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Abstract: Analyzing clinical diagnosis along with high-dimensional imaging data,

while accounting for the piecewise constant nature of the imaging, presents chal-

lenges to existing statistical approaches. In this paper, we propose a generalized

tensor regression framework with Internal Variation (IV) regularization to ad-

dress these challenges. The inclusion of IV regularization allows for the explicit

utilization of the rich spatial structure, particularly the piecewise constant nature

of high-order imaging data, albeit with a more complex algorithm and demand-

ing theoretical investigation. We develop an efficient IV regularized optimization

procedure for estimating unknown scalar and tensor coefficients. We investigate

the theoretical properties of scalar and tensor coefficient estimates, especially

the error bounds of regularized tensor coefficient estimates. Extensive numerical

studies assess the finite sample performance of our method, demonstrating its

superiority over existing approaches. Finally, we apply the proposed method to

a chronic sinusitis computed tomography (CT) imaging dataset and identify the

most activated subregion across the maxillary sinus cavity associated with the

diagnosis.

All authors contributed equally to this paper, and their names are listed in alpha-

betical order.
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1. Introduction

Tensor data, represented as multi-dimensional arrays, naturally arise in

various fields such as imaging, neuroscience, and spatiotemporal analysis,

where the data exhibit inherent structural dependencies. Tensor regression

extends traditional regression models by leveraging these multi-way struc-

tures to capture complex relationships between tensor predictors and scalar

or tensor outcomes, with widespread applications across various fields (Bi

et al., 2021; Liu et al., 2022). In image processing, tensor regression has

been used for tasks such as denoising (Zhang et al., 2021), medical diagnosis

(Zhou et al., 2013; Li and Zhang, 2021; Feng et al., 2021), and brain con-

nectivity analysis (Spencer et al., 2019). In addition, it plays a crucial role

in examining the relationship between manufacturing parameters and the

geometry of manufactured parts (Yan et al., 2019). In multi-task learning,

tensor regression uses shared information across tasks, enhancing model

accuracy and outperforming independent task learning models (Yang and

Hospedales, 2017). Furthermore, in spatio-temporal analysis, tensor regres-

sion has been extended to address both forecasting and cokriging tasks (Yu

et al., 2018; Su et al., 2020).

In tensor regression, incorporating tensor predictors presents several

challenges in the estimation and theoretical investigation. One key chal-
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lenge is handling the multi-dimensional tensor data that possess complex

structures dependencies. Straightforward approaches, such as vectorizing

tensors and treating the resulting vectors as covariates (Zhou et al., 2014),

lead to ultrahigh-dimensional models that impose significant computational

burdens and disregard the spatial organization of the data. To address the

complexity of tensor structures, various low-dimensional structural assump-

tions for tensors have been proposed, including element-wise, fiber-wise,

or slice-wise sparsity (Raskutti et al., 2019; Zhang et al., 2019) and low-

rankness (Raskutti et al., 2019; Luo and Zhang, 2024). (Raskutti et al.,

2019) systematically studied these sparsity and low-rank structures, es-

tablishing general risk bounds and specific upper bounds across different

scenarios. Another line of research has focused on tensor regression mod-

els leveraging tensor decompositions to exploit the high-order structure of

tensor data, such as Canonical Polyadic (CP) and Tucker decompositions

(Kolda and Bader, 2009), with theoretical guarantees established in (Zhou

et al., 2013; Li et al., 2018; Lu et al., 2020; Wu and Feng, 2023). While these

methods effectively utilize the structural properties of the tensor data, they

overlook the inherent structure of the corresponding tensor coefficients.

Recovering true tensor coefficients while preserving structural informa-

tion is crucial in practical applications to enhance interpretability. This

challenge is particularly significant in high-dimensional imaging studies,

where tensor coefficients are expected to exhibit piecewise constant patterns
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(Feng et al., 2021; Li and Zhang, 2021), and neighboring voxels tend to have

similar coefficient values (Michel et al., 2011; Wang et al., 2017). Effective

regularization methods are required to exploit these spatial dependencies

while maintaining computational efficiency. Wang et al. (2017) proposed

a two-dimensional total variation (TV) method to enforce piecewise con-

stant structures in matrix coefficients. However, due to its computational

complexity, this approach does not scale well to third-order or higher-order

tensor images. To address this limitation, Feng et al. (2021) introduced

Internal Variation (IV) regularization, an extension of anisotropic TV to

higher-order tensors for linear tensor regression. While IV regularization

provides a more scalable solution, it is restricted to continuous response

variables and is not applicable to discrete outcomes. Moreover, its theoret-

ical properties remain unexplored.

To the best of our knowledge, inference for the piecewise constant na-

ture of imaging coefficients in generalized tensor regression models has not

been studied in the literature. We aim to develop a generalized tensor re-

gression model tailored for high-dimensional imaging data, while providing

theoretical guarantees.

In this paper, we develop a generalized tensor regression model includ-

ing scalar and tensor predictors to cover different distributions of responses,

and apply IV regularization to address the piecewise constant nature of

tensor coefficients. Our approach makes several key contributions. First,
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we impose the CP decomposition to reduce the dimension of tensor coeffi-

cients while preserving the spatial structure of the imaging data. We then

construct IV regularization based on the CP decomposition, effectively cap-

turing the piecewise constant characteristics of imaging coefficients. Unlike

conventional fusion penalties (Li and Zhang, 2021), which apply a uniform

regularization strength across all factor vectors and overlook those with

smaller total variations, IV regularization dynamically adjusts regulariza-

tion strengths across different factor vectors. This adaptive approach allows

for accurate estimation of both high- and low-variation components, im-

proving both interpretability and estimation precision. Second, we extend

the Alternating Direction Method of Multipliers (ADMM) to iteratively

update CP decomposition coefficients under IV regularization. Existing

ADMM-based tensor regression methods (Lu et al., 2020; Li and Zhang,

2021) cannot be directly applied due to the additional complexity intro-

duced by the IV penalty and the nontrivial likelihood function. Our modi-

fied ADMM framework overcomes these computational challenges, enabling

efficient and scalable estimation. Third, we introduce a novel bootstrap

procedure specifically designed for tensor imaging data to assess the sig-

nificance of both scalar and tensor coefficients, with a particular focus on

specific subregions of the tensor coefficient. This addresses a critical gap

in the literature, as no existing inference methods have been developed for

tensor regression models.
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In theory, we investigate the theoretical properties of both scalar and

tensor coefficient estimates in non-regularized and regularized tensor re-

gression. Specifically, we first establish the asymptotic normality of these

estimates in the non-regularized setting. We then derive an error bound for

the coefficient estimates under general regularization and show that with ap-

propriately diminishing regularization, the estimated coefficients converge

to the true values as the sample size approaches infinity. Furthermore, we

establish an error bound for the tensor coefficient estimate under IV regu-

larization. Notably, we show that this error bound is related to the sparsity

in the internal variation of the factor vectors in CP decompositions, high-

lighting the impact of the piecewise constant nature of high-order imaging

data on estimation accuracy. Due to the complexity of IV regularization,

deriving theoretical guarantees for this method is challenging. Our proof

involves technical considerations linking the internal variation of the de-

composed factor vectors with the boundedness of the tensor coefficients

beyond those typically required for generalized tensor regression with sim-

pler penalties like the fusion penalty. To the best of our knowledge, this is

the first paper to theoretically explore IV regularization for the piecewise

constant nature of high-order imaging data.

