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Abstract: Analyzing clinical diagnosis along with high-dimensional imaging data,
while accounting for the piecewise constant nature of the imaging, presents chal-
lenges to existing statistical approaches. In this paper, we propose a generalized
tensor regression framework with Internal Variation (IV) regularization to ad-
dress these challenges. The inclusion of IV regularization allows for the explicit
utilization of the rich spatial structure, particularly the piecewise constant nature
of high-order imaging data, albeit with a more complex algorithm and demand-
ing theoretical investigation. We develop an efficient IV regularized optimization
procedure for estimating unknown scalar and tensor coefficients. We investigate
the theoretical properties of scalar and tensor coefficient estimates, especially
the error bounds of regularized tensor coefficient estimates. Extensive numerical
studies assess the finite sample performance of our method, demonstrating its
superiority over existing approaches. Finally, we apply the proposed method to
a chronic sinusitis computed tomography (CT) imaging dataset and identify the
most activated subregion across the maxillary sinus cavity associated with the

diagnosis.
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1. Introduction
Tensor data, represented as multi-dimensional arrays, naturally arise in
various fields such as imaging, neuroscience, and spatiotemporal analysis,
where the data exhibit inherent structural dependencies. Tensor regression
extends traditional regression models by leveraging these multi-way struc-
tures to capture complex relationships between tensor predictors and scalar
or tensor outcomes, with widespread applications across various fields (Bi
et al), 2021; Liu et al), 2022). In image processing, tensor regression has
been used for tasks such as denoising (Zhang et all, 2021), medical diagnosis
(Zhou et al), 2013; Li and Zhang, 2021; Feng et al), 2021)), and brain con-
nectivity analysis (Spencer et all, 2019). In addition, it plays a crucial role
in examining the relationship between manufacturing parameters and the
geometry of manufactured parts (Yan et al), 2019). In multi-task learning,
tensor regression uses shared information across tasks, enhancing model
accuracy and outperforming independent task learning models (Yang and
Hospedales, 2017). Furthermore, in spatio-temporal analysis, tensor regres-
sion has been extended to address both forecasting and cokriging tasks (Yu
et al), 2018; Su et al), 2020).

In tensor regression, incorporating tensor predictors presents several

challenges in the estimation and theoretical investigation. One key chal-



lenge is handling the multi-dimensional tensor data that possess complex
structures dependencies. Straightforward approaches, such as vectorizing
tensors and treating the resulting vectors as covariates (Zhou et al), 2014),
lead to ultrahigh-dimensional models that impose significant computational
burdens and disregard the spatial organization of the data. To address the
complexity of tensor structures, various low-dimensional structural assump-
tions for tensors have been proposed, including element-wise, fiber-wise,
or slice-wise sparsity (Raskutti et al), 2019; Zhang et al), 2019) and low-
rankness (Raskutti et al), 2019; Luo and Zhang, 2024). (Raskutti et al,,
2019) systematically studied these sparsity and low-rank structures, es-
tablishing general risk bounds and specific upper bounds across different
scenarios. Another line of research has focused on tensor regression mod-
els leveraging tensor decompositions to exploit the high-order structure of
tensor data, such as Canonical Polyadic (CP) and Tucker decompositions
(Kolda and Badern, 2009), with theoretical guarantees established in (Zhou
et al), 2013; Li et al}, 2018; Lu et all, 2020; Wu and Feng, 2023). While these
methods effectively utilize the structural properties of the tensor data, they
overlook the inherent structure of the corresponding tensor coefficients.
Recovering true tensor coefficients while preserving structural informa-
tion is crucial in practical applications to enhance interpretability. This
challenge is particularly significant in high-dimensional imaging studies,

where tensor coefficients are expected to exhibit piecewise constant patterns



(Feng et all, 2021;; Li and Zhang|, 2021)), and neighboring voxels tend to have
similar coefficient values (Michel et all, 2011; Wang et al), 2017). Effective
regularization methods are required to exploit these spatial dependencies
while maintaining computational efficiency. Wang et al, (2017) proposed
a two-dimensional total variation (TV) method to enforce piecewise con-
stant structures in matrix coefficients. However, due to its computational
complexity, this approach does not scale well to third-order or higher-order
tensor images. To address this limitation, Feng et al, (2021)) introduced
Internal Variation (IV) regularization, an extension of anisotropic TV to
higher-order tensors for linear tensor regression. While IV regularization
provides a more scalable solution, it is restricted to continuous response
variables and is not applicable to discrete outcomes. Moreover, its theoret-
ical properties remain unexplored.

To the best of our knowledge, inference for the piecewise constant na-
ture of imaging coefficients in generalized tensor regression models has not
been studied in the literature. We aim to develop a generalized tensor re-
gression model tailored for high-dimensional imaging data, while providing
theoretical guarantees.

In this paper, we develop a generalized tensor regression model includ-
ing scalar and tensor predictors to cover different distributions of responses,
and apply IV regularization to address the piecewise constant nature of

tensor coefficients. Our approach makes several key contributions. First,
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we impose the CP decomposition to reduce the dimension of tensor coeffi-
cients while preserving the spatial structure of the imaging data. We then
construct I'V regularization based on the CP decomposition, effectively cap-
turing the piecewise constant characteristics of imaging coefficients. Unlike
conventional fusion penalties (Li and Zhang, 2021)), which apply a uniform
regularization strength across all factor vectors and overlook those with
smaller total variations, IV regularization dynamically adjusts regulariza-
tion strengths across different factor vectors. This adaptive approach allows
for accurate estimation of both high- and low-variation components, im-
proving both interpretability and estimation precision. Second, we extend
the Alternating Direction Method of Multipliers (ADMM) to iteratively
update CP decomposition coefficients under IV regularization. FExisting
ADMM-based tensor regression methods (Lu et al), 2020; [Li and Zhang,
2021) cannot be directly applied due to the additional complexity intro-
duced by the IV penalty and the nontrivial likelihood function. Our modi-
fied ADMM framework overcomes these computational challenges, enabling
efficient and scalable estimation. Third, we introduce a novel bootstrap
procedure specifically designed for tensor imaging data to assess the sig-
nificance of both scalar and tensor coefficients, with a particular focus on
specific subregions of the tensor coefficient. This addresses a critical gap
in the literature, as no existing inference methods have been developed for

tensor regression models.



