic

efficiency gain for the special case with a scalar covariate, i.e., k = 1.

Statistica Sinica: Preprint 
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Theorem 2 (Asymptotic efficiency gain). Suppose k = 1. If Assumptions

S1, S2 and S4 hold, and f0(x) and f1(x) are continuous on X , then

Nvar(τ̂) ≤ Nvar(τ̂0)

=

(
1 +

1

2M

)
E

[
σ2
1(Xi)

e(Xi)
+

σ2
0(Xi)

1− e(Xi)

]
+ V τ(X)

− 1

2M
E[e(Xi)σ

2
1(Xi) + (1− e(Xi))σ

2
0(Xi)] + o(1),

where e(x) = pr(D = 1|X = x) is the propensity score.

The strict inequality holds when KM0(i) = 0 for some i, i.e., when

rematching can be done. The exact form ofNvar(τ̂0) in the theorem above is

given by Abadie and Imbens (2006). The asymptotic unconditional variance

of τ̂ is not available due to the complicated form of K(i); see Remark 2.

Remark 2. Unlike KM0(i), which has a simple form and follows a binomial

distribution, our K(i) has a more complicated form, making it difficult to

derive the unconditional variance of the estimator. Specifically, we need to

consider the distribution and the first two moments of X/(Y +M0), where

X and Y are two dependent binomial random variables. It is difficult to

find moments of the ratio of two binomial distributions, not to mention

rewriting the moments in terms of propensity scores like what Abadie and

Imbens (2006) and Hahn (1998) did. Thus, it is hard to derive explicitly

the exact efficiency loss relative to the semi-parametric efficiency bound in

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0306



Rematching Estimators 21

Hahn (1998) or the exact efficiency gain relative to the standard matching

estimator in Abadie and Imbens (2006).

To derive a representation of the unconditional variance, we need the

following notation. Let Bin(n, p) denote the binomial distribution with

n ∈ N trails and success probability p ∈ [0, 1]. Let Bern(p) denote the

Bernoulli distribution with success probability p. Now, we let p = pr(D =

1) denoting the treated ratio and let fd(x) denote the density function of X

under D = d. The theorem below gives the form of unconditional variances.

Theorem 3 (Unconditional variances). Suppose that k = 1, f0(x) = f1(x),

and M0N1 < N0. Further suppose that x 7→ σ2(d, x) =: σ2
d is a constant as

a function of x for each d ∈ {0, 1}. Define the random variables K, I, and

H as follows given the values of N0 and N1:

K ∼ Bin(M0N0, 1/N1), I ∼ Bern(M0N1/N0),

[H | I] ∼ Bin(N0 −M0N1 + I − 1, 1/N1).

1. If Assumptions S2 and S4 hold, then

Nvar(τ̂)→ σ2
1pE

(
1 +

K

M0

)2

+ σ2
0(1− p)E

(
1 +

I

H +M0

+
1− I

H + 1 +M0

)2

+ V τ(X),

Nvar(τ̂0)→ σ2
1pE

(
1 +

K

M0

)2

+ σ2
0(1− p)E

(
1 +

I

M0

)2

+ V τ(X).
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2. If Assumptions S3 and S4 hold, then

N1var(τ̂ t)→ σ2
1p+ σ2

0(1− p)E
(

I

H +M0

+
1− I

H + 1 +M0

)2

+ V τ(X),t,

N1var(τ̂ t0)→ σ2
1p+ σ2

0(1− p)E
(
I

M0

)2

+ V τ(X),t.

Note that K and [KM0(i) | Di = 1] have identical distributions, and so

do I and [KM0(i) | Di = 0]. Also, [H | I], Mre(`), and Mre(Jre(i))−1 follow

the same distribution. To study the variance improvement of our proposed

estimators over simple matching estimators under this assumption, we need

the condition that M0N1 < N0 to simulate scenarios with unmatched con-

trols. When there are no unmatched controls after the simple matching,

the rematching estimator τ̂ t and the simple matching estimator τ̂ t0 produce

the same estimate. According to the proposition below, our proposal has a

uniform variance improvement over the simple matching estimator.