Finally, we apply the proposed method to a chronic sinusitis (CRS) CT

imaging dataset, identifying subregions of the maxillary sinus cavity as-

sociated with pathogenesis, which have significant biological implications.

6

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0281



Although there has been extensive work linking brain imaging data to brain

disorders such as Alzheimer’s disease (Jack et al., 2010) and ADHD (Hin-

shaw and Scheffler, 2014), research on imaging data related to other body

parts is still very scarce.

The rest of the article is organized as follows. In Section 2, we intro-

duce the generalized tensor regression model based on CP decomposition,

and IV. Section 3 and Section 4 present the estimation and implementation

details and the theoretical properties, respectively. In Section 5, we pro-

vide the simulation studies for 3D scenarios. Section 6 illustrates the CRS

application. The last section provides concluding remarks and discussion.

2. Methodology

2.1 Notation and Operations

We start with a brief summary of tensor notation and some array opera-

tions. Extensive references can be found in the review article (Kolda and

Bader, 2009). Throughout this paper, we denote tensors by boldface script

capital letters such as X ,Y , matrices by boldface capital letters X,Y , vec-

tors by small boldface letters x,y, and scalars by small letters x, y. A

Dth-way tensor refers to a D-dimensional array X ∈ Rp1×p2×...×pD , where

the dimension D of a tensor is known as modes and pd (1 ≤ d ≤ D) is the

marginal dimension of the dth mode. For a vector x, let ∥x∥1, ∥x∥2 and

∥x∥∞ denote its ℓ1, ℓ2 and ℓ∞ norms. For a matrix X, its Frobenius norm

and vectorization are denoted by ∥X∥F and vec(X). The matricization of a
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2.2 Model framework

tensor links the concepts and properties of matrices to tensors. The mode-d

martricization of X , denoted as X(d) is defined as a pd ×
∏

d′ ̸=d pd′ matrix

such that the (i1, . . . , iD)th element of the tensor X maps to the (id, j)th

element of the matrix X(d), where j = 1 +
∑

d′ ̸=d(id′ − 1)
∏

d′′<d′,d′′ ̸=d pd′′

(Kolda and Bader, 2009). Moreover, let vec(X ) represent the vectoriza-

tion of a tensor X , which stacks its elements into a columns vector with

length
∏D

d pd with its the jth entry maps to the (i1, . . . , iD)th element of

X , where j = 1 +
∑D

d=1(id − 1)
∏d−1

d′=1 pd′ . Next, we introduce some useful

operations between tensors and matrices. Given A = [a1, . . . ,an] ∈ Rm×n

and B = [b1, . . . , bq] ∈ Rp×q, the kronecker product is the mp × nq ma-

trix A ⊗B = [a1 ⊗B . . .an ⊗B]. If A and B have the same number of

columns n = q, then the Khatri-Rao product is defined as an mp×n matrix

by A ⊙B = [a1 ⊗ b1 . . .an ⊗ bn]. Next, we define the inner product ⟨·, ·⟩

of two tensors with the same dimensions as ⟨X ,Y⟩ = ⟨vec(X )vec(Y)⟩ and

the Frobenius norm of a tensor is defined as ∥X∥F =
√

⟨X ,X⟩. An outer

product b1 ◦ b2 ◦ . . . ◦ bD of D vectors b1 ∈ Rp1 , . . . , bD ∈ RpD is an array of

dimension p1 × . . .× pD with its (i1, . . . , iD)th element equal to
∏D

d=1 bd,id .

2.2 Model framework

In this paper, we consider a broader family of exponential distributions for

the scalar response, which covers more types of tensor regression models.

We assume that the response y given covariate z ∈ Rq and tensor predictor

X ∈ Rp1×p2×...×pD belongs to an exponential family with probability mass
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2.2 Model framework

function or density

p(y|θ, ϕ) = exp

{
yθ − ψ(θ)

a(ϕ)
+ c(y, ϕ)

}
,

where θ and ϕ > 0 are the natural and dispersion parameters. The density

is related to z and X through the linear systematic part given by where θ

and ϕ > 0 are the natural and dispersion parameters. The density is related

to z and X through the linear systematic part given by where θ and ϕ > 0

are the natural and dispersion parameters. The density is related to z and

X through the linear systematic part given by

g(µ) = zTκ+ ⟨X ,A⟩ , (2.1)

where µ = E(y|z,X ) and g(·) is an increasing link function. κ ∈ Rq and

A ∈ Rp1×p2×...×pD are the covariate and tensor coefficients corresponding

to z and X , respectively. It is clear that the number of parameters to be

estimated in (2.1) is q +
∏D

d=1 pd. This number can be very large, even for

small values of each pd. For example, a conventional MRI image with a pixel

size of 256 × 256 × 256 requires 2563 = 16, 777, 216 parameters, which is

ultrahigh dimensional and exceeds the usual sample size. Including tensor

predictors introduces computational burdens and difficulties in estimation.

To deal with the high dimensionality resulting from A, we employ tensor

decomposition for dimension reduction. Common decomposition methods

include CP decomposition and Tucker decomposition (Kolda and Bader,
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2.2 Model framework

2009). We opt for CP decomposition because, in general, the number of

parameters obtained by CP decomposition is less than that of Tucker de-

composition, and Tucker decomposition requires identifying a specific rank

or size along each dimension (Li et al., 2018). For CP decomposition, a

rank-R approximation of A ∈ Rp1×p2×...×pD is presented as

A =
R∑

r=1

ar
1 ◦ ar

2 ◦ · · · ◦ ar
D, (2.2)

where ar
d ∈ Rpd , a column vector, corresponds to the dth mode and rth com-

ponent, and R is defined as the rank of A. The CP decomposition can be

expressed as A = [A1,A2, . . . ,AD], where Ad = [a1
d,a

2
d, . . . ,a

R
d ] ∈ Rpd×R

is the factor matrix of the d-th mode. In (2.2), potential identifiability is-

sues can be attributed to scaling, permutation, and non-uniqueness of the

decomposition. Constrained parameterization methods are needed to deal

with the identifiability issues. Following Zhou et al. (2013); Li et al. (2018),

we scale A1, . . . ,AD−1 such that ard,1 = 1 and arrange the first row entries

of AD in descending order a1D,1 > · · · > aRD,1 to deal with the complication.