In theory, we investigate the theoretical properties of both scalar and
tensor coefficient estimates in non-regularized and regularized tensor re-
gression. Specifically, we first establish the asymptotic normality of these
estimates in the non-regularized setting. We then derive an error bound for
the coefficient estimates under general regularization and show that with ap-
propriately diminishing regularization, the estimated coefficients converge
to the true values as the sample size approaches infinity. Furthermore, we
establish an error bound for the tensor coefficient estimate under IV regu-
larization. Notably, we show that this error bound is related to the sparsity
in the internal variation of the factor vectors in CP decompositions, high-
lighting the impact of the piecewise constant nature of high-order imaging
data on estimation accuracy. Due to the complexity of IV regularization,
deriving theoretical guarantees for this method is challenging. Our proof
involves technical considerations linking the internal variation of the de-
composed factor vectors with the boundedness of the tensor coefficients
beyond those typically required for generalized tensor regression with sim-
pler penalties like the fusion penalty. To the best of our knowledge, this is
the first paper to theoretically explore IV regularization for the piecewise
constant nature of high-order imaging data.

Finally, we apply the proposed method to a chronic sinusitis (CRS) CT
imaging dataset, identifying subregions of the maxillary sinus cavity as-

sociated with pathogenesis, which have significant biological implications.



Although there has been extensive work linking brain imaging data to brain
disorders such as Alzheimer’s disease (Jack et alj, 2010) and ADHD (Hin-
shaw and Scheffler, 2014), research on imaging data related to other body
parts is still very scarce.

The rest of the article is organized as follows. In Section @, we intro-
duce the generalized tensor regression model based on CP decomposition,
and IV. Section B and Section @ present the estimation and implementation
details and the theoretical properties, respectively. In Section B, we pro-
vide the simulation studies for 3D scenarios. Section B illustrates the CRS
application. The last section provides concluding remarks and discussion.
2. Methodology
2.1 Notation and Operations
We start with a brief summary of tensor notation and some array opera-
tions. Extensive references can be found in the review article (Kolda and
Bader, 2009). Throughout this paper, we denote tensors by boldface script
capital letters such as X', ), matrices by boldface capital letters X,Y, vec-
tors by small boldface letters «,y, and scalars by small letters z,y. A
Dth-way tensor refers to a D-dimensional array X' € RP1*P2X--XPD  ywhere
the dimension D of a tensor is known as modes and p; (1 < d < D) is the
marginal dimension of the dth mode. For a vector @, let ||x|;, ||x||2 and
|z || denote its ¢, ¢5 and ¢, norms. For a matrix X, its Frobenius norm

and vectorization are denoted by || X || and vec(X'). The matricization of a
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2.2 Model framework

tensor links the concepts and properties of matrices to tensors. The mode-d
martricization of X, denoted as X4 is defined as a pg x [, 2aPa matrix
such that the (i1,...,ip)th element of the tensor X maps to the (i4,j)th
element of the matrix X(g), where j = 143", ,(ie — 1) [ gnzq Pa
(Kolda and Bader, 2009). Moreover, let vec(X) represent the vectoriza-
tion of a tensor X, which stacks its elements into a columns vector with
length Hfl) pa with its the jth entry maps to the (iy,...,ip)th element of
X, where j =1+ ZdD:l(id -1) Z,_:l  par- Next, we introduce some useful
operations between tensors and matrices. Given A = [a4,...,a,] € R™*"
and B = [by,...,b,] € RP* the kronecker product is the mp X ng ma-
trix A B=[a; ® B...a, ® B]. If A and B have the same number of
columns n = ¢, then the Khatri-Rao product is defined as an mp x n matrix
by A® B =[a; ®b;...a,®b,]. Next, we define the inner product (-,-)
of two tensors with the same dimensions as (X, )) = (vec(X)vec())) and
the Frobenius norm of a tensor is defined as || X||r = 1/(X, X). An outer
product byobso...obp of D vectors by € RP*, ... bp € RPP is an array of
dimension p; X ... X pp with its (i1,...,ip)th element equal to HdD:1 bai,-
2.2 Model framework

In this paper, we consider a broader family of exponential distributions for
the scalar response, which covers more types of tensor regression models.
We assume that the response y given covariate z € R? and tensor predictor

X € RPrxp2XXPD helongs to an exponential family with probability mass



2.2 Model framework

function or density

0 —(0)

p010.0) = exp { =0 1 oy}

where 6 and ¢ > 0 are the natural and dispersion parameters. The density
is related to z and X through the linear systematic part given by where 6
and ¢ > 0 are the natural and dispersion parameters. The density is related
to z and X through the linear systematic part given by where 6 and ¢ > 0
are the natural and dispersion parameters. The density is related to z and

X through the linear systematic part given by
g(n) = 2"k + (X, A) (2.1)

where p = E(y|z,X) and ¢(-) is an increasing link function. k € R? and
A € RPr>*P2X-XPD gre the covariate and tensor coefficients corresponding
to z and X, respectively. It is clear that the number of parameters to be
estimated in (Ell) is q + H(?:l pg- This number can be very large, even for
small values of each py. For example, a conventional MRI image with a pixel
size of 256 x 256 x 256 requires 256% = 16,777,216 parameters, which is
ultrahigh dimensional and exceeds the usual sample size. Including tensor
predictors introduces computational burdens and difficulties in estimation.