Proposition 3. Under the conditions in Theorem 3, the difference between

N1var(τ̂ t0) and N1var(τ̂ t) satisfies that

N1

{
var(τ̂ t0)− var(τ̂ t)

}
→ σ2

0(1− p)E

{(
I

M0

)2

−
(

I

H +M0

+
1− I

H + 1 +M0

)2
}
> 0.

Based on Theorem 3, we compare rematching estimators with simple

matching estimators by simulation experiments. Since matching estimators
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are used nearly always when the quantity of interest is the average effect

on the treated and there are more controls than treated, we only include

the results for the estimators of τ t and consider a design with the treated

ratio p = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and M0 = 1, 2, 3, 4, 5. For each case,

we set the sample size as N = 100 and the conditional error variance as

σ2(d, x) = 1. Assume we have prior knowledge that the average treatment

effect conditional on the covariates is a constant, i.e., µ(1, x)− µ(0, x) = τ t

for all x, and hence, V τ(x),t = 0. We use the percentage decrease in variance,

i.e., {var(τ̂ t0)−var(τ̂ t)}/var(τ̂ t0), as a measure of the ability of our rematching

process to gain efficiency.

Figure 3 visualizes the reduction in variance across different treated

ratios and different numbers of fixed matches. Since Theorem 3 assumes

there are unmatched units after the simple matching, i.e., M0N1 < N0, the

maximum possible M0 depends on the treated ratio p = N1/(N0 + N1).

In any case, the proposed estimator τ̂ t is always more precise than the

traditional τ̂ t0. Fixing M0 at a particular value, the smaller the treated

ratio, the greater the percentage reduction in variance. Given a specific p,

the smaller the number of fixed matches, the greater the variance reduction

percentage. The results with M0 = 1 are worth noticing as people typically

fix M0 at one when using matching estimators. In particular, when M0 = 1
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Figure 3: Plots of simulation results of variances of τ̂ t0 and τ̂ t across differ-

ent M0 in various settings: (a) Plot of percentage variance reduction with

p = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3; (b)–(d) Variance plots of τ̂ t0 (dashed line)

and τ̂ t (solid line) fixing p at 0.05, 0.15, 0.25, respectively. The variances

are approximated by simulation based on 214 replications.
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and p = 0.05, the variance is reduced by around 50%; see also Remark 3.

Although previous results are based on the condition that f0(x) = f1(x),

it is interesting to discuss the impact of the density ratio on the variance

reduction; see Remark 4.

Remark 3. Since M0 < N0/N1 and f0(x) = f1(x), the variance of the

rematching estimator τ̂ t is roughly a constant across M0. To reach roughly

the same variance as the rematching estimator, we need to increase M0 to

the largest value that satisfies M0 < N0/N1 as specified in Theorem 3, i.e.,

M0 < (1 − p)/p. However, even if M0 is increased to the largest possible

value, the variance of the matching estimator is still larger than the variance

of the rematching estimator.

Remark 4. Intuitively, if the density ratio is large across different X, i.e.,

the covariate distribution is quite different between the treated and the

control groups, our estimator with rematching will utilize more informa-

tion than the matching estimator when a small to moderate M0 is chosen.

Because when f0(x)/f1(x) is large, the number of neighbours within a par-

ticular distance is quite different among units. Then, our estimator with a

small M0 is more efficient than the matching estimator with a large but not

large enough M0 since a really large M0 is needed to include more informa-

tion in this case. But increasing M0 infinitely is risky because additional
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bias may be introduced. Moreover, the higher the density ratio, the more

pronounced the bias caused by the increase in M0 for the sake of efficiency.

4.3 Consistency and asymptotic normality

Here, we show that the proposed matching estimators are consistent for

τ and τ t. Without the bias term or after the bias correction, they are

N1/2-consistent and asymptotically normal; see Theorems 4, 5, and 6.

Let N(µ, σ2) denote the normal distribution with mean µ ∈ R and

variance σ2 ∈ R+.

Theorem 4 (Consistency). Suppose Assumption S1 holds.

1. If Assumptions S2 and S4.1 hold, then τ̂ − τ → 0 in probability.

2. If Assumptions S3 and S4.1 hold, then τ̂ t − τ t → 0 in probability.

Theorem 5 (Asymptotic Normality). Suppose Assumptions S1 and S4

hold.