After eliminating the indeterminacies, model (2.1) reduces to

g(µ) = zTκ+

〈
X ,

R∑
r=1

ar
1 ◦ ar

2 ◦ · · · ◦ ar
D

〉
. (2.3)

In comparison to model (2.1), model (2.3) not only preserves the complex

spatial structure of the tensor data but also significantly reduces the number

of parameters from
∏D

d pd to R
∑D

d=1 pd. In addition to a massive reduc-
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2.3 IV regularization

tion in dimensionality, the CP decomposition also provides a reasonable

approximation to many low-rank signals.

2.3 IV regularization

An important feature of imaging coefficients is their piecewise constant na-

ture, such that voxels in close proximity are more likely to have similar

coefficients. A common strategy to capture this property in 2D images in-

volves controlling the Total Variation (TV) (Wang et al., 2017). However,

when it comes to higher-dimensional imaging data, the direct application

of TV faces substantial computational and analytical challenges due to the

increased complexity. To navigate these challenges in higher-dimensional

data, the notion of Internal Variation (IV) was introduced in linear tensor

regression (Feng et al., 2021). This concept assumes that the tensor coeffi-

cients A can be approximated by a rank-R CP decomposition. Thus, the

IV of A is defined as

∥A∥IV =
R∑

r=1

D∏
d=1

∥ar
d∥TV, (2.4)

where ∥ · ∥TV for any a ∈ Rp represents the TV of the vector: ∥a∥TV =∑p
i=2 |ai − ai−1|. In a similar spirit to Feng et al. (2021), we consider an

IV regularized approach to capture the piecewise constant nature of high-

order imaging coefficients in generalized linear models. To the best of our

knowledge, this is the first time that piecewise constant tensor coefficients

are considered in generalized tensor regression models.
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2.3 IV regularization

We discuss in detail the advantages of the construction of IV regulariza-

tion. As illustrated in (2.4), the essence of IV regularization lies in imposing

a constraint on the total variations of all vectors {ar
d}r,d and assigning dif-

ferent regularization strengths to all {∥ar
d∥TV}r,d. For example, ∥ar

d∥TV is

penalized by λn
∏

d′ ̸=d ∥ar
d′∥TV. This differs from the common fusion penalty

∥A∥fusion =
∑R

r=1

∑D
d=1 ∥Rda

r
d∥1 with the 1st-order differencing matrix Rd

(Li and Zhang, 2021), where all {∥ar
d∥TV}r,d are penalized with the same

strength λn. This differential regularization strength is crucial in estimating

high-dimensional image coefficients with complex spatial structures, as it

prioritizes smaller total variations ∥ar
d∥TV while ensuring accurate estima-

tion of ar
d with larger total variations. In contrast, with the fusion penalty,

the penalty for smaller total variations ∥ar
d∥TV may be overshadowed and

hence neglected due to the dominance of larger total variations.

To illustrate this, we give a toy example. Let R = 1, D = 3, and A0 =

a1◦a2◦a3, where a1 is a 30-dimensional vector whose 2nd and 3rd elements

are equal to 2, a2 is a 30-dimensional vector whose 2nd and 3rd elements are

equal to 1, and a3 is a 30-dimensional vector whose 2nd and 3rd elements

are equal to 0.5. This also implies that ∥a1∥TV ≥ ∥a2∥TV ≥ ∥a3∥TV. After

generating the binary response y as in Section 5, we estimate â1, â2 and â3

using the IV and fusion regularizations with the same strength λn for both

methods. To ensure identifiability, we scale the second elements of a1 and

a2 to 2 and 1, respectively. Figure 1 shows the trends of each element of â1,
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â2, and â3 with the number of iterations. We observe that the IV method

converges faster and exhibits smaller fluctuations. Notably, the 2nd and

3rd elements of â3 estimated using IV regularization are always very close,

whereas there is a significant difference between the two elements estimated

using the fusion penalty. Additionally, the estimates of â1 and â2 obtained

using the IV method are more accurate. This is because in the fusion

penalty, the regularization strength of ∥a1∥TV, ∥a2∥TV, and ∥a3∥TV, are the

same, and ∥A∥fusion is mainly affected by ∥a1∥TV and ∥a2∥TV, which results

in a1 and a2, which have larger total variations, being accurately estimated,

while a3, which has smaller total variation, being ignored. On the contrary,

in ∥A∥IV, the regularization strength for a3 is λn∥a1∥TV∥a2∥TV, and such

a regularization strategy not only ensures that a1 and a2 are accurately

estimated, but also adequately takes into account the smaller ∥a3∥TV.

3. Estimation

3.1 Regularized GLM with IV penalty

Given the dataset {yi, zi,Xi}ni=1, the negative log-likelihood function is

L(κ,A1, . . . ,AD) =
∑n

i=1l{(κ,A1, . . . ,AD), yi} = −
∑n

i=1[{yiθi−ψ(θi)}/a(ϕ)+

c(yi, ϕ)], where θi is related to parameters (κ,A1, . . . ,AD) through (2.3)

and l(·, y) denotes the negative log-likelihood. We consider the following

IV regularized minimization problem

(κ̂, Â1, . . . , ÂD) = argmin
κ,A1,...,AD

L(κ,A1, . . . ,AD) + λn∥A∥IV, (3.1)

13

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0281



3.1 Regularized GLM with IV penalty
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0 10 20 30
Iteration

0

1

2

V
al

u
e

(b) IV regularized â2
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Figure 1: Trends of each element in â1, â2 and â3 over iterations using the
IV penalty and fusion penalty. The orange line represents the 2nd element
and the blue line represents the 3rd element.

where λn is the regularization parameter. The estimation problem (3.1) can

follow a block relaxation algorithm. However, deriving a piecewise constant

estimate through the IV regularization comes at the cost of a more com-

plex algorithm. Specifically, the form of the TV product, as in (2.4), across

different modes poses significant challenges for estimation. We consider con-

verting the IV regularization into a generalized lasso with the form ∥Da∥1

to remove the concatenated product form, where the generalized matrix D

does not contain any parameters of a. We next illustrate this idea in detail.

Let ad = vec(Ad) ∈ RRpd be the vectorization of Ad. When updating
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3.1 Regularized GLM with IV penalty

ad, the inner product in (2.3) can be rewritten as〈
Xi,

R∑
r=1

ar
1 ◦ ar

2 · · · ◦ ar
D,

〉
=

R∑
r=1

Xi,(d)

(
ar
1 ⊗ · · · ⊗ ar

d−1 ⊗ ar
d+1 ⊗ · · · ⊗ ar

D

)
ar
d.