To deal with the high dimensionality resulting from A, we employ tensor
decomposition for dimension reduction. Common decomposition methods

include CP decomposition and Tucker decomposition (Kolda and Bader,



2.2 Model framework

2009). We opt for CP decomposition because, in general, the number of
parameters obtained by CP decomposition is less than that of Tucker de-
composition, and Tucker decomposition requires identifying a specific rank
or size along each dimension ([Li et all, 2018). For CP decomposition, a

rank-R approximation of A € RP1*P2X-*PD ig presented as

R
A:Zagoago---oa},, (2.2)
r=1

where a], € RP¢, a column vector, corresponds to the dth mode and rth com-
ponent, and R is defined as the rank of A. The CP decomposition can be
expressed as A = [Ay, Ay, ..., Ap|, where Ay = [a}, a?, ..., af] € RraxE
is the factor matrix of the d-th mode. In (@), potential identifiability is-
sues can be attributed to scaling, permutation, and non-uniqueness of the
decomposition. Constrained parameterization methods are needed to deal
with the identifiability issues. Following Zhou et al] (2013); Li et al, (2018),
we scale Ay, ..., Ap_1 such that ag; =1 and arrange the first row entries
of Ap in descending order ap,, > --- > al’%,l to deal with the complication.
After eliminating the indeterminacies, model (Ell) reduces to

R
g(,u):zTn+<X,Za§oago---oa’b>. (2.3)

r=1
In comparison to model (El]), model () not only preserves the complex
spatial structure of the tensor data but also significantly reduces the number

of parameters from HdD pg to deDzl pq. In addition to a massive reduc-

10



2.3 1V regularization

tion in dimensionality, the CP decomposition also provides a reasonable
approximation to many low-rank signals.
2.3 1V regularization
An important feature of imaging coefficients is their piecewise constant na-
ture, such that voxels in close proximity are more likely to have similar
coefficients. A common strategy to capture this property in 2D images in-
volves controlling the Total Variation (TV) (Wang et all, 2017). However,
when it comes to higher-dimensional imaging data, the direct application
of TV faces substantial computational and analytical challenges due to the
increased complexity. To navigate these challenges in higher-dimensional
data, the notion of Internal Variation (IV) was introduced in linear tensor
regression (Feng et al), 2021)). This concept assumes that the tensor coeffi-
cients A can be approximated by a rank-R CP decomposition. Thus, the
IV of A is defined as
R D
Al = > T llailrv. (2.4)
r=1 d=1
where || - ||ty for any @ € RP represents the TV of the vector: |a|rv =
P o la; — a;—1]. In a similar spirit to Feng et al| (2021), we consider an
IV regularized approach to capture the piecewise constant nature of high-
order imaging coefficients in generalized linear models. To the best of our
knowledge, this is the first time that piecewise constant tensor coefficients

are considered in generalized tensor regression models.

11



2.3 1V regularization

We discuss in detail the advantages of the construction of IV regulariza-
tion. As illustrated in (@), the essence of IV regularization lies in imposing
a constraint on the total variations of all vectors {a];}, 4 and assigning dif-
ferent regularization strengths to all {||a@}||Tv}rq4. For example, ||a}||Tv is
penalized by A, [ 44 ll@fy|[rv. This differs from the common fusion penalty
Al fusion = Sore, S22 [|Raal||; with the 1st-order differencing matrix Ry
(Li and Zhang, 2021)), where all {||a};||rv},q4 are penalized with the same
strength \,,. This differential regularization strength is crucial in estimating
high-dimensional image coefficients with complex spatial structures, as it
prioritizes smaller total variations ||a];||rv while ensuring accurate estima-
tion of a], with larger total variations. In contrast, with the fusion penalty,
the penalty for smaller total variations ||a}|ry may be overshadowed and
hence neglected due to the dominance of larger total variations.

To illustrate this, we give a toy example. Let R =1, D =3, and Ay =
a,0as0as3, where a, is a 30-dimensional vector whose 2nd and 3rd elements
are equal to 2, as is a 30-dimensional vector whose 2nd and 3rd elements are
equal to 1, and a3 is a 30-dimensional vector whose 2nd and 3rd elements
are equal to 0.5. This also implies that ||ai|tv > ||az||rv > ||as||Tv. After
generating the binary response y as in Section H, we estimate a1, a; and as
using the IV and fusion regularizations with the same strength A, for both
methods. To ensure identifiability, we scale the second elements of a; and

as to 2 and 1, respectively. Figure m shows the trends of each element of a4,
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a,, and a3 with the number of iterations. We observe that the IV method
converges faster and exhibits smaller fluctuations. Notably, the 2nd and
3rd elements of asz estimated using IV regularization are always very close,
whereas there is a significant difference between the two elements estimated
using the fusion penalty. Additionally, the estimates of @, and a, obtained
using the IV method are more accurate. This is because in the fusion
penalty, the regularization strength of ||ai||Tv, ||@z|/Tv, and ||as||rv, are the
same, and || A||fusion is mainly affected by ||a@1||Tv and ||as||Ty, which results
in a; and ay, which have larger total variations, being accurately estimated,
while a3, which has smaller total variation, being ignored. On the contrary,
in ||Al|rv, the regularization strength for as is A,|a1||Tv|az||Tv, and such
a regularization strategy not only ensures that a; and as; are accurately
estimated, but also adequately takes into account the smaller ||as||Tv.

3. Estimation

3.1 Regularized GLM with IV penalty

Given the dataset {y;,z;, X;},, the negative log-likelihood function is

L(K'v Al? oo AD) = Z;L:ll{(h"? A17 s 7AD)7 yl} = - Z?:l[{yzel_w(el)}/a<¢>+

c(yi, ¢)], where 6; is related to parameters (k, Aj,..., Ap) through (@)
and [(-,y) denotes the negative log-likelihood. We consider the following

IV regularized minimization problem

(K,Ay,...,Ap) = argmin L(k,Ay,...,Ap) + \||Allv, (3.1)
K,A1,...,Ap
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3.1 Regularized GLM with IV penalty

2
: 3 A
0 = 0| V7 0.0
0 10 20 30 0 10 20 30 0 10 20 30
Iteration Iteration Tteration
(a) IV regularized a; (b) IV regularized as (c) IV regularized as
’ |
2
E 21 | /| 05
2 s \ 2
X >
0 (s — 0 \ }}5 0.0 —
0 10 20 30 0 10 20 30 0 10 20 30
Iteration Iteration Iteration
(d) Fusion regularized @;  (e) Fusion regularized a;  (f) Fusion regularized as

Figure 1: Trends of each element in @, a, and as over iterations using the
IV penalty and fusion penalty. The orange line represents the 2nd element
and the blue line represents the 3rd element.

where A, is the regularization parameter. The estimation problem (@) can
follow a block relaxation algorithm. However, deriving a piecewise constant
estimate through the IV regularization comes at the cost of a more com-
plex algorithm. Specifically, the form of the TV product, as in (@), aCross
different modes poses significant challenges for estimation. We consider con-
verting the IV regularization into a generalized lasso with the form ||Dal|;
to remove the concatenated product form, where the generalized matrix D
does not contain any parameters of a. We next illustrate this idea in detail.