1. If Assumption S2 holds, then {V R + V τ(X)}−1/2N1/2(τ̂ − B − τ) →

N(0, 1) in distribution.

2. If Assumption S3 holds, then {V R,t+V τ(X),t}−1/2N1/2
1 (τ̂ t−Bt−τ t)→

N(0, 1) in distribution.
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Theorem 5, which adopts a similar form as Theorem 4 in Abadie and

Imbens (2006), states the asymptotic normality of τ̂ and τ̂ t after subtracting

B and Bt. Though a similar form is adopted, the formulas of some terms in-

cluding V R, V R,t, B, and Bt adopt different forms from those in Abadie and

Imbens (2006) since our matching-and-rematching procedure can produce

matching results that differ greatly from simple matching results.

Theorem 6 (Consistency and Asymptotic Normality for τ̂bc and τ̂ tbc). Sup-

pose that Assumptions S1 and S4–S6 hold.

1. Suppose Assumption S2 hold, then N1/2(B − B̂) → 0 in probability,

and {V R + V τ(X)}−1/2N1/2(τ̂bc − τ)→ N(0, 1) in distribution.

2. Suppose Assumption S3 hold, then N
1/2
1 (Bt − B̂t)→ 0 in probability,

and {V R,t + V τ(X),t}−1/2N1/2
1 (τ̂ tbc − τ t)→ N(0, 1) in distribution.

The theorem above implies that we can estimate the bias of rematch-

ing estimators at a similar speed to that of estimating the bias of simple

matching estimators, which is faster than N1/2 for the estimated average

treatment effect and N
1/2
1 for the estimated average treatment effect on

the treated. Also, the normalized variance remains the same after the bias

correction.
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4.4 Variance estimation

By the matching strategy mentioned in Abadie and Imbens (2006), we

estimate σ2(Di, Xi) as

σ̂2(Di, Xi) =
J

J + 1

(
Yi −

1

J

J∑
j=1

Ylj(i)

)2

,

where J is the number of matches used, lj(i) is the index of the jth closest

match of the same treatment group for unit i, `J(i) = {l1(i), . . . , lJ(i)}, and

`J(i) =

j ∈ {1, ..., N} : Dj = Di and
∑

l 6=j:Dl=Di

1{‖Xl −Xi‖ ≤ ‖Xj −Xi‖} ≤ J

 .

Then, we propose to estimate V = V R + V τ(X) and V t = V R,t + V τ(X),t by

V̂ =
1

N

N∑
i=1

{Ỹi(1)− Ỹi(0)− τ̂}2

+
1

N

N∑
i=1

[{
K(i)

M0

}2

+

(
2M0 − 1

M0

){
K(i)

M0

}]
σ̂2(Di, Xi),

V̂ t =
1

N1

∑
1≤i≤N
Di=1

{Yi − Ỹi(0)− τ̂ t}2

+
1

N1

N∑
i=1

(1−Di)

[
K(i){K(i)− 1}

M2
0

]
σ̂2(Di, Xi),

respectively. The consistency is guaranteed as follows, which allows us to

perform statistical inference on τ and τ t. For example, confidence interval

for τ and τ t can be computed.

Theorem 7. If Assumptions S1, S2 and S4 hold, then |V̂ − V | = op(1). If

Assumptions S1, S3 and S4 hold, then |V̂ t − V t| = op(1).
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5. Simulation experiments

We evaluate the performance of rematching estimators by Monte Carlo

simulation with ten design cases: Cases 1(a)–(e) concern a scalar covariate,

whereas Cases 2(a)–(e) concern multiple covariates. Due to space con-

straints, only four cases are shown in Figure 4 with the complete results

deferred to the supplement. We follow previous studies and focus on the

average treatment effect on the treated τ t. Based on Frölich (2004), Busso

et al. (2014) and Otsu and Rai (2017), we consider the following data-

generating process: For i = 1, . . . , N and d = 0, 1,

Yi(d) = τd+m(Xi) + εi, Di = 1 {P (Xi) ≥ υi} 1(ξi > c),

where εi ∼ N(0, 0.52), υi ∼ Beta(1, 1), and ξi ∼ Beta(1, 1) are mutually

independent; x 7→ P (x) is a function for specifying the propensity score;

x 7→ m(x) is a mean function; and c is a constant. Here Beta(α, β) de-

notes the beta distribution with parameters α, β > 0. For Cases 1(a)–(e),

let Xi ∼ Beta(1.2, 1.2). For Cases 2(a)–(e), let Xi be a 6-dimensional co-

variate containing both continuous and discrete components. The detailed

simulation designs, including the settings of P (·), m(·), c, and the distribu-

tion of Xi, are available in the supplement.