(3.2)

Let xr
i,d = Xi,(d)

(
ar
1 ⊗ . . .⊗ ar

d−1 ⊗ ar
d+1 ⊗ . . .⊗ ar

D

)
and vr be anR-dimensional

vector with the rth element being 1 and the rest being 0. We have

Xi,d =

(
R∑

r=1

vr ⊗ xr
i,d

)
∈ RRpd , Xd = [X1,d, . . . ,Xn,d] ∈ Rn×Rpd . (3.3)

As a result, the expression in (3.2) takes the form of Xdad for each d. This

implies that by fixing other Ad′ ̸=d matrices, we can update each ad through

traditional GLM regression with Rpd parameters.

For the IV regularization, notice that ∥ar
d∥TV = ∥Gda

r
d∥1 where Gd ∈

R(pd−1)×pd is the 1st-order differencing matrix. Let ξrd =
∏

d′ ̸=d ∥ar
d′∥TV and

Hr be an R×R identity matrix , then

∥A∥IV =
R∑

r=1

(∏
d′ ̸=d

∥ar
d′∥TV

)
∥ar

d∥TV = ∥Ddad∥1, (3.4)

where Dd =
∑R

r=1 ξ
r
dHr ⊗ Gd ∈ RR(pd−1)×Rpd . By combining (3.2), (3.3),

and (3.4), we can estimate ad, given κ and Ad′ ̸=d, through a generalized

lasso regularized GLM:

âd = argmin
ad

L(Xdad) + λn∥Ddad∥1. (3.5)

For the generalized lasso optimization (3.5), note that the non-smoothness

of the ∥Ddad∥1 makes traditional algorithms, such as gradient descent, suf-

fer from slow convergence. We adopt the Alternating Directional Method
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3.2 Hypothesis Testing

of Multipliers (ADMM) algorithm, which has been frequently used in dis-

tributed settings (Boyd et al., 2011). The detailed information about the

ADMM algorithm is included in the Supplement Material S.1 to save space.

The ad’s are recursively updated by fixing other estimates until conver-

gence. The steps of the IV regularized generalized tensor regression are

summarized in Algorithm 1 in the Supplement Material S.2. In practice,

the initial values of (A1, . . . ,AD) are chosen from independent Normal dis-

tributions with small variance. We select the tuning parameters λn and R

(if unknown) using the following Bayesian information criterion (BIC), as

described in Burnham and Anderson (2004); Feng et al. (2021),

BIC(λn, R) = 2L(κ̂, Â) + log n · df(λ,R),

where df(λ,R) represents the degrees of freedom. We use the degrees of

freedom defined in Feng et al. (2021) and Li and Zhang (2021), which

equals the sum of the nonzero elements across {Ddad}d. We provide a

more detailed discussion on the BIC in the Supplement Material S.10.

3.2 Hypothesis Testing

Although the estimation of parameters is interesting, it is equally important

to test for the significance of κ and vec(A). This is particularly relevant

in biomedical imaging analysis, where we aim to examine whether imaging

data and other covariates have significant effects on diagnosis. Therefore,
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3.2 Hypothesis Testing

we propose to test two sets of null and alternative hypotheses as follows:

H0,κ : κ = 0q, vs. H1,κ : κ ̸= 0q,

H0,A : vec(A) = 0p, vs. H1,A : vec(A) ̸= 0p.

To test these two hypotheses above, we propose two statistics as follows:

Tκ = ∥κ̂∥2 = (κ̂)T κ̂ and TA = ∥vec(Â)∥2 = vec(Â)Tvec(Â).

Under the null hypotheses, the two statistics, Tκ and TA, are expected to

be close to zero. One can reject the null hypothesis H0,κ if Tκ is large,

and similarly, reject H0,A if TA is large. As the asymptotic normality of Â

under IV regularization can’t be directly derived in Section 4, we propose

a resampling procedure to approximate the null limiting distributions of

these statistics. To accommodate the tensor data setting, we modify the

bootstrap method by Cheng and Huang (2010). Specifically, we implement

the bootstrap for our IV regularized minimization as follows:

• Step 1: Compute the estimators κ̂, vec(Â) through the IV regularized

tensor regression by Algorithm 1.

• Step 2: For each b, genrate n i.i.d. random variablesW b
n = (W b

n1, . . . ,W
b
nn)

with E(W b
ni) = 1, E(W b

ni − 1)2 → 1, and E(W b
ni)

8 < ∞ for i =

1, . . . , n.

• Step 3: Solve the following W b
n-weighted minimization and denote
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their solutions as κ̂b and Âb,

argmin
n∑

i=1

W b
nil((κ,A1, . . . ,AD), yi) + λn∥A∥IV,

The tuning parameters are the same as those selected in Step 1.

• Step 4: Repeat Step 2 and Step 3 for B times. Calculate

T b
κ = (κ̂b − κ̂)T (κ̂b − κ̂) and T b

A = vec(Âb − Â)Tvec(Âb − Â).

• Compute p̂κ = b−1
∑B

b=1 I(T
b
κ > Tκ) and p̂A = b−1

∑B
b=1 I(T

b
A > TA).

The null hypothesis H0,κ is rejected if p̂κ is smaller than a prefixed

significance level α, andH0,A is rejected if p̂A is smaller than a prefixed

significance level α.

In some situations, the parameter of interest is T ′
A = m′(A), where m′(·) is

a function from Rp to R. For example, when A is a 30 × 30 × 30 ten-

sor, we may want to check if the subregion in the middle is zero, i.e.,

vec(A15:20,15:20,15:20) = 0. In this case, we propose the statistic T ′
A =

vec(A15:20,15:20,15:20)
Tvec(A15:20,15:20,15:20) to test the new hypothesis.

4. Theoretical Properties

The existing literature mainly focuses on the theoretical properties of tensor

estimators while overlooking scalar estimators (Zhou et al., 2013; Wang

et al., 2017; Li et al., 2018). Moreover, theoretical exploration of regularized

generalized tensor regression models is relatively limited, especially in the

complex context of IV regularization.
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In this section, we investigate the statistical properties of both tensor

and scalar estimates in generalized tensor regression, with or without the

use of regularization. In particular, we establish the asymptotic normality of

non-regularized estimates, κ̂ and Â, respectively (see Theorem 1). Then, we

derive the error bound for coefficient estimate under general regularization

(see Theorem 2). It is worth noting that the conclusion of Theorem 2 is not

limited to IV regularization but is also applicable to common regularization

methods, such as lasso or fusion penalties. Finally, we specifically derive

the error bound for IV regularized tensor estimate Â (see Theorem 3).