Let ay = vec(Ay) € REP4 be the vectorization of Ay. When updating

14



3.1 Regularized GLM with IV penalty

a4, the inner product in (@) can be rewritten as

R R
<Xi,Za§oag---oa}),> :ZXi’(d) (a{@---@a&_l®a2+1®---®a§7)a2.
r=1 r=1

(3.2)
Let ] ; = X ) (af®...®a)_,®a},, ®...®a}) and v, be an R-dimensional

vector with the rth element being 1 and the rest being 0. We have

R
Xig= (Z v, ® ;c;d> eR™, X, =(X14,..., X4 € R™FPa (3.3)
r=1

As a result, the expression in (@) takes the form of X a, for each d. This
implies that by fixing other Ay .4 matrices, we can update each a4 through
traditional GLM regression with Rp, parameters.

For the IV regularization, notice that ||a}||rv = ||Gaa}||1 where G4 €
RPa—DxPa jg the 1st-order differencing matrix. Let &) = [1ozallag|lrv and

H, be an R X R identity matrix , then

R
Al = (H HGQfHTV) lagllrv = [[Daadll1, (3.4)

r=1 \d'#d

where Dy = S € H, @ Gy € RE0a <A By combining (5.3), (B3).
and (@), we can estimate aq4, given Kk and Ag.4, through a generalized

lasso regularized GLM:
ay = argmin L(Xa4) + A ||Daaqll - (3.5)
aq

For the generalized lasso optimization (@), note that the non-smoothness
of the || Dgagl||; makes traditional algorithms, such as gradient descent, suf-

fer from slow convergence. We adopt the Alternating Directional Method
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3.2 Hypothesis Testing

of Multipliers (ADMM) algorithm, which has been frequently used in dis-
tributed settings (Boyd et alj, 2011). The detailed information about the
ADMM algorithm is included in the Supplement Material El! to save space.
The ay’s are recursively updated by fixing other estimates until conver-
gence. The steps of the IV regularized generalized tensor regression are
summarized in Algorithm m in the Supplement Material @ In practice,
the initial values of (Ay,..., Ap) are chosen from independent Normal dis-
tributions with small variance. We select the tuning parameters A\, and R
(if unknown) using the following Bayesian information criterion (BIC), as

described in Burnham and Anderson (2004); Feng et al| (2021),

-~

BIC(A,, R) = 2L(k, A) + logn - df (\, R),

where df (A, R) represents the degrees of freedom. We use the degrees of
freedom defined in Feng et al, (2021) and Li and Zhang (2021), which
equals the sum of the nonzero elements across {Dgay}q. We provide a
more detailed discussion on the BIC in the Supplement Material .

3.2 Hypothesis Testing

Although the estimation of parameters is interesting, it is equally important
to test for the significance of k and vec(A). This is particularly relevant
in biomedical imaging analysis, where we aim to examine whether imaging

data and other covariates have significant effects on diagnosis. Therefore,
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3.2 Hypothesis Testing

we propose to test two sets of null and alternative hypotheses as follows:

Hyn:k=0, vs. Hy,:K# 0,

Ho 4 :vec(A) =0,, wvs. Hip4:vec(A)#0,.
To test these two hypotheses above, we propose two statistics as follows:
T, = ||R|? = (R)TR and T4 = ||vec(A)|? = vec(A) vec(A).

Under the null hypotheses, the two statistics, T, and T4, are expected to
be close to zero. One can reject the null hypothesis H, , if T is large,
and similarly, reject Hy 4 if T4 is large. As the asymptotic normality of A
under IV regularization can’t be directly derived in Section @, we propose
a resampling procedure to approximate the null limiting distributions of
these statistics. To accommodate the tensor data setting, we modify the
bootstrap method by Cheng and Huang (2010). Specifically, we implement
the bootstrap for our IV regularized minimization as follows:

~

« Step 1: Compute the estimators K, vec(.A) through the IV regularized

tensor regression by Algorithm E]

o Step 2: For each b, genrate n i.i.d. random variables W? = (Wb, ... W} )
with E(W?b) = 1, E(W}, — 1)2 — 1, and E(W?,)® < oo for i =
1,...,n.

 Step 3: Solve the following W’-weighted minimization and denote

17



their solutions as R® and A ,

argmin ZWf;il((n, Ay, Ap),ui) + Al Allv,

i=1

The tuning parameters are the same as those selected in Step 1.

o Step 4: Repeat Step 2 and Step 3 for B times. Calculate

-~

T = (R —R)(R' — &) and TY = vec(A” — A) vec(A® — A).

K

o Compute p, = b~ S0 I(T? > T,) and pa = b~ 00 (T > Tla).
The null hypothesis Hy, is rejected if p, is smaller than a prefixed
significance level o, and Hy 4 is rejected if p 4 is smaller than a prefixed

significance level a.

In some situations, the parameter of interest is 7" = m/(.A), where m/(-) is
a function from RP to R. For example, when A is a 30 x 30 x 30 ten-
sor, we may want to check if the subregion in the middle is zero, i.e.,
vec(A1s:20,15:2015:20) = 0. In this case, we propose the statistic 7% =
vec(A15:2015:20,15:20) T vec(A15.20,15:20,15:20) t0 test the new hypothesis.

4. Theoretical Properties

The existing literature mainly focuses on the theoretical properties of tensor
estimators while overlooking scalar estimators (Zhou et al), 2013; Wang
et al), 2017; Li et al), 2018). Moreover, theoretical exploration of regularized
generalized tensor regression models is relatively limited, especially in the

complex context of IV regularization.
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In this section, we investigate the statistical properties of both tensor
and scalar estimates in generalized tensor regression, with or without the
use of regularization. In particular, we establish the asymptotic normality of
non-regularized estimates, Kk and A\, respectively (see Theorem m) Then, we
derive the error bound for coefficient estimate under general regularization
(see Theorem E) It is worth noting that the conclusion of Theorem { is not
limited to IV regularization but is also applicable to common regularization
methods, such as lasso or fusion penalties. Finally, we specifically derive
the error bound for IV regularized tensor estimate A (see Theorem H)