We first consider cases with a scalar X. The bias term is negligible since
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Figure 4: A graph showing the performance comparison between τ̂ t0 (triangle

with a dashed line) and τ̂ t (triangle with a solid line) when X is a scalar

and between their bias-corrected versions, τ̂ t0,bc (circle with a dashed line)

and τ̂ tbc (circle with a solid line), when X is multi-dimensional.
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Bt = Op(1/N0) is of sufficiently low order. From Figure 4, we find that our

proposed estimator τ̂ t performs better than the simple matching estimator

τ̂ t0 across different choices of M0 in all scalar covariate cases, i.e., Cases

1(a) and 1(b), as the rematching process allows more efficiency gain while

maintaining a negligible bias when X is a scalar. Also, the mean squared

error is comprised mainly of the variance, which makes the leftmost and

the rightmost graphs almost identical in each case. The gain in precision

by increasing M0 diminishes rapidly after 4, which is consistent with the

findings of Rosenbaum (2020). The declining trend in the mean squared

error (MSE) and variance, along with the convergence of both methods

as M0 increases, may give the impression that the rematching process is

redundant as higher M0 already ensures a more precise estimation by τ̂ t0.

However, as we shall see later, the bias can increase to a non-negligible

magnitude with M0 when there are multiple covariates. This is undesirable

given the focus on decreasing the bias in the literature of causal inference

(Imbens and Wooldridge, 2009).

For all multivariate cases, we compare the performance of the rematch-

ing estimator, the simple matching estimator, and their bias-corrected ver-

sions. We also include in the comparison the genetic matching estimator

(Diamond and Sekhon, 2013), which uses a state-of-art iterative algorithm
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to maximize a criterion related to covariate balance. Since the mean squared

errors of τ̂ tbc and τ̂ t0,bc are much lower compared with others, we move the

complete simulation result to the supplement and show only the results for

τ̂ tbc and τ̂ t0,bc in Figure 4. The performance of the bias-corrected estimators

depends on the regression-based bias estimation. When the deviation from

the true outcome model of the specified model is small, Case 2(a) for in-

stance, it is favourable to increase M0 for efficiency, which is consistent with

the findings in Lin et al. (2023), meaning that we can increase the num-

ber of fixed matches for τ̂ t0,bc with the sample size for better estimation.

However, using our proposed estimator gives an ideal result even at a very

small number of fixed matches (e.g., M0 = 1). Also, we may not always

be able to specify the model correctly in practice. In Case 2(b), where the

bias is not well-corrected, an interesting finding is that our proposal τ̂bc is

able to achieve a lower bias across M0. Considering that bias is a good

measure of the covariate balance and a smaller bias means a more valid

causal interpretation, our proposal with a small M0 is generally better than

the original proposal.

In all cases, our matching-and-rematching procedure gains efficiency

while maintaining low bias, which sits well with the focus on the credibility

of the causal inference in the literature (Imbens and Wooldridge, 2009).
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Practically, people simply fix M0 = 1 when using matching estimators. For

this particular choice of M0, our matching-and-rematching procedure gives

better estimation results since it allows more efficiency gain when the bias

is negligible or the outcome model is well-specified and less precision loss

when the outcome model is misspecified.

6. Empirical application

We apply rematching estimators to analyze the National Supported Work

data, an evaluation of a job training program analyzed by LaLonde (1986),

Heckman and Hotz (1989), Dehejia and Wahba (1999), Imbens (2003), and

Smith and Todd (2005). The dataset is available on Rajeev Dehejia’s web-

site (http://users.nber.org/~rdehejia/nswdata2.html). It contains

experimental and non-experimental samples; see the supplement for de-

tails. As is common in previous studies, we focus on the average effect of

the program on earnings for the treated.