First, we provide a brief explanation of some notation. Let xi =

vec (Xi). Define A ∈ Rp = (vec(A1)
T , vec(A2)

T , . . . , vec(AD)
T )T as the

true parameters, and let f(A) = vec (A) = vec(A1,A2, . . . ,AD) be the

function corresponding to the true A. Then, the Jacobian matrix J of

dimensions
∏D

d=1 pd ×
∑D

d=1 pdR takes the following form:

J(A) = ∂f/∂A = [J1 · · ·JD] , (4.1)

where Jd is the
∏D

d=1 pd × Rpd Jacobian matrix with respect to Ad with

the form Πd [(AD ⊙ · · · ⊙Ad+1 ⊙Ad−1 ⊙ · · · ⊙A1)⊗ Ipd ], where Πd is the∏D
d=1 pd ×

∏D
d=1 pd permutation matrix that reorders vec(A(d)) to vec(A).

We first consider the asymptotic distribution of the estimators for tensor

regression (2.3) with fixed p1, . . . , pD and rank R. Non-regularized tensor re-

gression problem can be represented by (κ̂, Â) = argmin
κ,A

∑n
i=1 l {(κ,A), yi}.
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We establish the asymptotic distribution of κ̂ and Â in the following the-

orem, with proof provided in the Supplement Material S.13.

Theorem 1. Let η0 = zTκ0 + xTf(A0), ρ2(η) = (dµ/dη)2 /σ2(η) and

define h(z) = E[zρ2(η0)|X ]/E[ρ2(η0)|X ], z̃ = z − h(z) and h(X ) =

E[Xρ2(η0)|z]/E[ρ2(η0)|z], x̃ = x − vec(h(X )). Suppose Conditions C1

and C2 of the Supplement Material S.3, hold, as n→ ∞, we have

√
n(κ̂− κ0) → N

(
0,Σ−1

κ

)
,

√
n(Â−A0) → N

(
0,Σ−1

A

)
where Σκ = E

[
ρ2(η0)z̃z̃

T
]

and ΣA = JT (A0)E
[
ρ2(η0)x̃x̃

T
]
J(A0).

Theorem 1 shows that the estimates κ̂ and Â are both
√
n-consistent. If

z and X are independent, the variance terms reduce to Σκ = E
[
ρ2(η0)zz

T
]

and ΣA = JT (A0)E
[
ρ2(η0)xx

T
]
J(A0). We further characterize the inter-

actions between the two types of covariates. In particular, the term h(X )

is a projection of z onto X and h(z) is a projection of X onto z. When

there are no covariates z in the model, the asymptotic variance of Â is the

same as Theorem 2 of Zhou et al. (2013). However, their conclusion does

not consider the effects of scalar covariates.

Next, we establish the theoretical properties for the recovered coeffi-

cients when a general regularization function R(·) is added. Let I = (κ,A)

represent the combination of the covariate coefficients and tensor coeffi-

cients, with Ai1···iD =
∑R

r=1 a
r
1,i1

· · · arD,iD
as defined by the CP decompo-

sition (2.2). Recall that the negative log-likelihood function is defined as
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l(I, yi) = − [{yiθi − ψ(θi)}/a(ϕ) + c(yi, ϕ)]. Consequently, the overall ob-

jective function combines the negative log-likelihood function and the regu-

larization function R(·), namely L(I|y) =
∑n

i=1 l(I, yi)+λnR(I), where λn

is the regularization parameter. Assuming ΘI as the parameter space of I,

we have Î = argminI∈ΘI
L(I|y). For each yi, let l∆(I, yi) = l(I, yi) −

l(I0, yi) be the negative log-likelihood difference. Here, I0 = (κ0,A0)

corresponds to the unique true parameter. We first define K(I, I0) =

n−1
∑n

i=1E [l∆(I, yi)], which is the expected negative log-likelihood differ-

ence. Since I0 is the unique true parameter, we have K(I, I0) ≥ 0 for all

I ∈ Θ and K = 0 if and only if I = I0. Therefore, we define the distance

between I and I0 as ρ(I, I0) = K1/2(I, I0), and also define the variance of

the negative log-likelihood as V (I, I0) = n−1
∑n

i=1 V ar [l∆(I, yi)].

Theorem 2. Suppose Î is the regularized estimator satisfying L(Î|y) ≤

infI∈ΘI L(I|y) + τn, where τn → 0 and ΘI = {(κ,A) : A = [A1, . . . ,AD],

∥κ∥∞ ≤ C1,maxd ∥vec(Ad)∥∞ ≤ C2} for positive constants C1 and C2, then

P
(
ρ(Î, I0) ≥ ξn

)
≤ 7 exp(−cnξ2n),

where c > 0 is a constant and ξn = max(εn, λ
1/2
n ) with

εn ∼


(

1
n1/2

) 2ω
2ω+1 if ω > 1

2
,

(
1

n1/2

)ω if ω ≤ 1
2
,

being the best possible rate achieved when λn ∼ ε2n. Here ω = α/γ, where
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α is the parameter associated with the degree of smoothness of l∆ and γ =∑D
d=1 pdR + q is the number of the parameters (κ, {Ad}d).

Theorem 2 indicates that, with an appropriately diminishing R(·), the

recovered coefficients Î converge to the true one as n → ∞. When l∆ is

infinitely differentiable, meaning ω = ∞, the convergence rate of Î reaches

n−1/2. This condition is met in cases where y follows normal, binomial, or

Poisson distributions. As the smoothness of l∆ decreases, the convergence

rate of the estimator Î becomes slower. Additionally, Theorem 2 does not

require the penalty function R(I) to specifically be the IV as defined by

(2.4). Therefore, it holds for a wide range of regularized generalized tensor

regression models.

We further proceed to study the rate of convergence for IV regularized

generalized tensor regression. We focus on the following estimator:

Â = argminA=[A1,...,AD]

1

n

n∑
i=1

l(A, yi) + λ∥A∥IV, (4.2)

where we use λ instead of λn from the previous context for distinction and

simplify by ignoring the effect of covariates. To establish the error bound

of Â in (4.2), the following conditions are required.

(C3). The factor matrices A = [A1, . . . ,AD] satiety |Sr
d| ≤ srd, where

|Sr
d| is the number of indices in Sr

d =
{
j : ardj+1 − ardj ̸= 0, 1 ≤ j ≤ pd − 1

}
for any r = 1, . . . , R and d = 1, . . . , D.

(C4). X is almost surely bounded by a constant L such that ∥ vec(X )∥∞ ≤
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L, a.s.

(C5). The parameter space of factor matrices is ΩA = {(A1, . . . ,AD)

for each d = 1, . . . , D and r = 1, . . . , R, g ≤ ∥ar
d∥1 ≤ ḡ and t ≤ ∥ar

d∥TV ≤

t̄, }, where g, ḡ > 0 and t, t̄ > 0.