First, we provide a brief explanation of some notation. Let x; =
vec (X;). Define A € R? = (vec(A;)T,vec(Ay)T, ... vec(Ap)T)T as the
true parameters, and let f(A) = vec(A) = vec(A;, As, ..., Ap) be the
function corresponding to the true A. Then, the Jacobian matrix J of

dimensions H§:1 Pa X ZdDzl paR takes the following form:
J(A)=0f/0A =[Jy---Jp], (4.1)

where J; is the Hle pg X Rpg Jacobian matrix with respect to A, with
the form IT; [(Ap ® -+ © A1 © Ag1 © - © Ay) ® I,,,], where I, is the
12, pa % 15, pa permutation matrix that reorders vec(A) to vec(A).
We first consider the asymptotic distribution of the estimators for tensor
regression (@) with fixed py, ..., pp and rank R. Non-regularized tensor re-

gression problem can be represented by (1, A) = argmin S (kA yid

)
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We establish the asymptotic distribution of K and A in the following the-

orem, with proof provided in the Supplement Material .

Theorem 1. Let 0y = 2Tko + T f(Ag), p2(n) = (du/dn)? /o*(n) and
define h(z) = Elzps(mo)|X]/Elp2(mo)|X], 2 = 2z — h(2) and h(X) =
E[Xpa(no)|z]/Elp2(no)|z], € = & — vec(h(X)). Suppose Conditions C1

and C2 of the Supplement Material @, hold, as n — oo, we have
ViR — ko) = N (0,571, (A — Ay) — N (0,53
where By, = E [pa(10)22”]| and X4 = JT(Ao)E [pa(mo)@z™] J(Ao).

Theorem m shows that the estimates & and A are both v/n-consistent. If
z and X are independent, the variance terms reduce to 3, = F [pg(’l]o)ZZT}
and X4 = JT(Ag)E [p2(no)xx™] J(Ap). We further characterize the inter-
actions between the two types of covariates. In particular, the term h(X)
is a projection of z onto X and h(z) is a projection of X onto z. When
there are no covariates z in the model, the asymptotic variance of A is the
same as Theorem 2 of Zhou et al| (2013). However, their conclusion does
not consider the effects of scalar covariates.

Next, we establish the theoretical properties for the recovered coeffi-
cients when a general regularization function R(-) is added. Let 7T = (k, .A)
represent the combination of the covariate coefficients and tensor coeffi-
cients, with A;,..;, = Zle ay;, -+ ap,, as defined by the CP decompo-

sition (@) Recall that the negative log-likelihood function is defined as
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UZ,y;) = — [{yiti —¥(0:)}/a(®) + c(yi, @)]. Consequently, the overall ob-
jective function combines the negative log-likelihood function and the regu-
larization function R(-), namely L(Z|y) = > " I(Z, y;) + \yR(Z), where ),
is the regularization parameter. Assuming ©7 as the parameter space of Z,
we have 7 = argmingego_ L(Z|y). For each y;, let IA(Z,y:) = U(Z,y:) —
[(Zy,y;) be the negative log-likelihood difference. Here, Zy = (Ko, Ao)
corresponds to the unique true parameter. We first define K(Z,Z,) =
n~ 13" E[la(Z,y;)], which is the expected negative log-likelihood differ-
ence. Since Zj is the unique true parameter, we have K(Z,Zy) > 0 for all
7 € © and K = 0 if and only if Z = Z;. Therefore, we define the distance
between Z and T as p(Z,Zy) = K'/*(Z, 1), and also define the variance of

the negative log-likelihood as V(Z,Zy) = n~ Y ", Var [Ia(Z,y)].

Theorem 2. Suppose 7 is the reqularized estimator satisfying L(f|y) <
infreo, L(Z|y) + 7, where 7, — 0 and O7 = {(k, A) : A =[A4,..., Ap],

|£]|l e < C1, maxy||vec(Aqg)||eo < Ca} for positive constants Cy and Csy, then

~

P (pZ. %) = &) < Texp(—en?),

where ¢ > 0 is a constant and &, = max(e,, )\71/2) with

2w

()™ i,

(=) fw<s,
being the best possible rate achieved when \, ~ 2. Here w = «/v, where
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a s the parameter associated with the degree of smoothness of [ and v =

ZdD:1 paR + q is the number of the parameters (k, {Aq}q).

Theorem B indicates that, with an appropriately diminishing R(-), the
recovered coefficients 7 converge to the true one as n — oo. When [x is
infinitely differentiable, meaning w = oo, the convergence rate of 7 reaches
n~2. This condition is met in cases where y follows normal, binomial, or
Poisson distributions. As the smoothness of A decreases, the convergence
rate of the estimator Z becomes slower. Additionally, Theorem @ does not
require the penalty function R(Z) to specifically be the IV as defined by
(@) Therefore, it holds for a wide range of regularized generalized tensor
regression models.

We further proceed to study the rate of convergence for IV regularized

generalized tensor regression. We focus on the following estimator:

~

. 1 O
A= argmin_ia, . ap) - > 1A i) + Al A, (4.2)
=1

where we use \ instead of A, from the previous context for distinction and
simplify by ignoring the effect of covariates. To establish the error bound
of Ain (@), the following conditions are required.

(C3). The factor matrices A = [Ay, ..., Ap]| satiety |S]| < s/, where
S5l is the number of indices in Sj = {j : al; ; —al; # 0,1 < j <pg—1}
foranyr=1,..., Randd=1,...,D.

(C4). X is almost surely bounded by a constant L such that || vec(&X')||oo <
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L, a.s.

(C5). The parameter space of factor matrices is Q4 = {(A4,..., Ap)
foreachd=1,...,Dandr=1,... R, g < |laj||, <g and t < [[a}|ltv <
t,}, where g,g > 0 and ¢, > 0.