Table 1 summarizes the results for the estimates and standard errors.

Although the true treatment effect is unknown, the difference-in-mean esti-

mate for the experimental data, which is 1.79 with a standard error of 0.67,

can be regarded as a benchmark. The 95% confidence interval obtained by

a normal approximation to the limiting distribution is [0.48, 3.11]. For the
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Table 1: Experimental and nonexperimental estimates for the NSW data.

M0 = 1 M0 = 4 M0 = 16 M0 = 64 M0 = N0

Est. (SE) Est. (SE) Est. (SE) Est. (SE) Est. (SE)

Experimental

τ̂ t0 1.82 (0.85) 2.08 (0.72) 1.97 (0.68) 2.23 (0.69) 1.79 (0.67)

τ̂ t0,bc 1.87 (0.84) 1.90 (0.73) 1.74 (0.68) 1.63 (0.69) 1.77 (0.66)

τ̂ t 1.94 (0.81) 2.04 (0.72) 1.97 (0.68) 2.23 (0.69) 1.79 (0.67)

τ̂ tbc 1.99 (0.80) 1.88 (0.72) 1.75 (0.68) 1.63 (0.69) 1.77 (0.66)

Non-experimental

τ̂ t0 1.14 (1.25) 1.23 (1.08) 0.66 (1.02) −0.32 (0.86) −3.65 (0.75)

τ̂ t0,bc 1.82 (1.26) 2.06 (1.08) 1.96 (1.03) 2.32 (0.88) 1.83 (0.77)

τ̂ t 1.05 (1.22) 1.13 (1.08) 0.61 (1.02) −0.32 (0.86) −3.65 (0.75)

τ̂ tbc 2.02 (1.22) 2.11 (1.08) 1.96 (1.04) 2.29 (0.88) 1.83 (0.77)

non-experimental sample, the estimated treatment effects by our proposed

bias-adjusted estimator and by the bias-adjusted simple matching estima-

tor are all inside the experimental 95% confidence interval. It is found that

the standard errors of our proposal τ̂ tbc are smaller than those of the bias-

adjusted matching estimator by Abadie and Imbens (2011) when M0 = 1,

which is consistent with our goal of increasing efficiency by rematching.

However, because each pair of the treated and the control groups are close

in size, which results in a small number of unmatched controls for large M0,

the improvement in standard error is insignificant for M0 > 1 according to
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Table 1. Moreover, setting M0 = 1 results in the use of the highest qual-

ity matches, reducing bias in both matching and rematching estimators.

Therefore, we consider M0 = 1 for our analysis below.

In particular, we are interested in testing whether the treatment ef-

fect is positive, i.e., testing H0 : τ t = 0 against H1 : τ t > 0. The p-

value can be computed by the normal approximation to the asymptotic

distribution. Based on the non-experimental sample, we find that when

M0 = 1, the p-values based on the classical matching estimator τ̂ t0,bc and

our proposed rematching estimator τ̂ tbc are 1 − Φ(1.82/1.26) = 7.43% and

1−Φ(2.02/1.22) = 4.88%, respectively, where Φ(·) is the distribution func-

tion of N(0, 1). It means that our proposed test successfully identifies the

treatment effect at 5% significance level while τ̂ t0,bc fails in doing so.

In a nutshell, our proposed estimator τ̂ tbc is generally more efficient,

resulting in a more powerful test and maintaining statistical validity.

7. Conclusion

In this article, we propose new matching estimators of treatment effects and

derive their large sample properties. In contrast to the simple matching, our

matching-and-rematching procedure gains efficiency without increasing the

bias too much by rematching for the treated units from an opposite direc-
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tion, which matches each treated unit with a variable number of unmatched

controls and increases the matched sample size. Our method is applicable

to both the average treatment effect and its counterpart for the treated

population. Simulation results indicate that our method works well in fi-

nite samples, suggesting it may be a useful estimator in practice. Finally,

an application to the National Supported Work data reveals an interesting

test result.

Supplementary Material

The supplement contains technical assumptions, proofs of main results,

additional simulation results, a detailed description of the real-data appli-

cation, and a summary of existing work; see Sections S1–S5, respectively.
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