(C6). Let Ω = {H ∈ Rp1×p2×···×pD : H = [A1 +H1,A2 +H2, . . . ,AD +HD]

− [A1,A2, . . . ,AD], where [A1 +H1,A2 +H2, . . . ,AD +HD] ∈ ΩA, h =

vec(H) and
∑R

r=1

∑D
d=1(2t

D−1−1)
∑

j∈Src
d
|hrdj+1−hrdj| ≤

∑R
r=1

∑D
d=1(2t̄

D−1+

1)
∑

j∈Sr
d
|hrdj+1 − hrdj|+

∑R
r=1

∑D
d=1 |hrd1|+ εn/(8ḡ

D−1) with εn = 1/n}. De-

note Σ := E(vec(X )⊤vec(X )), assume that there exists some constant k

such that, for any H ∈ Ω,

vec(H)⊤Σvec(H) ≥ k∥H∥2F − 1

8ḡD−1
εn.

Condition C3 specifies the sparsity of the differences among the coefficients

of the factor vectors. The srd’s are not required to be bounded, so the the-

orem holds for any value of srd. Condition C4 is consistent with C1 but

additionally provides the bound L for convenience. Condition C5 imposes

constraints on both the range and the total variation of all factor vectors.

Similar assumptions are commonly seen in regularized tensor regression

problems (Lu et al., 2020; Liu et al., 2024). Note that here we constrain

the lower bound of the total variation of the factor vectors, primarily due

to the complex product form of the total variation in the IV regularization

term. Condition C6 is similar to those in (Blazère et al., 2014; Lu et al.,
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2020; Liu et al., 2024), but our parameter space Ω is more complex due to

the consideration of the IV regularization term. C6 assumes local strong

convexity of the expected loss at the minimizer, which is commonly consid-

ered in lasso or group lasso regularized GLMs (Bunea, 2008; Lounici et al.,

2011; Blazère et al., 2014). By Lemma 2.1 in Bunea (2008), C6 is satisfied

when the entries of Σ are bounded. The following result provides the rate

of convergence for IV regularized estimate Â in (4.2).

Theorem 3. Under Conditions C3 to C6, define s = maxr,d s
r
d, p =

∏
d pd,

and B = RḡD, there exist constants CL,B, C1, C2, C3, and C4 such that

λ ≥ 16KLCL,B ḡ
D−1

√
2 log 2p

n
∨ 16

3
K2LCL,B ḡ

D−1 log 2p

n
∨ 80KLΦ(Lζn)ḡ

D−1

√
2 log 2p

n
,

where K ≥ 1, M = C1B+εn, ζn = 2M+B, and Φ(t) = max|x|≤t{ψ′(x)/2}.

Define cn = Φ(L(M + B)). Then, with probability 1 − (2 + C2)(2p)
−K2/2,

we have

∥Â − A∗∥F ≤ C3(C4 +
√
s)
√
RDλ

cnk
.

In particular, if ḡ and D are bounded above and Φ(t) is bounded away

from zero, the rate of convergence is
√
sR log(2p)/n when we set λ ≍√

log(2p)/n. This implies consistency of the estimator when p also diverges

with n as long as
√
sR log(2p)/n = o(1) as n → ∞. The error bound

depends on s, which represents the sparsity of the internal variation within

the coefficients of the factor vectors. This implies that the more piecewise

constant the true high-dimensional imaging coefficient is, the smaller the
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error bound. One may compare this to the case of Lasso penalty, where

the rate depends on the sparsity of the coefficients themselves. The error

bound also depends on the sample size n and the dimension p only has a

logarithmic effect. The above result shows that a smaller value of s and the

low-rank structure will lead to a better rate.

5. Simulation Studies

In this section, we conduct various numerical studies to evaluate the perfor-

mance of our proposed method, TensorReg IV, in 2D and 3D scenarios. For

comparison, we also analyze three additional methods. The first method,

VoxelReg, performs generalized linear regression for each voxel. The sec-

ond method, TensorReg, applies CP decomposition to A and estimates pa-

rameters through traditional GLMs. The third method, TensorReg Lasso,

performs tensor regression with fusion lasso penalty (Li and Zhang, 2021).

Considering different response distributions of y such as binomial, normal,

and Poisson, we primarily present the results of simulations under the bino-

mial distribution here, in line with our CRS data study. The 2D simulation

results are provided in the Supplement Material S.7. The results for the

other two distributions are compiled in the Supplement Material S.8. Esti-

mation accuracy is assessed by ∥κ̂ − κ0∥2 and ∥Â − A0∥F . For prediction

performance in binary tensor regression, we calculate the accuracy rate

P [ŷ = y], sensitivity P [ŷ = 1|y = 1], and specificity P [ŷ = 0|y = 0].

In the 3D image simulation, we generate Xi as a 30 × 30 × 30 tensor,
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incorporating four distinct shapes: One Brick, Two Bricks, Three Cross,

and Pyramid, as specified in Feng et al. (2021). The ranks for these shapes

are set at 1, 2, 3, and 8, respectively. The tuning parameters for regulariza-

tion methods are determined through a grid search based on the criterion

discussed in Section 3.1. Define ηi = zT
i κ0 + ⟨Xi,A0⟩, with both Xi and zi

being normally distributed, and we set κ0 = (1, 1, 1, 1, 1)T . The binomial

response is generated as yi ∼ Bernoulli(pi), with pi = 1/[1+exp(−ηi)]. The

simulation outcomes are derived from 100 repetitions, and the sample size

n varies within {500, 700, 1000}.

Table 1 summarizes the average RMSEs and their standard errors for κ̂

and Â. The proposed method consistently outperforms the other methods

in terms of ∥κ̂−κ0∥2 and ∥Â−A0∥F . A notable trend is observed where the

RMSEs of all methods decrease as the sample size n increases, which aligns

well with our theoretical findings. The RMSEs of the VoxelReg estimates

remain relatively constant across different sample sizes n, with each estimate

value being near 0. This explains the anomalously small RMSE observed in

the Pyramid case, highlighting it as an invalid result. To further compare

the proposed method with other methods, we visualize the true signals

alongside the estimated tensor coefficients of these methods in Figure 2.

We omit the results of VoxelReg as it fails to reconstruct the true signal

effectively. From the visualizations, it is evident that our proposed method

outperforms the others in accurately recovering the true signal. Notably,
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Table 1: Mean and standard error of ∥κ̂ − κ0∥2 and ∥Â − A0∥F using
TensorReg IV and competing methods under different signal shapes of A0

and sample size n based on 100 replications.