(C6). Let Q@ = {H € Rev<p2>x>pp - Y = [A; + Hy, Ay + Hy, ..., Ap + Hp|
—[Ay, As, ..., Ap|, where [A; + H, Ay + Ho,...,Ap+ Hp] € Q4, h =
vec(H) and Ef:l 25=1(2§D_1_1) Zjesgc |y —hel < Zf:l z:dD=1(21?D_1+
1) Zjesg |1 — hal + Zf:l 25;1 || +2n/(8g771) with e, = 1/n}. De-
note ¥ := E(vec(X) vec(X)), assume that there exists some constant k

such that, for any ‘H € Q,

1
vec(H) Tvec(H) > k||H|% — WSW

Condition C3 specifies the sparsity of the differences among the coefficients
of the factor vectors. The s]’s are not required to be bounded, so the the-
orem holds for any value of s};. Condition C4 is consistent with C1 but
additionally provides the bound L for convenience. Condition C5 imposes
constraints on both the range and the total variation of all factor vectors.
Similar assumptions are commonly seen in regularized tensor regression
problems (Lu et al), 2020; Liu et al), 2024). Note that here we constrain
the lower bound of the total variation of the factor vectors, primarily due
to the complex product form of the total variation in the IV regularization

term. Condition C6 is similar to those in (Blazere et al), 2014; Lu et alJ,
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2020; Liu et al), 2024), but our parameter space €) is more complex due to
the consideration of the IV regularization term. C6 assumes local strong
convexity of the expected loss at the minimizer, which is commonly consid-
ered in lasso or group lasso regularized GLMs (Bunea, 2008; Lounici et al,,
2011; Blazere et al), 2014). By Lemma 2.1 in Buned (2008), C6 is satisfied
when the entries of 3 are bounded. The following result provides the rate
of convergence for IV regularized estimate Ain (@)

Theorem 3. Under Conditions C3 to C6, define s = max, 45}, p = [, P4,

and B = Rg®, there exist constants Cp g, C1, Ca, Cs, and Cy such that

A2 16KLCL,B§D1WV EGKZ'LCL,BQD*l% v 80KL@(LC7L)§D1Wa

where K > 1, M = C1B+e¢,, ¢, = 2M+ B, and ®(t) = max|y <, {¢'(x)/2}.
Define ¢, = ®(L(M + B)). Then, with probability 1 — (2 + C)(2p)K"/2,

we have

O3(Cy + /3)VRDA

Y )\
|- Al < AT

In particular, if g and D are bounded above and ®(t) is bounded away

from zero, the rate of convergence is y/sRlog(2p)/n when we set A\ =<

log(2p)/n. This implies consistency of the estimator when p also diverges
with n as long as /sRlog(2p)/n = o(1) as n — co. The error bound
depends on s, which represents the sparsity of the internal variation within
the coefficients of the factor vectors. This implies that the more piecewise

constant the true high-dimensional imaging coefficient is, the smaller the
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error bound. One may compare this to the case of Lasso penalty, where
the rate depends on the sparsity of the coefficients themselves. The error
bound also depends on the sample size n and the dimension p only has a
logarithmic effect. The above result shows that a smaller value of s and the
low-rank structure will lead to a better rate.
5. Simulation Studies
In this section, we conduct various numerical studies to evaluate the perfor-
mance of our proposed method, TensorReg IV, in 2D and 3D scenarios. For
comparison, we also analyze three additional methods. The first method,
VoxelReg, performs generalized linear regression for each voxel. The sec-
ond method, TensorReg, applies CP decomposition to A and estimates pa-
rameters through traditional GLMs. The third method, TensorReg Lasso,
performs tensor regression with fusion lasso penalty (Li and Zhang, 2021)).
Considering different response distributions of y such as binomial, normal,
and Poisson, we primarily present the results of simulations under the bino-
mial distribution here, in line with our CRS data study. The 2D simulation
results are provided in the Supplement Material @ The results for the
other two distributions are compiled in the Supplement Material @ Esti-
mation accuracy is assessed by [|§ — rol|2 and |4 — Ag||#. For prediction
performance in binary tensor regression, we calculate the accuracy rate
Ply = y], sensitivity P[y = 1|y = 1], and specificity P[y = 0|y = 0].

In the 3D image simulation, we generate X; as a 30 x 30 x 30 tensor,
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incorporating four distinct shapes: One Brick, Two Bricks, Three Cross,
and Pyramid, as specified in Feng et al| (2021)). The ranks for these shapes
are set at 1, 2, 3, and 8, respectively. The tuning parameters for regulariza-
tion methods are determined through a grid search based on the criterion
discussed in Section El] Define n; = 2! ko + (X;, Ag), with both &; and z;
being normally distributed, and we set ko = (1,1,1,1,1)7. The binomial
response is generated as y; ~ Bernoulli(p;), with p; = 1/[14+exp(—n;)]. The
simulation outcomes are derived from 100 repetitions, and the sample size
n varies within {500, 700, 1000}.

Table m summarizes the average RMSEs and their standard errors for &
and A. The proposed method consistently outperforms the other methods
in terms of ||& — ko2 and || A—Ap||r. A notable trend is observed where the
RMSESs of all methods decrease as the sample size n increases, which aligns
well with our theoretical findings. The RMSEs of the VoxelReg estimates
remain relatively constant across different sample sizes n, with each estimate
value being near 0. This explains the anomalously small RMSE observed in
the Pyramid case, highlighting it as an invalid result. To further compare
the proposed method with other methods, we visualize the true signals
alongside the estimated tensor coefficients of these methods in Figure @
We omit the results of VoxelReg as it fails to reconstruct the true signal
effectively. From the visualizations, it is evident that our proposed method

outperforms the others in accurately recovering the true signal. Notably,
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Table 1: Mean and standard error of ||& — kolls and ||A — Ao|[r using
TensorReg IV and competing methods under different signal shapes of Ay
and sample size n based on 100 replications.

Aoy n VoxelReg TensorReg TensorReg Lasso  TensorReg IV

|k — kol Onme brick 500  2.199 (0.006) 1.629(0.904) 1.514(0.825) 1.172(0.525)
700 2.185(0.007) 1.512(0.621) 1.368(0.883) 0.641(0.477)

1000 2.162(0.008) 0.738(0.512) 0.811(0.514) 0.355(0.174)

Two bricks 500 2.210(0.006) 1.273(0.428) 1.533(0.290) 1.354(0.411)
700 2.198(0.007) 1.481(0.232) 1.169(0.437) 0.883(0.489)

1000 2.181(0.009) 1.293(0.437) 0.678(0.374) 0.582(0.368)

Three cross 500 2.215(0.007) 2.186(0.643) 1.551(0.519) 1.331(0.375)
700 2.208(0.008) 1.524(0.594) 1.317(0.353) 1.117(0.380)

1000 2.195(0.010) 1.444(0.439) 1.065(0.281) 0.820(0.335)

Pyramid 500 2.218(0.006) 1.928(0.194) 1.696(0.249) 1.505(0.330)
700 2.213(0.008) 1.730(0.315) 1.606(0.265) 1.294(0.333)

1000 2.203(0.010) 1.490(0.360) 1.485(0.249) 1.105(0.300)

H/T— Aollr One brick 500 6.690(0.005) 8.952(5.665) 7.714(2.859) 4.741(2.655)
700 6.681(0.006) 7.023(2.506) 6.633(3.667) 2.162(2.289)

1000 6.672(0.006) 3.658(1.991) 3.845(2.008) 0.985(0.598)

Two bricks 500 9.436(0.005)  18.381(21.921) 9.706(0.334) 8.193(2.221)
700 9.416(0.005) 9.896(0.379) 8.087(1.301) 4.841(2.698)

1000  9.387(0.006) 8.405(1.595) 5.454(1.598) 2.918(1.957)
Three cross 500  12.631(0.004)  24.172(6.806) 19.532(4.837) 11.353(1.665)
700 12.604(0.005)  29.909(17.731) 14.265(4.746) 9.196(1.684)

1000  12.562(0.006)  18.028(18.738) 9.452(1.326) 6.438(2.281)

Pyramid 500 15.567(0.004)  16.449(3.68) 19.209(1.306) 15.965(6.704)
700  15.536(0.005)  17.214(4.122) 17.670(3.202) 12.056(1.490)

1000

15.489 (0.006)

14.681 (3.726)

13.587(2.311)

10.361(0.875)
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Figure 2: True signals and estimates of A. The sample size is 1000.
TensorReg and TensorReg Lasso struggle to reconstruct the true signal,
even in the relatively simple One Brick scenario.

Table E details the prediction performance of various methods. A sim-
ilar pattern to the estimation accuracy results is evident: TensorReg IV
consistently outperforms the other methods, achieving higher accuracy, sen-
sitivity, and specificity across the board. In terms of computation time, our

method takes longer than TensorReg but is comparable to TensorReg Lasso.
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For instance, in the One Brick scenario with n = 1000, the average com-
putation times are 95 seconds for TensorReg, 300 seconds for TensorReg
Lasso, and 284 seconds for IV regularization. Based on the valuable sug-
gestion from the AE, we also compare the performance of CNNs on the
aforementioned classification problem, with results presented in Table E
The training and tuning steps for the CNNs are detailed in the Supplement
Material @ It can be observed that the performance of CNNs is generally
suboptimal. Due to the data generation process, our images are generated
from a normal distribution, making it challenging for CNNs to capture
label-related signals, resulting in suboptimal performance. The sensitivity
and specificity results are provided in the Supplement Material @

6. The CRS Application

The etiology of CRS is complex, and it is a common condition worldwide
with a prevalence of about 5%-16%. CRS significantly impairs quality of
life and poses a substantial economic burden (Hastan et al), 2011; Fokkens
et all, 2020; Zou et all, 2024). Diagnosis primarily relies on nasal endoscopy
and imaging assessment, in addition to clinical symptoms such as nasal
congestion and blockage. CT examination can display all groups of sinus
cavities, mucosa, and bony structures without the restriction of field of view,
making it essential for preoperative evaluation. Combining CT image data
with patient-related covariates significantly enriches diagnostic information

and improves accuracy.
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Table 2: Mean and standard error of prediction results using TensorReg IV
and competing methods under different signal shapes of Ay and sample size
n based on 100 replications.

Ao n VoxelReg TensorReg  TensorReg Lasso CNN TensorReg IV

Plj=y] Onebrick 500 0.514(0.034) 0.579(0.119)  0.575(0.108)  0.538 (0.053) 0.662(0.170)
700 0.525(0.027) 0.683(0.170)  0.745(0.168)  0.566 (0.061) 0.814(0.142)

1000 0.532(0.025) 0.787(0.154)  0.779(0.155)  0.611 (0.065) 0.879(0.039)

Two bricks 500 0.519(0.035) 0.512(0.034)  0.553(0.061)  0.540 (0.049) 0.629(0.124)
700 0.523(0.032) 0.538(0.042)  0.699(0.118)  0.559 (0.057) 0.804(0.130)

1000 0.526(0.022) 0.646(0.127)  0.845(0.088)  0.599 (0.054) 0.864(0.087)

Three cross 500 0.517(0.036) 0.524(0.042)  0.595(0.060)  0.562 (0.067) 0.659(0.096)
700 0.526(0.030) 0.533(0.055)  0.678(0.044)  0.615 (0.077) 0.734(0.072)

1000 0.532(0.021) 0.601(0.091)  0.737(0.024)  0.654 (0.072) 0.826(0.077)

Pyramid 500 0.520(0.031) 0.533(0.082)  0.600(0.038)  0.568 (0.077) 0.701(0.048)
700 0.521(0.029) 0.583(0.085)  0.635(0.043)  0.629 (0.083) 0.750(0.036)

1000 0.532(0.021) 0.654(0.092)  0.703(0.043)  0.660 (0.090) 0.777(0.036)

We apply the proposed method to a real dataset of CRS patients. The
dataset, comprising clinical and imaging data, was collected from patients
who visited Nanjing Tongren Hospital for CT examinations of paranasal si-
nuses between January 2018 and December 2021. A retrospective analysis
of these patients and a healthy control group was conducted. All subjects
underwent Multi-Slice CT (MSCT) as part of their assessment. CRS diag-
noses followed the European sinusitis guidelines. For image acquisition, CT
volumetric images of the patients’ paranasal sinuses were obtained using

either a 64-layer or 256-layer spiral CT scanner (Philips Medical Systems,
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The Netherlands). These images were captured with a layer thickness and
spacing of 0.625 mm, and a size of 512 x 512. The scanning baseline was
aligned parallel to the infraorbital line, covering an area from the top of the
frontal sinus down to the inferior edge of the maxillary odontoid process.