A0 n VoxelReg TensorReg TensorReg Lasso TensorReg IV

∥κ̂− κ0∥2 One brick 500 2.199 (0.006) 1.629(0.904) 1.514(0.825) 1.172(0.525)

700 2.185(0.007) 1.512(0.621) 1.368(0.883) 0.641(0.477)

1000 2.162(0.008) 0.738(0.512) 0.811(0.514) 0.355(0.174)

Two bricks 500 2.210(0.006) 1.273(0.428) 1.533(0.290) 1.354(0.411)

700 2.198(0.007) 1.481(0.232) 1.169(0.437) 0.883(0.489)

1000 2.181(0.009) 1.293(0.437) 0.678(0.374) 0.582(0.368)

Three cross 500 2.215(0.007) 2.186(0.643) 1.551(0.519) 1.331(0.375)

700 2.208(0.008) 1.524(0.594) 1.317(0.353) 1.117(0.380)

1000 2.195(0.010) 1.444(0.439) 1.065(0.281) 0.820(0.335)

Pyramid 500 2.218(0.006) 1.928(0.194) 1.696(0.249) 1.505(0.330)

700 2.213(0.008) 1.730(0.315) 1.606(0.265) 1.294(0.333)

1000 2.203(0.010) 1.490(0.360) 1.485(0.249) 1.105(0.300)

∥Â − A0∥F One brick 500 6.690(0.005) 8.952(5.665) 7.714(2.859) 4.741(2.655)

700 6.681(0.006) 7.023(2.506) 6.633(3.667) 2.162(2.289)

1000 6.672(0.006) 3.658(1.991) 3.845(2.008) 0.985(0.598)

Two bricks 500 9.436(0.005) 18.381(21.921) 9.706(0.334) 8.193(2.221)

700 9.416(0.005) 9.896(0.379) 8.087(1.301) 4.841(2.698)

1000 9.387(0.006) 8.405(1.595) 5.454(1.598) 2.918(1.957)

Three cross 500 12.631(0.004) 24.172(6.806) 19.532(4.837) 11.353(1.665)

700 12.604(0.005) 29.909(17.731) 14.265(4.746) 9.196(1.684)

1000 12.562(0.006) 18.028(18.738) 9.452(1.326) 6.438(2.281)

Pyramid 500 15.567(0.004) 16.449(3.68) 19.209(1.306) 15.965(6.704)

700 15.536(0.005) 17.214(4.122) 17.670(3.202) 12.056(1.490)

1000 15.489 (0.006) 14.681 (3.726) 13.587(2.311) 10.361(0.875)
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(a) One Brick (b) Two Bricks

(c) Three Cross (d) Pyramid

Figure 2: True signals and estimates of Â. The sample size is 1000.

TensorReg and TensorReg Lasso struggle to reconstruct the true signal,

even in the relatively simple One Brick scenario.

Table 2 details the prediction performance of various methods. A sim-

ilar pattern to the estimation accuracy results is evident: TensorReg IV

consistently outperforms the other methods, achieving higher accuracy, sen-

sitivity, and specificity across the board. In terms of computation time, our

method takes longer than TensorReg but is comparable to TensorReg Lasso.
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For instance, in the One Brick scenario with n = 1000, the average com-

putation times are 95 seconds for TensorReg, 300 seconds for TensorReg

Lasso, and 284 seconds for IV regularization. Based on the valuable sug-

gestion from the AE, we also compare the performance of CNNs on the

aforementioned classification problem, with results presented in Table 2.

The training and tuning steps for the CNNs are detailed in the Supplement

Material S.5. It can be observed that the performance of CNNs is generally

suboptimal. Due to the data generation process, our images are generated

from a normal distribution, making it challenging for CNNs to capture

label-related signals, resulting in suboptimal performance. The sensitivity

and specificity results are provided in the Supplement Material S.6.

6. The CRS Application

The etiology of CRS is complex, and it is a common condition worldwide

with a prevalence of about 5%-16%. CRS significantly impairs quality of

life and poses a substantial economic burden (Hastan et al., 2011; Fokkens

et al., 2020; Zou et al., 2024). Diagnosis primarily relies on nasal endoscopy

and imaging assessment, in addition to clinical symptoms such as nasal

congestion and blockage. CT examination can display all groups of sinus

cavities, mucosa, and bony structures without the restriction of field of view,

making it essential for preoperative evaluation. Combining CT image data

with patient-related covariates significantly enriches diagnostic information

and improves accuracy.
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Table 2: Mean and standard error of prediction results using TensorReg IV
and competing methods under different signal shapes of A0 and sample size
n based on 100 replications.

A0 n VoxelReg TensorReg TensorReg Lasso CNN TensorReg IV

P [ŷ = y] One brick 500 0.514(0.034) 0.579(0.119) 0.575(0.108) 0.538 (0.053) 0.662(0.170)

700 0.525(0.027) 0.683(0.170) 0.745(0.168) 0.566 (0.061) 0.814(0.142)

1000 0.532(0.025) 0.787(0.154) 0.779(0.155) 0.611 (0.065) 0.879(0.039)

Two bricks 500 0.519(0.035) 0.512(0.034) 0.553(0.061) 0.540 (0.049) 0.629(0.124)

700 0.523(0.032) 0.538(0.042) 0.699(0.118) 0.559 (0.057) 0.804(0.130)

1000 0.526(0.022) 0.646(0.127) 0.845(0.088) 0.599 (0.054) 0.864(0.087)

Three cross 500 0.517(0.036) 0.524(0.042) 0.595(0.060) 0.562 (0.067) 0.659(0.096)

700 0.526(0.030) 0.533(0.055) 0.678(0.044) 0.615 (0.077) 0.734(0.072)

1000 0.532(0.021) 0.601(0.091) 0.737(0.024) 0.654 (0.072) 0.826(0.077)

Pyramid 500 0.520(0.031) 0.533(0.082) 0.600(0.038) 0.568 (0.077) 0.701(0.048)

700 0.521(0.029) 0.583(0.085) 0.635(0.043) 0.629 (0.083) 0.750(0.036)

1000 0.532(0.021) 0.654(0.092) 0.703(0.043) 0.660 (0.090) 0.777(0.036)

We apply the proposed method to a real dataset of CRS patients. The

dataset, comprising clinical and imaging data, was collected from patients

who visited Nanjing Tongren Hospital for CT examinations of paranasal si-

nuses between January 2018 and December 2021. A retrospective analysis

of these patients and a healthy control group was conducted. All subjects

underwent Multi-Slice CT (MSCT) as part of their assessment. CRS diag-

noses followed the European sinusitis guidelines. For image acquisition, CT

volumetric images of the patients’ paranasal sinuses were obtained using

either a 64-layer or 256-layer spiral CT scanner (Philips Medical Systems,
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The Netherlands). These images were captured with a layer thickness and

spacing of 0.625 mm, and a size of 512 × 512. The scanning baseline was

aligned parallel to the infraorbital line, covering an area from the top of the

frontal sinus down to the inferior edge of the maxillary odontoid process.