Due to varying sizes of CT images among patients and to improve com-
putation efficiency, we cropped the CT images for each patient, removing
irrelevant areas, and resized them to 100 x 256 x 256. The dataset includes
479 cases: 270 normal controls and 209 CRS subjects. Of these, 274 were
males with an average age of 35.5 years (SD 17.2 years) and 205 were fe-
males with an average age of 40.7 years (SD 17.3 years). We encoded the
binary disease state as 0 for healthy controls (HC) and 1 for CRS. The im-
age predictor X; is a 3D CT image of the sinus, and the covariate vector z;
includes gender (female=0, male=1) and age (ranging from 3 to 81 years).
Given (z;, &;), y; is assumed to follow a Bernoulli distribution with proba-
bility p;, where log[p;/(1 — p;)] = 2!k + (X;, A). We employed Algorithm
lﬂ to estimate the unknown parameters.

Figure H presents the horizontal, coronal, and sub-regional sagittal sec-
tions as identified by three different methods. Specifically, the first row
in Figure H displays three sections of an original CT image sample. The
sixth color row shows the estimated coefficients obtained by our proposed
method, and the seventh row highlights the signal regions within the top

10% of the magnitude. Notably, in the bottom left panel of Figure E, the ef-
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fects around pixels (50, 100) and (50, 150) appear to be effectively captured
by IV estimation. Similar observations are made in the coronal and sub-
regional sagittal planes, where the effects at corresponding locations are
also well estimated. In contrast, the signal distribution in the estimated
coefficients obtained by TensorReg and TensorReg Lasso is more dispersed,
making it challenging to intuitively discern significant signal regions.

Analyzing the bottom panel of Figure , we can locate the subregion
with the strongest signal, identified by TensorReg IV as 421\20;30,155;1707140:150.
We test the null hypothesis Hy 4 : V€C(ﬁ20;30,155;1707140;150) = 0 and propose
the corresponding statistic Ty = VGC(.»21\20;307155;170,140;150)TVQC(A\203307155;1707140:150).
We calculated the p-value of this subregion using the empirical bootstrap
procedure proposed in Section @ The p-value for this subregion is 0.020,
indicating that the identified subregion is significant on the incidence of
CRS. Regarding the covariates, we obtained K of the coefficients corre-
sponding to age and sex as —0.026 and —1.262, respectively, with the cor-
responding p-values being 0.008 and 0.739, which indicates that sex does
not have a significant impact on the incidence of CRS.

It is noteworthy that the subregion with the strongest signal identified
by our method is located in the sinus cavity of the maxillary sinus, a region
widely recognized for its association with the pathogenesis of CRS. Con-
ventional CT scans for CRS typically reveal a mucosal thickness of > 3

mm in the maxillary sinus cavity, often accompanied by soft tissue and
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Figure 3: Tensor coefficients estimated and identified signals for CRS data using differ-
ent methods. Three columns are the horizontal section, the coronal section, and sagittal
section, respectively. Row 1 is a sample of sinus CT, rows 2-3, rows 4-5, rows 6-7 corre-
spond to TensorReg, TensorReg Lasso and TensorReg IV, respectively.
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air-fluid surfaces (Capelli and Gatti, 2016; Fokkens et al, 2020). Classical
diagnostic criteria assign scores of 0, 1, or 2 for the absence, presence, or
complete filling of inflammation in each sinus cavity, respectively. Addi-
tionally, studies have shown that the maxillary sinus cavity volume and
mean bone wall thickness in CRS patients significantly differ from those in
the control group (Kim et al), 2008; Cho et al|, 2010; Deeb et al|, 2011).
The scalar estimates also provide insightful biological meanings. Firstly,
the negative estimate for age indicates a lower prevalence of CRS in older
groups compared to younger ones, aligning with the results from a CRS
symptom questionnaire administered to 24,000 primary care patients (Mah-
davinia and Grammer 11, 2013; Hirsch et al), 2017). Secondly, regarding
the negative gender coefficient, although it is not statistically significant,
we still observed that its negative nature aligns with some literature on the
relationship between CRS and gender (Shashy et all, 2004; Mahdavinia and
Grammer III, 2013). This suggests a potential increased susceptibility of
women to CRS, a hypothesis that warrants further investigation.

Finally, we evaluated the prediction accuracy of the proposed method
and the competing methods for the CRS dataset. We randomly divided the
CRS dataset into a training set with n; = 400 and a test set with ny, = 79,
calculating the classification accuracy for the test set. The prediction results
are summarized in Table a Evidently, TensorReg IV achieves superior

performance in terms of accuracy, sensitivity, and specificity. Furthermore,
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Table 3: Mean and standard error of prediction performance using the IV
and competing methods.

Prediction = TensorReg  TensorReg Lasso TensorReg IV

Accuracy  87.9%(0.9%)  89.5%(1.9%) 93.2%(1.1%)
Sensitivity 90.2%(0.7%)  92.3%(4.4%)  93.7%(4.2%)

Specificity 86.2%(1.8%)  86.7%(2.9%)  92.8%(4.6%)

when diagnosing CRS using only gender and age, the accuracy, sensitivity,
and specificity were 50.6%, 43.6%, and 57.5%, respectively, indicating that
the inclusion of high-order images substantially improves predictive power.
7. Discussion

In this article, we introduce a novel IV regularized tensor regression frame-
work that incorporates a low-rank and piecewise constant structure. This
framework is robust to distributional assumptions and enhances the inter-
pretability of the model. We delve into the details of how IV effectively
assigns varied regularization strengths to each {||a}||tv}.q4. We investigate
the theoretical properties of tensor estimate under IV regularization. Exten-
sive numerical studies have been conducted to validate the effectiveness of
the proposed IV regularized regression and compare it with other methods.
We also applied this method to analyze a real CRS dataset, successfully
identifying the most active regions associated with CRS. This work lays

the groundwork for further research into the etiology and imaging interac-
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tions of CRS and other sinus diseases, a task complicated by the complexity
of the sinuses and the irregular spatial structure and dimensionality of the
imaging data. There remain many areas ripe for further research. The IV
is based on the CP decomposition, prompting the consideration of other
common tensor decomposition methods for constructing new IV, such as
Tucker decomposition (Kolda and Bader, 2009) and Tensor-Train decom-
position (Oseledets, 2011)).

8. Supplementary Material

In the supplementary material, we present the complete algorithm for esti-
mating the parameters and provide additional numerical results. In addi-
tion, we give some useful lemmas and proofs of theorems.
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