Due to varying sizes of CT images among patients and to improve com-

putation efficiency, we cropped the CT images for each patient, removing

irrelevant areas, and resized them to 100× 256× 256. The dataset includes

479 cases: 270 normal controls and 209 CRS subjects. Of these, 274 were

males with an average age of 35.5 years (SD 17.2 years) and 205 were fe-

males with an average age of 40.7 years (SD 17.3 years). We encoded the

binary disease state as 0 for healthy controls (HC) and 1 for CRS. The im-

age predictor Xi is a 3D CT image of the sinus, and the covariate vector zi

includes gender (female=0, male=1) and age (ranging from 3 to 81 years).

Given (zi,Xi), yi is assumed to follow a Bernoulli distribution with proba-

bility pi, where log[pi/(1 − pi)] = zT
i κ + ⟨Xi,A⟩. We employed Algorithm

1 to estimate the unknown parameters.

Figure 3 presents the horizontal, coronal, and sub-regional sagittal sec-

tions as identified by three different methods. Specifically, the first row

in Figure 3 displays three sections of an original CT image sample. The

sixth color row shows the estimated coefficients obtained by our proposed

method, and the seventh row highlights the signal regions within the top

10% of the magnitude. Notably, in the bottom left panel of Figure 3, the ef-
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fects around pixels (50, 100) and (50, 150) appear to be effectively captured

by IV estimation. Similar observations are made in the coronal and sub-

regional sagittal planes, where the effects at corresponding locations are

also well estimated. In contrast, the signal distribution in the estimated

coefficients obtained by TensorReg and TensorReg Lasso is more dispersed,

making it challenging to intuitively discern significant signal regions.

Analyzing the bottom panel of Figure 3, we can locate the subregion

with the strongest signal, identified by TensorReg IV as Â20:30,155:170,140:150.

We test the null hypothesis H0,A′ : vec(Â20:30,155:170,140:150) = 0 and propose

the corresponding statistic TA′ = vec(Â20:30,155:170,140:150)
Tvec(Â20:30,155:170,140:150).

We calculated the p-value of this subregion using the empirical bootstrap

procedure proposed in Section 3.2. The p-value for this subregion is 0.020,

indicating that the identified subregion is significant on the incidence of

CRS. Regarding the covariates, we obtained κ̂ of the coefficients corre-

sponding to age and sex as −0.026 and −1.262, respectively, with the cor-

responding p-values being 0.008 and 0.739, which indicates that sex does

not have a significant impact on the incidence of CRS.

It is noteworthy that the subregion with the strongest signal identified

by our method is located in the sinus cavity of the maxillary sinus, a region

widely recognized for its association with the pathogenesis of CRS. Con-

ventional CT scans for CRS typically reveal a mucosal thickness of ≥ 3

mm in the maxillary sinus cavity, often accompanied by soft tissue and
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Figure 3: Tensor coefficients estimated and identified signals for CRS data using differ-
ent methods. Three columns are the horizontal section, the coronal section, and sagittal
section, respectively. Row 1 is a sample of sinus CT, rows 2-3, rows 4-5, rows 6-7 corre-
spond to TensorReg, TensorReg Lasso and TensorReg IV, respectively.
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air-fluid surfaces (Capelli and Gatti, 2016; Fokkens et al., 2020). Classical

diagnostic criteria assign scores of 0, 1, or 2 for the absence, presence, or

complete filling of inflammation in each sinus cavity, respectively. Addi-

tionally, studies have shown that the maxillary sinus cavity volume and

mean bone wall thickness in CRS patients significantly differ from those in

the control group (Kim et al., 2008; Cho et al., 2010; Deeb et al., 2011).

The scalar estimates also provide insightful biological meanings. Firstly,

the negative estimate for age indicates a lower prevalence of CRS in older

groups compared to younger ones, aligning with the results from a CRS

symptom questionnaire administered to 24,000 primary care patients (Mah-

davinia and Grammer III, 2013; Hirsch et al., 2017). Secondly, regarding

the negative gender coefficient, although it is not statistically significant,

we still observed that its negative nature aligns with some literature on the

relationship between CRS and gender (Shashy et al., 2004; Mahdavinia and

Grammer III, 2013). This suggests a potential increased susceptibility of

women to CRS, a hypothesis that warrants further investigation.

Finally, we evaluated the prediction accuracy of the proposed method

and the competing methods for the CRS dataset. We randomly divided the

CRS dataset into a training set with n1 = 400 and a test set with n2 = 79,

calculating the classification accuracy for the test set. The prediction results

are summarized in Table 3. Evidently, TensorReg IV achieves superior

performance in terms of accuracy, sensitivity, and specificity. Furthermore,
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Table 3: Mean and standard error of prediction performance using the IV
and competing methods.

Prediction TensorReg TensorReg Lasso TensorReg IV

Accuracy 87.9%(0.9%) 89.5%(1.9%) 93.2%(1.1%)

Sensitivity 90.2%(0.7%) 92.3%(4.4%) 93.7%(4.2%)

Specificity 86.2%(1.8%) 86.7%(2.9%) 92.8%(4.6%)

when diagnosing CRS using only gender and age, the accuracy, sensitivity,

and specificity were 50.6%, 43.6%, and 57.5%, respectively, indicating that

the inclusion of high-order images substantially improves predictive power.

7. Discussion

In this article, we introduce a novel IV regularized tensor regression frame-

work that incorporates a low-rank and piecewise constant structure. This

framework is robust to distributional assumptions and enhances the inter-

pretability of the model. We delve into the details of how IV effectively

assigns varied regularization strengths to each {∥ar
d∥TV}r,d. We investigate

the theoretical properties of tensor estimate under IV regularization. Exten-

sive numerical studies have been conducted to validate the effectiveness of

the proposed IV regularized regression and compare it with other methods.

We also applied this method to analyze a real CRS dataset, successfully

identifying the most active regions associated with CRS. This work lays

the groundwork for further research into the etiology and imaging interac-
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tions of CRS and other sinus diseases, a task complicated by the complexity

of the sinuses and the irregular spatial structure and dimensionality of the

imaging data. There remain many areas ripe for further research. The IV

is based on the CP decomposition, prompting the consideration of other

common tensor decomposition methods for constructing new IV, such as

Tucker decomposition (Kolda and Bader, 2009) and Tensor-Train decom-

position (Oseledets, 2011).

8. Supplementary Material

In the supplementary material, we present the complete algorithm for esti-

mating the parameters and provide additional numerical results. In addi-

tion, we give some useful lemmas and proofs of theorems.
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